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1 Introduction

Over the past three decades, the United States (US) has witnessed significant changes in
the structure of the natural gas market. Table 1 provides a clear picture of the changes.
With regard to the supply side, in the past natural gas was mainly extracted from gas wells
and this conventional form accounted for 79 percent of total supplies. However, in recent
years, natural gas production has been replaced by unconventional forms. In particular,
products found in shale gas and coalbed wells have gradually became the major source
of the gas market. By 2016, 48 percent of total natural gas production was supplied
the unconventional forms. These changes would not have been realized without a period
of deregulation introduced to the market, such as the Natural Gas Wellhead Decontrol
Act of 1989. Although such deregulation has often focused on price mechanisms and the
supply side of the natural gas market, significant changes have also taken place on the
demand side. As can be seen from the table, while commercial and residential users have
remained as major users, with more than 50 percent of the market share, expenditure
from electric generators has increased dramatically, accounting for more than one third
of total natural gas consumption.

A common approach in empirical work on natural gas markets, or natural gas prices
in particular, is often based on the investigation of the relationship between the price
of natural gas and the price of crude oil, rather than exploring how the natural gas
market actually works. This approach, therefore, ignores the possibility of structure
changes, which is likely to exist in the US natural gas market as we just discussed.
More importantly, it also ignores the structural interactions between underlying market
fundamental factors, e.g supply and demand shocks. Consequently, previous studies
tend to provide conflicting evidence. Some studies, for example, Pindyck (2004), Brown
and Yiicel (2008), Brigida (2014) Zamani (2016), and Jadidzadeh and Serletis (2017)
find that movements in crude oil prices have played a key role in shaping natural gas
prices. In contrast, other studies conclude that there is a very weak or no connection
between the crude oil prices and natural gas prices (Serletis and Rangel-Ruiz, 2004;
Bachmeier and Griffin, 2006; Ramberg and Parsons, 2012). The common feature of
these investigations is that they do not capture the possible regime shifts in the natural
gas market or allow for changes in natural gas demand and production as endogenous.
Brigida (2014), for example, relying on an error correction model, finds that regime-
switching exists in the relationship between oil and natural gas prices but does not further
investigate the underlying sources of the shift. Jadidzadeh and Serletis (2017) study the
reactions of natural gas prices to shocks stemming from the global crude oil market based

on a linear VAR model, which implicitly assumes that reactions of the natural gas price



are time-invariant.

This paper departs from the traditional literature by explicitly allowing structural
changes in the US natural gas market and treating market fundamental disturbances as
endogenous shocks. To that end, we first utilize a standard Bayesian model compari-
son to determine the number of regime existing in the market. It then makes use the
advantage of the Markov switching vector autoregressive model (MS-VAR) to capture
possible structural shifts. The novelty in applying this econometric framework lies in the
two main important features of the MS-VAR model. First, the MS-VAR model does not
restrict the size of the change when a structural break occurs, but it often assumes a
small number of in-sample breaks. Hence, if the data does not favour a large number of
regimes, the MS-VAR model seems to be a natural choice (Sims et al., 2008). In addition,
the Markov switching models allow for regime recurrence. This feature is not assumed
in the traditional structural break models. Allowing the regime recurrence does not only
tend to improve the estimation accuracy but also helps us to understand more about
the interrelationship among the detected regimes. Finally, following the seminal work of
Kilian (2009), our benchmark specification includes three market fundamentals: natural
gas production, a proxy for the demand for natural gas, and the price of natural gas.
This specification allows us to disentangle three different types of structural shocks that
would result from: (1) supply shocks caused by exogenous disruptions in US natural gas
production; (2) demand shocks driven by unpredicted changes in US economic activity;
and (3) specific demand shocks that could be associated with speculative or precautionary
motives.

We contribute to the literature in the following ways. First, this is the first paper
conducting a formal Bayesian model comparison exercise to determine whether there are
regime changes in the US natural gas market and how many regimes we should select
to improve the model in-sample fit. Second, we investigate whether regime recurrence
occurs in the US natural gas market by employing a heat-map plot. Third, we further
investigate and compare the transmission mechanism of the regime-dependent responses
of natural gas market to fundamental shocks. Finally, this paper also extends the analysis
by examining how the US natural gas market reacts to the disturbances of oil prices in
the context of regime shifts.

The main findings of the paper are as follows. First, our Bayesian model comparison
exercise provides strong empirical evidence supporting the existence of four regimes in
the US natural gas market over the last three decades. Second, the paper finds that the
US natural gas market tends to be much more sensitive to shocks occurring in the regimes
existing after the Decontrol Act 1989 than those in the other regimes. Third, the paper

also finds that shocks to the natural gas demand and price have negligible effects on
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natural gas production while the price of natural gas is mainly driven by specific demand
shocks. Finally, augmenting the model by incorporating the price of crude oil, the results
show that the impacts of oil price shocks on natural gas prices are relatively small and
regime-dependent.

The remainder of the paper is organized as follows. Section 2 outlines the econometric
methodology, including the model specification and discussion of the identification. Next,
Section 3 provides a brief overview of the regulation changes and the pricing of the U.S.
natural gas market. Section 4 discusses the data used in the paper. Sections 5 then
presents the results, including model comparisons, regime characteristics and impulse

response functions. Finally, Section 6 concludes the paper.

2 Empirical methodology

As highlighted in the introduction, the MS-VAR modelling framework has important
features that can capture well the typical properties of the natural gas market as compared
to its competitors. In general, there are three common methods that can be applied to
detect the regime switching. The first method is that we can simply split the sample
estimation into different subsamples and test whether there is a structural break. For
example, to study the volatility of oil price shocks and the effectiveness of monetary
policy, Blanchard and Gali (2008) and Nakov and Pescatori (2010) set a particular point
in time (1984) as a break point. With this traditional method, we have to accept the
assumption that all model parameters change at the same time, which is not necessarily
the case. More importantly, prior knowledge is often required for determining the break
date, which is likely to incur an issue of model misspecification (Boivin, 2006).

Another method often used to study the strcutrual instability in the literature is the
threshold models. This class of models allows for discrete shifts in the model parameters,
like the MS-VAR model, but the researcher has to specify a threshold value or transition
variable.! Recent examples of this approach in the energy literature include Rahman and
Serletis (2010) and Nguyen and Okimoto (2017). Unlike threshold models, the number
of regime changes detected by the MS-VAR model is based on a latent Markov process
which is directly estimated from data. In other words, the main advantage of the MS-
VAR model over threshold models is that the researcher needs not to predetermine the
threshold value or transition variable before estimation.

The third popular approach in the literature is the time-varying parameter model.

This class of non-linear models has been widely used in studying the relationship be-

'Recent surveys of this literature can be found in Hubrich and Terisvirta (2013) and Terésvirta et al.
(2014).



tween macroeconomic variables (Primiceri, 2005; Cogley and Sargent, 2005; Clark and
Ravazzolo, 2015; Chan and Eisenstat, 2018) and recently found to perform well in study-
ing energy market (Baumeister and Peersman, 2013; Cross and Nguyen, 2017; Nguyen
and Cross, 2017). The time-varying parameter model possesses many nice features that
allows it to suited well for modelling gradually changing relationship among the variables
of interest. However, the changes in economic structure, like those in the US natural gas
market, may not always shift gradually. For example, regulations and technology con-
straints on production and transmission in the natural gas market are likely to change
drastically. In this case, we believe that the MS-VAR model serves as an appropriate tool
for modelling the structural instability.

The theory and practice of the MS-VAR model were laid out by Krolzig (1997) who
generalized the univariate MS model proposed by Hamilton (1989). Since then, many
types of the MS-VAR model have been developed and refined by Rubio-Ramirez et al.
(2005); Sims and Zha (2006); Sims et al. (2008); Hubrich and Tetlow (2015), Hou (2017)
and Chang et al. (2017). As with these studies, we adopt a sufficiently rich set of the
MS-VAR model to capture the number of regime changes in the US natural gas market
and use its structural form to investigate the responses of the market to its market

fundamental shocks.

2.1 Model

In the spirit of the global crude oil model proposed by Kilian (2009), the US natural
gas market is modelled by employing a three-variable MS-VAR model.? These variables
include the percentage change in the US natural gas production Aprod, the percentage
change in US real economic activity Aip, and the percentage change in the real price of
US natural gas Arpg. Let y; = (Aprod,, Aip,, Arpg;)! be a 3 x 1 vector of observation
at time t. To be specific, the structural representation of the M-states MS-VAR can be

expressed as

Bos,yt =bs, +Bigyi1+ - +Bpoyip e, e~ N(0,95,), (1)

ZKilian (2009) employs a three-variable recursive VAR model consisting of global crude oil production,
real global economic activity and real price of crude oil to investigate the effects of demand and supply
shocks in the crude oil market. We also note that, while Kilian (2009) use real global economic activity
to proxy the movements of global demand for crude oil, we use real US industrial production to capture
the fluctuations of demand for the US market. This reflects the fact that, different from oil markets,
natural gas markets are not global. Natural gas prices are mainly determined by regional supply and

demand.



where e, is the structural error term which follows a Gaussian distribution with diagonal
covariance matrix €2, at time ¢. The reduced form of the model can be obtained by

premultiplying By}, to both side of (1):

Yt = Cg, + Al,sth—l + -+ Ap,sth—p + €, € N(Oa Zst)v (2)

where ¢, = Baitbst is an 3 x 1 time-varying intercepts, A;,, = B&itht,z’ =1,...,p
are 3 X 3 VAR coefficient matrices at time t. The covariance matrix for reduce-form
error € — B&;tet can be decomposed as X;, = BO’,;QStB&Z. We postpone a more
detailed discussion about the matrix By, in Section 2.2. The regime indicator variable
s; is assumed to follow a M-state Markov process with transition probabilities Pr(s; =

Jlsi—1 =1) =pij, 0,5 = 1,..., M. Compactly, we can rewrite equation (2) as:

Y = Xt/Bst + € €~ N(O> Est)a

where 3,, = vec ((cs,, A1, , Aps,)) is kgx1a kg = 3(3p+1) vector of VAR coefficients
and X; =L, ® (1,y',4,...,¥"+,). The VAR coefficients, 3

allowed to be changing over time and the dynamics of these time-varying parameters are

s,» and covariance, X, , are

governed by the regime indicator variable s, € {1,..., M}.
To complete the model specification, we assume the following independent prior for

the model parameters:
ﬁiNN(B()aVO), EZ NIW(SQ,I/Q), for i = 1,...,M,

where ZW(S, v) denotes the Inverse Wishart distribution with scale matrix S and the

degree of freedom v. For the regime transition probability, we assume

(pil,---,piM)ND(Oéil,---,CYiM), forizl,...,M,

where D(ay,...,ay) denotes the Dirichlet distribution with concentration parameters
(a1, ...,ap) which implies the prior mean E(p;1,...,pin) = (%, c Z;‘ii‘;ﬂ). As

many time series data have been evolving with high persistence, frequently switching
among regimes over time is empirical implausible. We incorporate this feature by impos-

ing an informative prior on the regime transition probability. In particular, we assume
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where 1,; is a M x M matrix with its entries all equal to one.

The p > 0 is the parameter that control the degree of the regime persistence. To see
this, it can be verified that the expected value of probability for two subsequent periods
belonging in the same regime is E(p;;) = ;FLA’}, which implies that a higher value of p
indicates a high regime persistence. We follow Nguyen and Okimoto (2017) by setting
p = 6 as the lag length of the model. The regime persistence parameter p and the number
of regime M are of particular interest in our empirical study. To this end, we select the
values for these two parameters through a formal Bayesian model comparison exercise in

Section 5.1. More details about the priors are provided in the Appendix B.

2.2 Identification

The structural shocks can be recovered from the reduced-form shocks through the relation
€ = By, itet. In this paper, we identify the structural shocks by assuming a recursive
ordering on Bj it. To be specific, the relationship between the reduced-form error, €,
and the structure shock, e;, or the natural gas market fundamental shocks, at time ¢ can

be decomposed as follows:

€Aprod,t 1 0 0 €Aprod,t
_ _ _ —1
€= 1| €ript | =|bns 1 0| X[ eapsr | =Boser (3)
€EArpg.t bSl,st b32,st 1 EArpg,t

Recalls that e, = (€aprod.t, €rip.ts €arpgt) ~ N(0,Qy,), where Qg, is a diagonal covariance
matrix. Similar to Kilian (2009), the recursive identification scheme based on equation
(3) postulates a vertical short-run supply curve of natural gas, which is plausible with
monthly data. This assumption implies that shifts in the demand curve, either driven
by US economic activity, ea;p, or specific factors related to the real price of natural
gas, earpg, do not have a contemporaneous effect on the level of natural gas production
but unexpected changes in the natural gas production can immediately impact on the
economic activity and the price of natural gas. It also assumes that the reaction of US
economic activity to natural gas price shocks is delayed after a month.

The impulse responses to the supply and demand shocks are constructed in a given
regime, therefore we ignore any feedback from changes in s; into the dynamics of the
natural gas market variables. By doing that, we assume the system can stay for a long
time in a regime. Having said that, the estimated time-varying coefficients and variance
shocks support our assumption. Our results show that almost all regimes span a con-
siderable length of time and hence impulse response functions in different regimes have

their own economic history and can be comparable among them.
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In this paper, we adopt the Bayesian approach and use the Markov chain Monte Carlo
method to obtain draws from the posterior distribution of the model parameters. The
details of the posterior sampler are presented in Appendix of this paper. To allow for
convergence of the Markov chain to a stationary distribution, all our empirical estimates
are based on 55,000 posterior draws with discarding the first 5,000 draws as a burn-in

period.

3 Regulation changes in the US natural gas market

Before estimating the model, it is useful to acknowledge the periods of important regu-
latory reforms in the US natural gas market. Indeed, the market received major reforms
moving from a highly regulated to a highly competitive industry (Mohammadi, 2011;
Joskow, 2013). In general, over the sample period from 1980 to 2016, a major dereg-
ulation, the Natural Gas Wellhead Decontrol Act of 1989 (NGWDA), is introduced in
1989. Therefore, the behaviour of the natural gas market can be different between periods
before and after 1989.

Prior to 1989, natural gas wellhead prices were regulated by the Natural Gas Policy
Act of 1978 (NGPA). The NGPA established price ceilings for wellhead first sales of
natural gas that vary with the applicable gas category and gradually increase over time.
It also established a three-stage elimination of price ceilings for certain categories. Right
after the NGPA was passed, the global crude oil market experienced a deep crisis in
1979/80, when the price of West Texas Intermediate crude oil rose from less than $15 per
barrel in September 1978 to almost $40 in April 1980 (Baumeister and Kilian, 2016). The
jump in oil prices initially exacerbated shortages of natural gas because major customers,
such as industrial and electrical users, switched from oil to natural gas. However, the
price of crude oil peaked only in 1981 and fell back to about $15 per barrel in July 1988,
making natural gas less economical compared to crude oil. As a consequence, customers
began to switch from natural gas to other forms of energy. The high volatility in oil
prices and hence the large fluctuations in the demand of the natural gas market required
a newly adequate price system rather than the NGPA celling price scheme introduced in
1978. As a consequence, in 1989 Congress passed the Natural Gas Wellhead Decontrol
Act of 1989 (NGWDA) in an effort to bring natural gas prices up to market-clearing
levels by removing all price ceilings dictated by NGPA. The US system of natural gas
price regulation came to an end in 1992 with Federal Energy Regulatory Commission
Order 636, further allowing more efficient use of the interstate natural gas transmission

system by fundamentally changing the way pipeline companies conduct business.



4 Data

There are different types of natural gas prices that are observed in different markets; there-
fore, the behavior of these prices may vary across suppliers and users and the responses
to exogenous shocks are also different. In this section, we begin by briefly reviewing the
pricing of natural gas in U.S. markets and then describe the data used in this paper.

As highlighted by Nguyen and Okimoto (2017), the price of gas travels from well-
heads (upstream markets) where natural gas is produced to the end users (downstream
markets). According to Brown and Yucel (1993) and Mohammadi (2011), there are six
separate segments, including wellhead, city gate, and four end-use nodes (e.g., commer-
cial, industrial, residential, and electrical customers). It begins with wellhead price. The
price of gas is first determined at the wellhead by independent brokers and pipeline com-
panies. Therefore, the wellhead price often refers to the price of the upstream market.
Pipeline companies and brokers then sell their natural gas to local distribution compa-
nies (LDCs) and some end users. The prices observed in this market refer to city gate
prices. Generally, because industrial and electrical end users can switch easily between
natural gas and other forms of energy to minimize their costs, these end users tend to
purchase their natural gas directly from pipeline companies and brokers with competi-
tive spot prices. For this reason, prices paid by industrial and electrical users refer to
industrial prices and electric power prices. In contrast, commercial and residential users
normally cannot switch between different fuel forms; their energy expenditure is linked
with a single fuel type. As a consequence, both commercial customers and residential
customers purchase their natural gas from LCDs, and they are offered commercial prices
and residential prices, respectively.

The above overview suggests that, in nature, the wellhead price serves as a benchmark
reference for downstream markets, including physical and spot markets.® Therefore, this
paper utilizes the wellhead price as the benchmark price for the U.S. market. Similar to
Jadidzadeh and Serletis (2017), we divide the nominal price series sourced from the U.S.
Department of Energy (EIA) by the U.S. CPI to obtain the real price of natural gas. The
natural gas price series is in percent changes by taking the first difference of the monthly
logarithm of the variable. We also note that the set of available data the wellhead price
is only from January 1980 to December 2012. Thus, we extend the data to the latest
date by using natural gas import prices from January 2013 onward. That being said,
because the domestic natural gas market is a competitive market, the movements of the

wellhead price and the import price (in log levels) are almost identical, as can be seen

3An examination of the relationship between upstream and downstream prices can be found in Mo-
hammadi (2011).



from Figure 1. Regarding natural gas production, we use monthly U.S. natural gas gross
withdrawals, also compiled by the EIA; as a proxy for natural gas supply. The variable is
seasonally adjusted and then enters the model by taking the first difference of the natural
logarithm. To capture the U.S. economic activity, that drives demand for natural gas
in the U.S. market, we utilize the U.S. monthly industrial production index, seasonally
adjusted, retrieved from the Federal Reserve Bank of St. Louis and then transform the
index to a growth rate by taking the first difference of the natural logarithm. Finally,
we use the US refiners’ acquisition cost for imported crude oil (IRAC), published by the
ETA, to compute the real price of crude oil with the same method used to calculate for

the real natural gas price.*

5 Empirical results

We begin our analysis with a discussion of the Bayesian comparison exercise. This formal
exercise is applied to determine the best model by which the number of optimal regime
changes detected. Having identified the number of regimes, we then analyse the dynamic
impulse responses of the natural gas to different natural gas supply and demand shocks.

The role of oil prices is also examined in this section as a sensitivity analysis.

5.1 Model comparison

In this subsection, we conduct a formal model comparison exercise using the marginal
likelihood as a selection criterion. To be specific, given model M;, the marginal likelihood

is defined as
p(y°| M) = / p(y°16:, My)p(6:| M,)de,

where y° = (y9,...,¥%) is the observed data with sample size T" and 6; is a vector
of parameters for model M;. In addition, the marginal likelihood of model M; can be
rewritten as a product of one step ahead predictive likelihoods evaluated at the observed
data. Specifically, the marginal likelihood of model M; can be factored as p(y°|M;) =
p(y9|M;) Hthz p(¥?2lyS, -, ¥7 1, M;). We will use this expression to compute the marginal

4A discussion on whether or not we should consistently use the price of oil and natural gas in percent
change (first differences of the natural logs of the variables), along with other variables, can be found, for
example, in Kilian (2009), Kilian and Park (2009), Kilian and Murphy (2014), Liitkepohl and Netsunajev
(2014), and Jadidzadeh and Serletis (2017). According to these empirical works, it is not clear whether
the real price of crude oil, and hence the natural gas price in this paper, should be modelled in log levels
or log differences. The level specification is preferred because it produces consistent impulse response

estimates, regardless of the assumption of unit root.
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likelihood and use it as a criteria determining the best candidate specification. The
marginal likelihood is often used in model selection or model averaging in Bayesian data
analysis (Hoeting et al.; 1999). Intuitively speaking, the marginal likelihood can be
interpreted as the predictive probability of the observed data. Thus, a larger value of
marginal likelihood implies a better in-sample fit of the model given the observed data.
More discussion and details about the marginal likelihood can be found in Kass and
Raftery (1995).

To determine the number of regime M, and the persistence parameter p, we compare
the marginal likelihoods of the MS-VAR with different combination of M = 1,2,3,4,5
and p = 0,10, 50, 100, 500, 1000. To facilitate the comparison, we report the difference of
log marginal likelihood of the MS-VAR models to the constant VAR model. Hence, the
model with a positive value indicates a better in-sample fit as compared with the constant
VAR model. The estimated relative log marginal likelihoods are presented in Table 2. It
is immediately obvious that the model with M = 4 and p = 50 is the preferred one. In
other words, the empirical results evidence that regime switching exists within the US
natural gas market. In the next subsection, we discuss the economic characterization of

these regimes by examining the estimated coefficients and covariance shocks over time.

5.2 Regime characteristics

Having discovered that the 4-regime model provides the best in-sample fit for the US
natural gas market, we now examine the economic characterization of these regimes. The
time-varying estimated coefficients and the standard deviations of the structural socks are
shown in Figure 2 and Figure 3 respectively. To improve the readability of the plots, we
only present some selected [3; and o;. Several interesting observations arise with regard
to the interpretation of these results. First, we find evidence that regime switches in the
US natural gas market driven by not only the variances of shocks but also its market
fundamental changes (switching in model coefficients). Therefore, the transmission of
shocks is certainly different among regimes, as discussed in the following section.
Second, based on the magnitude of of the estimated time-varying coefficients, [;,
and covariance matrix, o;, the results also reveal clearly that four regimes exist over
the sample period from 1980M1 to 2016M11. Accordingly, there were likely two regimes
existing during the period before 1989, namely R1 and R2 for short. This period is
associated with the phase that the US natural gas market was regulated by the NGPA.
From 1989 onward, another two different regimes are evidently detected and we call them
R3 and R4. It is worth mentioning that the MS-VAR model allows for regime recurrence,

which is distinguished from other non-linear VAR models, and hence the four regimes are
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frequently observed over the sample period.” Figure 4 illustrates this feature. The figure
displays a heat map for the latent states s;, which further provides a more nuanced picture
of regime clustering over the last three decades. Following Song (2014); Hou (2017), we
plot the estimation of P(s; = s;|y;.r) and report in a table in which colour differences
denote different probabilities over the range of ¢+ = 1,...,7T and 7 = 1,...,T. More
precisely, the clustering of the regimes is presented through a 7' x T matrix; therefore
the figure is symmetric against the 45° line. For interpretation purposes, the light color
on the main diagonal of the figure indicates a new regime that occurs in the period
1 = j are unique and light color off the main diagonal indicates regime recurrences.
Presented in this manner, we clearly observe periods of unique regime, which confirms
structure changes in the US natural gas market. At the same time, the figure also shows
recurrences in regime (regime switching) existing in some periods in the market.
Finally, switching in shock variances is substantially different, as can be seen from
Table 3. The table shows the normalized standard deviations from regime to regime.
More precisely, we normalize the standard deviations such that the volatilities of R1 are
unity and compare to that of other regimes. Presented in this manner, it is immediately
clear that the variances of the shocks of the natural gas price stand out for all regimes
with an upward trend. This finding clearly suggests that shocks to the price of natural
gas play a more important role in driving market dynamics than shocks to natural gas

production and US economic activity.

5.3 Regime-dependent reactions of the US natural gas market

In this subsection, we investigate the responses of the US natural gas market to its fun-
damental shocks and compare these responses across regimes. The market fundamental
shocks include a natural gas supply shock, a demand shock, and a specific demand shock.
We again note that, in our structural model, the supply shock presents an exogenous dis-
ruption of US natural gas production that may be caused, for example, by bad weather.
Therefore, this shock is normalized as a negative shock in the model, while the demand
and specific demand shock are positive shocks. It is important to distinguish the differ-
ence between the demand and specific demand shock. This is, while the demand shock
arises from the fact that increases in real US economic activity, the specific demand shock
is associated with specific factors, which are not directly related to the changes in real
demand for gas or gas production, causing higher natural gas prices. These factors could
be associated with changes in expectation about the future price of natural gas.

The estimated impulse responses to one standard deviation shocks are presented in

5To axamine the charaterictics of these regimes and the corresponding impulse responses, we therefore

select four periods over the sample as regime presentatives.
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Figure 5-7. As expected, the empirical results reveal that the US natural gas market is
much more sensitive to its fundamental shocks occurring after the Decontrol Act 1989
when price ceilings were abolished. Along with this feature, the results also show that US
natural gas production does no respond significantly to the fluctuation of US economic
activity but the economy is quite sensitive to changes in the natural gas supply. We also
observe that both shifts in demand and supply play equal role in driving the natural gas
price. In what follows, we examine these responses in detail.

Figure 5 presents the dynamic responses of natural gas production to shocks across
three regimes. The results show that the responses of natural gas production to the
demand shock is not much different among the four regimes. As we just mentioned, an
unexpected change in US economic activity has no impact on the development of the
supply of natural gas. Changes in the supply of the natural gas are mainly driven by
its own shocks in natural. However, the natural gas production is found to be more
sensitive to unexpected changes in the specific demand shock in recent years. We find
that a sudden increase in the price of gas, which is not related to changes in natural gas
production or US economic activity, has slightly positive effects on natural gas production
but the impact is very short-lived and turns out to be heterogeneous after just about two
months. These characteristics did not exist in the regimes before 1989, meaning that the
natural gas supply elasticity was about inelastic under the NGPA ceiling price scheme.

Turning to the responses of US economic activity to the natural gas supply and price
shock, we find that the impact of a sudden disruption of natural gas production on the
economy tends to be persistent across regimes. This is, the results show that a fall in
the natural supply leads to a slightly fall in US economic activity, as can be seen in
Figure 6. In contrast, with R3 and R4 an unexpected increase in the natural gas price
has a positive impact on the economy, although the impact is quite small. With R1 and
R2, those impacts are insignificant.

The final variable in our analysis is the price of natural gas, for which the associated
responses are presented in Figure 7. Sharing the same features with the responses of
natural gas supply and the US economy, we also observe that the dynamic responses of
the price of natural gas are different across regimes. Before the Control Act, as the price
of natural gas was controlled under ceiling prices, fundamental shocks such as the supply
and demand shock had no impact on the price. Since the price ceilings were removed in
1989 the natural gas price is found to react strongly to the shocks. A negative supply
shock leads to about 1 percent increase in the price. A similar impacts is also found
for the demand shock. A one standard deviation increase in US economic activity also
leads to increasing in the price of gas with the same level. While the shocks to natural

gas production and US economic activity are found to have moderate effects driving
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the movements of natural gas prices, we observe that the price of natural gas strongly
responds to the specific demand shock. This shock produces a consistent impact on the

price in R3 and R4, which increases the price about 10 percent in recent periods.

5.4 The role of oil prices

To examine whether the movements of crude oil prices have an impact on the US natural
gas market, we augment our benchmark model by incorporating the global price of crude
oil. Following Nguyen and Okimoto (2017), shocks to the price of crude oil are allowed to
have a contemporaneous effect on the natural gas market. Figure 8 shows the estimated
impulse response functions across three regimes.® The results show that oil price shocks
have a considerable role in influencing the natural gas price and natural gas production
but impact patterns depend on regimes. More precisely, while the natural gas supply
responds negatively to the oil price shock, the reactions of the price of natural gas price
are found to be mixed across regimes. The price tends to increase with R1 and R4
but decrease with the other regimes. The results further evidence that the connection
between natural gas market and oil price movements are regime dependent. The results
are consistent with recent findings in Nguyen and Okimoto (2017) and Caporin and
Fontini (2017). The dynamic impulse responses also show that the price of oil reacts to

shocks to the price of natural gas but the reaction is very small and mixed.

6 Conclusion

In this paper, we investigated whether regime switching exists in the US natural gas
market and analysed the reactions of the market to its fundamental shocks across various
regimes. To this end, we applied a formal Bayesian model comparison to detect efficiently
the number of regime switches in the market and then we utilized a Bayesian class of
MS-VAR models that allows for time-variation in model coefficients and shock variances.

The paper has three major findings. First, the results support regime switching in the
US natural gas market. In particularly, formal Bayesian model comparison techniques
revealed the model with four regimes is the best in-sample fit. There were two regimes
prevailed prior to the introduction of the NGWDA in 1989. The second and fourth regime
have existed since the NGWDA was implemented, which corresponds to the period that
US natural gas prices freely fluctuate in response to supply and demand shocks. Second,

the paper finds that the US natural gas market tends to be much more sensitive to

6To improve the readability of the plot, we do not present the error bands, but they are available

upon request.
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shocks occurring in regimes existing after the Decontrol Act 1989 than the other regimes.
Third, the paper also finds that shocks to the natural gas demand and price have negligible
effects on natural gas production while the price of natural gas is mainly driven by specific
demand shocks. Finally, augmenting the model by incorporating the price of crude oil,
the results reveal that the impacts of oil price shocks on natural gas prices are relatively

small and regime-dependent, which is likely to contrary to common perceptions.
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Appendix A Estimation

In this appendix we provide the details of the posterior sampler for the MS-VAR. Let
O = {B8,,Z:}M, be the collection of the parameters in the M regimes, and P be the
M x M Markov transition matrix, i.e., P;; = p;;. To simplify the notation, we adopt the
following convention x4, = (x4, ..., Ty,).

The posterior draws can be obtained by sequentially sampling from:
L. p<SlzT|®7y1:T>;
2. p(®ls1.r, y1.r);

3. p(P|s1.1).

To implement Step 1: We apply the forward-backward algorithm of Chib (1996). To
be specific, given p(s;_1|y1.4-1,0) we compute p(s:|y1.¢) by
_ plst, ©)p(silyre-1, ©)

Zst p(yelse, ©)p(se|yre-1,©)
- p(ye|st, ©) ZS,H p(8t; 8t-1|y1:0-1, ©)

Zst p(Yelst, ©)p(st]yri-1,©)

- p(ys]st, ©) Zst—l p(stlsi-1)p(st-1]y1:6-1, ©)
B Est P(Yie|se, ©)p(se]y1:e-1,O)

until we get p(sr|y1.r, ®). Then we implement the backward sampling by first sample

p(St |Y1:t; 0)

st from p(sr|y1.r, ®), then we sample s; given s,,; from

_ p(stly1:t, ©)p(set1(st)
Zst p(3t|y1:t7 @)p(3t+1 |St)
To implement Step 2: Note that conditional s1.7, we can regroup data into M distinct

p(St ’St—l-l:Ta Yir, 8)

regimes. For ¢ = 1,..., M, the model in a regime ¢ can be written as
' =XB+¢ ¢ ~NOI, %),

where y* and X? collect the observations belonging to regime i and 7 is the number of
observations in regime 7. Following the standard results for the linear regression model,

we have
B~ N(B. K, i~ IW(E:.7),
where K; = X' (I,  2,) ' X + V!, B, = K;! (X (I, o%) 'y +V0‘1[30>, D =
T, + vy and S; = (y' — X') (y' — X) + So.
To implement Step 3: Given si.7, we draw the jth row of P for j =1,..., M
(pj1,-- - 0jm) ~ D(aji +nj1, ..., ajm +njum),

where ny = Z]T;ll 1(s; =1,s;41 = k) and 1(A) is the indicator function that is equal to
one if statement A is true and zero otherwise.
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Appendix B Priors

We outline the hyperparameters of the prior for fitting the MS-VAR model. We assume
the conditional mean coefficients to follow a Minnesota prior. For the prior mean, we set
By = 0. For the variance, we assume that Vo = diag(vy, ..., v;), where k = n(np+1). If
we write (vy, ..., ) = vec((co, Ao, , .- ., Ay)’), then we set ¢y to be a vector with 10 in
all its entries, i,e, the prior variance of the intercepts of the VAR model is equal to 10.

For the variance of the VAR coefficient, we set

Al ’\122;‘— forl=1,...,pand i # j,
— J
7=

l);—i forl=1,...,pandi=j.

where A;j denotes the (i,7) th element of the matrix A; and o, is set equal to the
standard deviation of the residual from AR(p) model for the variable r. For the hyperpa-
rameters, we set Ay = 0.05, Ay = 0.5, A3 = 2. For the covariance matrix, we set vy = n+4
and So = (rp —n — 1) x I,,.
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Tables

Table 1: Structural changes in the US natural gas market

1982 2006 2016

Percent

Production 100 100 100
Gas well 79 73 33
Oil well 21 27 19
Shale gas and Coalbed well 0 0 48
Consumption 100 100 100
Residential 26 24 17
Commercial 15 15 12
Industrial 38 46 33
Transportation 3 3 3

Electric power 18 12 35

Source: Calculation based on data from U.S. Energy Information Administration (EIA),

Monthly Energy Review, various volumes.
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Table 2: Relative log marginal likelihoods.

p=0 p=10 p=50 p=100 p=>500 p=1000
M=2|-491 1793 16.83 16.59 23.19 22.81
M=3| 388 37.61 42.28 40.24 21.49 21.97
M=4|-078 39.47 49.14 45.60 29.72 20.73
M=5|-781 34.00 45.43 47.53 28.91 19.88

Note: The table presents the relative log marginal likelihoods of MS-VAR model with
different combination of (M, p) to the constant VAR model. Our results indicate that
the MS-VAR with (M, p) = (4, 50) performs the best.
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Table 3: Relative standard deviations of structural shocks by regime

Aprod Aip Arpg
R1 1 1 1
R2 036 039 3.79
R3 267 1.29 113.58
R4 0.16 0.27 123.36

Note: Entries are normalized such that the volatility of each variable is unity for the first

regime (R1).
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Figure 1: Historical evolution of the series (1980M2-2016M11).

Note: The monthly raw data of crude oil prices, natural gas prices and production collected
from EIA. U.S. monthly industrial production index (US economic activity) is sourced from Fed

of St. Louis. All series are express in percent change. The shaded region shows recessions as
defined by the NBER.
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Figure 2: Time-varying intercept coefficients.

Note: The figure shows the (selected) estimated time-varying VAR coefficients 3; of MS-VAR

together with the 95 percent probability bands.
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Note: The figure shows the (selected) estimated time-varying covariance matrices o; of the
MS-VAR together with the 95 percent probability bands.
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Figure 5: Natural gas production responses.

Note: The figure shows impulse responses base on the MS-VAR model of the four regimes (R1,
R2, R3 and R4). The shaded areas indicate 68% posterior credible sets.
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Figure 6: US economic activity responses.

Note: See Figure 5
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Figure 7: Natural gas price responses.

Notes: See Figure 5

31



Oil price«<Oil price shock Oil price<Supply shock Oil price<-Demand shock Oil price<Special demand shock
0.04 s -

= B
-0.02
-0.04
-0.06
5 10 15 5 10 15 5 10 15
NG Production<-Supply shock NGoProduction«-Demand shock NG Production«-Special demand shock
.
3 h 2 11
\ o
gt v
| 2 f
At |
0 - R Y Vv
5 10 15 5 10 15 5 10 15 10 15
US activity«Supply shock US activity«-Demand shock US activity«Special demand shock
0.8 1
n 0.03
041
1 0.02
o2f\ 0.01
-0.2 3
0 — ol e
5 10 15 5 10 15 5 10 15
NG Price<Oil price shock NG Price<«Supply shock NG Price<-Demand shock
T ) 15 10
! i
15 1
1 51t
0.5 1
» 3
1 0kt = [
5 10 15 5 10 15 5 10 15 5

Figure 8: IRF's of the augmented model.

Notes: The Figures show impulse responses base on the augmented MS-VAR model of the four
regimes (R1, R2, R3 and R4)
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