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Abstract

To help manage the fluctuations inherent in fish populations scientists have argued for both an
ecosystem approach to management and the greater use of marine reserves. Support for reserves
includes empirical evidence that they can raise the spawning biomass and mean size of exploited
populations, increase the abundance of species and, relative to reference sites, raise population
density, biomass, fish size and diversity. By contrast, fishers often oppose the establishment and
expansion of marine reserves and claim that reserves provide few, if any, economic payoffs. Using
a stochastic optimal control model with two forms of ecological uncertainty we demonstrate that
reserves create a resilience effect that allows for the population to recover faster, and can also raise the
harvest immediately following a negative shock. The tradeoff of a larger reserve is a reduced harvest
in the absence of a negative shock such that a reserve will never encompass the entire population if
thegoal is to maximize the economic returns from harvesting, and fishing is profitable. Under a wide
range of parameter values with ecological uncertainty, and in the ‘worst case’ scenario for a reserve,
we show that a marine reserve can increase the economic payoff to fishers even when the harvested
population isnot initially overexploited, harvesting is economically optimal and the population is
persistent. Moreover, we show that the benefits of a reservecannot be achieved by existing effort
or output controls. Our results demonstrate that, in many cases, there is no tradeoff between the
economic payoff of fishers and ecological benefits when a reserve is established at equal to, orless
than, its optimum size.
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1. Introduction

Marine reserves remain controversial with fishers (Suman et al., 1999) despite their
endorsement at the 2002 World Summit on Sustainable Development and empirical
evidence that reserves can raise the spawning biomass and mean size of exploited
populations within protected areas (Gell and Roberts, 2002; Halpern, 2003). The concerns
of fishers are that establishment of reserves will (a) reduce (at least initially) their harvests
and increase costs, (b) restrict when and where they can go fishing and, (c) depending
upon their location, unduly penalize individuals who may be prohibited from operating in
traditional fishing grounds (National Research Council, 2001). Moreover, placing reserves
in inappropriate locations or creating reserves of an inappropriate size may generate lower
payoffs than if traditional input or output controls are used (Holland and Brazee, 1996).

In this paper we develop a dynamic bioeconomic model to ascertain whether marine
reserves can generate positive economic returns to fishers in a deterministic and a
stochastic environment when harvesting is optimal. Our approach allows us to solve for
a reserve size that maximizes the economic payoff from fishing, correct some widely held
misconceptions about marine reserves and generate important insights into the benefits of
marine reserves.

2. Theory

An understanding of source–sink dynamics (Pulliam, 1988) provides a key to
understanding the benefits of marine reserves, as does the bioeconomic modeling
of optimal harvesting (Roughgarden and Iwasa, 1986; Tuck and Possingham, 1994, 2000).
Wemodel a permanent reserve as a possible population source that creates a ‘no-take’ area
for a proportions ∈ (0,1) of the population. The growth functions of the population within
the reserve, given byf (xR, s), and the harvested area, given byf (xNR, s), are defined as

f (xR, s) = r xR

(
1 − xR

sK

)α
(1)

f (xNR, s) = r xNR

(
1 − xNR

(1 − s)K

)α
(2)

wherexR andxNR are the population in the reserve and the harvested area,r is the intrinsic
growthrate,K is the total population’s carrying capacity when there is no reserve andα is
a parameter.

We deliberately construct the ‘worst case’ scenario for having a reserve such that
we ignore all benefits, such as biodiversity conservation, habitat restoration, population
persistence, avoidance of catastrophic ecosystem shifts, with the exception of spillovers
to the fishery. We also model the problem so that harvesting is economically optimal
despite the fact that management errors provide additional support for marine reserves
(Lauck et al., 1998).

In our model the only goal is to maximize the discounted net returns from fishing
where theper-period payoff isΠ (h, xNR, s) = p(h)h − c(h, xNR

(1−s)K ). We defineh as total
harvest,p(h) as the market inverse demand function andc(h, xNR

(1−s)K ) as the aggregate cost
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function that is increasing in the harvest and non-increasing in the population density of
the harvested population.

Ecological uncertainty is modeled by two shocks: one, a shock that may be either
positive or negative that representsenvironmental stochasticity due to temporalvariation
in the habitat (Shaffer, 1981) and, the other, a negative shock that may be of a small or
large magnitude that occurs randomly over time due to temperature change, a pollution
event or some other harmful occurrence. We model environmental stochasticity as a
Wiener diffusion process (Brownian motion) that follows a normal distribution(Wt ) and
negative shocks as a jump process(q) that follows a Poisson distribution with parameterλ.
Environmental sensitivity to a realization dW is given byg(xR) andg(xNR) that represent
the proportional effect of environmental stochasticity on the reserve and harvested
populations. Sensitivity of the reserve and harvested population to a negative shock of
magnitude dq is represented by the functionsψ(xR) andγ (xNR) that differ to reflect the
possibility that the effects of a negative shock may be greater in the fishery than the reserve.

The dynamic optimization problem for determining the optimal reserve size and harvest
is

V (xR, xNR) = max
h

∫ ∞

0
e−ρtΠ (h, xNR, s)dt (3)

subject to

dxR =
[

f (xR, s)− φ(1 − s)

(
xR

sK
− xNR

(1 − s)K

)]
dt + g(xR)dW + ψ(xR)dq (4)

dxNR =
[

f (xNR, s)+ φ(1 − s)

(
xR

sK
− xNR

(1 − s)K

)
− h

]
dt

+ g(xNR)dW + γ (xNR)dq (5)

x0 = x(0) (6)

where V (xR, xNR) is the valuefunction, ρ is the discount rate,x0 is the sum of the
initial value of the population inside and outside of the reserve,φ is the transfer
coefficient andφ(1 − s)( xR

s K − xNR
(1−s)K ) is the transfer function that governs migration

to and from the reserve and possible spillovers to the fishery (Roberts et al., 2001).
The transfer function is consistent with other models of diffusion in a fishery
(Guénette and Pitcher, 1999; Kramer and Chapman, 1999) and implies that, for a given
density difference between the reserve and fishery, the larger the reserve size, the lower
thenumber of fish transferred.

Using Ito’s lemma, Bellman’s fundamentalequation of optimality can be used to solve
the problem specified by Eqs. (3)–(6) above for theharvest trajectory given the reserve
size, i.e.,

ρV (xR, xNR) = max
h

〈
Π (h, xNR, s)+ VxNR(x)

[
f (xNR, s)+ φ(1 − s)

×
(

xR

sK
− xNR

(1 − s)K

)
− h

]

+ VxR (x)

[
f (xR, s)− φ(1 − s)

(
xR

sK
− xNR

(1 − s)K

)]
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+ 1

2
VxR xR g(xR)

2 + 1

2
VxNRxNR g(xNR)

2 + VxR xNR g(xR)g(xNR)

+ λ[V (xR + ψ(xR), xNR + γ (xNR))− V (x)]
〉

(7)

where the optimal harvest is determined from all possible reserve sizes to maximize an
overall value function, defined byV ∗(xR, xNR), for a given stochastic realization (dq and
dW ). Due to the complicated nature ofthe stochastic processes, Eq. (7) cannot be solved
analytically. However, the economically optimal reserve size can be determined using a
modified perturbation method (Judd, 1999) that we develop for this purpose for any set of
parameter values. In our method of solution, we specify a constraint that the population
transferred from reserve to fishery (or vice versa) cannot exceed the amount within each
location.

The method that we develop to solve Eq. (7) involves introducing two auxiliary variables
(one for a Brownian diffusion process and another for the jump process) defined asη and
ε into the Bellman equation, where ifη = ε = 0 the deterministic problem results.
Following the substitution, the decision function and value function can be defined as
Π (h, xNR, s, η, ε) andV (xNR, xR, η, ε), and annth-order Taylor series expansion can be
defined around the steady state in the deterministic case. In the first step we solve for the
steady state in the deterministic case(η = ε = 0) by using the maximum condition for
the Bellman equation,applying the envelope theorem and the equations of motion for the
reserve and non-reserve populations. In the second step, we differentiate the maximum
condition and envelope theorem equation with respect to the state variablesxR andxNR.
In step three, we differentiate the Bellman equation to findVη andVε that are expressions
of higher order derivatives with respect to the state variables found in step two. Successive
differentiation of the Bellman equation with respect to the auxiliary variables, control
variables and state variables allows us to solve with greater precision for required values
in a grid-like pattern.

Our method of solution was automated using MAPLE to calculate the partial derivatives
of the optimal value function and control variables with respect to the state and the auxiliary
variables,and to solve for the optimal harvest levels for a given reserve size. The optimal
reserve size, or the value ofs that maximizes the sum of the discounted net returns from
fishing, was found by selecting the harvest that generates the highest economic value
from fishing for all possible reserve sizes. In practice, a fourth-orderdifferentiation of the
Bellman equation was applied and found sufficient, with regularity conditions requiring
that the value and decision functions be differentiable withrespect tothe stock variable
(Blume et al., 1982; Atakan, 2003). Simulated results verify that errors of approximation
to first-order conditions are near zero.

3. Simulations

To illustrate the bioeconomic effects of marine reserves, we define the following
demand and cost functions:

p(h) = ahε (8)
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c

(
h,

xNR

(1 − s)K

)
= bh(1 − s)K

xNR
. (9)

We specify a = b = 1.0 andε = −0.3 for our simulations and usethe following values
for the biological parameters:r = 0.30, K = 1.0 andα = 1.0. We also define the initial
population in the reserve and fishery as 1.0, the discount rate as 5%(ρ = 0.05) and the
transfer coefficient asφ = 3.5, which corresponds to a 10–15% transfer of the total fish in
the reserve when dq = 0.

Environmental sensitivity is modeled byg(xR) = 0.01xR andg(xNR) = 0.01xNR for
a random realization of−1 and+1. The probability of the negative shock is 0.10 in both
the reserve and fishery and we consider a range of cases whereψ(xR) = βxR andβ ∈
(−0.1,0), with γ (xNR) = −0.1xNR. Theseparameters imply that a negative shock equal to
a 10% reduction of the population in the fishery, and between 0 and 10% reduction in the
reserve, occurs on average every 10 years. Both the probability and size of these negative
shocks are conservative relative to the fluctuations that are common in many exploited
fisheries (Caddy and Gulland, 1983; Hofmann and Powell, 1998; Ludwig et al., 1993).

3.1. Value functions with and without ecological uncertainty

Fig. 1 shows the value function or discounted net returns from fishing graphed against
reserve size for the case of a constant environment(dW = dq = 0), but with optimal
harvesting. The figure shows what was also found byConrad (1999), namely, that with
no ecological uncertainty and with optimal harvesting, a reserve generates no economic
benefits to fishers. Such an outcome corresponds to the view of many fishers, and also
some economists, that reserves are unnecessary and costly if input or output controls are
used optimally (Hannesson, 1998; Anderson, 2002).

Although a reserve generates a negative economic payoff with a constant environment
and optimal harvesting, this isnot the case in the presence of ecological uncertainty.
Indeed, we can readily show a robust result using parameter values consistent with
real world conditions that a reserve of sizes > 0 is economically beneficial
with ecological uncertainty. Such a result is consistent with the view that with a
fluctuating environment a reserve generates an extra payoff in terms of increased stability
(Armsworth and Roughgarden, 2003). We illustrate that this result is independent of the
initial population inTable 1. The table shows the value of the value function under different
reserve sizes and initial values of the population for the caseψ(xR) = 0 andγ (xNR) =
−0.1xNR. In particular,Table 1indicates that the higher theinitial population, the higher
the valueof the value function, but the optimal reserve size (50%) does not change with
the initial population. Thus whether or not the population is initially overexploited has no
impact on either the optimal size of the steady-state population or the optimal reserve size
if harvesting is economically optimal.

Our finding is striking because it is obtained with optimal harvesting and occurs even
when the harvested population isnot overexploited. In other words, even if a fishery
is optimally managed with knowledge as to the size and probability of environmental
variability for maximizing the net returns from fishing, a marine reserve still generates
a higher economic payoff than no reserve. Moreover, this result holds true even if
the population is not initially overexploited and for a wide range ofparameter values
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Fig. 1. Reserve size and discounted net returns from fishing with a constant environment(x0 = 0.5).

Table 1
The value function for different reserve and initial population sizes

Initial
population

Reserve size(s)
0 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

0.4 0.9489 0.9548 0.9602 0.9647 0.96800.9694 0.9677 0.9599 0.9383 0.8702
0.5 1.0005 1.0065 1.0119 1.0164 1.01961.0208 1.0186 1.0100 0.9864 0.9135
0.6 1.0476 1.0536 1.0590 1.0635 1.06651.0675 1.0649 1.0554 1.0301 0.9524
0.7 1.0911 1.0972 1.1026 1.1070 1.10991.1106 1.1075 1.0971 1.0700 0.9878
0.8 1.1317 1.1379 1.1432 1.1476 1.15041.1508 1.1472 1.1359 1.1070 1.0202
0.9 1.1701 1.1763 1.1816 1.1859 1.18861.1887 1.1845 1.1723 1.1416 1.0503

Notes:
1. Each cell represents the value of the value function for a given reserve size and initial population.
2. A higher initial population generates a higher value for the value function for a given reserve size.
3. The optimal reserve size, marked in bold(s = 0.50), is independent of the initial population.

whenever the shock sensitivity, or the proportional effect of a negative shock on the reserve
population, is equal to or less than that for the harvested population, i.e.,|β| ≤ 0.10.
Indeed, in some cases, even if the shock sensitivity isgreater in the reserve than the fishery,
a positive reserve size may still be beneficial to fishers. This outcome is shown inFig. 2
where the relative magnitude of the shock sensitivity in the reserve(β) is graphed against
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Fig. 2. The relationship between optimum reserve size and shock sensitivity of the reserve population.

optimal reserve size. In particular,Fig. 2 illustrates that there exist values of|β| > 0.10
where a reserve generates a positive economic payoff to fishers.

Table 2provides further evidence of the economic payoff of reserves with ecological
uncertainty. Each row uses a different parameter value forβ that determines the shock
sensitivity of the reserve population given thatγ (xNR) = −0.10xNR. Thus the first row
labeled 0.00 represents the case whereψ(xR) = 0 andγ (xNR) = −0.10xNR, the second
row is the case whereψ(xR) = −0.02xR andγ (xNR) = −0.10xNR, and soon until the
last row is reached, whereψ(xR) = −0.10xR andγ (xNR) = −0.10xNR. The columns
represent different reserve sizes or values ofs, and the cells are the discounted net returns
from harvesting for a givenβ and s. For each row, the cell in bold corresponds to the
reserve size closest to the optimum size.

Table 2 illustrates the following results. First, the economic payoff from fishing,
whatever the reserve size, decreases as the shock sensitivity in the reserve becomes larger.
Second, as illustrated inFig. 2, optimal reserve size decreases as the shock sensitivity in
the reserve becomes larger. Third, if it is optimal to have a reserve then, whatever the shock
sensitivity, the economic payoff from fishing is concave in reserve size.

Our concavity result implies that if it is optimal to have a reserve,any marginal increase
in reserve size when less than the optimum will increase the economic payoff to fishers
while also generating potential environmental benefits, such as enhanced biodiversity
conservation, habitat restoration, population persistence. In other words, ifs > 0 is
optimal, then there exists a continuum or gradient of reserve sizes that are smaller than
the optimum size, but across which there isno tradeoff between ecological and economic
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Table 2
The value function for different shock sensitivities and reserve sizes

Reserve size(s)
β 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

0.00 1.00055 1.00360 1.00652 1.00929 1.01188 1.01425 1.01636 1.01815 1.01956 1.020471.02076 1.02023
−0.02 1.00055 1.00301 1.00534 1.00751 1.00951 1.01129 1.01282 1.01404 1.014871.01521 1.01494 1.01387
−0.04 1.00055 1.00241 1.00415 1.00574 1.00714 1.00834 1.00928 1.009911.01016 1.00994 1.00911 1.00748
−0.06 1.00055 1.00182 1.00297 1.00396 1.00477 1.00538 1.005731.00578 1.00545 1.00466 1.00326 1.00108
−0.08 1.00055 1.00123 1.00178 1.00218 1.00240 1.00242 1.00218 1.00164 1.00073 0.99936 0.99739 0.99466
−0.10 1.00055 1.00064 1.00059 1.00040 1.00003 0.99945 0.99862 0.99750 0.99600 0.99405 0.99151 0.98821

Notes:
1. β is the shock sensitivity of the reservepopulation following the realization dq.
2. In all cases the shock sensitivity of the harvested population isγ (xNR) = −0.10xNR following the realization dq.
3. Cells in bold type are the discounted net returns from fishing at the optimal reserve size, for a givenβ.
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Fig. 3. The relationship betweentotal population and reserve size(x0 = 0.5).

benefits. This novel and general result is an example of a ‘win–win’ rarely found in
resource management where increasing the economic payoff from harvesting is also
consistent with an increase in ecosystem benefits. Moreover, with ecological uncertainty,
the economic benefits that a reserve generates cannot be obtained from either effort or
output controls, even when such controls are set optimally.

3.2. Resilience

The payoff of reserves to fishers with ecological uncertainty arises from what we call
a ‘resilience effect’. This is defined as the time that it takes for the population to return
to close to its former level before a shock (Pimm, 1984), whereby the recovery time is
reduced with increasing reserve size. This resilience effect is not confined to the parameter
valuesthat we use, isnot the same as population persistence as it occurs even when the
population is not subject to extinction, and willalways occur if the shock sensitivity in the
reserve is equal to or less than that in the harvested population.

A greater population density in the reserve allows for a transfer of fish to the harvested
area. This, in turn, reduces the recovery time of the harvested population and also permits
fishers toharvest at a higher rate immediately after a negative shock than they would
otherwise. Although the spillover or transfer can increase with reserve size, the cost of a
larger reserve is a reduced harvest in the absence of a negative shock. As a result, a reserve
will never encompass the entire population if the goal is to maximize the economic returns
from harvesting and fishing is profitable. Thisis because, eventually, the marginal benefit
or spillover from a slightly larger reserve with a negative shock will equal the marginal
cost from harvesting foregone from a smaller sized fishery in the absence of a negative
shock. The point at which the benefit and the cost from a marginal change in reserve size
are equal is the optimum reserve size.

Fig. 3illustrates resilience effects for three different reserve sizes (s = 0, 0.50 and 0.80)
for the caseψ(xR) = 0 andγ (xNR) = −0.1xNR and where the total population is graphed
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Fig. 4. The relationship betweentotal population and reserve size(x0 = 1).

against time. In the figure the few, but large, declines in the total population represent
negative shocks and the small and irregular fluctuations over much smaller time intervals
are environmental stochasticity. The figure clearly shows that the larger the reserve, the
shorter the time it takes for the total (and also the harvested) population to recover from a
negative shock.Fig. 4 shows that the steady-state population is the same as that inFig. 3
even if the initial population is much larger.

The reason that a reserve generates an economic payoff, even with optimal harvesting,
is shown inFig. 5 for the caseψ(xR) = 0 andγ (xNR) = −0.1xNR. This figure graphs the
harvest level against time for three different reserve sizes (s = 0, 0.50 and 0.80). Unlike
Figs. 3 and 4 where a larger reserve always increases resilience, a larger reserve does
not necessarily increase the average harvest. Indeed, a reserve sizes = 0.50 generates
a higher average harvest thans = 0.80. This is because although a larger reserve
increases spillovers to the fishery, it also reduces the proportion of the population subject
to harvesting. Thus, beyond some reserve size, and for a given level of environmental
variability, further increases in the reserve reduce the average harvest.Fig. 6 shows that
the steady-state harvest is the same for a different, and much larger, initial population.

3.3. Biological parameters

The resilience of a population for reboundingfollowing a negative shock and for
generating spillovers in the fishery is, in part, determined by its intrinsic growth rate and the
dispersal ability and movement patterns of fish. The higher the intrinsic growth rate(r) at
any reserve size, the quicker the population can recover following a shock. Consequently,
the higher the intrinsic growth rate, the smaller the optimal reserve size. This result is
shown inFig. 7 for the caseψ(xR) = 0 andγ (xNR) = −0.1xNR. By contrast, the greater
the transfer rate of fish from the reserve to the harvested area, the smaller the degree of
protection provided by a reserve of a given size. In other words, the larger the transfer
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Fig. 5. Harvest against time(x0 = 0.5).

Fig. 6. Harvest against time(x0 = 1).

coefficient(φ), the larger the optimal reserve size, as illustrated inFig. 8 for the case
ψ(xR) = 0 andγ (xNR) = −0.1xNR.

3.4. Discount rate

Finally, we observe that an increase in the discount rate(ρ)will reduce the economically
optimal reserve size. This is because althoughthe resilience effect generates an economic
value to harvesters, it only does so to the extent that future returns are valuable. For
our parameter values withψ(xR) = 0 andγ (xNR) = −0.1xNR an economically optimal
reserve size still exists at a discount rate of 90%(ρ = 0.9), andwith ψ(xR) = −0.1xR
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Fig. 7. The intrinsic growth rate and optimal reserve size.

Fig. 8. The transfer coefficient and optimal reserve size.
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andγ (xNR) = −0.1xNR a reserve generates a positive economic payoff at any discount
rateless than 25%(ρ = 0.25).

4. Discussion

The principal point of our study is that, for a wide range of parameter values
and hence real world conditions, marine reserves can simultaneously generate benefits
to both fishers and the environment. Our work complements existing studies on
reserve size and design (Roberts et al., 2003). However, our results also go beyond
the literature that shows reserves have value with ecological uncertainty because
they can increase population persistence (Lauck et al., 1998; Sumaila, 1998), reduce the
variance of the exploited populations (Conrad, 1999) and lower the variance in harvests
(Sladek Nowlis and Roberts, 1998; Hannesson, 2002).

By incorporating ecological uncertainty into a bioeconomic model, and solving
for optimal reserve size, we find that reserves are beneficial even with harvesting
that tries to maximize the net returnsfrom fishing. Our findings are noteworthy
because they contradict widely held, butincorrect, views about reserves—namely,
that for reserves to be beneficial to fishers, the population must be overexploited
(Pezzey et al., 2000), reserves must be large (Anderson, 2002) and that reservesand
output controls are equivalent methods in terms of their effects on fishery yields
(Hastings and Botsford, 1999; Botsford et al., 2003).

Our results are of particular interest to fishery managers, but several caveats are required
before applying our model to actual fisheries and when drawing inferences for real
ecosystems. First, catastrophic shifts can and do occur in ecosystems and sustainable
management of fisheries requires more than specifying a given reserve size for a
population; it also demands a minimum population size to reduce the possibilityof crossing
undesirable population thresholds (Scheffer et al., 2001). Second, only small amounts
of migration of fish may be required to generate broad-scale ‘phase synchronization’
that can generate chaotic peak abundances, but can also increase population persistence
(Blasius et al., 1999). Third, reserves should be viewed as complementary to other
management controls that may also help maintain or enhance yields (DeMartini, 1993).
Fourth, many fishery managers currently lack the information about transfer rates and
spillovers between potential reserves and harvest areas neededfor preciselydetermining
optimal reserve size without further data collection (Holland, 2002).

5. Conclusions

The paper addresses the claim by fishers that marine reserves generate few, if any,
economic payoffs. Using a bioeconomic model, we develop a framework that can be
used to determine optimal reserve size. We show that with ecological uncertainty, marine
reserves increase the economic returns to fishers for a wide range of parameter values.

Given the poor record of effort and output controls in sustaining fish stocks in the
face of ecological uncertainty (Ludwig et al., 1993; Pauly et al., 2002), our results suggest
that much of the resistance to reserves by fishers is misplaced. Indeed, in many fisheries,
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our findings suggest that reserves can generate a ‘win–win’ situation for fishers and the
environment.
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