Increasing Block Tariffs, Fairness and Efficiency

Hugh Sibly

School of Economics and Finance
University of Tasmania

CWEEP Conference
Emerging Policy Issues in Water
Springbank Room, Crawford School, ANU
Wednesday 30 March 2011
Introduction

There are two related sources of inefficiency the pricing of urban water in Australia today:

- inflexible prices and
- increasing block tariffs (IBTs).

Richard Tooth and I develop a model to analyse the impact of IBTs in a systematic way:

- consumers have heterogeneous ordered demand
- face a volumetric rate with at most two tiers (at most one threshold)

Water authority

- faces a constraint on water availability
- must cover economic costs
The Model

Assume consumers’ demand are ordered by a parameter, α, such that:

$$X(\alpha, p) = \alpha x(p)$$

where $\alpha \in [\underline{\alpha}, \bar{\alpha}]$ and where p is the consumer’s marginal benefit.

Number of type α customers $g(\alpha)$

- number of customers type α or below $N(\alpha)$
- total number of customers N^T

Assume a given total demand for water, X^T.
Efficient two part tariff

A two part tariff consists of:

- a fixed charge T, and
- a single volumetric rate, τ.

The efficient volumetric rate, τ^*, of two part tariff clears the market:

$$X^T = \hat{\alpha} \chi(\tau^*)$$

where $\hat{\alpha}$ is the average demand of all customers.
Total Revenue from the efficient two part tariff:

\[R^T = N^T\tau^* + \tau^* \hat{\alpha} x(\tau^*) \]

where \(N^T \) is the total number of consumers. The water corporation’s total cost, \(C^T \), is:

\[C^T = F + cX^T \]

where \(F \) is the fixed cost and \(c \) is marginal cost. Cost recovery requires the fixed charge to be:

\[T = \frac{[F - (\tau^*-c)\hat{\alpha} x(\tau^*)]}{N^T} \]
Increasing Block Tariffs

The IBT \(\{\tau_1, \tau_2, \tilde{X}\}\) requires the volumetric rate, \(p\), for the \(X^{th}\) unit is:

\[
p = \begin{cases}
\tau_1 & \text{for } 0 \leq X \leq \tilde{X} \\
\tau_2 & \text{for } X > \tilde{X}
\end{cases}
\]

where \(\tilde{X}\) is the threshold.
Result 1: Suppose that X^T is fixed. Then: (i) $\tau_1 < \tau^* < \tau_2$ (ii) a decrease in τ_1 while holding \tilde{X} fixed requires τ_2 to be simultaneously increased, and (iii) an increase in \tilde{X} requires either τ_1 and/or τ_2 to be simultaneously increased.
Note there are \([N(\hat{\alpha}_2)-N(\hat{\alpha}_1)]\) threshold customers.

Result 2: Suppose the water corporation is subject to cost recovery and \(X^T\) is fixed. An increase in \(\tilde{X}\) accompanied by a simultaneous increase in \(\tau_2\) requires an increase in the fixed charge if the number of threshold customers is relatively small and \(\hat{\alpha}_1\) is sufficiently greater than \(\alpha\).

If restrictions used to stabilise demand this effect is stronger.
Result 3: Suppose the number of threshold customers is relatively small. Then a customer type α, who’s demand is sufficiently larger than α, prefers (i) a threshold such that $\alpha \in [\tilde{\alpha}_1, \tilde{\alpha}_2]$ and (ii) a zero tier 1 volumetric rate.

- Fixed charge must be higher to cover shortfall of revenue for low tier.
- Low demand customers do not benefit much from low rate in first tier
- But face the increase in the fixed charge
- If the threshold is sufficiently large, then low demand customers face a higher bill
- If the threshold is not too large, then very high demand customers may be worse off.
Assume:

- that α is distributed uniformly between 1 and 10.
- Total water availability $X^T = 550$
- The total number of customers is 100.
- Demand of type α customers is $X = \alpha p^{-0.2}$
- the efficient volumetric rate is $\tau^* = 1$ but the tier 1 rate is $\tau_1 = 0.5$.

<table>
<thead>
<tr>
<th>α</th>
<th>\tilde{X}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.488</td>
</tr>
<tr>
<td></td>
<td>0.837</td>
</tr>
<tr>
<td></td>
<td>1.144</td>
</tr>
<tr>
<td></td>
<td>1.426</td>
</tr>
<tr>
<td></td>
<td>1.707</td>
</tr>
<tr>
<td>5.5</td>
<td>-0.04</td>
</tr>
<tr>
<td></td>
<td>-0.158</td>
</tr>
<tr>
<td></td>
<td>-0.387</td>
</tr>
<tr>
<td></td>
<td>-0.814</td>
</tr>
<tr>
<td></td>
<td>-0.37</td>
</tr>
<tr>
<td>9</td>
<td>0.015</td>
</tr>
<tr>
<td></td>
<td>3.49E-03</td>
</tr>
<tr>
<td></td>
<td>-0.046</td>
</tr>
<tr>
<td></td>
<td>-0.162</td>
</tr>
<tr>
<td></td>
<td>-0.44</td>
</tr>
</tbody>
</table>
Result 4: Suppose X^T is held fixed by variations in τ_2. The DWL is increased if: (i) τ_1 is decreased while holding \tilde{X} fixed increases, and (ii) \tilde{X} is increased while holding τ_1 fixed.
A fair and efficient pricing mechanism

An IBT is modified by the introduction of an additional payment to households.

- Top tier has the efficient volumetric rate, \(\tau^* \).
- Households consuming below the threshold receive a rebate of \((\tau^* - \tau_1)(\tilde{X} - X)\).

With the rebate introduced, the customer faces the bill, \(b(X) \), for consuming \(X \) units, where:

\[
b(X) = \begin{cases}
T + \tau_1 X - (\tau^* - \tau_1)(\tilde{X} - X) & \text{for } 0 \leq X < \tilde{X} \\
T + \tau_1 \tilde{X} + \tau^* [X - \tilde{X}] & \text{for } \tilde{X} < X
\end{cases}
\]
Note that algebraic rearrangement of the household bill gives:

\[b(X) = T - (\tau^* - \tau_1) \tilde{X} + \tau^* X \quad \text{for all } X \]

Type \(\alpha \) customers choose to consume the efficient level of water, i.e. \(X = \alpha x(\tau^*) \).

The revenue from type \(\alpha \) customers is thus:

\[R(\alpha) = \frac{F - (\tau^* - \tilde{c}) \hat{\alpha} x(\tau^*)}{N^T + \tau^* \alpha x(\tau^*)} \]

We have:

Result 5: Under the modified IBT:

(i) consumption is efficient,

(ii) the fixed charge is increased by either an increase in \(\tilde{X} \) or a decrease in \(\tau_1 \),

(iii) household bill are invariant to changes in \(\tilde{X} \) or a decrease in \(\tau_1 \).
Conclusion

Our paper uses an economic model to highlight the impacts of adoption of IBTs

Our model suggests IBTs:

- Can harm low demand consumers
- Induce economic inefficiency

The lower is the tier 1 rate, or the higher is the threshold, the greater is these effects.

‘Average demand’ consumers win from IBTs.

The modified IBT overcomes these problems

- Appearance of fairness is an example of ‘framing’