

The Economics of Biosecurity: Risk, Returns, Quarantine and Surveillance

Tom Kompas Australian Centre for Biosecurity and Environmental Economics

Crawford School of Economics and Government Australian National University

www.acbee.anu.edu.au

AUSTRALIAN CENTRE FOR BIOSECURITY AND ENVIRONMENTAL ECONOMICS

The Problem

Close proximity between countries and international trade and tourism increases the probability of an incursion and the spread of exotic diseases and pests; ones that can do great harm, and in some cases can be potentially devastating to local industry, animal and human health, and the environment.

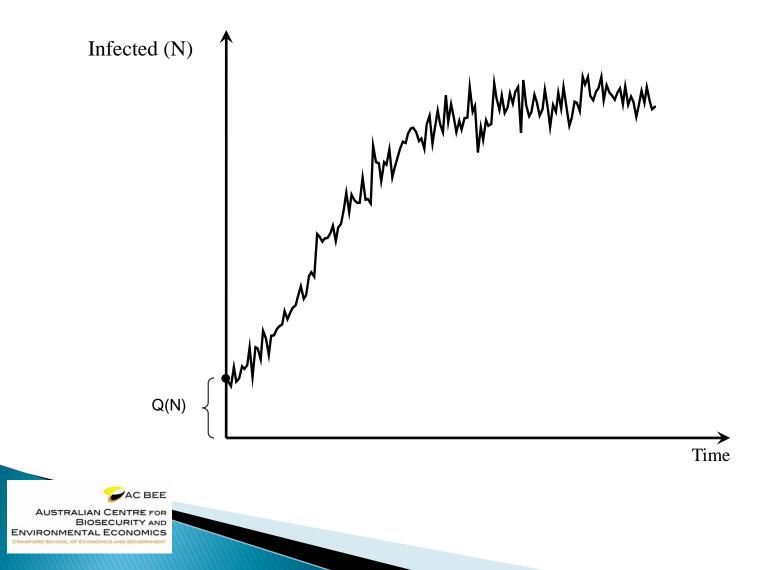
Traditional Measures

- Pre-border measures and border quarantine (i.e., preventing a potential incursion at the border).
 - Limits on imports
 - Airport inspections, and inspections of shipping containers and contents
- Local surveillance programs (preventing spread in the local environment).
 - Screening and local awareness
 - Surveillance traps (e.g., insects)
 - Blood screening and visual inspection
- Containment and eradication programs.

The Economic Puzzle

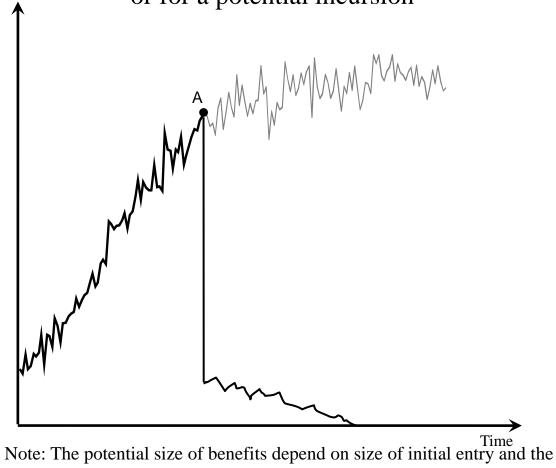
How much should be spent, or what costs should be incurred, for pre-border measures and border quarantine, surveillance and containment/eradication activities to protect human, plant and animal health as well as the environment? How to allocate resources across various threats?

- Ban imports and close airports?
- Spend \$0 on quarantine and surveillance?
- Spend all of GDP on quarantine and surveillance?
- Eradicate? Contain? Neither?
- How to allocate resources across various threats?


AUSTRALIAN CENTRE FOR BIOSECURITY AND ENVIRONMENTAL ECONOMICS CRAWFORD SCHOOL OF ECONOMICS AND GOVERNMENT

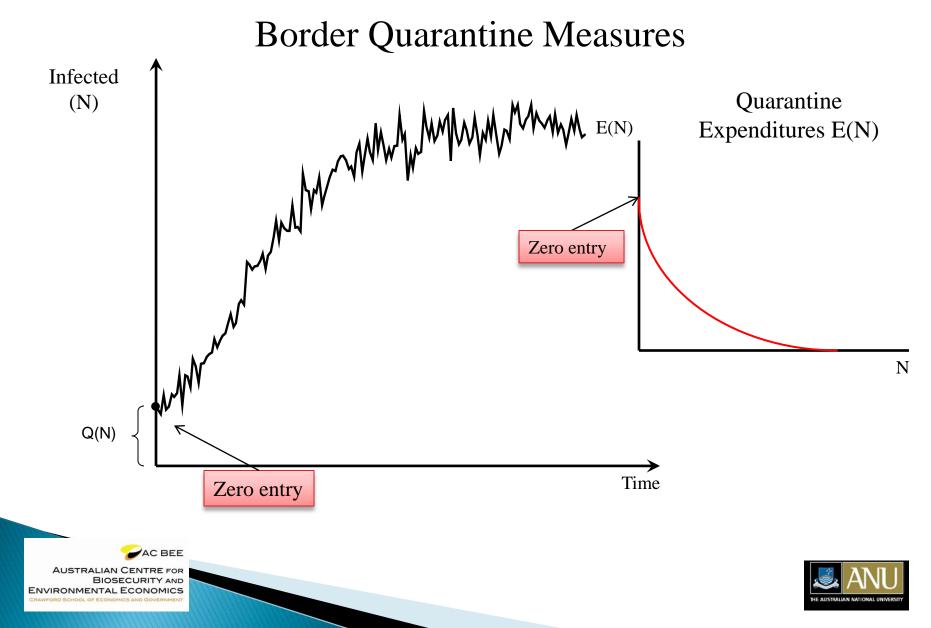
AC BEE

A Simple Spread Model for an Invasive

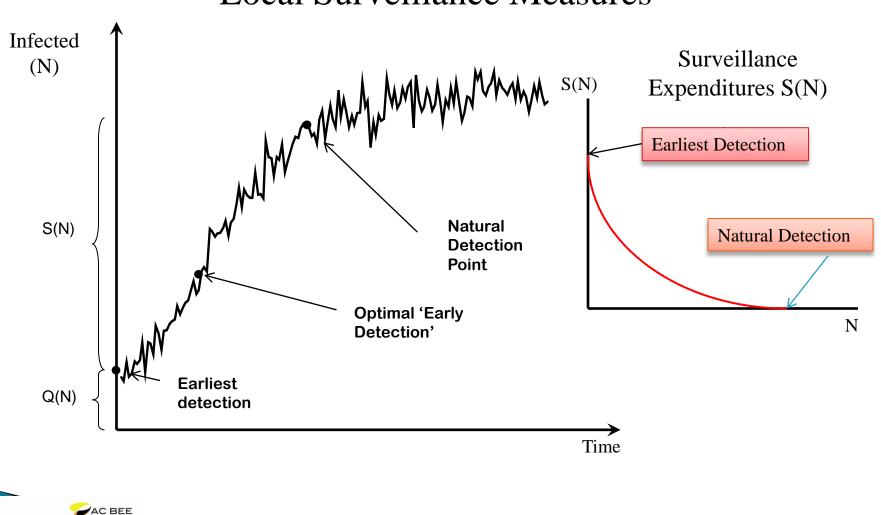


Containment and Eradication

The role of cost-benefit analysis (CBA) after an incursion, or for a potential incursion


Infected (N)

AC BEE AUSTRALIAN CENTRE FOR BIOSECURITY AND **ENVIRONMENTAL ECONOMICS** choice of early detection, for a given eradication/containment exercise.



AUSTRALIAN CENTRE FOR BIOSECURITY AND

ENVIRONMENTAL ECONOMICS

Local Surveillance Measures

THE AUSTRALIAM NATIONAL UNIVERSITY

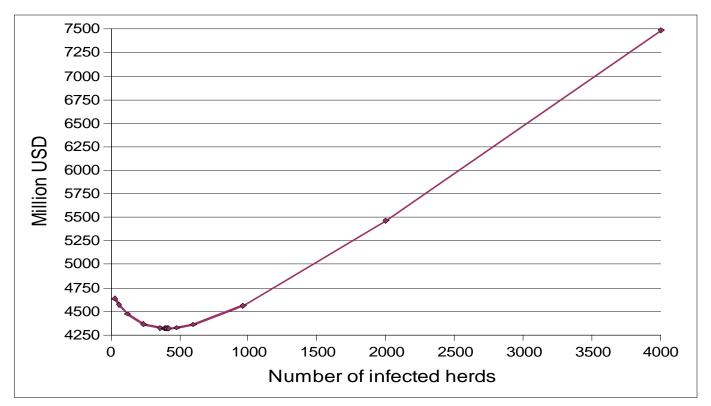
Surveillance Example: Foot-and-Mouth Disease (FMD)

- Foot and Mouth disease (FMD) is a highly contagious disease of susceptible cloven-hoofed animals.
- FMD hosts are typically cattle, sheep and swine, but also can occur in domestic and water buffalos, goats, yaks and zebras.
- The 2001 outbreak in the UK: 8 months of eradication; the losses: about \$5 billion in the food and agricultural sectors and comparable amounts in the tourism industry. (GAO 2202)
- Estimates of a potential outbreak in California range form \$4.3 to \$13.5 billion USD. (Ekboir 1999)

AUSTRALIAN CENTRE FOR BIOSECURITY AND ENVIRONMENTAL ECONOMICS CRAWFORD SCHOOL OF ECONOMICS AND GOVERNMENT

FMD Surveillance (cont)

- Incursion, biological and economic parameters: the United States General Accounting Office (GAO 2002) and Bates et al. (2001, 2003a, 2003b).
 - Incursion: 1 in 30 year event.
 - Natural detection: 4000 herds.
 - Maximum expenditure: 2000 blood tests (200 current); \$82.9 million (\$8.29 million current).
 - Average production loss per head: 0.224; trade and tourism: 0.1 and 0.005
 - Eradication zone: 8 times radius of infected infected herds; eradication and vaccination parameters: 0.018 and 0.00296.
 - Minimum trade ban: 24 weeks, beta is .008
- Sensitivity tests: probability of incursion; growth of transmission, density growth, eradication zone, average production loss.



AUSTRALIAN CENTRE FOR BIOSECURITY AND ENVIRONMENTAL ECONOMICS CRAWFORD SCHOOL OF ECONOMICS AND GOVERNMENT

AC BEE

Optimal Surveillance Grid and Expenditures (FMD)

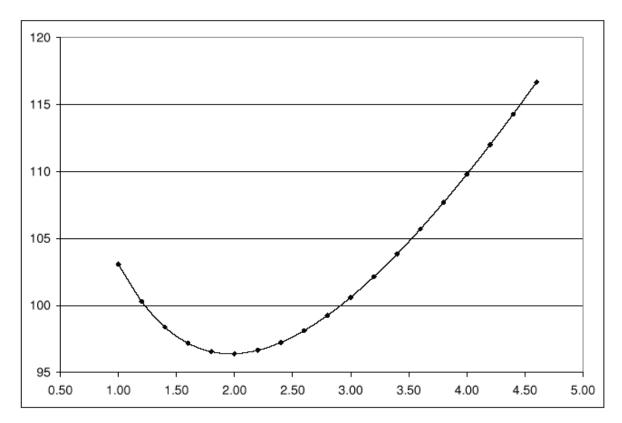
Optimal: 405 potentially infected herds and $S^{*}(h) = \frac{43m}{year}(US)$

Current USA: \$8.29m/year and 2000 potentially infected herds Natural detection is 4000 herds

CAC BEE

AUSTRALIAN CENTRE FOR BIOSECURITY AND ENVIRONMENTAL ECONOMICS CRAWFORD SCHOOL OF ECONOMICS AND GOVERNMENT

Surveillance Example: Papaya Fruit Fly (PFF) in Australia


- PPF attacks fruit and habitat, and in early stages is difficult to detect by inspection (boarder quarantine is limited and ineffective).
- Largest risk of entry: via the Torres Strait Islands and at ports of entry.
- 'Current' surveillance grid: 1 trap for every 6,200 km², 1,878 traps in total, Current Expenditures = \$1,380,000 (including the program's fixed costs).
- 1995 outbreak in QLD: \$43m in eradication and management costs over a 13 month period.

AUSTRALIAN CENTRE FOR BIOSECURITY AND ENVIRONMENTAL ECONOMICS CRAWFORD SCHOOL OF ECONOMICS AND GOVERNMENT

Optimal Surveillance Grid and Expenditures (PFF)

Optimal: one trap per 2,000 km² and $S^*(h) =$ \$3m/year(AUS)

Current: \$1.38m/year: Current surveillance grid: 6,200 km²

AUSTRALIAN CENTRE FOR BIOSECURITY AND ENVIRONMENTAL ECONOMICS CRAWFORD SCHOOL OF COMPICE AND CONTRIMENTS

Thanks for listening!

Tom Kompas tom.kompas@anu.edu.au <u>http://www.crawford.anu.edu.au/staff/tkompas.php</u>

www.acbee.anu.edu.au

