Protection values for the Great Barrier Reef

John Rolfe

CRICOS PROVIDER CODES: QLD 00219C, NSW 01315F, VIC 01624D

Background

- Support from GBRMPA and Jeff Bennett in the design phases
- CQU project team has been John Rolfe and Jill Windle, with additional support from Xuehong Wang and Daniel Gregg

The problem being addressed

- Protection of the GBR involves significant effort and resources, e.g.
 - Establishment of marine park
 - World Heritage status (1981)
 - 33% protected in green zones (2004)
 - Reef Rescue program addressing water quality
 - Calls to reduce greenhouse gas emissions
- Each proposal can involve significant public and private costs
- Do the benefits of extra protection outweigh the costs?

Benefits derived from the GBR

Very few valuation studies of the GBR

- Almost all economic studies have focused on value of commercial activities
- These are impact assessments
 - Results do not translate to estimates of value
- Most valuation studies have focused on recreation
 - Hunloe et al. 1987, Blamey and Hundloe 1993, Carr and Mendelsohn 2003, Kragt et al. 2009, Prayaga et al. 2010
- Very few studies estimating non-use values
 - Hunloe et al. 1993, Windle and Rolfe 2005
 - Results extrapolated by Oxford Economics 2009

The Oxford Economics 2009 report

- Assessed Total Economic Value for the GBR = \$51.4B
 - Tourism consumer surplus = \$16.6B
 - Tourism producer surplus (profit) = \$3.6B
 - Recreational fishing consumer surplus = \$2.5B
 - Recreational fishing producer surplus = \$0.3B
 - Commercial fishing producer surplus = \$1.4B
 - Indirect use values = \$10.4B
 - National non-use values = \$15.5
 - \$57.40 per annum for each Australian household for 100 years
 - International non-use values = \$1.9B

The focus of this study

- Key aim: estimate values for improved or maintained protection of the GBR
 - Focused on estimating marginal values (small changes in protection)
 - Testing whether the types of management options used are important – or just the end protection
 - Testing whether the level of certainty that protection will occur is important
 - Testing if values vary across different population groups

Conducting the case study

- Used the choice modelling technique
 - Initial consultation phase with stakeholders
 - Multiple focus groups in Brisbane, Rockhampton and Townsville
 - Conducted three main rounds of surveys
 - More than 30 different split samples to test different case study and methodological issues
 - Used both drop-off/collect and web-based formats
 - Updated experimental designs between rounds
 - More than 3,000 households surveyed in Queensland

Example choice set

Whole GBR						
Q COLLE	Management	Amount of GBR in good condition	Will it happen?	Cost	Your choice	
1		Current condition: 90% in good condition (311,000 sq km)	V	(3)	X	
	Option for particular focus	Condition in 25 years time	Level of certainty	How much you pay each year (5 years)	Select one option only	
Option A	Current trends	65% in good condition (225,000 sq km)	80%	\$0		
Option B	Improve water quality	68% = 3% (235,000 sq km) = improvement	60%	\$100		
Option C	Increase conservation zones	66% 1% (228,000 sq km) " improvement	75%	\$50		
Option D	Reduce greenhouse gases*	85% 20% (294,000 sq km) improvement	40%	\$100		

Use for recreational fishing

Other recreational uses

Plans for future use

Opinion about GBR condition over past 10 years

Reasons for protection: non-use values are more important

Summary values

- Average annual household willingness to pay is \$22.50 per 1% of GBR (CI = \$16 - \$30)
 - Average willingness to pay is \$6.40 per 1,000 km²
- Present value across Qld households is \$110
 Million per 1% improvement
 - Assumes 75% of households support protection
- Average value for each 1% improvement in certainty of outcomes is \$7.50 per household

Values for management options

- Including the management options generated higher values
 - Increasing conservation zones most preferred
 - Reducing greenhouse gases least preferred

WTP for 1% improvement	GBR	Certainty
Mngt options GBR (avg)	\$22.47***	\$7.50***
Improve water quality	\$26.01***	\$1.30
Increase conservation zones	\$33.01***	\$6.11**
Reduce greenhouse gases	\$8.72	-\$0.34

Values for GBR regions versus whole GBR

- Can find little difference in values between the whole GBR and a GBR region (25% of the area)
- Results consistent over a number of splitsample experiments
- May be a strong iconic effect where people treat it as a single asset

Values for regional population

- Values held by regional population (Townsville) consistently higher than Brisbane
 - Regional population had higher use of asset
 - Regional population were more likely to think condition had declined

Apportioning values

- Some split sample experiments have presented the GBR as three key assets
- Results disaggregate values across the assets
- Values per 1% improvement
 - Area of coral reefs = \$12.80
 - Number of fish species = \$7.90
 - Area of seagrass = \$4.90

Application to Reef Rescue

- Investment in Reef Rescue is \$200 Million
- For the Qld public to receive full value, improvement in GBR is needed of between 1.8% and 2.7% (depending on assumptions about participation rate)
- Level of improvement needed is lower when remaining Australian values are included

Summary

- This study is the first comprehensive study assessing protection values for the GBR
 - Values are more conservative than those estimated by Oxford Economics
- Results are directly applicable to policy settings because they are marginal values
- Results indicate that values are higher when:
 - Management options are specified
 - There is high certainty that outcomes will be achieved