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1 Introduction

High dimensional factor models are widely used in empirical macroeconomics and finance,

and assume that a large panel of time series are generated according to some small number of

latent factors. Thus, a large dataset can be effectively parameterized by a set of individual

“loadings” and a set of common “factors,” as a means of dimensional reduction, where

one subsequently uses these factors for both forecasting (Stock and Watson (2002)) and

structural analysis (Bernanke et al. (2005)). However, the theory underlying factor models

assumes at least “mild” stability in model parameters (Stock and Watson (1998), Bai

(2003)). In reality, empirical data is unlikely to maintain parameter stability, and the

analysis of structural breaks in factor models presents a unique identification issue wherein

breaks in the loadings and breaks in the factors cannot be easily disentangled.

Consider a factor model for xit, t = 1, . . . , T, i = 1, . . . , N :

xit = λ⊺
i ft + eit, (1.1)

where λi is an r×1 vector of individual loadings, ft is an r×1 vector of common factors, and

eit the idiosyncratic error. Suppose that there exists a structural break such that λi doubles

in value. Because both the factors and loadings are unobserved and enter in a multiplicative

relationship, this is observationally equivalent to ft doubling in value. Consequently, it is

typical for the literature to assume “strict stationarity” in the factors as an identification

condition in order to pin down changes in the loadings, and necessarily interpret all “breaks”

as occurring in the loadings (e.g. Chen et al. (2014), Han and Inoue (2015), Baltagi et al.

(2017), and others). Such an interpretation could be misleading, because the literature

has typically identified periods such as the Great Moderation (Stock and Watson (2009),

Breitung and Eickmeier (2011), Baltagi et al. (2021)), the Global Financial Crisis (Ma
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and Su (2018), Barigozzi and Trapani (2020), Ma and Tu (2022)), and more recently the

COVID-19 Pandemic (Bai et al. (2022)) as evidence of structural breaks, all of which are

periods well known for the data displaying heteroscedasticity. Hence, it is unclear whether

these results are capturing genuine breaks in the loadings, or simply picking up factor

heteroscedasticity, two different cases with very different economic narratives, a concern

initially raised by Stock and Watson (2016). In addition to their economic interpretations,

differentiating these two cases is important from a mechanical viewpoint: breaks in the

loadings can lead to the incorrect over-estimation of the number of factors if ignored,

whereas breaks in the factors do not have this effect, a refinement of an existing concern

put forth by Breitung and Eickmeier (2011).

Our contribution to the literature is a method testing whether these estimated breaks

are breaks in the loadings, breaks in the factor variance, or both, thus disentangling the

source of structural breaks. To this end, we propose a new projection based equivalent

representation theorem, which decomposes any change in the factor loading matrix into a

rotational break common across the entire panel, and a leftover orthogonal shift component

idiosyncratic to each series. Our projection-based decomposition approach is motivated by

the important mechanical differences of these breaks. Specifically, we observe that breaks

in the factors can always be viewed as a twisting (rotation) of the same underlying factor

space and are therefore absorbed into the factor estimates of the principal components

(PC) estimator. Hence, this does not pose any issue for the purposes of determining

the number of factors (such as using the criteria of Bai and Ng (2002)), or applying the

inferential results of Bai (2003). Economically, such a break could be associated with the

aforementioned Great Moderation, where the overall volatility of all series in the economy

was observed to decrease. In contrast, due to their idiosyncratic nature, breaks in the factor

loadings lie outside and are therefore orthogonal to the underlying factor space, and it is
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this orthogonality which leads to a so-called “augmentation” effect where the number of

factors will be overestimated if ignored, as noted by Breitung and Eickmeier (2011). This

incorrect overestimation of the number of factors can have many serious consequences,

including worsening factor based forecasts in the setup of Stock and Watson (2002) as

noted by Baltagi et al. (2021), or incorrect specification of factor models in a state space

setup, which rely on PC based methods to estimate the number of factors.

By interpreting the rotational change as a break in factor variance, and the orthogonal

shift as a break in factor loadings, we are thus able to disentangle these two effects. We

emphasize that this is in contrast to other similar equivalent representation theorem based

approaches in the literature, who typically assume “strict” stationarity in the factors and

interpret all breaks as breaks in the loadings (Chen et al. (2014), Han and Inoue (2015),

Baltagi et al. (2017)). Thus, although these have similar model setups, our projection

based equivalent representation theorem is a further refinement of existing methods. Based

on this decomposition, we then propose two separate tests: 1) a test for any evidence of

rotational change, or factor variance, and 2) a test for any evidence of orthogonal shifts, or

breaks in the loadings. We establish the asymptotic distributions of these two test statistics,

and show that standard critical values can be used, leading to their easy implementation.

Monte Carlo studies demonstrate that the tests have good size and power, and highlight

the inability of existing tests to differentiate between these two types of breaks.

To the best of our knowledge, only a few contributions similarly try to disentangle

structural breaks in factor models. Wang (2021) proposes an estimator for the number

of breaks using eigenvalue ratios which is robust to changes in factor variance, but do

not consider testing due to the difficulty in working with the distribution of eigenvalues.

Our test statistics do not rely on eigenvalues, and hence we are able to derive standard

asymptotic results and avoid this issue. Indeed, our test statistics converge to conventional
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Chi-squared distributions, making them easy to implement for practitioners. Pelger and

Xiong (2022) propose a general time varying framework, and construct a test statistic which

tests whether the factor loadings in two regimes can be fully explained by a rotation via

canonical correlations, essentially amounting to a test for evidence of orthogonal shifts, or

legitimate breaks in loadings. Compared to their test statistic, our tests do not require the

difficult estimation of a de-bias term, which is known to be non-robust to the specification

of the error structure (e.g. Su and Wang (2017) and Su and Wang (2020)). Massacci (2021)

proposes a test statistic for evidence of regime dependent loadings in a threshold setup that

is robust against factor heteroscedasticity. All of these contributions similarly recognise that

legitimate breaks in the loadings should be orthogonal to the original factor space, but their

model setups, test statistics, and resulting asymptotics are all quite different. Compared

to these existing papers, our setup is the only one which considers separately testing for

evidence in the factor variance and loadings, and hence provides the most comprehensive

framework to accurately pin down the source of structural breaks.

We apply our tests to the FRED-MD dataset of McCracken and Ng (2015) and focus

on the two estimated break dates put forth by the literature: the Great Moderation, dated

to be around 1984, and the Global Financial Crisis, dated to be around late 2008. We find

that for the case of only one factor, the Great Moderation only rejects on the rotational

test. Our orthogonal shift test could be interpreted as a test for evidence of breaks in the

loadings while controlling for changes in the factor variance, and in this vein when compared

to the tests of Breitung and Eickmeier (2011), these results suggest that for the case of one

factor (supported by the estimators of Onatski (2010) and Ahn and Horenstein (2013)),

the Great Moderation is more accurately described as a break in the factor variance, as

opposed to a break in the loadings. Although we reject both the rotational and orthogonal

shift test for the case of two or more factors, for the case of two factors, we find that most

5



of the evidence for breaks in loadings is isolated to price series, and hence depending on

the application, may not pose issues for the practitioner. In contrast, the evidence for

the Global Financial Crisis tends to favour a break in both the factor variance and the

loadings. These results bring nuance to how these different periods of instability can be

characterised, which could lead to different implications.

In this paper, all limits are taken as both N, T tend to infinity simultaneously, and δNT

is defined as min(
√

T ,
√

N). We use ∥·∥ to denote the Frobenius norm of a vector or matrix,
p→ denotes convergence in probability, ⇒ denotes weak convergence of stochastic processes,

d→ denotes convergence in distribution, vech() denotes the column-wise vectorisation of a

square matrix with the upper triangle excluded, and ⌊·⌋ denotes the floor or integer part

operator. We use M to denote generic constants which may take different values, and A−⊺

denotes the inverse transpose of any invertible matrix A.

2 Disentangling Structural Breaks in Dynamic Factor

Models

2.1 A Projection Based Equivalent Representation Theorem for

Structural Breaks

Let xit denote the observation for the ith cross section at period t for i = 1, . . . , N and

t = 1, . . . , T . Let ⌊πT ⌋ denote the break date, where π is the break fraction which splits

the data into subsample sizes of T1 = ⌊πT ⌋ and T2 = T − ⌊πT ⌋ respectively. Suppose that
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xit is generated from r common factors with the following static factor representation:

xit =


λ⊺

1,ift + eit, for t = 1, . . . , ⌊πT ⌋ ,

λ⊺
2,ift + eit, for t = ⌊πT ⌋ + 1, . . . , T,

(2.1)

where ft is a r × 1 vector of factors, λ1,i, λ2,i are the corresponding r × 1 loadings for series

i before and after the break respectively, and eit is the idiosyncratic shock. We require the

number of factors r to be identical before and after the break, because our method relies

on subsample estimates after splitting the sample, a common regularity condition found

in many other methods utilizing subsample estimates (e.g. Ma and Su (2018) and Bai

et al. (2020)). Throughout the paper, we treat both the number of factors r and the break

fraction π as known, as both of these can be consistently estimated (see Remarks 1 and 2)

without affecting any of our asymptotic results.

Equation (2.1) can also be written using matrix form:

X =

X1

X2

 =

F1Λ⊺
1

F2Λ⊺
2

+ e, (2.2)

where F1 = (f1, . . . , f⌊πT ⌋)⊺ is a ⌊πT ⌋ × r matrix of factors before the break, F2 =

(f⌊πT ⌋+1, . . . , fT )⊺ is a (T−⌊πT ⌋)×r matrix of factors after the break, and Λ1 = (λ1,1, . . . , λ1,N)⊺,

Λ2 = (λ2,1, . . . , λ2,N)⊺ are both N × r matrices of respective loadings, and X1, X2 denote

the respective partitions of X based on the break fraction. The matrices F1, F2, Λ1, Λ2, e

are all unknown. To disentangle breaks in the factor loadings from breaks in the factors,

we decompose Λ2 = Λ1Z + W , where Z represents an r × r nonsingular rotational change,

and W = (w1, . . . , wN)⊺ is an N × r matrix representing the orthogonal shift that is id-

iosyncratic across the cross section. It follows that this decomposition can be used to yield

7



the following equivalent representation theorem:

X =

 F1Λ⊺
1

F2[Λ1Z + W ]⊺

+

e(1)

e(2)

 (2.3)

=

 F1 0

F2Z
⊺ F2


Λ⊺

1

W ⊺

+

e(1)

e(2)


X = GΞ⊺ + e (2.4)

where e(1) = (e1, . . . , e⌊πT ⌋) and e(2) = (e⌊πT ⌋+1, . . . , eT ), and each et = (e1t, . . . , eNt)⊺.

Equation (2.4) shows that any rotational changes induced by a non-identity Z are absorbed

into the factors, and any orthogonal shifts W will result in the augmentation of the factor

space. Equation (2.4) is a version of an equivalent representation theorem (ERT), and

re-expresses a factor model with structural breaks in its loadings into an observationally

equivalent model with time invariant loadings. ERTs were initially formulated by Han and

Inoue (2015), Baltagi et al. (2017) and others, and Equation (2.4) aims to complement

these. If one were to ignore the break and naively use the PC estimator over the whole

subsample, it will instead be consistent for an observationally equivalent model with so

called pseudo factors G and time invariant loadings Ξ.

Previously, it has been thought that changes in the loadings cannot be separately iden-

tified from changes in the variance of the factors, which can be equivalently be represented

as a rotational change common to all loadings. This is because existing methods used the

pseudo factors G in order to either test for existence of any breaks (Han and Inoue (2015),

Chen et al. (2014)), and/or estimate the break fraction (Baltagi et al. (2017), Baltagi et al.

(2021), Duan et al. (2022)). Methods utilizing the estimated pseudo factors from the whole

sample will necessarily have power against heteroscedasticity in the factors, even if the
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loadings are actually time invariant.

Our projection based formulation aims to differentiate between breaks in the factor

variance versus breaks in the factor loadings, and is motivated by the mechanical properties

of the PC estimator. It is well known that the PC estimator only estimates the underlying

factor space up to an arbitrary rotation. However, any break in the factor variance can

always be thought of some suitable twisting or stretching of the factors themselves, i.e. a

rotation. Because the factors still span the same underlying space, breaks in the factor

variance will be absorbed by the PC estimator. In contrast, if there are breaks in the

loadings, due to their idiosyncratic nature the changes in each series cannot be explained

by the existing factors, and therefore lie outside the space spanned by the factors. Hence,

if one were to ignore the break, extra factors need to be estimated in order to capture the

same information over the whole sample. We formalize these different mechanical effects

of the PC estimator of these breaks by classifying them accordingly.

We first define a “type 1” break as presence of orthogonal shifts where W ̸= 0 and Z =

Ir, and this corresponds to the type 1 break as defined by Han and Inoue (2015), Baltagi

et al. (2017), and type A break by Duan et al. (2022) as per respective nomenclatures. Due

to the orthogonality of W to the original factor space, these breaks cannot be absorbed

into the factors, and hence can only be interpreted as a legitimate break in the loadings.

With our setup, it is now more clearly understood that it is the orthogonality induced by

breaks in the loadings that lead to the factor “augmentation” effect raised by Breitung and

Eickmeier (2011).

We next define a “type 2” break as a rotational break where Z ̸= Ir and W = 0. Type 2

breaks occur when all of the loadings across the cross section are rotated in a homogeneous

way, or more naturally, a change in the factor variance. Indeed, it is quite difficult to

imagine or justify such changes in the loadings practically, and they are often ruled out by

9



assumption (e.g. Chen et al. (2014) and Ma and Tu (2022)), or similarly to us, interpreted

as a change in the factor variance (Wang (2021) and Pelger and Xiong (2022)). Rotational

breaks correspond to type 2 breaks of Han and Inoue (2015) and Baltagi et al. (2017), and

the type B breaks of Duan et al. (2022). We require Z to be non-singular, and hence this

rules out the case of disappearing factors, which could be viewed as somewhat limiting

compared to earlier literature which used methods based on the pseudo factors. This is

because we require inferential results as estimated in each subsample before and after the

break, and presently it is not clear how to do this in the presence of disappearing factors.

Such a regularity assumption is quite common in the literature (e.g. see Chen et al. (2014),

Su and Wang (2017), Ma and Su (2018) and Bai et al. (2020)).1

Finally, we define a “type 3” break as simply a combination of the two breaks where

there is both a rotation and orthogonal shift, i.e. Z ̸= Ir and W ̸= 0.

Thus, the task of disentangling breaks in the factor variance from breaks in the loadings

can be expressed in the form of two hypothesis tests: 1) a test for any evidence of rotation

H0 : Z = Ir, H1 : Z ̸= Ir, (2.5)

which does not maintain any conditions on W , and 2) a test for any evidence of orthogonal

shifts:

H0 : W(N×r) = 0, H1 : W(N×r) ̸= 0, (2.6)

which in turn does not maintain any conditions on Z. We emphasise that because these

two types of breaks can occur together, both tests need to be run in order to tease out
1Similar to methods that rule out disappearing factors, our method seems to have power against the

case where there is a disappearing factor, but the theoretical results are unclear, similar to Chen et al.
(2014).
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which type of break has occurred.

2.2 Estimation and Consistency Results

2.2.1 Estimation

We now discuss estimation and the asymptotic properties of the estimators. Define Λ̃1 and

Λ̃2, the OLS fits from the estimates using the PC estimates F̃1 = (f̃1,t, . . . , f̃1,⌊πT ⌋)⊺ and

F̃2 = (f̃2,⌊πT ⌋+1, . . . , f̃2,T ), which are
√

T1 and
√

T2 times the eigenvectors corresponding to

the r largest eigenvalues of X1X
⊺
1 and X2X

⊺
2 respectively. We define the feasible estimators

for Z and W as

Z̃ = (Λ̃⊺
1Λ̃1)−1Λ̃⊺

1Λ̃2, (2.7)

W̃ = Λ̃2 − Λ̃1Z̃. (2.8)

Because Λ̃1 and Λ̃2 are estimates of Λ1 and Λ2 up to arbitrary rotations, Z̃ and W̃ cannot

be directly interpreted, and the task of disentanglement is not straightforward. However,

it turns out that Z̃ and W̃ are able to recover the true Z and W up to arbitrary rotations

as well. To analyze them, we make the following assumptions. Let ι1t ≡ 1 {t ≤ ⌊πT ⌋} and

ι2t ≡ 1 {t ≥ ⌊πT ⌋ + 1}.

2.2.2 Estimation Assumptions

Assumption 1. E∥ft∥4 < ∞, E(ftf
⊺
t ) = ΣF and 1

T

∑T
t=1 ftf

⊺
t

p→ ΣF for some positive

definite ΣF .

Assumption 2. For m = 1, 2, there exists a positive constant M such that E∥λm,i∥4 ≤ M ,

∥Λ⊺
mΛm/N∥ − ΣΛm

p→ 0 for some ΣΛm > 0, and ∥Λ⊺
mΛm/N − ΣΛm∥ = Op

(
N−1/2

)
. Anal-

ogously, when W ̸= 0, ∥W ⊺W/N − ΣW ∥ p→ 0 for some ΣW > 0, and ∥W ⊺W/N − ΣW ∥ =
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Op

(
N−1/2

)
.

Assumption 3. There exists some positive constant M < ∞ such that for all N and T :

(a) E(eit) = 0, E|eit|8 ≤ M

(b) E(e⊺set/N) = E(N−1∑N
i=1 eiseit) = γN(s, t), |γN(s, s)| ≤ M for all s, and

T −1∑T
t=1

∑T
s=1 |γN(s, t)| ≤ M .

(c) E(eitejt) = τij,t, with |τij,t| < τij for some τij and for all t. In addition,

N−1∑N
i=1

∑N
j=1 |τij| ≤ M .

(d) E(eitejs) = τij,ts, and (NT )−1∑N
i=1

∑N
j=1

∑T
t=1

∑T
s=1 |τij,ts| ≤ M .

(e) For every (t, s), E
∣∣∣N−1/2∑N

i=1[eiseit − E(eiseit)]
∣∣∣4 ≤ M .

Assumption 4. For m = 1, 2, the variables {λm,i}, {ft} and {eit} are mutually indepen-

dent groups.

Assumption 5. There exists an M < ∞ such that for all T and N , and for every t ≤ T

and i ≤ N such that:

(a) ∑T
s=1 |γN(s, t)| ≤ M

(b) ∑N
k=1 |τki| ≤ M

Assumption 6. There exists an M < ∞ such that for all N, T and m = 1, 2:

(a) E
∥∥∥ 1

NT

∑T
s=1

∑N
k=1 fs[eksekt − E(eksekt)] · ιms

∥∥∥2
≤ M for each t,

(b) E
∥∥∥ 1√

NT

∑T
t=1

∑N
k=1 ftλ

⊺
m,kekt · ιmt

∥∥∥2
≤ M ,

(c) For each t E
∥∥∥ 1√

N

∑N
i=1 λm,ieit

∥∥∥4
≤ M .

Assumption 7. The eigenvalues of (ΣΛ1ΣF ) and (ΣΛ2ΣF ) are distinct.
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Assumption 8. The break fraction π is bounded away from 0 and 1, and

(a)
∥∥∥ 1√

NT

∑⌊πT ⌋
t=1

∑N
k=1 ftλ

⊺
m,kektιmt

∥∥∥2
= Op (1),

∥∥∥ 1√
NT

∑T
t=⌊πT +1⌋

∑N
k=1 ftλ

⊺
m,kektιmt

∥∥∥2
= Op (1)

for m = 1, 2, and

(b)
∥∥∥ √

T
⌊πT ⌋

∑⌊πT ⌋
t=1 (ftf

⊺
t − ΣF )

∥∥∥ = Op (1), and
∥∥∥ √

T
T −⌊πT ⌋

∑T
t=⌊πT +1⌋(ftf

⊺
t − ΣF )

∥∥∥ = Op (1)

Assumptions 1 to 7 are either straight from or slight modifications of those in Bai (2003).

Assumption 1 is the same as Assumption A in Bai (2003), except that we require the second

moment of ft to be time invariant. This additional “strict” stationarity assumption is

common as an identification condition (e.g. Han and Inoue (2015), Baltagi et al. (2017) and

others) and necessarily limited the factors to exhibit no heteroscedasticity, but this is not

restrictive in our case as all changes in ΣF are characterized by Z. Assumption 2 is the same

as Assumption B in Bai (2003), except that it specifies the convergence speed of Λ⊺
mΛm/N to

be no slower than 1/
√

N for m = 1, 2. Assumption 2 allows for the loadings to be random,

and although this is not required for the purposes of estimation and the Z rotation test,

it is required for the W orthogonal shift tests, and we therefore combine this assumption

for simplicity. Assumptions 3 and 5 correspond exactly to Assumptions C and E in Bai

(2003). Assumption 3 allows for weak serial and cross sectional correlation and define the

approximate factor model. Assumption 5 is a strengthened version of Assumption 3, but still

allows for heterogeneity in time and cross-sectional dimensions. Assumption 4 is standard

in the factor modeling literature, and is the subsample version of Assumption D of Bai

and Ng (2006). Assumption 7 corresponds to Assumption G in Bai (2003). Assumption 6

corresponds to Assumptions F1-F2 in Bai (2003). Although we require Assumption 6

which are moment conditions in Bai (2003), asymptotic normality of N−1/2∑N
i=1 λieit are

not required for the purposes of estimation. Also, Assumption 6 (c) is slightly stronger that

Assumption F3 of Bai (2003), which only requires the existence of the second moments.
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Assumption 8 requires that the sample sizes before and after the potential break date go

to infinity. It is a weaker version of Assumption 8 in Han and Inoue (2015), who assumes

that the terms are bounded uniformly in a range of potential π.

Recall that F̃1 and F̃2 are estimates of F1 and F2 up to two different arbitrary rotations.

Specifically, we define the rotational basis in the first subsample as H1 =
(Λ⊺

1Λ1
N

) (
F ⊺

1 F̃1
T1

)
V −1

NT,1,

and in the second subsample as H2 =
(

Z⊺Λ⊺
1Λ1Z

N
+ W ⊺W

N

) (
F ⊺

2 F̃2
T2

)
V −1

NT,2, where VNT,1, VNT,2

denote the diagonal matrix of eigenvalues of the first r eigenvalues of (NT1)−1X1X
⊺
1 and

(NT2)−1X2X
⊺
2 respectively.2

Theorem 2.1. Under Assumptions 1 to 8,
∥∥∥Z̃ − H⊺

1 ZH−⊺
2

∥∥∥ = Op

(
1

δ2
NT

)
.

Although Theorem 2.1 shows that Z̃ itself is estimated up to a rotation and cannot be

directly interpreted, the specific formulation of Z̃ allows us to present the following result.

Theorem 2.2. Under Assumptions 1 to 8, and as
√

N
T

→ ∞, for each t:
∥∥∥Z̃f̃2,t − H⊺

1 Zft

∥∥∥ =

op(1).

Theorem 2.2 is a direct consequence of
∥∥∥f̃2,t − H⊺

2 ft

∥∥∥ = op(1) from Lemma 1 of Bai

(2003), and Theorem 2.1. Theorem 2.2 shows that post multiplying f̃2 by Z̃ rotates it

back to the same rotational basis as f̃1, and maintains the rotation Z, if any. Thus, if we

combine f̃1,t and Z̃f̃2,t together, we have the following.

Corollary 2.2.1. Under Assumptions 1 to 8, and as
√

N
T

→ 0, for each t:

f̂t =


f̃1,t

p→ H⊺
1 ft for t = 1, 2, . . . , ⌊πT ⌋ ,

Z̃f̃2,t
p→ H⊺

1 Zft for t = ⌊πT ⌋ + 1, . . . , T.

(2.9)

2There exists another observationally equivalent parameterization
H2 =

(
Λ⊺

1Λ1 + Z−⊺W ⊺WZ−1) (ZF ⊺
2 F̃2

)
/(NT2)V −1

NT,2, where the rotation Z is parameterized as part of
the factors. It is straightforward to verify that either parameterization leads to same result stated in
Theorem 2.2. For more details, see ??
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Corollary 2.2.1 shows that the combined series F̂ = (f̂1, . . . , f̂T )⊺ is on the same ro-

tational basis both before and after the break, and can thus form the basis of a test for

evidence of rotational breaks. Importantly, f̂t is free from the effects of any possible orthog-

onal shifts induced by W , and thus isolates the rotational change in the factor variance.

Theorem 2.3. Under Assumptions 1 to 8, 1
N

∥∥∥W̃ − WH−⊺
2

∥∥∥2
= Op

(
1

δ2
NT

)
.

Theorem 2.3 shows that W̃ estimates the true W up to an arbitrary rotation. Thus, if

the true W = 0, then W̃ should also be close to zero, and can serve as a foundation for

statistical tests.

2.3 Z Test for Rotational Changes

We first present the test statistic for evidence of rotational change H0 : Z = I against

H1 : Z ̸= I. Recall that by combining F̃1 and F̃2Z̃
⊺, we have F̂ , an estimate of the

true factors and any rotation they undergo. This motivates a Wald test statistic based on

whether the subsample means of f̂tf̂
⊺
t are equal at a predetermined3 break date ⌊πT ⌋:

WZ(π, F̂ ) = AZ(π, F̂ )⊺ŜZ(π, F̂ )−1AZ(π, F̂ ), (2.10)

where AZ(π, F̂ ) = vech
(√

T
(

1
⌊πT ⌋

∑⌊πT ⌋
t=1 f̂tf̂

⊺
t − 1

T −⌊πT ⌋
∑T

t=⌊πT +1⌋ f̂tf̂
⊺
t

))
. Its long run vari-

ance estimate is defined as ŜZ(π, F̂ ) = 1
π
Ω̂Z,(1)(πF̂ ) + 1

1−π
Ω̂Z,(2)(π, F̂ ), a weighted average

3We treat the break fraction as known a priori for simplicity, but any consistent estimate of this can
be used instead without affecting any of the results, as noted in Remark 2.
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of the variance from pre and post break data (m = 1, 2 respectively)

Ω̂Z,(m)(π, F̂ ) = Γ̂(m),0(π, F̂ ) +
Tm−1∑
j=1

k

(
j

bTm

)(
Γ̂(m),j(π, F̂ ) + Γ̂(m),j(π, F̂ ))⊺

)
,

Γ̂(1),j(π, F̂ ) = 1
T1

T1∑
t=j+1

vech(f̂tf̂
⊺
t − Ir)vech(f̂tf̂

⊺
t − Ir)⊺, (2.11)

Γ̂(2),j(π, F̂ ) = 1
T2

T∑
t=j+T1+1

vech(f̂tf̂
⊺
t − Ir)vech(f̂tf̂

⊺
t − Ir)⊺, (2.12)

where k(.) is a real valued kernel, and b is the bandwidth, and its subscripts denotes the

size of the (sub)samples used to estimate the long run variance.

2.3.1 Z Test Asymptotics under the Null Hypothesis

We define WZ(π, FH0,1) = AZ(π, FH0,1)⊺ŜZ(π, FH0,1)−1AZ(π, FH0,1) as the infeasible ana-

log of WZ(π, F̂ ), and make the following assumptions.

Assumption 9. (a) The Bartlett kernel of Newey and West (1987) is used, and there

exists a constant K > 0 such that bT , b⌊πT ⌋ and bT −⌊πT ⌋ are less than KT 1/3; and

(b) T 2/3

N
→ 0 as N, T → ∞.

Assumption 10. (a) ΩZ = limT →∞ V ar
(
vech

(
1√
T

∑T
t=1 H⊺

0,1ftf
⊺
t H0,1 − Ir

))
is positive

definite, and ∥ΩZ∥ < ∞. Its estimators Ω̂Z,(m)(π, FH0,1) for m = 1, 2 are consistent

such that
∥∥∥Ω̂Z,(m)(π, FH0,1) − ΩZ

∥∥∥ = op(1),

(b) WZ(π, FH0,1) ⇒ Qp(π), where Qp(π) = [Bp(π)−πBp(1)]⊺[Bp(π)−πBp(1)]/(π(1−π)),

and Bp(·) is a p = r(r + 1)/2 vector of independent Brownian motions on [0, 1].

Assumption 9 specifies conditions for the Bartlett kernel. Assumption 10 (a) is a stan-

dard HAC assumption, and states that the infeasible estimators Ω̂Z,(1)(π, FH0,1), Ω̂Z,(2)(π, FH0,1)

and Ω̂Z(π, FH0,1) converge to their population counterpart ΩZ . Assumption 10 (b) is the
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main result of Theorem 3 of Andrews (1993), and is necessary to establish the asymptotic

distributions of the test statistics. As stated by Andrews (1993), for any fixed π, Qp(π)

is distributed as a χ2
p=r(r+1)/2 random variable, and therefore standard critical values can

be used. Assumption 10 (b) has been used in Han and Inoue (2015), and one can refer

to Chen et al. (2014) for more primitive assumptions under which similar assumptions to

Assumption 10 (b) hold. Note that we do not require the convergence of supπ WZ(π, FH0,1)

to supπ Qp(π), as we are focusing on a pre-known (or estimated) break fraction π.

Theorem 2.4. Under Assumptions 1 to 10, and if
√

T
N

→ 0, then WZ(π, F̂ ) d→ χ2
r(r+1)/2.

The proof of Theorem 2.4 is provided in the Supplementary Material, and involves

proving the convergence of Ω̂Z,(1)(π, F̂ ), Ω̂Z,(2)(π, F̂ ), ŜZ(π, F̂ ) and AZ(π, F̂ ) to their infea-

sible counterparts. Theorem 2.4 shows that the feasible Wald test statistic converges to a

Chi-squared random variable, and conventional critical values can be used.4

2.3.2 Z Test Asymptotics under the Alternative Hypothesis

To analyse the power of the Z test under the alternative, we make the following additional

assumptions on the break:

Assumption 11. Z is a non-singular matrix, and ZΣF Z⊺ ̸= ΣF .

Assumption 12. plimT →∞ inf
(
vech(C)⊺

[
max(b⌊πT ⌋, bT −⌊πT ⌋)Ŝ(F ∗H0,1)−1

]
vech(C)

)
> 0,

where C ≡ H⊺
0,1(ΣF − ZΣF Z⊺)H0,1.

Assumption 11 ensures that the test statistic diverges under the alternative hypothesis.

It rules out the unlikely scenario where Z = −1, i.e. all of the loadings switch their

signs after the break, and is commonly assumed (see Han and Inoue (2015), Baltagi et al.
4It is also possible to construct an LM-like statistic with a restricted estimate of the variance using all

of the data. However, as noted by Chen et al. (2014) and Han and Inoue (2015), such LM-like statistics
have much smaller power than their Wald-type counterparts. Therefore, we focus on the Wald test.
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(2017), Baltagi et al. (2021), and others). We require Z to be non-singular, which implicitly

rules out the case of disappearing/emerging factors. This is because unlike Han and Inoue

(2015), Baltagi et al. (2021), and Duan et al. (2022) who work with the pseudo factors as

estimated over the entire sample, we work with the subsample estimates of the factors and

the appropriate definition of rotation matrices is not clear in such cases (other methods

using subsample estimates similarly rule this out, see Chen et al. (2014), Massacci (2017),

Ma and Su (2018), and others). Assumption 12 regulates the asymptotic property of the

variance matrices of the statistics, ensures that WZ(π, F̂ ) diverges under the alternative.

Theorem 2.5. Under Assumptions 1 to 9 and 12, and if Z satisfies Assumption 11, then

1. there exists some non-random matrix C ̸= 0 such that

1
πT

∑⌊πT ⌋
t=1 f̂tf̂

⊺
t − 1

T −⌊πT ⌋
∑T

t=⌊πT +1⌋ f̂tf̂
⊺
t

p→ C,

2. the test statistic WZ(F̂ ) is consistent under the alternative hypothesis that Z ̸= I.

Theorem 2.5 shows that the subsample means of f̂tf̂
⊺
t converge to different limits under

the alternative, and thus result in a consistent test.

Remark 1. The number of factors r is assumed to be known, and constant before and after

the break due to Z being non-singular. Consistent estimation of the number of factors in

each subsample is possible conditional on consistent estimate of π using any pre-existing

estimator (e.g. Bai and Ng (2002), Onatski (2010), or Ahn and Horenstein (2013)) and

π as shown in Baltagi et al. (2017). In practice, the estimate r̂ may not be same in

either regime, and the practitioner will need to set the number of factors to be identical.

Underestimation of r could omit information in rotational changes, whereas overestimation

of r could result in extra noise brought about by the extra estimated factors, (Baltagi et al.

(2017)). In practice, overestimation of r tends to lead to oversizing (see Section 3), so we

advise a conservative estimate of r.
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Remark 2. Similarly, the break fraction π needs to be estimated using a method such

as Baltagi et al. (2017), Chen (2015), or Duan et al. (2022). Theorem 3 of Baltagi et

al. (2017) shows that such consistent estimators of π are sufficient to obtain the usual

Op

(
1

δ2
NT

)
consistency rate of the estimated factors and loadings, and therefore our test

statistics remain valid.

2.4 W test for Orthogonal Shifts

Next, we consider testing the null hypothesis H0 : WN×r = 0, against the alternative

hypothesis H1 : WN×r ̸= 0. Note that because W contains N rows and N → ∞, traditional

tests are infeasible. Similar to Han (2015), we re-state our null and alternative hypotheses

for the type 1 break as:

H0 : rw = 0, H1 : rw ̸= 0, (2.13)

where rw is the number of extra factors augmented by the presence of orthogonal shifts.

Although Equation (2.13) is essentially a problem for testing the number of factors, ex-

isting tests such as Onatski (2009) cannot be used without imposing further restrictive

assumptions on the approximate factor model errors. Our strategy is to present an indi-

vidual test for each i, then pool them across the cross section, thus overcoming the infinite

dimensionality problem.

We define the Wald test statistic for orthogonal shifts in any individual series as:

WW,i = Tw̃⊺
i Ω̃−1

W,iw̃i, (2.14)

where w̃i denotes the transpose of the ith row of W̃ , and Ω̃W,i = 1
1−π

Θ̃1,i + 1
π
Θ̃2,i is a HAC

estimate of the asymptotic variance. The covariance matrices Θ̃1,i and Θ̃2,i are constructed
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using the estimated residuals ẽ(1),it = xit − λ̃⊺
2,if̃1,t and ẽ(2),it = xit − λ̃⊺

2,if̃2,t in the series

Z̃⊺f̃1,t · ẽ(1),it and f̃2,t · ẽ(2),it respectively, and are detailed in the Supplementary Material.

We define the joint Wald test statistic as:

WW = (TN)
(∑N

i=1 w̃i

N

)⊺

Ω̃−1
W

(∑N
i=1 w̃i

N

)
, (2.15)

where Ω̃W = N−1∑N
i=1 Ω̃W,i is an estimate of the asymptotic pooled variance, detailed in

the Supplementary Material.

2.4.1 W Test Asymptotics under the Null Hypothesis

To derive the properties of the test statistics, we make the following additional assumptions.

Assumption 13. There exists a positive constant M < ∞ such that for all N, T , and

m = 1, 2:

(a) For each t, E(N−1/2∑N
i=1 eit)2 ≤ M .

Assumption 14. There exists a positive constant M < ∞ such that for all N, T :

(a) For each i and m = 1, 2, E
∥∥∥ 1√

NTm

∑T
t=1

∑N
k=1 (λm,k[ekteit − E[ekteit]]) ιmt

∥∥∥2
≤ M ,

(b) For each t and m = 1, 2, E
∥∥∥ 1√

N

∑N
i=1 λm,ieit

∥∥∥2
≤ M ,

(c) For each i, E
∥∥∥ 1√

Tm

∑T
t=1 fteitιmt

∥∥∥4
≤ M ,

(d) E
∥∥∥ 1√

NTm

∑T
t=1

∑N
i=1 fteitιmt

∥∥∥2
≤ M .

Assumption 15. For m = 1, 2:

(a) 1√
N

∑N
i=1 λm,i = Op (1),

(b) E
∥∥∥ 1√

N

∑N
i=1 λm,ie

2
it

∥∥∥2
≤ M for each t,
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(c) E
∥∥∥ 1

N
√

Tm

∑T
t=1

∑
k ̸=i

∑N
i=1 λm,kekteit · ιmt

∥∥∥2
≤ M .

Assumption 16. (a) 1√
T

∑T
t=1 fteit

d→ N(0, Φi), (T )−1∑T
t=1 ftf

⊺
t e2

it

p→ Φi, each Φi > 0.

(b) 1√
T N

∑T
t=1

∑N
i=1 fteit

d→ N(0, ΦW ), (TN)−1∑T
t=1

∑N
i=1 ftf

⊺
t e2

it

p→ ΦW , ΦW > 0.

Assumption 13 is simply the pooled version of Assumption 3. Assumption 14 (a) is

simply Assumption 6 (a) but corresponding to the loadings, Assumption 14 (b) is already

implied by Assumption 6 (c), and Assumption 14 (c) is a strengthened version of Assump-

tion 6 (a). These correspond to Assumptions 6 b), 6 d) and 6 e) in Han (2015), and are

not restrictive because they involve zero mean random variables. Assumption 15 requires

that the sum of factor loadings is Op

(√
N
)
, and is a slightly modified version of the as-

sumption initially considered by Han (2015). As explained by Han (2015), this will hold

if the loadings are centered around zero, such that the sum of the loadings diverge at the

rate of
√

N by the central limit theorem. Although this imposes somewhat stricter re-

strictions compared to a conventional factor model setup, it seems to hold for empirically

used datasets, as noted by Han (2015). Assumptions 16 (a) and 16 (b) are simply central

limit theorems. The latter assumption somewhat strengthens the restriction on the cross

sectional correlation in eit, and is simply the cross sectional averaged version of the CLT

assumptions introduced by Bai (2003).

Theorem 2.6. If
√

T
N

→ 0, then:

1. Under Assumptions 1 to 9, and additionally Assumptions 13, 14 and 16, WW,i
d→ χ2

r

for each i, and

2. Under Assumptions 1 to 9, and additionally Assumptions 13 to 16, WW
d→ χ2

r.

Theorem 2.6 shows that the Wald5 test statistics converge to conventional Chi-squared
5It is also possible to construct an LM-like test statistic by imposing the null hypothesis of no break,

but this results in a statistic with lower power, so we focus on the Wald test again.
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random variables. The detailed proof of Theorem 2.6 is provided in the Supplementary

Material. The basic idea of the proof is to recognize that w̃i is a suitable weighted average

of Z̃⊺λ̃1,i, and λ̃2,i, both of which have asymptotic normal expansions following Theorem 2

of Bai (2003). The asymptotic normality of w̃i and N−1∑N
i=1 w̃i follows, implying the form

of the Wald tests under the null hypothesis.

2.4.2 W test Asymptotics under the Alternative Hypothesis

To analyze the behavior of the pooled W test under the alternative hypothesis, we introduce

some further assumptions.

Assumption 17. There exist constants 0 < α ≤ 0.5 and C > 0 such that as N, T → ∞,

Pr
(∥∥∥T α/2

√
N

∑N
i=1 wi

∥∥∥ > C
)

→ 1.

Assumption 17 requires
∥∥∥T α/2

√
N

∑N
i=1 wi

∥∥∥ to be bounded away from zero asymptotically.

Note that if N−1∑N
i=1 wi

p→ 0 under the alternative, then N−1/2∑N
i=1 wi converges in

distribution to some Gaussian random variable by the Law of Large Numbers, and hence∥∥∥N−1/2+ϵ∑N
i=1 wi

∥∥∥ is diverging as N → ∞ for any positive ϵ. In order for
∥∥∥T α/2

√
N

∑N
i=1 wi

∥∥∥ to

be bounded away from zero, any α ∈ (0, 0.5] such that T α/2 ≥ N is required, which is not

difficult. Assumption 17 therefore ensures that the joint test statistic diverges to infinity

under the alternative hypothesis, even when if N−1∑N
i=1 wi

p→ 0.

Theorem 2.7. Suppose that
√

T
N

→ 0, and the alternative hypothesis H1 : rw ̸= 0 holds.

Then:

(a) under Assumptions 1 to 8, 13, 14 and 16, and if wi ̸= 0, then WW,i → ∞ as N, T →

∞,

(b) under Assumptions 1 to 8 and 13 to 17, WW → ∞ if
√

N
T 1−α/2 → 0 as N, T → ∞.
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Theorem 2.7 shows that both the individual test WW,i and joint test WW diverge to

infinity asymptotically under the alternative, and are thus consistent tests.

3 Monte Carlo Simulations

3.1 Simulation Specification

We first simulate two sets of arbitrary loadings, Λ1, Λ2 both of which are distributed as a

multivariate N(03, I3), focusing on the case of r = 3 factors. Then, we set W to be the

residuals of the projection Λ2 − (Λ⊺
1Λ1)−1Λ⊺

1Λ2 to ensure that it is orthogonal to Λ1. The

rotation break Z is set to the identity matrix in the case of no break, or a lower triangular

matrix with [2.5, 1.5, 0.5] on the main diagonal and its lower triangular entries drawn from

N(0, 1), as in Duan et al. (2022). The overarching model from we simulate can then be

formulated as below.

xit =


λ⊺

1,ift +
√

θeit, t = 1, . . . , ⌊πT ⌋

(Zλ1,i + ωwi)⊺ft +
√

θeit, t = ⌊πT ⌋ + 1, . . . , T,

(3.1)

for i = 1, . . . , N and t = 1, . . . , T . The parameter θ is set to 3 in order to calibrate the

signal to noise ratio to be 50%, and the scalar ω controls the “size” of the orthogonal shifts.

The factors and errors are generated as follows:

fk,t = ρfk,t−1 + µit, µit ∼ i.i.d.N(0, 1 − ρ2), (3.2)

eit = αei,t−1 + vit, (3.3)

where ρ ∈ {0, 0.7} captures the serial correlation in the factors, and µit, vit are mutually

independent with vt = (v1,t, . . . , vN,t)⊺ being i.i.d. N(0, Ω) for t = 1, . . . , T . For t = 1,
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Table 1: Size of Rotation and Orthogonal Shift Tests, N = 200

Z Test W Test W Individual

T ρ α β Unadj. Adj. Unadj. Adj.

0.0 0.0 0.108 0.072 0.005 0.003 0.013200 0.3 0.3 0.115 0.076 0.088 0.053 0.014
0.0 0.0 0.068 0.031 0.003 0.001 0.004500

0.0

0.3 0.3 0.070 0.037 0.061 0.027 0.004

0.0 0.0 0.243 0.160 0.003 0.002 0.017200 0.3 0.3 0.239 0.174 0.096 0.066 0.027
0.0 0.0 0.151 0.093 0.000 0.000 0.005500

0.7

0.3 0.3 0.144 0.095 0.074 0.047 0.009

e.t = (e1,1, . . . , eN,1)⊺ is N(0, 1
1−α2 Ω) to initialize the errors at their stationary distributions.

The scalar α captures the serial correlation in the errors, and as in Bates et al. (2013) and

Baltagi et al. (2017), Ωij = β|i−j| captures the cross sectional correlation in the errors. We

consider α ∈ {0, 0.3} and β ∈ {0, 0.3} to consider up to mild serial and cross sectional

correlation. The true break fraction is set to 0.5 and treated as known.

Disentanglement necessitates the practitioner running both the Z and W tests, which

could lead to a higher family wise error rate, and to this end we report the unadjusted p

values, in addition to the adjusted p values using Holm (1979).

3.2 Simulation Results

We present the size analysis in Table 1. In the case of no serial correlation in the factors,

and large T relative to N , the Z test has a nominal size close to the desired 5%, and this

tends to hold regardless of the serial or cross sectional correlation in the errors. The Z

test seems to be oversized when there is serial correlation in the factors, but this issue

is alleviated and approaches a rejection rate of 0.15 as T increases.6 The W test does

not seem to be affected by serial correlation in the factors, and also seems to be overly

conservative when there is no serial correlation in the error, but otherwise seems to have

good size. Implementation of the Bonferroni-Holm procedure to adjust the p values also
6Increasing T further does seem to make the size approach 5% (see Table 1 in Supplementary Material).
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Table 2: Power of Z and W Tests, r = 3, α = β = 0.3

Z Test W Test

Type T N ω ρ Unadj. Adj. Unadj. Adj. Individual HI BKW r̃

0.0 0.136 0.129 0.860 0.821 0.849 1.000 1.000 5.928200 0.7 0.244 0.233 0.916 0.896 0.908 1.000 1.000 6.000
0.0 0.079 0.076 0.950 0.939 0.947 1.000 1.000 6.000Type 1

500
1

0.7 0.146 0.144 0.968 0.965 0.968 1.000 1.000 6.000
0.0 1.000 1.000 0.100 0.100 0.026 1.000 1.000 3.000200 0.7 1.000 1.000 0.106 0.106 0.035 1.000 1.000 3.000
0.0 1.000 1.000 0.094 0.094 0.009 1.000 1.000 3.000Type 2

500
0

0.7 1.000 1.000 0.096 0.096 0.012 1.000 1.000 3.000
0.0 1.000 1.000 0.804 0.803 0.765 1.000 1.000 4.206200 0.7 1.000 1.000 0.867 0.867 0.846 1.000 1.000 5.047
0.0 1.000 1.000 0.919 0.919 0.901 1.000 1.000 4.772Type 3

500

200

1

0.7 1.000 1.000 0.946 0.946 0.938 1.000 1.000 5.511

seems to correct the oversizing issue, so we advocate for its use. Table 2 presents the power

of the Z and W tests across all types of breaks. It can be seen that both the Z and W test

have good power and are rejecting correctly only on their respective break types. This is

in contrast to HI and BKW tests, which consistently reject across all break types, and are

thus unable to discern which type of break has occurred.

4 Empirical Application

4.1 Data and Methodology

For our empirical application, we apply our tests to the FRED-MD dataset (see McCracken

and Ng (2015) for data cleaning and preparation). We focus on two candidate break dates:

1984 February, corresponding to the Great Moderation (Baltagi et al. (2021), Ma and Su

(2018) and Breitung and Eickmeier (2011)); and 2008 November, corresponding to the

Global Financial Crisis (Baltagi et al. (2021), Ma and Su (2018) and Duan et al. (2022)).

Our tests aim to differentiate the type of break once they have been estimated, and

were formulated under the assumption that there is only one break. As argued by Bai

(1997), Bai and Perron (1998) and others, tests formulated for the case of one break can
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Table 3: Subsample r̃ Estimates

Sample Onatski (2010) Ahn and Horenstein (2013) Eigenvalue Ratio

Great Moderation (1984 February) Sample
Whole 6 1

Pre-break 4 1
Post-break 3 3

Global Financial Crisis (2008 November) Sample
Whole 4 1

Pre-break 2 1
Post-break 2 1

be expected to have power against multiple breaks. To this end, we consider a sample of

1975 January to 2000 January for the Great Moderation (GM) break, and a sample of 2003

January to 2013 January for the Global Financial Crisis (GFC) break, in order to ensure

that there is only one break in each sample. These samples were chosen because there is

mixed evidence that there could be a break in the mid to late 1990s (Hansen (2001) and

Ma and Tu (2022)), or in 2000 associated with the early 2000s recession (Ma and Su (2018)

and Ma and Tu (2022)). This is not restrictive, because the case of multiple breaks can be

dealt with partitioning the data, and running the tests on each break separately.

The number of factors in each subsample is estimated by the eigenvalue edge distribution

estimator of Onatski (2010), and the eigenvalue ratio estimator of Ahn and Horenstein

(2013).7 As seen in Table 3, these estimators do not typically agree with one another on

empirical data, and we therefore report the results of the tests for r̃ = 1, . . . 4, which is the

maximum subsample r estimated.

4.2 Joint Test Results

Table 4 reports the results of the Z and pooled W tests when the Great Moderation and

the Global Financial Crisis are candidate break dates. For the Great Moderation, a higher
7We also consider using the information criteria ICp1 and ICp2 of Bai and Ng (2002), but do not report

them here as they are well known to overestimate the number of factors. Ahn and Horenstein (2013)’s
eigenvalue growth ratio estimator also tends to produce similar results to their eigenvalue ratio and is hence
omitted. For more comprehensive results, see Table 7 in Section 3.2.
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Table 4: Joint Test Results

Z Test p values W Test p values

r̃ Unadj. Adj. Unadj. Adj. Han and Inoue (2015) Baltagi et al. (2021)

Great Moderation (1984 February) Sample
1 0.000 0.001 0.596 0.596 0.001 0.000
2 0.000 0.000 0.000 0.000 0.001 0.000
3 0.000 0.000 0.000 0.000 0.000 0.000
4 0.000 0.000 0.000 0.000 0.000 0.001

Global Financial Crisis (2008 November) Sample
1 0.175 0.175 0.005 0.011 0.688 0.116
2 0.009 0.019 0.486 0.486 0.354 0.116
3 0.010 0.010 0.002 0.005 0.009 0.004
4 0.021 0.021 0.000 0.000 0.000 0.007

r leads to significant rejection on both tests. However, for the case of only one factor, we

fail to reject the null of orthogonal shifts. This is in stark contrast to the tests of Han

and Inoue (2015) and Baltagi et al. (2021), which strongly reject for all values of r. In

contrast, for the Global Financial Crisis, we see mixed evidence: in the case of one factor,

we only reject the W test; in the case of two factors, we only reject the Z test; and we

reject both tests when the number of factors is three or more. At present, it is unclear why

this mixed evidence occurs, but given that the tests of Han and Inoue (2015) and Baltagi

et al. (2021) fail to reject for the case of one to two factors, we therefore conclude that the

Global Financial Crisis is best characterized as a type 3 break for the case of three factors,

and would lead to a factor augmentation effect if ignored. This is most clearly seen with

Onatski (2010)’s estimator, which estimates exactly double the number of factors over the

whole sample, compared to each subsample.

4.3 Individual Test Results

In order to aid economic interpretation in the precise nature of the breaks, we also report

the results for the individual wi test results. For comparative purposes, we also report

the individual loading break tests of Breitung and Eickmeier (2011) (BE) using the same

candidate break dates. The rejection frequencies are visualized in Figure 1. For the Great
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Figure 1: Individual Loading Rejection Proportions for Great Moderation Sample (1975
to 2000, break date of 1984 February) and Global Financial Crisis Samples (2003 to 2013,
break date of 2008 November)

Moderation, the wi test rejects far less often than BE’s tests for the case of 1-2 factors. An

interpretation of this result is that our wi test controls for possible changes in the factor

variance, as opposed to BE, whose test statistics are constructed used the pseudo factors

and therefore do not control for the possibility of the factor variance breaking.

Further inspection of which specific series are breaking in Figure 1 reveals that for the

case of two factors, the statistically significant joint break is actually mostly isolated to

variables in the Prices group. For the case of three factors, the W test rejects a much smaller

fraction of Interest and Exchange Rate variables compared to BE. The precise implications

of this are beyond the scope of this paper, but this suggests that if the practitioner is not

concerned with price series, the augmentation effect could be safely ignored.

This is in contrast to the results when the GFC is used as a candidate break. Instead,

we are in general able to reject a higher proportion of series than BE. Although BE did

not consider the GFC as a common break date, it is interesting to see that the use of
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pseudo factors seems to be confounding and reducing the power in detecting legitimate

breaks in the loadings. A specific look into which specific variables are breaking reveals

some differences across groups, for the case of one factor. Our orthogonal shift test fails to

reject any housing or stock market variables, compared to BE, which report a rejection of

a significant fraction in both of these groups.

4.4 Variance Decomposition

Our projection based equivalent representation theorem provides a natural framework to

decompose structural breaks and quantify the proportion of variance change due to a change

in factor variance and the change in factor loadings. We relegate the technical details of

this to the Supplementary Material, and report the various restricted and unrestricted R2

values in Table 5.8 The results for Great Moderation match up with the results of the

formal joint tests - for the case of r = 1 factor, restricting Z = I results in a decrease of

in sample R2 from 17.8% to 12.6%, compared to the the restriction of W = 0, which only

decreases in sample R2 to 16.9%. The results for the Global Financial Crisis at first glance

seem contradictory to the results of the joint test - there appears to be negligible decreases

in the in sample R2 from imposing Z = I. However, this is because the nature of rotational

change during the Global Financial Crisis is that the ordering of the factors has changed.9

Due to the limitation of our variance decomposition methodology in controlling for this, we

interpret this this as meaning that the statistical evidence from the joint test was simply

picking up on this “re-ordering” of the factors. The restriction of W = 0 results in large

decreases R2 and in consistent with the results of the joint tests.
8For results with higher r, see Table 10 in Section 3.2.
9See Section 4.1 in Supplementary Material.
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Table 5: R2 Comparisons for Z = I, W = 0, Z = I and W = 0 restrictions. R2 values for
Whole Sample PCA represent the fit from the pseudo factors and loadings and are thus
not directly comparable.

Restricted R2

r̃ Unrestricted R2 Z = I W = 0 Z = I, W = 0 Whole Sample PCA

Great Moderation (1984 February) Sample
1 0.178 0.126 0.169 0.117 0.172
2 0.274 0.221 0.225 0.173 0.241
3 0.344 0.289 0.277 0.222 0.302
4 0.398 0.342 0.313 0.257 0.359

Global Financial Crisis (2008 November) Sample
1 0.228 0.228 0.141 0.140 0.182
2 0.342 0.341 0.223 0.222 0.291
3 0.424 0.422 0.309 0.307 0.370
4 0.489 0.487 0.372 0.371 0.434

5 Conclusion

We propose a projection based equivalent representation theorem to decompose any struc-

tural break in dynamic factors into a rotational change and orthogonal shift. By inter-

preting these two changes as a break in factor variance and a break in factor loadings

respectively, we are able to subsequently propose two separate tests: 1) a test for evidence

of rotational change, and 2) a test for evidence of orthogonal shifts. Monte Carlo stud-

ies demonstrate their good finite sample performance, as well as the inability of existing

methods to differentiate between these different break types. We apply the tests to the

FRED-MD dataset using the Great Moderation and Global Financial Crisis as candidate

break dates, and find evidence that the Great Moderation may be better characterised as

a break in the factor variance, as opposed to a break in the loadings, whereas the Global

Financial Crisis is a break in both. Our results highlight the limitations of existing meth-

ods in differentiating between these break types and nuance the discussion surrounding

structural breaks in dynamic factor models.

Our framework provides a potential foundation to explore the precise practical and

theoretical implications of structural breaks in dynamic factor models. For example, a

natural question to consider is how the different break types can affect the estimation and
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subsequent use of factors, such as the factor augmented forecasts of Stock and Watson

(2002) and Bai and Ng (2006), and factor augmented vector auto-regressions of Bernanke

et al. (2005). Indeed, although there have been many suggestions for how to use factors in

forecasting when a structural break is present (see Stock and Watson (2009) and Baltagi

et al. (2021)), there is still no formal treatment of this in the literature.

SUPPLEMENTARY MATERIAL

Appendices Appendices containing proofs, and additional simulation and empirical re-

sults (PDF)

R Code R Code including FREDMD vintage available on request (.zip file)
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