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Abstract 
 
Using data from what was once one of the world’s largest capture fisheries, the northern cod 
fishery, the economic value of a marine reserve is calculated using a stochastic optimal 
control model with a jump-diffusion process. The counterfactual analysis shows that with a 
stochastic environment an optimal-sized marine reserve in this fishery would have prevented 
the fishery’s collapse and generated a triple payoff: raised the resource rent even if harvesting 
had been ‘optimal’; decreased the recovery time for the biomass to return to its former state 
and smoothed fishers’ harvests and resource rents; and lowered the chance of a catastrophic 
collapse following a negative shock. 
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 Many catastrophes have occurred in fisheries around the planet …, but none is more 

devastating as the closing of the fish banks from Cape Cod to Newfoundland along the 

northeast coast of North America. 

Michael Berrill (1997), p. 114. 

 

1. Introduction 

 

Capture fisheries face problems of both biological and economic overfishing and many 

stocks are in decline (Malakoff, 1997; Schiermeier, 2002). For the period 1974-1999, the 

Food and Agricultural Organisation (FAO) calculates that the proportion of fisheries 

harvested beyond the estimated maximum yield tripled from around 10% to 30% of surveyed 

stocks (FAO, 2000) while Myers and Worm (2003) estimate that the stocks of predatory fish 

in the world’s oceans have declined by over 90% in the past 50 years. In Europe, several cod 

stocks have declined precipitously in the previous two decades and some important stocks are 

at their lowest levels ever (European Environment Agency, 2003). 

To overcome excess fishing both managers and scientists have argued for a more holistic 

approach to management and the greater use of marine reserves (Botsford et al., 1997; Pauly 

et al., 2002). Reserves are justified on theoretical grounds because they can increase yields 

when population levels are overexploited (Pezzey et al., 2000; Sanchirico and Wilen, 2001), 

reduce the variance of the population (Conrad, 1999) and harvest (Sladek Nowlis and 

Roberts, 1998; Mangel, 2000; Hannesson, 2002) and provide a ‘hedge’ against management 

failure (Lauck et al., 1998). Empirical studies of reserves also indicate that they can raise the 

spawning biomass and mean size of exploited populations (Gell and Roberts, 2002), increase 

abundance (Côté, Mosquiera and Reynolds, 2001) and, relative to reference sites, raise 

population density, biomass, fish size and diversity (Halpern, 2003). Reserves have also been 

shown to generate positive spillovers to fishers in adjacent areas subject to harvesting 

(Roberts et al., 2001; Bhat, 2003; Gell and Roberts, 2003).  
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Despite the apparent benefits of marine reserves, they remain a controversial management 

tool and measures to establish or enlarge reserves are often met with protest by fishers 

(National Research Council, 2001). Indeed, many fishers are strongly opposed to all but the 

smallest ‘no-take’ areas (Halpern and Warner, 2003). The concern is that reserves will reduce 

their harvests, increase costs and restrict when and where they can go fishing. The reluctance 

of harvesters to support reserves has also found some support in the economics literature 

which has used deterministic models to show that if effort (and harvests) can be perfectly 

controlled then reserves are of little or no value (Holland and Brazee, 1996), reserves need to 

be in the order of 70-80% of a fishing area to generate yield and conservation benefits to 

fishers equivalent to optimal harvesting (Hannesson, 1998), and that reserves can increase 

sustainable yields and revenues only when the population is overexploited (Holland, 2000; 

Pezzey et al., 2000).  

To address the question of what is the economic value of marine reserves, and how they 

might assist in preventing declines or collapses in fish populations, we use data and estimates 

from what was once one of the world’s largest capture fisheries ― the northern cod fishery of 

Newfoundland and Labrador. This resource has been commercially exploited for centuries 

and, until the 1950s, fish were found in such large numbers that harvesting was considered to 

have no material impact on yields (Berrill, 1997).  Beginning with the arrival of the first 

freezer-factory trawler in 1958, however, harvesting grew dramatically reaching a peak of 

over 800,000 tons in 1968. Despite extension of Canadian fisheries jurisdiction over most of 

the fishing grounds in 1977, coupled with the use of input and total harvest controls, the 

fishery collapsed in the early 1990s and still has yet to recover. 

Using data from the fishery we address four principal questions: what would have been 

the economic value of a marine reserve if a ‘no-take’ harvesting area of optimal size had been 

established in the fishery in 1962? Even with ‘optimal’ harvesting that tries to maximize the 
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discounted net returns from fishing, is it possible for a marine reserve to generate an extra 

economic return to harvesters given the shocks that occurred in the fishery? What is the 

consequence for optimal reserve size of harvesting from a smaller than optimal biomass? 

Could an economically optimal marine reserve have prevented the collapse of the fishery if 

the harvesting rule used by the regulator had been successfully implemented? The answers we 

provide generate important insights for the management of renewable resources. 

 

2. The Mismanagement and Collapse of Fisheries 

 

Many of the world’s exploited fisheries are managed on the presumption that maximizing 

the sustainable yield from the fishery is both possible and desirable. In reality, there exists a 

wealth of evidence that fisheries are subject to environmental stochasticity, where populations 

can widely fluctuate over time (Caddy and Gulland, 1983), and variability that can hide 

evidence of overexploitation (Ludwig et al., 1993). For example, the world’s largest fishery 

ever in terms of harvests was the Peruvian anchoveta that, according to official statistics, had 

total catches peak at an unsustainable 12 million tons per year, but which suddenly collapsed 

following an El Niňo event in 1972-73. Various reasons have been given for the collapse, but 

undoubtedly overharvesting was a major contributing factor, despite controls on the total 

harvest (Pauly et al., 2002). A similar story occurred with the North Sea herring fishery that 

had yielded harvests of between 300,000 and 1 million tons/year in the first half of the 

twentieth century, but also collapsed in the early 1970s because of over harvesting that was, 

in part, a consequence of overestimation of the size of the population by fishery biologists 

(Hilborn and Walters, 1992). More recently, half of the major cod stocks in Europe have 

fallen below a critical biomass thresholds where recruitment is expected to decline and the 

risk of collapse is greatly increased (European Environment Agency, 2003). 
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One of the most recent and also most spectacular collapses of any fishery has been the 

catastrophic decline in the population of Canada’s northern cod fishery. Indeed, the collapse 

has been so profound that the sub-species of cod in the fishery has been listed by the 

independent Committee on the Status of Endangered Wildlife (COSEWIC) as endangered 

(Schiermeier, 2003). This is despite the fact that the northern cod fishery has been 

commercially exploited since 1497 and consistently yielded annual catches of more than 

200,000 tons per year over the period 1880 to 1960 (Hannesson, 1996).  

The decline began with the arrival of large factory stern trawlers in the late 1950s when 

the exploitation rate increased dramatically as these vessels were able to harvest cod offshore 

in winter months at times and at places where they were never previously caught. As shown 

in columns (1) and (2) of Table 1, by 1968 harvests peaked at the unsustainable level of over 

800,000 tons and both the biomass and the harvest declined until 1977 when Canada assumed 

jurisdiction for almost the entire area of the fishery. Under Canadian jurisdiction, the total 

allowable harvest was reduced to 173,000 tons on the expectation that stocks would recover 

and eventually allow a sustainable yield of over 400,000 tons/year (Department of Fisheries 

and Oceans, 1981). Although stocks did recover and peaked in 1984, the increase was not as 

much as expected. Despite a declining biomass over the 1980s total catches did not decrease 

and reached a maximum of 269,000 tons in 1988. Thereafter, both catches and the biomass 

fell precipitously such that by 1992 a complete harvesting moratorium was imposed on the 

fishery.  

From 1998 onwards a very small amount of fishing was permitted which peaked at 8,000 

tons in 1999 dropping to 1,000 tons in 2003. Since April 2003 the fishery has been closed 

indefinitely and still has not recovered, indeed, its estimated biomass remains at 1% or less of 

its depleted size in the 1980s (Department of Fisheries and Oceans, 2004a). Based on the 

available evidence, it would seem that the fishery has suffered serious harm that has led to a 
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profound shift in the food web (Scheffer et al., 2001) and may have left the fishery in a 

‘predator pit’ that prevents recovery (Shelton and Healey, 1999). 

 

3. Modeling a Marine Reserve for the Northern Cod Fishery 

 

Many authors have attempted to model the northern cod fishery, but very few have 

examined the issue of optimal harvesting from an economic perspective, or in terms of a 

marine reserve. Grafton et al. (2000) derive a deterministic optimal feedback rule for the 

fishery over the period 1962-1991 and show that such a rule would have led to much smaller 

harvests and the implementation of a harvesting moratorium three years earlier given the 

development of the biomass that actually took place over the period. Guénette et al. (2000) 

derive a spatial model of a marine reserve for the fishery and undertake simulations for the 

period 1984-1991 to compare the ability of a reserve to protect the fishery from collapse with 

no other management controls, with seasonal closures for trawl and gillnets, and with winter 

season trawl closures. They find that a reserve of 80% size would have been sufficient to 

prevent the collapse that occurred in the early 1990s. Unfortunately, the model they use lacks 

an economic component and they are unable to determine optimal harvest, an economically 

optimal reserve size or consider the implications of a harvest rule on the fishery. Moreover the 

data they use, and also in their simulations, do not include the period 1973 when a large 

negative shock struck the fishery. 

 Following Grafton et al. (2000) we estimate a generalised density dependent growth 

function for the northern cod fishery of the following form:  

 ( ) (1 )xf x rx
K

α= −  (1) 

where x  is the population or biomass, ( )f x  is its growth, r is the intrinsic growth rate, is a 

parameter and K is the carrying capacity. Using two different estimates of carrying capacity of 

α
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3.2 million (Grafton et al. 2000) and 5.6 million tons (Guénette et al., 2000), and data for 

actual harvests and estimated exploitable biomass for the period 1962-1992, we estimate 

parameter values for (1) with a dummy variable for 1973. The estimates (with standard errors 

in parentheses) for the case where K = 3.2 million are r = 0.27067 (0.03670),  = 0.24869 

(0.12339) and D73 = -0.3043 (0.10928) and where K = 5.6 million are r = 0.27734 (0.04756), 

 = 0.65602 (0.37303) and D73 = -0.30132 (0.11147).

α

α 1 . Both sets of estimates are used in 

determining optimal harvest and optimal reserve size in our simulations and provide similar 

results. A full list of parameters values are provided in Table 1. 

In our modeling, we test for the significance of environmental shocks over the 30-year 

period and find that the only year when a dummy variable is significantly different from zero 

at the 5 percent level of significance is 1973. In addition to testing for negative shocks in (1) 

using dummy variables, we also apply an index approach of absolute dissimilarity (Diewert, 

2002). This method, extended by Fox et al. (2004), allows us to calculate mix, scale and 

absolute measures of dissimilarity. We find that the decline in the growth in the biomass in 

1973 is a clear outlier.2 

We use the implicitly spatial approach to modeling marine reserve employed by Grafton 

et al. 2006). In the case of a permanent reserve that protects proportion  of the 

population, the carrying capacity in the harvested or exploited area is defined by (1 . 

Thus, with a reserve, the growth functions of the population in and outside of the reserve are 

defined by  

(0,1]s ∈

)s K−

 ( , ) (1 )R
R R

xf x s rx
sK

α= −  (2) 

 ( , ) (1 )
(1 )

NR
NR NR

xf x s rx
s K

α= −
−

 (3) 

where Rx  and NRx  are the population of fish in and outside of the reserve.  
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The intstaneous rent from harvesting in the northern cod fishery is defined by  

 ( , ) ( ) ( , )
(1 )

NR
NR

xh x p h h c h
s K

Π = −
−

 (4) 

where h is harvest,  is the inverse demand function and ( )p h ( , )
(1 )

NRxc h
s K−

 is the aggregate 

cost function. The inverse demand is defined as ( )p h ahε= and the cost function by 

(1 )( , )
(1 )

NR

NR

x bh s Kc h
s K x

−=
−

. Both functions are derived from Grafton et al. (2000) where a 

and b are estimated to be 0.35 and 0.2 and  is –0.3. ε

To analyze the effects of the marine reserve in the northern cod fishery we incorporate 

environmental instability as two types of stochasticity: one, environmental stochasticity that 

may be either positive or negative due to temporal variation in the habitat (Shaffer, 1981) and, 

two, a negative shock that occurs randomly over time.3 We define environmental stochasticity 

by a Wiener diffusion process (Brownian motion) defined by  and negative shocks as a 

jump process ( ) that follows a Poisson distribution defined by the parameter 

tW

q λ that is the 

arrival rate of the negative shock. 

We identify only one significant negative shock on the biomass that occurs in 1973 ― 

equivalent to about 30% reduction of the total biomass for that year. Thus in our simulations 

we incorporate the actual shock in 1973 and set λ  or the arrival rate to be sufficiently large to 

ensure no further shock occurs over the period 1974-1991. In other words, our estimates 

indicate that the severe declines in the exploitable biomass in the late 1980s and early 1990s 

can be entirely explained by over harvesting without reference to negative environmental 

shocks — a result consistent with the findings of both Hutchings and Myers (1994) and 

Myers et al. (1996). 

The optimization problem maximizes the discounted net returns in the northern cod 

fishery over the period 1962-1991 taking into account both environmental stochasticity and 
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the negative shock that occurred in 1973. The solution provides a ‘counterfactual’ of what the 

optimal harvest and optimal reserve size should have been in the northern cod fishery if the 

objective of the regulator had been to maximize the discounted net returns from fishing. The 

structure of the model follows Grafton et al. (2006) and is defined below. 

  (5) 
0

( , ) max ( , , )t
R NR h NRV x x e h x s dtρ

∞
−= Π∫

subject to: 

 [ ( , ) (1 ) ( )] ( ) ( )
(1 )

NRR
R R R R

xxdx f x s s K dt g x dW x dq
sK s K

φ ψ= − − − + +
−

 (6) 

 [ ( , ) (1 ) ( ) ] ( ) ( )
(1 )

NRR
NR NR NR NR

xxdx f x s s K h dt g x dW x dq
sK s K

φ γ= + − − − + +
−

 (7) 

 0 (0)x x=  (8). 

For the northern cod fishery we set the discount rate 0.05ρ = , the initial population ( 0x ) as 

the sum of the population in and outside of the reserve in 1962 and equal to 2.977 million 

tons, and (1 ) ( )
(1 )

NRR xxs K
sK s K

φ − −
−

as the transfer function that governs migration from the 

reserve to the exploited areas of the habitat. The transfer function is consistent with existing 

diffusion models in fisheries (Kramer and Chapman, 1999) where migration between the 

reserve and exploited populations depends on the difference in population densities in the 

reserve and outside of the reserve. A higher density promotes out migration, but for a given 

difference in density, the larger is the reserve the smaller is the transfer (Beverton and Holt, 

1957). We specify a value for φ  that corresponds to a migration level of about 5% of the 

reserve population in the absence of a negative shock, and about 25% immediately following 

the negative shock. Its actual value would depend on the size, number and location of marines 

reserves established in the fishery. 
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Environmental stochasticity is represented by  and  which 

implies that both the reserve and fishery are subject to 5% variation following a realization of 

dW that occurs with equal probability. The functions 

( ) 0.05R Rg x x= ( ) 0.05NR NRg x x=

ψ  and γ  represent shock sensitivities in 

the reserve and fishery. They differ to allow for the possibility that harvesting, especially 

trawling in offshore areas in the winter months, may have had a deleterious impact on the age 

structure and habitat (Turner et al., 1999) such that, for a given negative shock, the 

consequences are greater for the exploited than the reserve population. However, we also 

examine the case where the shock sensitivities are the same for the reserve and harvested 

population. In our specification, we impose only the negative shock that actually occurred in 

the fishery in 1973 and examine two cases: one, ( ) 0.0Rxψ =  and ( ) 0.30403NR NRx xγ = −  and, 

two, ( ) 0.30403R Rx xψ = −  and ( ) 0.30403NR NRx xγ = − . In the first case, the negative shock is 

assumed not to occur in the reserve while in the second it occurs equally in both the reserve 

and fishery.  

We employ Ito’s Lemma to define Bellman’s fundamental equation of optimality, 

described in detail in Grafton et al. (2006), to solve for the optimal harvest trajectory for a 

given reserve size by using a modified form of the perturbation method developed by Gaspar 

and Judd (1997). The solution procedure allows us to solve the optimal harvest level for all 

possible reserve sizes and then choose the reserve size that generates the highest value of the 

value function from all possible reserve sizes. 

 

4. The Value of a Marine Reserve 

 

The optimum biomass and harvest levels for all years over the period 1962-1991 are 

provided in columns (3) and (4) of Table 2 using the estimated parameter values where K = 

3.2 million with a 5% discount rate. The results indicate that a harvest level of about 400,000 

 12



tons/year, obtained from a fluctuating exploitable biomass of about 2.5 million tons, would 

maximize the discounted net returns from fishing.  

We find that even with ‘optimal’ harvesting, it is beneficial to have a marine reserve that 

protects about 40% of the total population, given a shock sensitivity of zero in the reserve. We 

emphasize that a reserve is not only beneficial to fishers relative to the actual harvesting that 

took place in the fishery, but would still have generated a positive economic payoff even if 

harvesting had been optimal as defined by the solution to problem given by equations (5)-(8). 

Where the fishery and the reserve have identical shock sensitivities, that is, 

( ) 0.30403R Rx xψ = −  and ( ) 0.30403NR NRx xγ = − , then the optimal reserve size is 10%.  We 

emphasize that in both cases (equal and different shocks in reserve and fishery) a marine 

reserve generates an economic payoff to fishers even with optimal harvesting.4 

 

4.1 Optimal harvest and reserve size versus actual harvest 

 

The value of a marine reserve with optimal harvesting is that it allows the fishery to 

recover faster following the large negative shock in 1973, thereby increasing the harvest over 

what it would have been without a reserve. The trade-off is that in the absence of the shock a 

reserve reduces the harvest over what would be possible with optimal harvesting. Thus, when 

an unexpected negative shock occurs a reserve generates a positive economic benefit in that it 

allows for the spillover of fish out of the reserve and raises the harvest available to fishers. 

This spillover effect is shown in Figure 1 where a 40% reserve generates a much higher level 

of harvest than no reserve immediately following and for several years after the negative 

shock in 1973. This is despite the fact that in both cases (40% reserve and no reserve) 

harvesting is ‘optimal’. The trade off is that before the shock occurs in 1973 a reserve results 

in a lower harvest than what would have occurred if harvesting had been optimal, but with no 
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reserve. This is also illustrated in Figure 1, as is the gradual decline in the extra harvest with a 

reserve following the shock in 1973. 

The economic payoff from a reserve represents a resilience effect that allows for a quicker 

recovery of the population following a negative shock. The more frequent and the larger is the 

shock, the greater is the payoff of a reserve because it acts like a ‘buffer stock’ allowing the 

population to recover faster. Similarly, the smaller the discount rate the more valuable is a 

reserve because the more highly valued are future net returns from increased harvests 

following a shock (Grafton et al. 2006).  

The actual harvest in the fishery and optimal harvest with a 40% reserve is plotted in 

Figure 2. From 1964-1970 actual exceeds the optimal harvest and thereafter, with the 

exception of the years 1972-1973 and 1975, optimal harvest is greater than actual harvest. 

Table 2 shows that even with optimal harvesting and a 40% reserve it pays to draw down the 

biomass from its initial level of almost 3 million tons to a desired level of about 2.5 million 

tons and, thereafter, adjust the harvest in response to environmental stochasticity and the 

negative shock in 1973, to return to this level. By contrast, the actual harvest pattern indicates 

there was a major draw down of the biomass, hastened by the negative shock in 1973, until 

the biomass levels out in 1976. The advent of Canadian jurisdiction in 1977 coincides with a 

lower harvest level and a gradual rebuilding of the fishery until 1984. Thereafter, as shown in 

Figure 2, unsustainable harvests bring about the collapse of the stock by the end of 1991.  

The cumulative difference between the optimal and actual harvest over the entire period 

1962-1991 is illustrated in Figure 3. It shows that by 1982 optimal harvesting and a 40% 

reserve is able to generate a higher cumulative harvest than what actually took place in the 

fishery. By 1991, the extra landings of fish associated with an optimal harvest and marine 

reserve exceed 1.5 million tons ― an amount that would be expected to continue to increase 

beyond 1991 without a collapse in the fishery.  
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The cumulative resource rent from optimal harvesting and a reserve, relative to the actual 

harvest, can be calculated using the estimated inverse demand and cost function for the 

fishery. This extra payoff for each year is presented in column (1) of Table 3 and illustrated in 

Figure 4. We find that optimal harvesting and an optimal marine size that protects 40% of the 

population would have generated almost $2 billion more in net returns than what actually 

occurred over the 1962-1991 period.5 Although this is a very large economic benefit, it 

grossly underestimates the payoff from optimal harvesting and a reserve because any resource 

rent beyond 1991 is not included in the calculation. Our value also does not account for the 

$3.9 billion spent by the Government of Canada over the period 1992-2001 to provide income 

support and industry adjustment following the harvesting moratorium in 1992 (Department of 

Fisheries and Oceans, 2004b). Moreover, the payoff from optimal harvesting and a reserve 

assigns no value to the ecosystem benefits associated with a viable northern cod fishery, nor 

does it include the social and economic costs of a harvesting moratorium on fishers, 

processing workers, families and fishing communities over and above any compensation they 

may have received from the Government of Canada. 

The economic payoff associated with a marine reserve versus no marine reserve, but with 

optimal harvesting, is given in column (2) of Table 3. It shows that even with ‘optimal’ 

harvesting a marine reserve generates a cumulative resource rent of $162 million. The extra 

return from a reserve with optimal harvesting occurs because of the large negative shock in 

the fishery in 1973. A reserve would have helped buffer the fishery from the shock via 

spillovers of fish to the harvested area and, thus, allowed for a higher harvest level and 

resource rent than would otherwise have occurred. This payoff, however, would have declined 

over time as no statistically significant negative shocks occurred over the period 1974-1991, 

but if there had been, the value of the reserve would have increased because of its ability to 

raise the harvest level immediately following such shocks.  
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4.2 Optimal harvest and reserve size versus 20% harvest rule 

 

Our results show the economic benefits of both optimal harvesting and a reserve of 

optimal size combined would have generated multi-billion dollar benefits for the northern cod 

fishery over the period 1962-1991. We now investigate what is the value of a reserve with 

optimal harvesting relative to an approximation of the harvesting rule that was supposed to 

have been used by the Canadian Department of Fisheries and Oceans over the period 1977-

1991. This is a so-called 20% harvesting rule whereby the current harvest is set at 20% of the 

previous level of the exploitable biomass and approximates the F0.1-rule  (Hannesson, 1996, p. 

93) commonly applied in developed fisheries.  

Unfortunately, the 20% or F0.1-rule that corresponds to a harvest slightly below the 

maximum yield per recruit was not properly applied in northern cod fishery for two reasons. 

First, fisheries biologists overestimated the size of the exploitable biomass and thus the 

harvest rate was actually a much higher rate than intended (Lane and Palsson, 1996).6 Second, 

successive federal fisheries ministers were unwilling to lower harvests due to worries over the 

social and economic costs of lower catches on fishing communities (Charles, 1995). 

Immediate socio-economic concerns associated with lower harvests are not unique to Canada. 

In Europe, for instance, a harvesting moratorium for the North Sea cod has been supported by 

the Scientific, Technical, Economic Committee on Fisheries since 2002, but harvesting is still 

allowed, albeit at reduced levels, because of the negative economic and social impacts of 

closures on the fishing industry (European Environment Agency, 2004). 

A comparison of the extra resource rent associated with optimal harvesting and an optimal 

reserve size versus a 20% harvesting rule and no reserve is given in column (3) of Table 3. 

The results indicate that even if the fishery regulator had been able to successfully implement 
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its desired harvesting rule, it would still have generated over $650 million less than what 

could have been obtained with optimal harvesting and a reserve size of 40%. This difference 

is illustrated in Figure 5. Column (4) of Table 3 shows that if a 20% harvesting rule and also a 

40% reserve size had been implemented then the net returns from harvesting would have been 

higher than with the 20% harvesting rule and no reserve — but still some $280 million less 

than a 40% reserve with optimal harvesting .  

 

4.3 20% harvest rule versus actual harvest 

 

We can also investigate the economic payoff associated with successfully implementing 

the 20% harvesting rule versus the actual harvest over the period 1962-1991. Column (5) of 

Table 3 shows that the 20% harvest rule offers a very substantial benefit, relative to actual 

harvest, of over $1.2 billion for the period 1962-1991. As shown in column (6) of Table 3, 

however, a marine reserve coupled with the 20% harvesting rule generates an even greater 

payoff. The extra benefit in terms of cumulative resource rent from a reserve with a 20% 

harvesting rule is given in column (7) of Table 3 ― $374 million — and is more than twice as 

much as the extra benefit from having a reserve, but with optimal harvesting. In other words, 

the smaller the actual biomass is relative to its optimal level, the larger is the economic payoff 

of a reserve.  Thus although a marine reserve gives a positive payoff with optimal harvesting, 

it gives an even higher payoff if a sub-optimal harvesting rule is used, and would have given 

an even greater payoff with the development of the biomass that actually took place over the 

period 1962-1991. 

 

4.4 Sensitivity analysis 
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A problem with determining optimal reserve size is that the estimates of the economic and 

biological parameters may not be accurate representations of their true values. To examine the 

implications of changes in the economic parameters a and b on the results, we separately 

increased the value of each by 10%. The net effect of increasing a (the demand parameter) by 

10% is to increase the economic value from having optimal harvesting and an optimal reserve 

size by some 12%, while raising  b (the cost parameter) by 10% reduces the economic payoff 

by about 2%.  

We also undertook a sensitivity analysis by changing the intrinsic growth rate ( ) and the 

transfer coefficient (

r

φ ). The upper and lower values for  in Table 4 represent the point 

estimate for the intrinsic growth rate of 0.27067 plus and minus 0.04, a value that exceeds its 

standard error of 0.0367.

r

7 The lowest value for 0.7φ =  in Table 4 corresponds to a very low 

transfer, equivalent to about 2% of the reserve population in the absence of a negative shock, 

while the upper value of 1.0φ =  represents a transfer of a little less than 5% of the reserve 

population. Further increases in φ  beyond 1.0 would raise both the optimal reserve size and 

the economic payoff of a reserve.  

In columns 1-4 of Table 4 under the heading optimum reserve size we find that the 

optimum reserve size is sensitive to both  and r φ . This suggests that resource managers need 

to pay careful attention to estimating these key parameters. In columns 5-8 of Table 4, under 

the heading discounted net gain with optimum harvest and reserve size, we find that the net 

economic benefit associated with optimal harvesting with a reserve, relative to the harvesting 

that actually occurred, is robust to changes inφ .  The net gains from having a 40% reserve, 

but with optimal harvesting, are given in columns 8-12 of Table 4. Overall, the sensitivity 

analysis shows that for a wide range of parameter values there exists a large economic payoff 

to a marine reserve, whether harvesting is optimal or whether the comparison is made to the 

actual harvest that occurred over the period 1962-1991.   
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4.5 Resilience 

 

Several authors have shown that a marine reserve creates resilience in the sense that it 

increases population persistence by raising its level above the minimum viable level 

(Apostolaki et al., 2002; Guénette et al., 1998; Lauck et al., 1998). In our modeling we show 

that a reserve in the Northern Cod fishery would generate two other types of resilience: one, 

‘Pimm-resilience’ or P-resilience (Pimm, 1984) such that a reserve reduces the time it takes 

for a harvested population to recover to its former state following a negative shock and, two, a 

‘Holling-resilience’ (Holling, 1973) or H-resilience such that a reserve helps the population 

stay within a stable attractor following a shock.  

P-resilience is the reason why a reserve generates an economic payoff with environmental 

stochasticity, even when harvesting is ‘optimal’. It also explains a result by Conrad (1999) 

that with environmental instability a marine reserve reduces the variance of the population. 

Our model shows that if P-resilience is measured as the time it takes for the population to 

recover to within one standard deviation of its former level before a negative shock, then 

recovery time is monotonically decreasing in reserve size. It implies that apart from an 

increased resource rent that a reserve can generate, a reserve can also reduce the variation in 

the rent and that may also be valued by fishers.  

H-resilience is more difficult to quantify because we must show that the population can be 

maintained in its present (but fluctuating) state indefinitely following a negative shock.  

Nevertheless, in Figure 6 we can illustrate the effects of three possible management scenarios 

― optimal harvesting with a 40% reserve, the 20% harvest rule with a 40% reserve and the 

actual harvest ― on the level of the biomass in the northern cod fishery. The actual harvest 

resulted in the complete collapse of the fishery by 1992 while both optimal harvesting and the 
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20% harvesting rule with a marine reserve allow the fishery to recover from the 1973 shock. 

A reserve also helps keeps the biomass at higher levels than would otherwise be the case and, 

thereby, reduces the risk of the fishery dropping below a threshold point from which the stock 

may not recover (Roughgarden and Smith, 1996).8 

Our results do not imply that a reserve is a guarantee against population collapse, but do 

suggest that an optimally sized reserve can reduce the chance of such an event. At least for the 

northern cod fishery, it appears there exists some threshold biomass level beyond which the 

fishery collapses and may not recover. This implies (a) a marine reserve, apart from the 

economic benefits it generates for fishers, also provides a higher level of the biomass and a 

buffer to negative shocks that gives a degree of protection from crossing a critical threshold 

and (b) when specifying reserve size it is important to ensure a minimum number or biomass 

of fish in the reserve, irrespective of the proportion of the total biomass or population in a 

reserve. 

 

5. Caveats and Implications 

 

Several caveats must be noted in terms of applying our results. First, we do not use an 

explicit spatial model and thus cannot translate the results into defined areas of the habitat, 

nor can we explicitly consider the spatial redistribution of fishing effort with a reserve (Smith 

and Wilen, 2003; Wilen et al., 2002; Wilen 2004). Nevertheless, we may speculate that 

closure of fishing areas offshore, previously de facto reserves until the late 1950s, would be 

an obvious choice for at least part of a reserve. The experience from America’s Georges Bank 

over the period 1994-1998 also indicates that a large offshore reserve may be easier to enforce 

than smaller seasonal areas and can also generate a high level of compliance (Murawski et al., 

2000). Second, the optimal size of the reserve and optimal harvest levels depend on the 
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parameters used in our simulations, although our general conclusion of the positive economic 

benefits of a reserve is robust to changes in both economic and biological parameters. 

Our results have a number of important management implications for renewable 

resources. First, and foremost, we find that managing a resource subject to environmental 

instability requires much more than simply adopting either a ‘conservative’ harvest level or 

improved estimates of the relevant biological and economic parameters (Shelton and Rice, 

2002). By contrast to traditional management approaches, a reserve provides protection 

against management failure (Lauck et al., 1998), and also promotes population persistence, P-

resilience and H-resilience. Indeed, on the basis of our simulations, a reserve with optimal 

harvesting would have allowed the northern cod fishery to recover much faster following a 

negative shock in 1973, and would have kept the fishery above a threshold point below which 

the actual fishery fell in the early 1990s. The H-resilience associated with a reserve also has 

important implications for other fisheries that are explicitly managed to ensure that the 

spawning stock biomass is kept above a precautionary level.  

Second, some of the economic concerns by fishers about marine reserves, at least for the 

northern cod fishery, are misplaced. We show that a marine reserve generates substantial 

economic benefits to fishers, even with optimal harvesting, in the form of increased resource 

rent and also reduces the variance of both the population and the harvest. In the case of the 

northern cod fishery where many harvesters have low incomes and there exist few 

employment opportunities beyond fishing related activities (Department of Fisheries and 

Ocean, 2004b), such income ‘smoothing’ by reserves can be very valuable. The implication of 

our findings for resource managers is that appropriately sized reserves are able to generate 

economic payoffs to fishers while also providing some protection against management 

mistakes and environmental stochasticity.  
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6. Concluding Remarks 

 

The management of renewable resources is governed by irreducible uncertainties. 

Managers and regulators have either ignored environmental variation in their decision-making 

or addressed uncertainty in a certainty-equivalent approach by employing ‘conservative’ rates 

of exploitation. Using data from the northern cod fishery of Atlantic Canada that suffered one 

of the twentieth centuries most spectacular resource collapses, we examine the economic 

value of a marine reserve with a stochastic optimal control model. 

We find that a marine reserve with either optimal harvesting, or with the harvesting rule 

that the regulator attempted to use in the fishery, would have kept the biomass at much higher 

levels and reduced the risk of the stock collapse that occurred in the early 1990s. Our 

simulations also indicate that the economic value of a marine reserve and optimal harvesting 

in terms of cumulative resource rent over the period 1962-1991, relative to the actual harvest, 

is worth almost CDN$2 billion. We also show that even with optimal harvesting a reserve 

generates an extra payoff to fishers worth CDN$162 million. This extra benefit with a reserve 

occurs because a reserve allows for a spillover of fish and a higher harvest after a negative 

shock, although the trade off is a lower harvest in the absence of a negative shock  

Our results show that if the regulator had been able to successfully implement the desired 

but suboptimal harvesting rule then the economic value of the reserve would have been worth 

some $374 million. In addition to providing direct economic benefits to fishers, a marine 

reserve in the northern cod fishery would have provided a ‘smoothing’ function for resource 

rents that would have been of considerable benefit to those fishers who have few employment 

options beyond cod fishing. 

 

 

 22



References 

Apostolaki, P., Milner-Gulland, E.J., McAllister, M.K. and Kirkwood, G.P. 2002. Modelling 

the effects of establishing a marine reserve for mobile fish species. Canadian Journal of 

Fisheries and Aquatic Sciences 59, 405-415. 

Berrill, M. 1997. The Plundered Seas: Can the World’s Fish be saved? Greystone Books, 

Vancouver. 

Beverton, R.J.H. and Holt, S.J. 1957. On the Dynamics of Exploited Fish Populations. Her 

Majesty’s Stationary Office, London. 

Bhat, M.G. 2003. Application of non-market valuation to the Florida Keys marine reserve 

management. Journal of Environmental Management 67, 315-325. 

Botsford, L.W., Castilla, J.C. and Peterson, C.H. 1997. The management of fisheries and 

marine ecosystems. Science 277, 509. 

Caddy, J.F. and Gulland, J.A. 1983. Historical patterns of fish stocks. Marine Policy 7(4), 

267-278.  

Charles, A.T. 1995. The Atlantic Canadian Groundfishery: roots of collapse, Dalhousie Law 

Journal 18(Spring), 65-83. 

Conrad, J.M.  1999. The bioeconomics of marine sanctuaries. Journal of Bioeconomics 1, 

205-217. 

Côté, I.M., Mosquiera, I. and Reynolds, J.D. 2001. Effects of marine reserve characteristics 

on the protection of fish populations: a meta-analysis. Journal of Fish Biology  59 (supp. 

A), 178-189. 

Department of Fisheries and Oceans. 1981. Resource Prospects for Canada’s Atlantic 

Fisheries 1981-1987. Supply and Services Canada, Ottawa. 

Department of Fisheries and Oceans. 2004a. Northern Cod (2J+3KL) Cod Stock Status 

Update. http://www.dfo-mpo.gc.ca/CSAS/CSAS/status/2004/SSR2004_011_E.pdf 

 23



Department of Fisheries and Oceans. 2004b. A Recent account of Canada’s Atlantic Cod 

Fishery. http://www.dfo-mpo.gc.ca/kids-enfants/map-carte/map_e.htm 

Diewert, W.E. 2002. Similarity and Dissimilarity Indexes: An Axiomatic Approach. 

Discussion paper 02-10, Department of Economics, University of British Columbia. 

Doyen, L. and Béné, C. 2003. Sustainability of fisheries through marine reserves: a robust 

modelling analysis. Journal of Environmental Management 69, 1-13. 

European Environment Agency. 2003. Europe’s environment: the third assessment. 

Copenhagen: European Environment Agency. 

European Environment Agency. 2004. Indicator: The North Sea Cod (Gadhus morhua) stock 

[2004.05]. 

http:themese.eea.eu.int/Sectors_and_activities/fishery/indicators/FISH01b,2004.05. 

Food and Agriculture Organisation of the United Nations (FAO). 2000. State of World 

Fisheries and Aquaculture 2000. http://www.fao.org/docrep/003/x8002e/x8002e06.htm 

Fox, K.J., Hill, R.J. and Diewert W.E. 2004. Identifying Outliers in Multi-Output Models. 

Journal of Productivity Analysis 22, 73-94. 

Gaspar, J. and Judd, K.L. 1997. Solving large-scale rational-expectations models. 

Macroeconomic Dynamics 20, 45-75. 

Gell, F.R. and Roberts, C.M. 2002. The fishery effects of marine reserves and fishery 

closures. World Wildlife Fund, United States, Washington DC. 

Gell, F.R. and Roberts, C.M. 2003. Benefits beyond boundaries: the fishery effects of marine 

reserves. TRENDS in Ecology and Evolution 18(9), 448-455. 

Grafton, R.Q., Kompas T. and Ha P.V. 2006. The Economic Payoffs from Marine Reserves: 

Resource Rents in a Stochastic Environment. The Economic Record 82(259), 469-480. 

 24



Grafton, R.Q., Sandal, L.K. and Steinshamn, S.I. 2000. How to improve the management of 

renewable resources: the case of Canada’s northern cod fishery. American Journal of 

Agricultural Economics 82, 570-580. 

Guénette, S., Pitcher, T.J. and Walters, C.J. 2000. The potential of marine reserves for the 

management of northern cod in Newfoundland. 66(3), 831-852. 

Halpern, B.S. 2003. The impact of marine reserves: do reserves work and does reserve size 

matter? Ecological Applications 13(1), supplement, S117-S137. 

Halpern, B.S. and Warner, R.R. 2003. Matching marine reserve design to reserve objectives. 

Proceedings of the Royal Society London B 270, 1871-1878. 

Hannesson, R. 1996. Fisheries Mismanagement: The Case of the North Atlantic Cod. Fishing 

News Books, Oxford. 

Hannesson, R. 1998. Marine reserves: what would they accomplish? Marine Resource 

Economics  13, 159-170. 

Hannesson, R. 2002. The economics of marine reserves. Natural Resource Modeling 15(3), 

273-290. 

Hilborn, R. and Walters, C.J. 1992. Quantitative Fisheries Stock Assessment: Choice, 

Dynamics and Uncertianty. Chapman and Hall, New York. 

Hofmann, E.E. and Powell, T.M. 1998. Environmental variability effects on marine fisheries: 

four case studies. Ecological Applications 8(1), S23-S32. 

Holland, D.S. 2000. A bioeconomic model of marine sanctuaries on Georges Bank. Canadian 

Journal of Fisheries and Aquatic Sciences 57(6), 1307-1319. 

Holland, D.S. and R.J. Brazee. 1996. Marine reserves for fisheries management. Marine 

Resource Economics 11, 157-171. 

Holling, C.S. 1973. Resilience and stability. Annual Review of Ecology and Systematics 4, 1-

23. 

 25



Hutchings, J.A. and Myers, R.A. 1994. What can be learned from the collapse of a renewable 

resource? Atlantic Cod, Gadhus morhua, of Newfoundland and Labrador. Canadian 

Journal of Fisheries and Aquatic Sciences 51, 2126-2146. 

Judd, K.L. 1999. Numerical Methods for Economics. MIT Press, Cambridge, Mass. 

Kramer, D.L. and  Chapman, M.R. 1999. Implications of fish home range size and relocation 

for marine reserve function. Environmental Biology of Fishes 55, 65-79. 

Lane, D.E. and Palsson, H.P. 1996. Stock  rebuilding strategies under uncertainty: the case for 

sentinel fisheries, in Gordon, D.V. and Munro, G.R. (eds). Fisheries and Uncertainty: A 

Precautionary Approach to Resource Management. University of Calgary Press, Calgary. 

Lauck, T., Clark, C.W., Mangel, M. and Munro, G.R. 1998.  Implementing the precautionary 

principle in fisheries management through marine reserves. Ecological Applications 8(1), 

supplement, S72-S78. 

Ludwig, D., Hilborn, R. and Walters, C. 1993. Uncertainty, resource exploitation and 

conservation: lessons from history. Science 260, 7, 36. 

Malakoff, D. 1997. Extinction on the high seas. Science 277, 486-488. 

Mangel, M. 1998. No-take areas for sustainability of harvested species and a conservation 

invariant for marine reserves. Ecology Letters 1, 87-90. 

Mangel, M. 2000. Irreducible uncertainties, sustainable fisheries and marine reserves. 

Evolutionary Ecology Research 2, 547-557. 

Murawski, S.A., Brown, R., Lai, H.-L., Rago, P.J. and Hendrickson, L. 2000. Large-scale 

closed areas as a fishery-management tool in temperate marine systems: the Georges Bank 

experience. Bulletin of Marine Science 66(3), 775-798. 

Myers, R.A., Hutchings, J.A. and Barrowman, N.J. 1996. Hypotheses for the decline of cod in 

the North Atlantic. Marine Ecology Progress Series 138, 293-308. 

 26



Myers, R.A and Worm, B. 2003. Rapid worldwide depletion of predatory fish communities. 

Nature 423, 280-283. 

National Research Council. 2001. Marine protected areas: tools for sustaining ocean 

ecosystems. National Academy Press, Washington, D.C. 

Pauly, D., Christensen, V., Guénette, S., Pitcher, T.J., Sumaila, U.R., Walters, C.J., Watson, 

R. and Zeller, D. 2002. Towards sustainability in world fisheries. Nature 418, 689-695. 

Pezzey, J.C.V., Roberts, C.M. and Urdal, B.T. 2000. A simple bioeconomic model of a 

marine reserve. Ecological Economics 33, 77-91. 

Pimm, S.L. 1984. The complexity and stability of ecosystems. Nature 307, 321-325. 

Roberts, C.M., Bohnsack, J.A.M Gell, F., Hawkins, J.P. and Goodridge, R. 2001. Effects of 

marine reserves on adjacent fisheries. Science 294, 1920-1923. 

Roughgarden, J. and Smith, F. 1996. Why fisheries collapse and what to do about it. 

Proceedings of the National Academy of Sciences 93, 5078-5083. 

Sanchirico, J.N. and Wilen, J.E. 2001. A bioeconomic model of marine reserve creation. 

Journal of Environmental Economics and Management 42, 257-276. 

Scheffer, M., Carpenter, S., Foley, J.A., Folke, C. and Walker, B. 2001. Catastrophic shifts in 

ecosystems. Nature 423, 591-596. 

Schiermeier, Q. 2002. How many more fish in the sea? Nature 419, 662-665. 

Schiermeier, Q. 2003. Europe dithers as Canada cuts cod fishing. Nature 423, 212. 

Sethi, G., Costello C., Fisher, A. Hanemann, M. and Karp, L. 2005. Fishery management 

under multiple uncertainty. Journal of Environmental Economics and Management 50, 300-

318. 

Shaffer, M. 1981. Minimum population sizes for species conservation. Bioscience 31, 131-

134. 

 27



Shelton, P.A. and Healey, B.P. 1999. Should depensation be dismissed as a possible 

explanation for the lack of recovery of the northern cod (Gadhus morhua) stock? Canadian 

Journal of Fisheries and Aquatic Sciences 56, 1521-1524. 

Shelton, P.A. and Rice, J.C. 2002. Limits to overfishing: limit reference points in the context 

of the Canadian perspective on the precautionary approach. Canadian Science Advisory 

Secretariat Research Document 2002/084. http://www.dfo-

mpo.gc.ca/CSAS/CSAS/DocREC/2002/RES2002_084e.pdf 

Sladek Nowlis, J.S. and Roberts, C.M. 1998. Fisheries benefits and optimal design of marine 

reserves. Fishery Bulletin 97, 604-616. 

Smith, M.D. and Wilen, J.E. 2003. Economic impacts of marine reserves: the importance of 

spatial behaviour. Journal of Environmental Economics and Management 46, 183-206. 

Sumaila, U.R. 1998. Protected marine reserves as fisheries management tools: a bioeconomic 

analysis. Fisheries Research 37, 287-296. 

Turner, S.J., Thrush, S.F., Hewitt, J.E., Cummings, V.J. and Funnell, G. 1999. Fishing 

impacts and the degradation or loss of habitat structure. Fisheries Management and Ecology 

6, 401-420. 

United Nations 2002. World Summit on Sustainable Development Plan of Implementation. 

Division for Sustainable Development, 

http://www.un.org/esa/sustdev/documents/WSSD_POI_PD/English/POIToc.htm. 

Wilen, J.E. 2004. Spatial Management of Fisheries. Marine Resource Economics 19(1), 7-20. 

Wilen, J.E., Smith, M.D., Lockwood, D. and Botsford, L.W. 2002. Avoiding surprises: 

incorporating fisherman behaviour into management models. Bulletin of Marine Science 

70(2), 553-575. 

 28



 
Table 1: Parameter Values for Modeling a Marine Reserve in the Northern Cod Fishery 
 
 Parameter      Value 

ρ 0.05 
σ 0.08 

  0.85 

r 0.27067 
α 0.24869 
x0 2.977 
K 3.2 
a 0.35 
b 0.2 
ε -0.3 

ψ(xR) 0 
γ(xNR) -0.30403 

 29



Table 2: Actual and optimum harvest with optimum reserve (millions of tons). 
Year (1) 

Actual 
Exploitable 
biomass 

(2) 
Actual harvest 

(3) 
Optimum 
biomass 

(4) 
Optimum 
harvest  

  1962 2.977 0.503 2.977 0.85309121 
  1963 2.655 0.509 2.42347432 0.37350931 
  1964 2.541 0.603 2.47517002 0.40391219 
  1965 2.39 0.545 2.60979768 0.49069243 
  1966 2.336 0.525 2.37307641 0.35091683 
  1967 2.382 0.612 2.40202432 0.36530523 
  1968 2.329 0.81 2.59490323 0.4790063 
  1969 2.006 0.754 2.56659628 0.46001592 
  1970 1.693 0.52 2.61925004 0.49564353 
  1971 1.601 0.44 2.61842344 0.49522417 
  1972 1.394 0.458 2.54388726 0.4443343 
  1973 0.983 0.355 2.10377814 0.24296733 
  1974 0.752 0.373 2.44857247 0.38857491 
  1975 0.568 0.288 2.13681133 0.27116593 
  1976 0.526 0.214 2.33601211 0.33528629 
  1977 0.526 0.173 2.27663654 0.31169336 
  1978 0.597 0.139 2.31584134 0.32562431 
  1979 0.695 0.167 2.24265689 0.29957699 
  1980 0.781 0.178 2.35903646 0.34533376 
  1981 0.882 0.171 2.39559685 0.36233135 
  1982 0.931 0.23 2.56969681 0.46146337 
  1983 1.007 0.232 2.52018798 0.43114364 
  1984 1.125 0.232 2.42224303 0.37392935 
  1985 1.06 0.231 2.54156966 0.44430831 
  1986 0.951 0.252 2.70627668 0.56275807 
  1987 0.812 0.235 2.31906297 0.32721533 
  1988 0.699 0.269 2.21147028 0.2901883 
  1989 0.569 0.253 2.37187835 0.3500142 
  1990 0.405 0.219 2.24827366 0.30152929 
  1991 0.242 0.171 2.60424519 0.48559519 
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Table 3: Cumulative net gain in resource rent (billions of 1991 Canadian dollars). 

Year 

(1) 
Optimum 
harvest & 

40% reserve 
Vs. 

actual harvest 

(2) 
Optimum 
harvest & 

40% reserve 
Vs. 
optimum 

harvest & no 
reserve 

 
(3) 

Optimum
harvest &

40% reserve
Vs. 

20% harvest 
rule & no

reserve

(4) 
Optimum 
harvest & 

40% reserve 
Vs. 

20% harvest 
rule & 40% 

reserve

(5) 

20% harvest 
rule & no 

reserve 
Vs. 

actual harvest

(6) 
20% harvest 

rule and 40% 
reserve

Vs. 
actual harvest

(7)
20% harvest 
rule & 40% 

reserve
Vs.

20% harvest
rule & no 

reserve
1962 0.300 0.025 0.214 0.214 0.086 0.086 0.000
1963 0.159 0.017 0.096 0.104 0.063 0.055 -0.008
1964 -0.012 0.009 0.025 0.041 -0.038 -0.053 -0.015
1965 -0.048 0.006 0.025 0.048 -0.073 -0.096 -0.022
1966 -0.183 -0.001 -0.039 -0.006 -0.145 -0.174 -0.029
1967 -0.361 -0.004 -0.078 -0.039 -0.283 -0.322 -0.039
1968 -0.551 -0.007 -0.053 -0.005 -0.498 -0.543 -0.045
1969 -0.683 -0.013 -0.038 0.016 -0.645 -0.698 -0.054
1970 -0.644 -0.019 -0.019 0.044 -0.625 -0.684 -0.059
1971 -0.556 -0.024 0.000 0.067 -0.556 -0.623 -0.067
1972 -0.491 -0.029 -0.003 0.070 -0.488 -0.563 -0.074
1973 -0.481 -0.048 -0.041 -0.012 -0.440 -0.469 -0.029
1974 -0.316 0.025 -0.002 -0.032 -0.314 -0.283 0.030
1975 -0.165 0.038 0.002 -0.074 -0.167 -0.091 0.076
1976 0.034 0.080 0.035 -0.080 -0.003 0.115 0.118
1977 0.212 0.107 0.067 -0.084 0.143 0.297 0.154
1978 0.380 0.130 0.103 -0.080 0.277 0.461 0.184
1979 0.508 0.141 0.132 -0.079 0.376 0.587 0.211
1980 0.639 0.155 0.176 -0.058 0.463 0.698 0.235
1981 0.767 0.164 0.228 -0.029 0.540 0.796 0.256
1982 0.908 0.171 0.301 0.026 0.607 0.882 0.276
1983 1.024 0.172 0.363 0.070 0.661 0.955 0.294
1984 1.109 0.172 0.401 0.094 0.706 1.015 0.309
1985 1.216 0.172 0.456 0.134 0.760 1.082 0.323
1986 1.356 0.169 0.530 0.195 0.826 1.163 0.337
1987 1.432 0.168 0.548 0.203 0.885 1.230 0.346
1988 1.499 0.166 0.562 0.208 0.937 1.291 0.354
1989 1.601 0.165 0.589 0.227 1.013 1.375 0.362
1990 1.718 0.164 0.606 0.239 1.111 1.480 0.368
1991 1.930 0.162 0.655 0.282 1.274 1.649 0.374
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Table 4: Sensitivity Analysis of Optimal Reserve Size and Resource Rent 

 
Optimum reserve size 

(proportion of total 
biomass)  

Discounted net gain with 
optimum harvest and 

reserve size Vs. actual 
(billions CDN 1991 dollars)

Discounted net gain with 
optimum harvest and 

reserve size Vs. optimum 
harvest with no reserve 

(billions CDN 1991 dollars)
 Transfer coefficient 
Growth coefficient 0.7 0.8 0.9 1 0.7 0.8 0.9 1 0.7 0.8 0.9 1

0.23 0.6 0.7 0.8 0.9 0.84 0.87 0.90 0.93 0.20 0.23 0.26 0.29
0.27 0.4 0.5 0.6 0.6 1.79 1.91 1.93 1.95 0.04 0.16 0.18 0.20
0.31 0.4 0.4 0.5 0.5 2.83 2.88 2.94 2.95 0.03 0.07 0.13 0.15
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End Notes: 
                                                 
1 Further details and diagnostics of the estimated growth function are available from the authors. 
2 Dissimilarity scores for each year are available from the authors and were obtained from the software OutFish. 
3 Sethi et al. (2005) identify two other forms of uncertainty in fisheries management that include stock 
measurement error and inaccurate implementation of harvest quotas. 
4 Figures of the effects and value of a reserve assuming equal shocks are available from the authors upon request. 
As with the unequal shock case, a reserve generates a positive economic value relative to the actual harvest that 
took place, but also with optimal harvesting. 
5 All $ values are in 1991 Canadian dollars. 
6 The estimates we use for the exploitable biomass come from a series that corrects for past inaccuracies. 
7 A full range of sensitivity analysis based on 90% confidence intervals for the estimated parameters are 
available upon request. 
8 Sumaila (1998) shows that reserves can provide good protection in the face of negative shocks while Mangel 
(1998) shows that there is an minimum resrve size to ensure sustainability of a population. Doyen and Béné 
(2003) also find that the greater the level of uncertainty (size and/or probability of a negative shock), the greater 
the share of the population required in a reserve to maintain a minimum viable population. 
 

 33



–0.02

0

0.02

0.04

0.06

0.08

0.1

D
iff

er
en

ce
 in

 h
ar

ve
st

1965 1970 1975 1980 1985 1990

Time

Figure 1: The difference in harvest between the case of optimum harvest with a 40%
reserve and optimum harvest with no reserve
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Figure 2: Relationship between the actual harvest and optimum harvest with 40%
reserve
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Figure 3: Cumulative net harvesting gain (millions of tons) from optimal harvesting
and 40% reserve versus actual harvest.
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Figure 4: Discounted cumulative resource rent (billions of dollars) from optimal
harvesting and 40% reserve versus actual harvest.
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Figure 5: Discounted cumulative resource rent (billions of dollars) from optimal
harvesting and a 40% reserve size versus a 20% harvest rule with no reserve.
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Figure 6: Biomass with optimum harvest with a 40% reserve, a 20% harvest rule
with a 40% reserve, and actual biomass
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