

# Crawford School of Economics & Government

# The end of certainty and the economics of adaptation to climate change

Leo.Dobes@anu.edu.au

27 March 2012

### a working thesis

- most observers implicitly assume some degree of certainty about the effects of climate change
- But the nature and extent of future climate change is highly uncertain
- all three levels of Australian government risk maladapting and misallocating resources
  - because they are trying to develop policy using familiar paradigms
  - rather than embracing and acknowledging the inherent uncertainties

### mitigation was easy ...

- specific 'pollutant' (greenhouse gases)
- established economic theory: externalities
- Coasean approach not practicable
- possible choices:
  - Pigouvian tax (price)
  - tradeable permits (quantity)
- but adaptation is context, time and spatially specific. No unique approach

### what is adaptation?

- response to biophysical impacts of climate change
- anthropocentric perspective
- only human preferences count, even for ecosystems
- relationship to mitigation not analysed here



### what should adaptation policy address?

- Increased temperature
- Health effects
- Crop failures
- Economic refugees
- Ecosystem collapse
- Heat wave deaths
- Coastal inundation and retreat
- Inadequate drainage and sewer systems
- Funding constraints
- Hostilities in the region
- Unpredictable effects
- Governance issues
- Responsibility for payment
- Mainstreaming of policy
- Future infrastructure needs
- Increased disease
- More intense rainfall
- More severe drought
- More frequent cyclones
- Effects on tourism
- Increasing business awareness
- Effective decision criteria
- Competing social needs
- Improved modelling of CC
- Many approaches required
- Strategic Adaptation Plan
- "Climate proofing"
- Precautionary Principle
- Maladaptation
- Catastrophe bonds
- McKinsey graph
- Capacity building for adaptation assessments

- Insurance for climate change
- Legal liability
- Jurisdictional responsibility
- Indigenous experience & lessons
- Geographic analogues
- Historical analogues
- Tighter building standards
- Market mechanisms
- Wicked problem approaches
- Trade-offs with mitigation
- Risk management
- Adaptation deficits
- Sinking Pacific islands
- Composite indexes
- Multicriteria Analysis
- Real options
- Cost-benefit Analysis
- Vulnerability assessment
- Ethics
- Adaptive Management
- Autonomous adaptation
- Robust Decision Making
- Climate sceptics
- Increased regulation
- Paleo-climatic evidence
- · Reduced economic growth
- Adaptive Capacity Index
- Storm surge
- Community Based Adaptation
- Protection, Accommodation, Retreat
- Retrofitting versus climate proofing
- Mainstreaming
- Gender issues
- Government as insurer of last resort

etcetera etcetera

### historical analogues

 Orlove (2005): Norse colonies in Greenland failed to adapt to cooling period

 van der Eng (2010): 1930s Java droughts ameliorated by well-functioning rice markets

 Chinese dynastic changes not due to climate change alone (Fan 2009)

## geographic analogues

- e.g. Hallegatte et al (2007)
- analysed 17 European cities (Athens, Barcelona, Berlin, etc)
- depending on climate scenario, Paris in 2070-2100 likely to be:
  - more Cordoba-like, or
  - more Bordeaux-like

#### insurance

- vanilla insurance: correlation of risk
- re-insurance: cost?
- group insurance: how to define index?
- catastrophe insurance: need capital reserves
- catastrophe bonds: short term

slow-onset CC: issue of principle of fortuity

### conflict and environmental refugees

- Furnass (2007): potential for invasion of Australia
  - reminiscent of 1950s 'Yellow Peril' thinking
- evidence is that victims of natural disaster tend to move within own country or culture
- other studies : both for and against

### other

- governance (Adger 1999)
- mitigation instrument analogues(Butzengeiger-Geyer)
- precautionary principle
- national emergency management (Yates & Bergin)
- national food security
- trade as adjustment mechanism (Julia & Duchin, Mendelsohn)
- 'wicked problem' approach (Verweij)
- mainstreaming (meaning?)
- government as insurer of last resort (?Moss 2002?)
- gender issues
- regulation and standards (e.g. coastal development)
- etcetera

### the composite index approach

- politicians and media also like indexes
  - e.g. 'most liveable city', 'most comp. country', etc
- indexes are attractive: summarise large range of attributes, easy to formulate, can just use existing data, etc
  - but cannot indicate type or time of warranted action
- composite indexes: arbitrary and non-replicable

# simplified vulnerability index

| attribute                                                                    | units        | impact | score (0 to 7) | weight<br>% | weighted score |
|------------------------------------------------------------------------------|--------------|--------|----------------|-------------|----------------|
| land at risk from sea level rise<br>and storm surge                          | sq km        | 20,000 | 5              | 25          | 125            |
| average distance to water and food resources for 80 per cent of population   | km           | 10     | 6              | 25          | 150            |
| public warning systems per<br>head (e.g. mobile phone<br>automated warnings) | % population | 23     | 3              | 25          | 75             |
| population growth per annum                                                  | number       | 89,000 | 2              | 25          | 50             |
| total                                                                        |              |        |                | 100         | 400            |

### deterministic risk management

- the techno-scientific policy preference (e.g. Jones)
- based on international standard ISO31000:2009
  - identify risk, including probability of occurrence
  - treat risk
  - monitor residual risk etc
- easy to do: use focus groups etc.
  - consultants love it! (\$\$\$\$\$)
- problem: estimation of probability implies certainty
- <u>but</u> effects, timing and intensity of CC are uncertain!
- an intellectual and policy dead-end?

### the Maginot line of certainty

- all of the approaches characterised by implicit search for certainty
- represents a reversion to the comfort zone of the familiar
- danger is inability to respond to unexpected and unpredictable 'fat tail' events
- adaptation policy needs to accept uncertainty, not the Maginot principle
- new framework needed

# Knightian risk and uncertainty risk (?) uncertainty (?)









# 'Rumsfeldian' uncertainty

|                  | known<br>consequence or<br>probability                                                            | unknown<br>consequences or<br>probability                                                         |
|------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| known<br>event   | (II) <u>known knowns</u> e.g. temperature and crop cycles                                         | (I) known unknowns  e.g. rising ocean temperature  may increase cyclone intensity. But frequency? |
| unknown<br>event | (III) unknown knowns  e.g. Black Swan, Wollemi Pine, intuition, indigenous knowledge of rare pest | (IV) unknown unknowns  ex post only. e.g.  Melbourne sewer pipes tornadoes??                      |

# policy: 'known knowns'

|                | known<br>consequence or probability        |
|----------------|--------------------------------------------|
| known<br>event | (II) known knowns (Knightian risk)         |
|                | e.g. temperature and crop cycles           |
|                | impacts and probability distribution known |
|                | use conventional cost-benefit analysis     |

# policy: 'known unknowns'

|                | unknown<br>consequences or probability                                       |  |  |
|----------------|------------------------------------------------------------------------------|--|--|
| known<br>event | (I) known unknowns (Knightian uncertainty)                                   |  |  |
|                | e.g. rising ocean temperature may increase cyclone intensity. But frequency? |  |  |
|                | <u>use 'real options'</u><br>within cost-benefit framework                   |  |  |
|                |                                                                              |  |  |

### climate change: a sea wall option



panel A: build wall immediately in 2010. No option, no flexibility – a common approach. panel B: build only the foundation in 2010. Wait for better CC information – a better paradigm **Net Present Value (A) < Net Present Value (B)** 

### real world examples of real options





### real world examples of real options





### 'real options': conceptual issues

- replicating portfolio approach (Kulatilaka)
  - but few real assets traded like financial assets
  - Black-Scholes European option, Brownian motion (random walk price), assumes known ln  $N(μ,σ^2)$  so not 'uncertainty'?
- subjective approach (Luehrman)
  - assume probabilities, use Black-Scholes
- Marketed Asset Disclaimer (Copeland)
  - binomial lattice assumes probabilities known
  - Monte Carlo implicitly assumes pdf known

### 'uknown knowns'

|                  | known<br>consequence or probability                                                                                                                                                                                                                                                |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| unknown<br>event | <ul> <li>(III) unknown knowns : examples?</li> <li>intuition, feeling</li> <li>riding bicycle</li> <li>black swans</li> <li>business affected by CC in supply chain not under its control or knowledge</li> <li>Wollemi Pine</li> <li>indigenous knowledge of rare pest</li> </ul> |
|                  | <ul> <li>society suppressing knowledge</li> </ul>                                                                                                                                                                                                                                  |

### policy: 'uknown knowns'

- analogous principle to 'real options'
  - but on macro-economic level
- embed flexibility in
  - jurisdictional and institutional governance
  - principle of subsidiarity, decentralisation
  - collection and dissemination of information by government and social networks
- governance flexibility is 'no regrets' or 'low regrets'
  - but politically more challenging
  - and does not provide certainty of comfort zone

### 'unknown unknowns'

|                  | unknown<br>consequence or probability                                                                                                                                                                             |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| unknown<br>event | <ul> <li>(IV) unknown unknowns</li> <li>ex post only: examples difficult to find</li> <li>Melbourne sewer pipes?</li> <li>e.g. higher temperature results in more and stronger tornadoes, not drought?</li> </ul> |

# policy: 'unknown unknowns'

- analogous principle to 'real options'
  - but on macro-economic level
- embed flexibility in factor and product markets
  - i.e. microeconomic reform
- product and factor market flexibility is 'no regrets' or 'low regrets'
  - but politically more challenging

# final thoughts

- key feature of CC is uncertainty
- policy needs to acknowledge uncertainty

- different types, levels of uncertainty
- flexibility is most appropriate strategy

Maginot line thinking risks maladaptation

# from our sponsors ....

- Executive Course on adaptation
- 14 May 2012
- Crawford School
- Contact : Dr Exmond de Cruz
- exmond.decruz@anu.edu.au