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1 Introduction

This paper proposes an approach to studying intergenerational income mobility

based on a generalization of Markov chain mobility models. We group households

into different income categories and assume that the probabilities of an individual

from different family backgrounds being in different income categories are deter-

mined by various characteristics of a person’s parents. Our generalization allows

transition probabilities between parent and child to depend nonparametrically on

parental characteristics. This type of dependence is natural from the perspective

of theories of intergenerational mobility, whether models in which parental income

determines investment, models in which parental income determines the neighbor-

hoods and/or schools of children, models in which discrimination creates persistent

Black/White mobility differences, or models in which parental skills as determined

by education or experience affect the productivity of education on children’s human

capital formation; see Durlauf et al. (2022) for the elaboration of the many paths by

which Markov transition probabilities will differ across families. This framework en-

ables us to study the joint distribution of parental-child income pairs and therefore

income mobility dynamics at the aggregate level.

Previous research has extensively explored heterogeneity in transition processes,

with race being a standard dimension of analysis; see Duncan (1968) and Hout (1984)

for older classic studies and Bhattacharya and Mazumder (2011) and Bloome (2014)

for more recent contributions. Our aim is to provide novel tools that capture this

heterogeneity in richer ways than previous studies. To achieve this, we develop a

fully nonparametric ordered multinomial probability model that can accommodate

highly general nonlinear relationships between parental income status and the in-

come class into which children move. In addition, we incorporate factors such as

race, parental education, and parental age at childbearing to influence the condi-

tional probability structure linking parental and offspring income statuses without

relying on functional form assumptions linking offspring income and parental char-

acteristics. There are other approaches to studying heterogeneous effects. For ex-

ample, Brand and Xie (2010) consider group-specific treatment effects, Abadie et al.

(2002) introduces quantile treatment effects, and one may estimate the joint distri-

bution of the factor and outcome using copulas as in Chetty et al. (2017). These

approaches usually study levels instead of class probabilities, and they assume spe-

cific functional forms for the interaction structure.
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The flexibility of our model presents challenges in terms of estimation. It has

long been understood that fully nonparametric estimation of a nonlinear model

can be exceedingly difficult, especially when dealing with a large number of factors

and/or a sizable sample size. Even in conventional probit or logit models with linear

index functions, estimation can become computationally daunting when handling

extensive datasets or numerous regressors. To overcome this issue, we employ kernel

methods from the machine learning literature coupled with further regularization

through principal component analysis (PCA). These tools have become increasingly

prevalent for addressing high-dimensional problems.1 By leveraging these methods,

we introduce a new approach to estimate our fully nonparametric multinomial choice

model, which is robust in environments with large samples and/or a large number

of covariates, thereby circumventing the curse of dimensionality while maintaining

computational efficiency.

We illustrate our methods by applying our multinomial probability model to

the Panel Study of Income Dynamics (PSID) data to examine how gender, race,

parental education, parental age at childbirth, and parental income status interact to

influence offspring income status. Our analysis reveals significant racial disparities,

with Black individuals more likely to fall into the low-income category and less likely

to belong to the middle- and high-income categories, particularly among those raised

in middle-income families. We also find that parental college education substantially

reduces the likelihood of a child being in the low-income category and increases the

chances of belonging to the middle- and high-income categories. This positive effect

of parental education is particularly pronounced for individuals with middle-to-

high-income parents and those born when their parents are in their late twenties to

mid-thirties, maximizing the predictive probability of a child attaining high-income

status. Collectively, race, parental education, and parental age at childbirth can

influence the probabilities of low-income status for children by about 20 percent,

given a certain parental income level. This provides compelling evidence of the

ways in which heterogeneity in downward mobility can occur for middle-income

families.

Relationships between family-level characteristics and future incomes have of

course been extensively studied. Dahl and Lochner (2012) demonstrate nonlinear-

ities in the intergenerational income transmission process. Maralani (2013) and

1From the methodological point of view, our paper is a multinomial extension of Yan (2023),
which develops a framework to analyze fully nonparametric large dimensional binary choice models.
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Bacic and Zheng (2024) demonstrate racial differences in intergenerational educa-

tional mobility. Lopoo and DeLeire (2014) and Bloome (2017) show how a family

structure affects intergenerational income effects. Our overall findings are corrobo-

rative of past work. Our contribution is to demonstrate the robustness of previous

claims when the analysis allows for a much more general structure than past stud-

ies. In particular, we are able to show that particular family-level factors retain

their predictive power when simultaneously considered with other factors and are

able to do this by allowing nonlinear relationships between each factor and offspring

income category probabilities. Beyond this, our methods give additional substan-

tive insights. In particular, we show that there are stark differences between the

children of non-Black families with college-educated parents, and born when their

parents are around 30 versus children who are Black, born to parents at the age of

18, and without college degrees. Thus one set of background conditions makes it

hard for some children to achieve socioeconomic success in income and education

while another makes it hard to fail.

The paper is organized as follows: We begin with a brief motivation for our

work in Section 2. Section 3 introduces our ordered multinomial choice model for

income class probabilities and discusses its estimation and inference. Section 4

describes the Panel Study of Income Dynamics data we use. Section 5 applies our

methods to explore the effects of various factors on the relationship between parental

and offspring’s income statuses. Finally, Section 6 concludes the paper. Technical

details and more robustness checks are provided in the four Appendices that follow.

2 Beyond Linearity in Intergenerational Mobility Anal-

ysis

The workhorse model to study intergenerational income mobility is

log(yc) = α+ β log(yp) + ε

where yc and yp are specific measures of the child’s income and the parental income,

respectively, and ε represents individual-specific heterogeneity. The parameter β is

the intergenerational elasticity of income and has become the primary measure of

the persistence of income across generations.

As such, this workhorse model has nothing to say about the evolution of intergen-
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erational persistence, since β is a constant. Researchers have therefore augmented

this model to include additional factors. A frequently used regression model takes

the form of

log(yc) = α+ β log(yp) + γ′s+ ε

where s is a vector of factors beyond parental income that are believed to shape a

child’s income.

Although the augmented model enables one to study the effects of factors beyond

parental income on intergenerational mobility, it is still very restrictive since it does

not allow interactions between different factors in determining the income level of

the child. As such, it preserves an implicit dichotomy between the measure of

intergenerational mobility, β, and other mechanisms. Social science theory does

not justify this independence. For example, it could be the case that the effect

of parental income on children’s future income is affected by discrimination or by

parental education. This has led to a literature that allows β to differ by categories

such as race. By implication, products of variables are usually taken to capture the

interactions of different determinants of offspring outcomes. However, this is not

an entirely satisfactory solution, since it amounts to a second-order Taylor series

approximation of the interactions of different variables, and there is no theoretical

basis for thinking such an approximation will be particularly accurate. And of

course, this observation applies to efforts to introduce nonlinearities in the effects

of parental income based on polynomial generalizations of the linear model.

Our objective is to propose a framework that can accommodate rich interactions

and nonlinearities. We propose a fully nonparametric model to link these factors to

the probabilities of a child belonging to different relative income classes. Unlike the

IGE model which focuses on levels of income, we consider probabilities that link the

income classes of parents and children. We choose this outcome variable for several

reasons. First, our model permits a natural integration of interactions by making

income class probabilities functions of various factors. Second, income categories

such as the middle class hold a distinct substantive interest from absolute income

levels. Third, many of the publicly available income data contain left and/or right-

censored observations and might contain zero/negative income figures. Estimating

an IGE with censored data might lead to biased estimates, and taking logs with

zero and/or negative values could be problematic, even with some of the usual

transformation techniques such as adding one before taking logs (Chen and Roth,
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2024). Our approach, by analyzing income classes instead of income levels, remains

robust in the presence of such data issues.

In the next section, we propose a fully nonparametric multinomial choice model

that can be used to study the link between various factors and an individual’s

probabilities of membership into different income classes.

3 Methodology

3.1 Multinomial Model for Income Class Probabilities

The evolution of income distributions over time is evident. A pertinent inquiry

arises: what factors propel these changes, and how exactly do they impact income

distribution dynamics? To address this, we propose a nonparametric ordered multi-

nomial choice model.

To be specific, let j = 1, . . . ,m denote the m income classes. In our study,

we shall set m = 3, and let j = 1, 2 and 3 represent the low-, middle- and high-

income classes, respectively. We use subscript i = 1, 2, . . . , n to index individuals

in our sample and use πj(x) to denote the probability of belonging to class j for

the individual with covariates x. We shall call these probabilities the income class

probabilities hereafter. Evidently,
∑m

j=1 πj(xi) = 1 for all i = 1, . . . , n, indicating

that each individual’s probabilities across all income classes sum up to one.

Individuals’ characteristics (xi) are related to their income class probabilities by

the functions πj(·) in the form of an ordered multinomial choice model

πj(x) = P
{
τj−1 < y∗i ≤ τj

∣∣xi = x
}

for j = 1, . . . ,m, with the convention τ0 = −∞ and τm = ∞, where y∗i is a latent

variable that represents the unobservable permanent income of the individual i,

which depends on the individual covariates xi, and τ1, . . . , τm−1 are constant income

thresholds that determine the categories of permanent income. For convenience,

from now on we shall simply call y∗i the permanent income. We set the permanent

income (y∗i ) to be determined by the covariates (xi) through

y∗i = g(xi) + ui, (1)

where g is a nonparametric function to be estimated, and (ui) is the random com-
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ponent that represents the heterogeneity in permanent income not captured by the

covariates (xi). We shall estimate the distribution of the random component non-

parametrically.

Our framework offers a high level of flexibility and generality. We depart from

the usual linear setting by allowing for a general nonlinear form of g, taking values

in a sufficiently large function space. The function space employed in our analysis

allows for a precise approximation of any continuous function over a compact subset

of its domain. This departure from linearity is not solely about freedom in func-

tional forms; rather, it empowers us to explore the heterogeneous impacts of factors

on income distribution, and thus intergenerational mobility. In addition, it facili-

tates the exploration of intricate interactions among various factors that influence

income distributions and intergenerational mobility, far beyond those allowed in

conventional linear discrete choice models. The generalities of our approach will be

explained further in Section 3.2. Moreover, unlike parametric models such as logit or

probit, which assume a Gaussian or logistic distribution for the random component

(ui), our model does not confine the random component to any specific distribution

family. This grants us greater adaptability in mirroring real income distributions,

for example, allowing the presence of fat tails in the income distribution.

To identify the effects of various factors in our discrete choice model, we may

either not impose any level restriction on the function g and set one of the parameters

in τ = (τ1, τ2, . . . , τm−1) at a fixed number, say τ1 = 0, or we restrict the level of g

and allow all the parameters in τ to vary freely. In the paper, we set

inf
x∈D

g(x) = 0,

where D is the support of (xi), which imposes a level restriction on the function

g, so that all the parameters in τ = (τ1, τ2, . . . , τm−1) are identified without any

further restriction.

If the random component (ui) has an invertible cumulative distribution function

(CDF) F , it follows that

τj − g(x) = F−1

(
j∑

k=1

πk(x)

)

for j = 1, . . . ,m − 1. This implies that, for
(
πj
)
given, parametric models such

as logit and probit specifying F as the cumulative distribution function (CDF) of
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standard Gaussian and logistic distribution, respectively, impose unintended and

uninterpretable restrictions on g whenever m > 2. This problem does not arise in

our model, where we allow the distribution of the random component to be fully

nonparametric.

We need to introduce an appropriate identification condition to separately iden-

tify the unknown function g in the systematic component and the distribution of

the random component.2 In this paper, however, they are not separately identified,

since our analysis will be focused only on various choice probabilities. We leave for

our future work the structural analysis based on the function g in the systematic

component, which is identified by an appropriate identifying restriction.

3.2 Heterogeneous Effects of Factors

The study of income intergenerational mobility is based on the belief that the income

status of parents is linked to the adult income status of their children. One intriguing

quantitative question is: if one family has a higher income than another by a certain

margin, how does this difference affect the likelihood of their offspring belonging to

a specific income class in their adulthood?

While all multinomial choice models can offer insights into this question, their

efficacy varies. To articulate this more formally, let πj(x) represent the probability

of an offspring’s income falling within class j, where x denotes the logged parental

income—the only factor considered at present for illustration. The partial effect

∂πj(x)/∂x serves to answer our question by quantifying the increased likelihood

of an offspring being in income class j if their parents’ income were increased by

1% from level x. This partial effect, contingent upon the functional form of πj , is

potentially heterogeneous across families with different parental income levels. If

we employ a linear probability model as πj(x) = xβ, the partial effect implied is

β, which is identical across all families with different parental income levels. If we

employ the ordered probit or logit model with a linear g function, the partial effect

is given by
∂πj(x)

∂x
=
[
f(τj−1 − xβ)− f(τj − xβ)

]
β,

where f is the probability density function (PDF) of the standard normal distribu-

tion or the logistic distribution. This partial effect, although heterogeneous in x,

2The reader is referred to, e.g., Yan (2023) for a detailed discussion on the required identification
condition for discrete choice models.
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depends heavily on the shape of the PDF f under consideration. It could be the

case that partial effects as functions of x with certain shapes cannot be generated

from the probit or logit model. In contrast, our approach gives a partial effect

∂πj(x)

∂x
= [f(τj−1 − g(x))− f(τj − g(x)]

∂g(x)

∂x
.

By allowing for flexible forms of f and g, we are able to generate heterogeneous

partial effects with no restrictions on their shapes if it is viewed as a function of the

given covariates x.

Usually, the covariates consist of multiple factors, denoted as xi = (zi, wi)
′, where

zi is the factor whose heterogeneous impact is of primary interest, and wi consists of

all other factors considered under our study. The conditional average partial effect

(CAPE) of zi on income class probabilities πj may be formally defined as

CAPEj(z) = E
[
∂πj(zi, wi)

∂zi

∣∣∣∣zi = z

]
,

evaluated at a particular point z. As we vary the evaluation point z, we get the

conditional average partial effect as a function of z. Once we obtain an estimator

π̂j(x) for πj(x), we may estimate the heterogeneous average partial effect by

ĈAPEj(z) =
1

n

n∑
i=1

ρi
∂π̂j(z, wi)

∂z
Kh(z − zi),

where (ρi) are the survey weights,3 and Kh(·) = (1/h)K(·/h) is defined with a kernel

function K and bandwidth parameter h > 0. The kernel function is introduced here

to take the local average of ∂π̂j(z, wi)/∂z in a neighborhood of any given z. The

standard normal density function is commonly used for the kernel function in this

context.4

The same idea can be applied to study the heterogeneous treatment effect of cer-

tain treatments. For instance, consider a treatment such as a college degree for the

parents. It is expected that there exists a disparity in the probability of belonging to

3These weights are provided by our data set and used in our empirical study to adjust for sample
selection and non-random attrition, as will be explained later in Section 4.

4However, the uniform kernel, which is given by K(z) = 1{|z| ≤ 1/2} and Kh(z) = (1/h){|z| ≤
h/2}, makes it more clear what the kernel function does here. If it is used, we take the local average

of ∂π̂j(z, wi)/∂z to estimate ĈAPEj(z) over the values of (zi) such that z − h/2 ≤ zi ≤ z + h/2
for a small value of h.
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a specific income class between children whose parents have or have not obtained a

college degree. Moreover, it is plausible that such discrepancy in probabilities might

exhibit variations among children raised in families with diverse parental income

levels. Exploring these variations can offer insights into how parental college educa-

tion and other family background factors can interact with each other to determine

mobility.

To conduct such an analysis, we first partition our covariates into xi = (zi, di, wi).

Here, zi represents the contingency variable under investigation (in our example,

logged parental income), di is the treatment variable (1 if at least one of the parents

has a college degree, and 0 otherwise), and wi includes all other factors considered

in our study. We then compute the conditional average treatment effect (CATE) in

the probability gap given a particular parental income level z, formally defined as

CATEj(z) = E
[
πj(zi, 1, wi)− πj(zi, 0, wi)

∣∣zi = z
]
.

With a properly estimated income class probability function π̂j(x), we may estimate

the heterogeneous average treatment effect by

ĈATEj(z) =
1

n

n∑
i=1

ρi[π̂j(z, 1, wi)− π̂j(z, 0, wi)]Kh(z − zi), (2)

where we use a kernel function again for local averaging over (zi) around a given z.

To sum up, our general and flexible framework enables us to design analytical

tools to capture complex interactions among the factors without imposing functional

forms or predefined interaction terms commonly employed in traditional regression

techniques. Moreover, as will be shown later, machine learning techniques and tools

empower us to estimate and conduct statistical inference in a framework as general

and flexible as ours, even when we face a large number of potential factors and a

large sample size.

3.3 Maximum Likelihood Estimation

The nonparametric function g in the systematic component, the PDF f of the ran-

dom component, and the threshold values τ , τ = (τ1, . . . , τm−1)
′, can be jointly

estimated by maximum likelihood estimation for our nonparametric ordered multi-

nomial choice model. We define the maximum likelihood estimators ĝ, f̂ and τ̂ ,

10



τ̂ = (τ̂1, . . . , τ̂m−1)
′, for g, f and τ by

(
ĝ, f̂ , (τ̂j)

m−1
j=1

)
= argmax

g∈G,f∈F ,
τ∈Rm−1

n∑
i=1

ρiℓ(yi, xi, θ), (3)

where θ contains the parameters
(
g, f, τ

)
, ρi is the survey weight for the i-th obser-

vation introduced earlier, the log-likelihood function ℓ is given by

ℓ(yi, xi, θ) =
m∑
j=1

1{yi = j}
[
F (τj − g(xi))− F (τj−1 − g(xi))

]
(4)

with the convention τ0 = −∞ and τm = ∞, and F is the CDF of the distribution

given by f . In the main text, we estimate the PDF f of the random component

fully nonparametrically, as will be explained in detail below.5

The function g in the systematic component of our model is assumed to belong

to the class G of functions that are given by any linear combination of a set of basis

functions

K(·, xi) = exp
(
− κ∥ · −xi∥2

)
(5)

for i = 1, . . . , n, where κ > 0 is a scale parameter and ∥z∥2 = z′z denotes the

squared norm, in the so-called the reproducing kernel Hilbert space defined by K.

The function K we use here to generate a functional basis is referred to as a kernel

function.6 The scale parameter κ in the kernel function K is a tuning parameter and

has to be set a priori. We use a particular kernel function given in (5), which is most

commonly used and called the radial kernel, though other choices are also possible.

The class G of functions is known to be large enough to approximate any continuous

function g arbitrarily well over any compact subset of its domain uniformly. Using

a linear combination of the basis functions given by (5) to estimate the function

g means that we obtain our estimate for g essentially by a linear combination of

normal densities centered at (xi)
n
i=1 with the same variance σ2 = 1/(2κ).

5For comparison, we also consider the case with f being the PDF of the standard normal distri-
bution and the standard logistic distribution. See Appendix D.1 for the details. Their results are
similar, quantitatively as well as qualitatively, to the benchmark results based on a fully nonpara-
metric approach. Nevertheless, our fully nonparametric approach yields narrower confidence bands
in most cases.

6The kernel function is used here to generate a space of functions defined as a reproducing
kernel Hilbert space, and it is totally different from the kernel function we introduce earlier for
local averaging.

11



We let

g(x) =
n∑

j=1

cjK(x, xj) (6)

with a set of coefficients (cj)
n
j=1. It is clear that there exists a set of coefficients

(cj)
n
j=1 such that

g(xi) =
n∑

j=1

cjK(xi, xj)

for all i = 1, . . . , n. Indeed, if we define g◦ =
(
g(x1), . . . , g(xn)

)′
,K◦ =

(
K(xi, xj)

)n
i,j=1

and c = (c1, . . . , cn)
′, then we have

g◦ = K◦c, (7)

from which we may easily obtain such c as c = K−1
◦ g◦, since K◦ is invertible.

However, estimating the function g as in (6) with such c yields overfitting, and

we need to reduce the dimension of c through an appropriate regularization method.

Note that c includes n unknown parameters, i.e., as many as the sample size. To

avoid the problem, we simply set

c = V β

with p-dimensional parameter vector β, where V is an n× p matrix whose columns

are leading principal components of K◦, which are the p eigenvectors of K◦ corre-

sponding to its p largest eigenvalues (λi)
p
i=1. This amounts to approximating (7)

as

g◦ ≈ V Λβ, (8)

where Λ = diag (λ1, . . . , λp).
7 Our approach here is often used in machine learning.

See Appendix A for a more detailed discussion.

For the PDF f of the random component, we follow Gallant and Nychka (1987)

and choose f in the class F of density functions given by

f(u) =
1

w

(
1 +

q∑
k=1

αku
k

)2

ϕ(u), (9)

7Since K◦ is a symmetric matrix, we may represent it as K◦ = V◦Λ◦V
′
◦ , where Λ◦ is the diagonal

matrix of the eigenvalues (λi)
n
i=1 of K◦ and V◦ is the n×n-orthogonal matrix of the eigenvectors of

K◦ associated with the eigenvalues (λi)
n
i=1. The matrices V and Λ introduced here are n × p and

p× p leading submatrices of V◦ and Λ◦, respectively.
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where (αk)
q
k=1 are the coefficients of polynomial terms, ϕ is the standard normal

PDF, and w is a normalization constant given as a function of (αk)
q
k=1 introduced to

make f a proper PDF. A wide variety of densities can be approximated arbitrarily

well by a function of the form in (9). The class F of PDFs we consider here is

broad and includes, for instance, all Hermite polynomials of finite order. Hermite

polynomial approximation of the PDF f is particularly suitable in our model, where

we let f have unbounded support. We impose the mean zero restriction∫ ∞

−∞
uf(u)du = 0 (10)

for the PDF f . Our specification of f in (9) with the zero mean restriction in

(10) defines the likelihood function ℓ in (4) explicitly as a function of (αk)
q
k=1. The

interested reader is referred to Appendix B for more details.

Consequently, our problem of maximizing likelihood function in (3) reduces to

θ̂ = argmax
β∈Rp,α∈Rq ,
τ∈Rm−1

n∑
i=1

ρiℓ(yi, xi, θ),

where θ contains p + q + (m − 1) parameters in
(
β, α, τ). This is a completely

standard problem. Our approach is thus able to handle without extra difficulty the

situation when the dimension of the covariate is large and/or the sample size is large.

Regardless of how large the dimension of the covariate (xi) is, the dimensionality

of (xi) does not pose any problem to our approach. Note that we only need the

covariate (xi) in the evaluation of the kernel K(·, ·) in our approach, and the value

of the kernel function is dependent only on the norm ∥xi − xj∥ of the data pairs

(xi, xj).

To select the tuning parameters including the dimension p of the parameter β

the dimension q of the parameter α, which are needed to regularize our estimator

for g and estimate the error density function f , respectively, we use the cross-

validation, which is a standard method for selecting tuning parameters in non-

parametric statistics. In the i-th iteration of the cross-validation procedure, we

construct a sub-sample by leaving out the i-th observation, estimate the model with

this sub-sample, make predictions for the i-th observation based on the estimated

model, obtain the predicted probabilities
(
π̂ij
)m
j=1

for the m classes we consider, and

finally calculate the sum of squared errors of the predicted probabilities across m
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classes as
m∑
j=1

(π̂ij − πij)
2 ,

where
(
πij
)m
j=1

is a degenerate distribution that reflects the true class probabilities of

the i-th observation. Then we obtain the average of the above squared loss computed

for each i and select the parameter combination that yields the smallest average loss.

We search within the range of p = 1, . . . , 10 and q = 1, . . . , 5 and end up with p = 7

and q = 2. We set the scale parameter κ = 1/2 for the kernel function. This seems

to be a reasonable choice, given that we follow the usual practice of standardizing

the covariates so that they have mean zero and variance one. Setting κ = 1/2 means

that we use the standard normal densities as basis functions to estimate g. Finally,

we use a bootstrap procedure to obtain confidence intervals/bands of our estimates.

Details of our bootstrap procedure are presented in Appendix C. The asymptotic

distribution of our nonparametric estimator is not available.

4 Data

Our sample is constructed from the Panel Study of Income Dynamics (PSID). PSID

is a comprehensive longitudinal household survey in the United States, tracking

individuals and their descendants over several decades and containing variables on

the economic, health, educational, and social behavior of individuals and families.

Given the survey’s time span and the fact that it tracks families across generations,

it is one of the most widely used data sets in the study of intergenerational mobility.

The PSID was initiated in 1968 and contains annual data from year 1968 to 1997.

Data is available biannually after 1997. We focus on a sample from the years 1968 to

1997 to avoid any inconsistency due to the change in the survey design. Our sample

includes individuals who reached an age between 30 to 35 years old (inclusive) during

any of our sample periods (1968-1997). We also track their parents and ultimately

we consider child-parent pairs in conducting our analysis. To reflect the fact that

we are studying such pairs, we shall refer to the individuals in our study as the child

from now on.

Due to sample size constraints, we use the logged average household income of

the head and spouse within the age range of 30 to 35 (inclusive) for the child as a

measure of the child’s overall economic status during adulthood. We use household

income instead of personal income due to the economic partnership and risk-sharing
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function of marriage, by which we think that an individual’s economic status is

better reflected by the household income instead of his or her personal income. We

adopt the Pew Research Center’s methodology to categorize children into low, mid-

dle, and high-income classes (Pew Research Center, 2020). Specifically, we calculate

the median income of the children and set the threshold for low income at two-thirds

of this median income and for high income at twice the median income.8 The highest

income for a low-income family is $14,147 and the lowest income for a high-income

family is $42,442, both in 1977 dollars.

The factors we propose that may affect the economic status of an individual are

parental income, parental age at childbirth, parental college education, child gender,

child race, child college education, and child health condition at birth. We measure

parental income by the parents’ logged average income during the period when the

child is between 15 and 20 years old (inclusive). We choose this time span for two

reasons. First, it reflects the parents’ economic situation during the child’s period

of dependency, which significantly influences the child’s economic status rather than

the parents’ economic condition after the child becomes economically independent.

Given that many children leave home for college or work after adolescence, we focus

on income up until the child reaches the age of 20. Second, due to sample size

considerations, we are not able to use the parents’ income throughout the entire

childhood of the individual. We therefore strike a balance and consider this specific

time span.9

We also consider parents’ average age when the child was born. Reasons we

consider this include parental maturity and location of parents in the life cycle of

income and overall family resources.

It should be noted that income is top-coded in the PSID. Also, there are in-

stances of zero and negative incomes in the data, which could potentially indicate

measurement errors. Our method is robust in handling this censored data issue for

the dependent variable as we categorize children into income classes rather than

analyzing specific income levels. For parental income used as one of the covariates,

we simply set the zero or negative incomes to one in our empirical analysis, as often

8In Appendix D.3, we also present results using tertiles, quartiles, and quintiles to classify child
income groups. Classification based on quantiles implies constant shares of income groups across
generations, whereas the classification used here allows the shares of income groups to vary across
generations.

9We also present in Appendix D.2 the results using the age-10 to 15 logged parental income as
an alternative measure of parental income. The two measures of parental income generate similar
results.
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Table 1: Summary Statistics of Variables

variable type mean std min max

log child income continuous 9.833 0.904 0.000 11.724
low income class dummy 0.260 0.438 0.000 1.000
middle income class dummy 0.664 0.472 0.000 1.000
high income class dummy 0.076 0.265 0.000 1.000

log parental income continuous 9.813 1.275 0.000 13.016
male dummy 0.508 0.500 0.000 1.000
child college degree dummy 0.393 0.488 0.000 1.000
parental college degree dummy 0.312 0.463 0.000 1.000
black dummy 0.060 0.237 0.000 1.000
parental age at birth continuous 28.030 5.354 12.000 46.000
underweight at birth dummy 0.049 0.216 0.000 1.000

done in the studies of intergenerational mobility.

Our benchmark sample consists of a total of 962 child-parent pairs. Survey

weights provided by PSID are also used to adjust for sample selection (oversampling

of low-income families) and non-random attrition in the PSID survey. Income is

deflated by the Consumer Price Index for All Urban Consumers (CPI-U-RS, 1977

= 100), following the usual practice. Table 1 provides the summary statistics of the

variables we use in our study.

5 Empirical Results

5.1 Effects of Single Factors

We first employ our framework to analyze heterogeneous effects on children by

considering gender, race, and parental education as separate factors, conditioning

on different parental income levels. We do this by estimating a single nonparametric

multinomial choice model and then integrating out each variable except income and

the factor under consideration using (2).

Figure 1 plots the probability differentials between male and female children, as

functions of parental income. In each figure, the vertical axis measures the probabil-

ity differential between male and female children, and the horizontal axis measures

parental income. Each parental income/gender pair produces a probability differ-

ential for membership, by the child, in each of the income classes. The upper-left

panel plots the three probability differentials of the child’s membership in the low-,
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Figure 1: Probability Differentials Between Males and Females, as Functions of
Parental Income

Notes: This figure presents the probability differentials of being in various income classes between
male and female children, as functions of parental income. The upper-left panel displays the
probability differentials of being in the low-, middle-, and high-income classes within one single plot.
The upper-right, lower-left, and lower-right panels depict the three differential curves individually,
each accompanied by its 90% and 95% pointwise confidence bands delineated by dark and light
gray areas, respectively.

middle-, and high-income classes for comparisons based on their parents’ incomes.

The next three panels plot the three differentials separately with confidence bands.

The light and dark gray areas correspond to the 95% and 90% confidence bands,

respectively.

The plots show that males, compared to females, exhibit slightly lower proba-

bilities of entering the low-income class and slightly higher probabilities of entering

the high-income class. However, these differentials are generally not statistically

significant at the 0.1 significance level, except for children from the poorest families.

For those, we observe that males are less (more) likely than females to be in the

low (middle) category when they were born into a very poor family as shown in the

upper-right and lower-left panels in Figure 1. The effects are small, but statistically
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Figure 2: Probability Differentials Between Blacks and Non-Blacks, as Functions of
Parental Income

Notes: This figure presents the probability differentials of being in various income classes between
Black and non-Black children, as functions of parental income. The upper-left panel displays the
probability differentials of being in the low-, middle-, and high-income classes within one single plot.
The upper-right, lower-left, and lower-right panels depict the three differential curves individually,
each accompanied by its 90% and 95% pointwise confidence bands delineated by dark and light
gray areas, respectively.

significant. For the probability differentials of being in the high-income category,

the gender effect is positive for all parental income levels but the magnitude is big-

ger for those with richer parents. However, the effect is not statistically significant

at the 0.1 level. Overall, at best we find weak evidence that parental income has

differential effects on the income class of offspring of different genders.

Figure 2 illustrates the probability differentials between Black and non-Black

children across different parental income levels. The plots show that Black individ-

uals have a higher likelihood of falling into the low-income class and face a com-

parative disadvantage in accessing the middle- and high-income classes compared

to their non-Black counterparts. All these racial differentials are statistically sig-

nificant. The summary of the differences is straightforward. First, for all parental
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Figure 3: Probability Differentials Between Children with Parents as College and
Non-college Graduates, as Functions of Parental Income

Notes: This figure presents the probability differentials of being in various income classes between
children whose parents have a college degree and those whose parents do not, as functions of parental
income. The upper-left panel displays the probability differentials of being in the low-, middle-,
and high-income classes within one single plot. The upper-right, lower-left, and lower-right panels
depict the three differential curves individually, each accompanied by its 90% and 95% pointwise
confidence bands delineated by dark and light gray areas, respectively.

income levels, Black children are substantially more likely to reside in the low-income

category than comparable non-Blacks and are less likely to reside in either the mid-

dle or higher-income categories than non-Blacks. By implication, Black families

are less able to lock in middle or high incomes than non-Black families while the

low-income category is harder to escape for Blacks. These results on lower rates of

upward mobility for Blacks are qualitatively similar to Bhattacharya and Mazumder

(2011) and the results on relatively higher rates of downward mobility for Blacks are

qualitatively similar to Chetty et al. (2020). Our ability to generate similar findings

when one allows for distinct heterogeneity variables across families is an important

corroboration of the salience of race as a distinct source of disparities in mobility.
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Figure 4: Probability Differentials Between Children with Parents as College and
Non-College Graduates, as Functions of Parental Age at Childbirth

Notes: This figure presents the probability differentials of being in various income classes between
children whose parents have a college degree and those whose parents do not, as functions of
parental age at childbirth. The upper-left panel displays the probability differentials of being in
the low-, middle-, and high-income classes within one single plot. The upper-right, lower-left, and
lower-right panels depict the three differential curves individually, each accompanied by its 90%
and 95% pointwise confidence bands delineated by dark and light gray areas, respectively.

Figure 3 illustrates the probability differentials based on parents’ possession of

a college degree, relative to those without, as a function of parental income. These

results reveal a significant contrast in the probability of a child ending up in the lower

income category when the parents have not attended college versus when they have.

This effect is especially large for families whose incomes lie in the middle-to-high

range of income support, with college degrees making low income among children 5

percent less likely than otherwise. This result suggests a complementarity between

parental income and parental education.

Figure 4 illustrates the probability differentials between children whose parents

have or have not obtained a college degree when the average age of parents at
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Figure 5: Probability Differentials (Multiple Treatments), as Functions of Parental
Income

Notes: This figure presents the probability differentials of being in various income classes between
children from non-Black families whose parents have a college degree and were aged 30 at child-
birth, and those from Black families whose parents do not have a college degree and were aged
18 at childbirth, as functions of parental income. The upper-left panel displays the probability
differentials of being in the low-, middle-, and high-income classes within one single plot. The
upper-right, lower-left, and lower-right panels depict the three differential curves individually, each
accompanied by its 90% and 95% pointwise confidence bands delineated by dark and light gray
areas, respectively.

childbirth is allowed to vary. Complementing Figure 3, Figure 4 reveals that the

disparities in income class probabilities due to parental college education are most

pronounced when parents give birth during their late twenties to mid-thirties.

5.2 Combining Factors

Combining our single factor analyses in the previous section reveals the existence

of family background configurations that make it challenging for a child to avoid

the low-income category. Our findings from these analyses indicate the presence

of a privileged group of children, originating from non-Black families with college-
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educated parents, and born when their parents are around 30. This group of children

contrasts sharply with children who are Black, born to parents at the age of 18, and

without college degrees.

Figure 5 presents the probability differentials as a function of parental incomes.

Particularly striking are the results in the upper-right panel, where the probability

of a child being in the low-income category consistently remains 10 percent higher

for our disadvantaged category across all family income levels. For middle-to-high-

income categories, this disparity exceeds 20 percent. These findings provide further

insight into how the probability of downward mobility varies across different demo-

graphic groups.

6 Conclusions

This paper proposes a fully nonparametric multinomial outcome model to study

intergenerational income mobility. Our approach effectively captures the nonlin-

ear and interactive effects of various factors on personal income status and societal

mobility levels. It demonstrates strong computational efficiency and robustness,

particularly suitable for analyzing large datasets with high-dimensional covariates.

We affirm race, parental education, and parental childbearing age as crucial deter-

minants influencing intergenerational mobility. Each of these factors significantly

impacts the predictive power of parental income for the incomes of children. These

findings are all consistent with the overall state of the mobility literature. The ro-

bustness of these claims to the general nonparametric framework we set up reinforces

the vision that they simultaneously matter.

Our findings, which highlight the distinct relationships shaped by race, parental

education, and parental childbearing age, underscore the importance of systemat-

ically investigating bottlenecks in intergenerational mobility dynamics. By bottle-

necks, we refer to a set of family background variables that perpetuate low incomes

across generations, where higher incomes alone may not suffice to break such persis-

tence. The differences between children of non-Black families with college-educated

parents, and born to parents in their early 30s as opposed to children who are

Black, born to parents around 18, without college degrees are stark. These speak

to the idea of bottlenecks in the income dynamics where some set of conditions

during childhood makes socioeconomic successes in income and education highly

unlikely. These phenomena represent a natural stochastic generalization of poverty
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trap models. Currently, we are actively pursuing further research on this topic.

While our analysis is statistical and so does not directly identify underlying

mechanisms, we note that it does speak to general aspects of theorizing about inter-

generational mobility. First, if one contrasts the classical economic models of mobil-

ity due to Becker and Tomes (1979, 1986) with the classic sociological perspective

associated with the Wisconsin Status Attainment Model, Sewell and Portes (1969)

and Sewell and Ohlendorf (1970), we think the interactions between educational

status, ethnicity and age suggest the importance of placing multiple channels at

the heart of the sociology approach. This highlights the value of recent advances

in formal economic mobility models that include social and psychological factors,

see Durlauf et al. (2022) for elaboration. Second, the stark contrasts we estimate

between the effects of parental income on offspring for parents with different ethnic-

ities, educations, and ages are suggestive of mechanisms that apply to groups rather

than individuals. By this, theories of categorical inequality (Tilly, 1998; Massey,

2007), or theories in economics based on group memberships (Durlauf, 1999, 2006;

Darity, 2022) are suggestive of the types of patterns we find. To be clear, to say

more will require even richer models than we consider here. One natural path in-

volves explicit attention to neighborhood effects along the lines pursued in Wodtke

et al. (2016). Expanding our tools in these directions is underway.
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A Estimation of Systematic Component

Let our covariates (xi) be r-dimensional and take values in a subset D of Rr. The

function g on D in the systematic component of our ordered choice model is esti-

mated as a function in the reproducing kernel Hilbert space (RKHS) HK defined by

a kernel K : D ×D → R

K(x, y) = exp
(
−κ∥x− y∥2

)
,

where κ > 0 is the scale parameter, x, y ∈ D and ∥x− y∥2 = (x− y)′(x− y) denotes

the squared distance between x and y in D. This kernel function is symmetric, i.e.,

K(x, y) = K(y, x) for all x, y ∈ D, and positive definite, i.e.,

n∑
i=1

n∑
j=1

cicjK(xi, xj) > 0

for any c1, . . . , cn not all identically zero and for all (xi) in D. These two properties

are essential in the sense that we may use any continuous function to define a

RKHS if it satisfies these properties. Here we choose the most commonly used

kernel, which is often called the radial kernel, although many other choices of kernel

are also possible.

The RKHS HK defined by the kernel K is a vector space involving all functions

given as linear combinations of

K(·, x1), . . . ,K(·, xn) (11)

for all choices of n and x1, . . . , xn ∈ D, which is endowed with the inner product

⟨·, ·⟩K defined by

⟨K(·, x),K(·, y)⟩K = K(x, y) (12)

for any x, y ∈ D. The value K(x, y) of kernel function K may thus be obtained by

taking the inner product of two functions K(·, x) and K(·, y) for each (x, y) ∈ D×D,

and therefore, the kernel function K may be reproduced from the inner product of

functions in HK . For this reason, HK is called a RKHS. The RKHS HK defined

by the radial kernel K introduced above includes a wide range of functions. It is

indeed known that any continuous function can be approximated arbitrarily well by

a function in this RKHS uniformly on any compact subset of D.
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To estimate the function g defining the systematic component of our ordered

choice model, we assume g ∈ HK and write it as

g(x) =

n∑
j=1

cjK(x, xj) (13)

for x ∈ D, where (cj)
n
j=1 are a set of unknown parameters. This is the most flexible

specification of g. Since g(x) is observed only at n-number of x’s given by (xi)
n
i=1,

we may choose n-unknown parameters (cj)
n
j=1 appropriately to have a perfect fit for(

g(xi)
)
. Note that g(xi) =

∑n
j=1 cjK(xi, xj) for i = 1, . . . , n, which we may write

as

g◦ = K◦c

in matrix form, where g◦ =
(
g(x1), . . . , g(xn)

)′
, c = (c1, . . . , cn)

′ and K◦ is an n× n

invertible matrix defined as

K◦ =


K(x1, x1) · · · K(x1, xn)

...
. . .

...

K(xn, x1) · · · K(xn, xn)

 .

Here the entries ofK◦ are given by the inner products of basis functions
(
K(·, xj)

)n
j=1

for an n-dimensional subspace of HK , and such a matrix is generally referred to as

a Gram matrix.

Let

g∗(x) =
(
K(x, x1), . . . ,K(x, xn)

)
c∗ (14)

with c∗ = K−1
◦ g◦, so that g∗(xi) = g(xi) for all i = 1, . . . , n. Then it follows from

(12) that 〈
K(·, xi), g(·)− g∗(·)

〉
K

= g(xi)− g∗(xi) = 0

for all i = 1, . . . , n, which implies that g − g∗ is orthogonal to the n-dimensional

subspace VK ofHK spanned by the basis
(
K(·, xi)

)n
i=1

introduced in (11). Therefore,

g∗ is the orthogonal projection of g on VK in HK .

However, the specification g∗ of g in (14) is too flexible, which needs to be

regularized. There are several ways of regularizing, one of which is to introduce a
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penalty term given by

λ∥g∥2K = λ

〈
n∑

i=1

ciK(·, xi),
n∑

j=1

cjK(·, xj)

〉
K

= λc′K◦c

obtained from (12) and (13) with an appropriately chosen penalty parameter λ > 0.

This is usually done in the regression model. For our discrete choice model, we use

a simpler, but known to be equally effective, method based on rank reduction of

the Gram matrix K◦ defined above. The symmetric matrix K◦ admits the spectral

representation given by

K◦ = V◦Λ◦V
′
◦ ,

where Λ◦ is a diagonal matrix of the eigenvalues λ1 ≥ · · · ≥ λn > 0 of K◦ and

V◦ is an orthogonal matrix with columns given by the corresponding eigenvectors

v1, . . . , vn of K. The matrix K◦ of rank n can be best approximated by the matrix

K• = V ΛV ′

of rank p, p < n, where V is a semi-orthogonal matrix given by the n × p leading

submatrix of V◦ and Λ is a diagonal matrix given by the p× p leading submatrix of

Λ◦. Accordingly, we restrict the unknown parameter c introduced earlier to be in a

p-dimensional subspace of Rn spanned by v1, . . . , vp and write c = V β for a newly

defined unknown parameter β in Rp. Then we have

g◦ = K◦c ≈ K•c = V Λβ

with an p-dimensional unknown parameter β. We may easily obtain the maximum

likelihood estimator β̂ of β along with the maximum likelihood estimator α̂ of the

other parameter α defined in the next section. Finally, we have

g(x) =
(
K(x, x1), . . . ,K(x, xn)

)
c =

(
K(x, x1), . . . ,K(x, xn)

)
V β,

which may be estimated by

ĝ(x) =
(
K(x, x1), . . . ,K(x, xn)

)
V β̂

for any x ∈ D. In our application, p is chosen using the standard leave-one-out
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cross-validation. Typically, p is chosen to be substantially smaller than n.

B Estimation of Random Component Distribution

Stewart (2005) and Yan (2023) show that the CDF F in the likelihood function ℓ

in (4) and the zero mean restriction on the PDF f in (10) can be written explicitly

as functions of α = (α1, . . . , αq)
′. In fact, Let

mk(u) = ukϕ(u) and mk =

∫ ∞

−∞
mk(u)du,

where mk is the k-th moment of the standard normal distribution which is given

explicitly as

m0 = 1, m1 = 0 and mk = (k − 1)mk−2 for k ≥ 2.

Also, define the cumulative k-th moment function of the standard normal distribu-

tion as

Mk(u) =

∫ u

−∞
mk(v)dv,

which is given explicitly as

M0(u) = Φ(u), M1(u) = −ϕ(u), M2(u) = −uϕ(u) + Φ(u)

Mk(u) = u
[
Mk−1(u)− (k − 2)Mk−3(u)

]
+ (k − 1)Mk−2(u) for k ≥ 3

recursively, where Φ is the standard normal CDF. Finally, we let

ck(α) =

k∧q∑
ℓ=0∨(k−q)

αkαk−ℓ,

where ∨ and ∧ denote the maximum and minimum, respectively.

Now we may rewrite f as

f(u) =

[
2q∑
k=0

ck(α)mk

]−1 2q∑
k=0

ck(α)mk(u),
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from which it follows that

F (u) =

[
2q∑
k=0

ck(α)mk

]−1 2q∑
k=0

ck(α)Mk(u),

and the zero mean restriction as

2q∑
k=0

ck(α)mk+1 = 0.

These closed-form representations of the CDF F and the zero mean restriction on

the PDF f make our maximum likelihood procedure extremely simple and straight-

forward. In particular, our maximum likelihood procedure does not require any

numerical integration, which is generally necessary for the nonparametric estima-

tion of discrete choice models.

C Bootstrap Details

We use bootstrap to obtain confidence bands for the heterogeneous treatment effects

presented in Section 5. In the following, we describe some details of our bootstrap

procedure.

Let θ be a parameter of interest and θ̂ its estimates from the data. To obtain its

bootstrap confidence interval, in the bootstrap iteration b, we first resample from

the original data, and estimate θ with the resampled data using the same procedures

as those used for the estimation with the original data. Denote the b-th estimate

with the resampled data by θ̂∗b . Repeat this procedure B times and we obtain a

vector θ̂∗ = (θ̂∗1, θ̂
∗
2, . . . , θ̂

∗
B) of bootstrap estimates for θ.

For r ∈ (0, 1/2), if θ is one-dimensional, we obtain the r/2 and (1−r/2) quantiles

of θ̂∗, denoted by θ̂∗l and θ̂∗u, respectively. Also, we calculate the mean of θ̂∗, and

denote it by θ̄∗. We then construct[
θ̂ + θ̂∗l − θ̄∗, θ̂ + θ̂∗u − θ̄∗

]
as our bootstrapped 100(1− r)% confidence interval for θ.

If θ is a function as in our case of heterogeneous treatment effect, we obtain from

θ̂∗(z) = (θ̂∗1(z), θ̂
∗
2(z), . . . , θ̂

∗
B(z)) the pointwise quantiles θ̂∗l (z) and θ̂∗u(z) for each z,
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and construct pointwise confidence interval as[
θ̂(z) + θ̂∗l (z)− θ̄∗(z), θ̂(z) + θ̂∗u(z)− θ̄∗(z)

]
.

D Robustness Checks

D.1 Alternative Specifications of Random Term Distribution

Figures 6 to 10 show the probability differentials when the density of the random

term ui is set to be the density of the standard Gaussian distribution as in the probit

model. Figures 11 to 15 show the probability differentials when the density of ui

is set to be the density of the standard logistic distribution as in the logit model.

In both alternative settings of the distribution of ui, the results are very similar,

both qualitatively and quantitatively, to the benchmark results obtained with our

fully nonparametric approach. All conclusions in the main text therefore remain

intact. We note that our approach yields narrower confidence bands in most cases,

suggesting that our fully nonparametric approach can provide more precise interval

estimates.

D.2 Alternative Measures of Parental Income

Figures 16 to 20 present the probability differentials using average parental income

during middle childhood (age 10 to 15, both inclusive) as an alternative measure of

parental income in the model. The results from using the two measures are similar

to each other. All conclusions in the main text are not changed.

D.3 Alternative Income Class Thresholds

We also consider using alternative thresholds to classify child adult incomes. In

particular, we classify the observed child income into three classes using tertiles.

The main difference between this classification and the one in our main text is that

classification by tertiles leads to a constant relative aggregate size of all three income

classes (each constituting one-third), while the classification in our main text allows

the relative size of each class to change as one generation transitions to the next.

We also follow one of the referees’ suggestions to consider classification based on

quartiles and quintiles for finer categorizations.
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Figures 21 through 25 present the probability differentials using tertiles to clas-

sify observed child income. The patterns for the estimated probability differentials

of being in the low-income class remain roughly the same as those reported in the

main text. However, the magnitude of the probability differentials for being in the

middle-income class diminishes to near zero, while the magnitude of the probability

differentials for being in the high-income class increases significantly. This is likely

because part of the middle-income children under the benchmark classification are

reclassified as high income under this new classification. In our judgment, the bench-

mark classification in the text better captures the substantive distinctions between

lower, middle, and upper income classes than equal divisions of the income distribu-

tion. Specifically, the large-middle income category in the benchmark specification

implicitly allows the data to reveal distinctions between affluence and disadvantage

that are obscured under equal income distribution divisions.

Similar patterns appear in the results using quartiles and quintiles for classifi-

cation. Figures 26 through 30 present the probability differentials using quartiles

to classify observed child income, and Figures 31 through 35 present the proba-

bility differentials using quintiles. In both cases, the magnitude of the probability

differentials for being in the lowest and highest income classes increases, while the

magnitude of the probability differentials for being in the middle two or three income

classes decreases.
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Figure 6: Probability Differentials Between Males and Females, as Functions of
Parental Income

Notes: This figure presents the probability differentials of being in various income classes between
male and female children, as functions of parental income, with probit random term. The upper-left
panel displays the probability differentials of being in the low-, middle-, and high-income classes
within one single plot. The upper-right, lower-left, and lower-right panels depict the three dif-
ferential curves individually, each accompanied by its 90% and 95% pointwise confidence bands
delineated by dark and light gray areas, respectively.
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Figure 7: Probability Differentials Between Blacks and Non-Blacks, as Functions of
Parental Income

Notes: This figure presents the probability differentials of being in various income classes between
Black and non-Black children, as functions of parental income, with probit random term. The
upper-left panel displays the probability differentials of being in the low-, middle-, and high-income
classes within one single plot. The upper-right, lower-left, and lower-right panels depict the three
differential curves individually, each accompanied by its 90% and 95% pointwise confidence bands
delineated by dark and light gray areas, respectively.
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Figure 8: Probability Differentials Between Children with Parents as College and
Non-college Graduates, as Functions of Parental Income

Notes: This figure presents the probability differentials of being in various income classes between
children whose parents have a college degree and those whose parents do not, as functions of parental
income, with probit random term. The upper-left panel displays the probability differentials of being
in the low-, middle-, and high-income classes within one single plot. The upper-right, lower-left,
and lower-right panels depict the three differential curves individually, each accompanied by its
90% and 95% pointwise confidence bands delineated by dark and light gray areas, respectively.
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Figure 9: Probability Differentials Between Children with Parents as College and
Non-College Graduates, as Functions of Parental Age at Childbirth

Notes: This figure presents the probability differentials of being in various income classes between
children whose parents have a college degree and those whose parents do not, as functions of
parental age at childbirth, with probit random term. The upper-left panel displays the probability
differentials of being in the low-, middle-, and high-income classes within one single plot. The
upper-right, lower-left, and lower-right panels depict the three differential curves individually, each
accompanied by its 90% and 95% pointwise confidence bands delineated by dark and light gray
areas, respectively.
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Figure 10: Probability Differentials (Multiple Treatments), as Functions of Parental
Income

Notes: This figure presents the probability differentials of being in various income classes between
children from non-Black families whose parents have a college degree and were aged 30 at child-
birth, and those from Black families whose parents do not have a college degree and were aged
18 at childbirth, as functions of parental income, with probit random term. The upper-left panel
displays the probability differentials of being in the low-, middle-, and high-income classes within
one single plot. The upper-right, lower-left, and lower-right panels depict the three differential
curves individually, each accompanied by its 90% and 95% pointwise confidence bands delineated
by dark and light gray areas, respectively.
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Figure 11: Probability Differentials Between Males and Females, as Functions of
Parental Income

Notes: This figure presents the probability differentials of being in various income classes between
male and female children, as functions of parental income, with logit random term. The upper-left
panel displays the probability differentials of being in the low-, middle-, and high-income classes
within one single plot. The upper-right, lower-left, and lower-right panels depict the three dif-
ferential curves individually, each accompanied by its 90% and 95% pointwise confidence bands
delineated by dark and light gray areas, respectively.
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Figure 12: Probability Differentials Between Blacks and Non-Blacks, as Functions
of Parental Income

Notes: This figure presents the probability differentials of being in various income classes be-
tween Black and non-Black children, as functions of parental income, with logit random term. The
upper-left panel displays the probability differentials of being in the low-, middle-, and high-income
classes within one single plot. The upper-right, lower-left, and lower-right panels depict the three
differential curves individually, each accompanied by its 90% and 95% pointwise confidence bands
delineated by dark and light gray areas, respectively.
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Figure 13: Probability Differentials Between Children with Parents as College and
Non-college Graduates, as Functions of Parental Income

Notes: This figure presents the probability differentials of being in various income classes between
children whose parents have a college degree and those whose parents do not, as functions of parental
income, with logit random term. The upper-left panel displays the probability differentials of being
in the low-, middle-, and high-income classes within one single plot. The upper-right, lower-left,
and lower-right panels depict the three differential curves individually, each accompanied by its
90% and 95% pointwise confidence bands delineated by dark and light gray areas, respectively.

41



Figure 14: Probability Differentials Between Children with Parents as College and
Non-College Graduates, as Functions of Parental Age at Childbirth

Notes: This figure presents the probability differentials of being in various income classes between
children whose parents have a college degree and those whose parents do not, as functions of
parental age at childbirth, with logit random term. The upper-left panel displays the probability
differentials of being in the low-, middle-, and high-income classes within one single plot. The
upper-right, lower-left, and lower-right panels depict the three differential curves individually, each
accompanied by its 90% and 95% pointwise confidence bands delineated by dark and light gray
areas, respectively.
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Figure 15: Probability Differentials (Multiple Treatments), as Functions of Parental
Income

Notes: This figure presents the probability differentials of being in various income classes between
children from non-Black families whose parents have a college degree and were aged 30 at childbirth,
and those from Black families whose parents do not have a college degree and were aged 18 at
childbirth, as functions of parental income, with logit random term. The upper-left panel displays the
probability differentials of being in the low-, middle-, and high-income classes within one single plot.
The upper-right, lower-left, and lower-right panels depict the three differential curves individually,
each accompanied by its 90% and 95% pointwise confidence bands delineated by dark and light
gray areas, respectively.
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Figure 16: Probability Differentials Between Males and Females, as Functions of
Parental Income

Notes: This figure presents the probability differentials of being in various income classes between
male and female children, as functions of parental income, using parents’ average logged income
during the period when the child is between 10 and 15 years old (inclusive) as an alternative measure
of parental income. The upper-left panel displays the probability differentials of being in the low-,
middle-, and high-income classes within one single plot. The upper-right, lower-left, and lower-
right panels depict the three differential curves individually, each accompanied by its 90% and 95%
pointwise confidence bands delineated by dark and light gray areas, respectively.
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Figure 17: Probability Differentials Between Blacks and Non-Blacks, as Functions
of Parental Income

Notes: This figure presents the probability differentials of being in various income classes between
Black and non-Black children, as functions of parental income, using parents’ average logged income
during the period when the child is between 10 and 15 years old (inclusive) as an alternative measure
of parental income. The upper-left panel displays the probability differentials of being in the low-,
middle-, and high-income classes within one single plot. The upper-right, lower-left, and lower-
right panels depict the three differential curves individually, each accompanied by its 90% and 95%
pointwise confidence bands delineated by dark and light gray areas, respectively.
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Figure 18: Probability Differentials Between Children with Parents as College and
Non-college Graduates, as Functions of Parental Income

Notes: This figure presents the probability differentials of being in various income classes between
children whose parents have a college degree and those whose parents do not, as functions of
parental income, using parents’ average logged income during the period when the child is between
10 and 15 years old (inclusive) as an alternative measure of parental income. The upper-left panel
displays the probability differentials of being in the low-, middle-, and high-income classes within
one single plot. The upper-right, lower-left, and lower-right panels depict the three differential
curves individually, each accompanied by its 90% and 95% pointwise confidence bands delineated
by dark and light gray areas, respectively.
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Figure 19: Probability Differentials Between Children with Parents as College and
Non-College Graduates, as Functions of Parental Age at Childbirth

Notes: This figure presents the probability differentials of being in various income classes between
children whose parents have a college degree and those whose parents do not, as functions of parental
age at childbirth, using parents’ average logged income during the period when the child is between
10 and 15 years old (inclusive) as an alternative measure of parental income. The upper-left panel
displays the probability differentials of being in the low-, middle-, and high-income classes within
one single plot. The upper-right, lower-left, and lower-right panels depict the three differential
curves individually, each accompanied by its 90% and 95% pointwise confidence bands delineated
by dark and light gray areas, respectively.
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Figure 20: Probability Differentials (Multiple Treatments), as Functions of Parental
Income

Notes: This figure presents the probability differentials of being in various income classes between
children from non-Black families whose parents have a college degree and were aged 30 at childbirth,
and those from Black families whose parents do not have a college degree and were aged 18 at
childbirth, as functions of parental income, using parents’ average logged income during the period
when the child is between 10 and 15 years old (inclusive) as an alternative measure of parental
income. The upper-left panel displays the probability differentials of being in the low-, middle-,
and high-income classes within one single plot. The upper-right, lower-left, and lower-right panels
depict the three differential curves individually, each accompanied by its 90% and 95% pointwise
confidence bands delineated by dark and light gray areas, respectively.
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Figure 21: Probability Differentials Between Males and Females, as Functions of
Parental Income

Notes: This figure presents the probability differentials of being in various income classes between
male and female children, as functions of parental income, with income groups classified using
tertiles. The upper-left panel displays the probability differentials of being in the 1st-, 2nd-, and
3rd-tertiles of incomes within one single plot. The upper-right, lower-left, and lower-right panels
depict the three differential curves individually, each accompanied by its 90% and 95% pointwise
confidence bands delineated by dark and light gray areas, respectively.
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Figure 22: Probability Differentials Between Blacks and Non-Blacks, as Functions
of Parental Income

Notes: This figure presents the probability differentials of being in various income classes between
Black and non-Black children, as functions of parental income, with income groups classified using
tertiles. The upper-left panel displays the probability differentials of being in the 1st-, 2nd-, and
3rd-tertiles of incomes within one single plot. The upper-right, lower-left, and lower-right panels
depict the three differential curves individually, each accompanied by its 90% and 95% pointwise
confidence bands delineated by dark and light gray areas, respectively.
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Figure 23: Probability Differentials Between Children with Parents as College and
Non-college Graduates, as Functions of Parental Income

Notes: This figure presents the probability differentials of being in various income classes between
children whose parents have a college degree and those whose parents do not, as functions of parental
income, with income groups classified using tertiles. The upper-left panel displays the probability
differentials of being in the 1st-, 2nd-, and 3rd-tertiles of incomes within one single plot. The
upper-right, lower-left, and lower-right panels depict the three differential curves individually, each
accompanied by its 90% and 95% pointwise confidence bands delineated by dark and light gray
areas, respectively.
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Figure 24: Probability Differentials Between Children with Parents as College and
Non-College Graduates, as Functions of Parental Age at Childbirth

Notes: This figure presents the probability differentials of being in various income classes between
children whose parents have a college degree and those whose parents do not, as functions of parental
age at childbirth, with income groups classified using tertiles. The upper-left panel displays the
probability differentials of being in the 1st-, 2nd-, and 3rd-tertiles of incomes within one single plot.
The upper-right, lower-left, and lower-right panels depict the three differential curves individually,
each accompanied by its 90% and 95% pointwise confidence bands delineated by dark and light
gray areas, respectively.

52



Figure 25: Probability Differentials (Multiple Treatments), as Functions of Parental
Income

Notes: This figure presents the probability differentials of being in various income classes between
children from non-Black families whose parents have a college degree and were aged 30 at child-
birth, and those from Black families whose parents do not have a college degree and were aged
18 at childbirth, as functions of parental income, with income groups classified using tertiles. The
upper-left panel displays the probability differentials of being in the 1st-, 2nd-, and 3rd-tertiles of
incomes within one single plot. The upper-right, lower-left, and lower-right panels depict the three
differential curves individually, each accompanied by its 90% and 95% pointwise confidence bands
delineated by dark and light gray areas, respectively.
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Figure 26: Probability Differentials Between Males and Females, as Functions of
Parental Income

Notes: This figure presents the probability differentials of being in various income classes between
male and female children, as functions of parental income, with income groups classified using
quartiles. The upper-left panel displays the probability differentials of being in the 1st-, 2nd-, 3rd-,
and 4th-quartiles of incomes within one single plot. The rest panels depict the four differential
curves individually, each accompanied by its 90% and 95% pointwise confidence bands delineated
by dark and light gray areas, respectively.
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Figure 27: Probability Differentials Between Blacks and Non-Blacks, as Functions
of Parental Income

Notes: This figure presents the probability differentials of being in various income classes between
Black and non-Black children, as functions of parental income, with income groups classified using
quartiles. The upper-left panel displays the probability differentials of being in the 1st-, 2nd-, 3rd-,
and 4th-quartiles of incomes within one single plot. The rest panels depict the four differential
curves individually, each accompanied by its 90% and 95% pointwise confidence bands delineated
by dark and light gray areas, respectively.
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Figure 28: Probability Differentials Between Children with Parents as College and
Non-college Graduates, as Functions of Parental Income

Notes: This figure presents the probability differentials of being in various income classes between
children whose parents have a college degree and those whose parents do not, as functions of parental
income, with income groups classified using quartiles. The upper-left panel displays the probability
differentials of being in the 1st-, 2nd-, 3rd-, and 4th-quartiles of incomes within one single plot.
The rest panels depict the four differential curves individually, each accompanied by its 90% and
95% pointwise confidence bands delineated by dark and light gray areas, respectively.
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Figure 29: Probability Differentials Between Children with Parents as College and
Non-College Graduates, as Functions of Parental Age at Childbirth

Notes: This figure presents the probability differentials of being in various income classes between
children whose parents have a college degree and those whose parents do not, as functions of parental
age at childbirth, with income groups classified using quartiles. The upper-left panel displays the
probability differentials of being in the 1st-, 2nd-, 3rd-, and 4th-quartiles of incomes within one
single plot. The rest panels depict the four differential curves individually, each accompanied by
its 90% and 95% pointwise confidence bands delineated by dark and light gray areas, respectively.
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Figure 30: Probability Differentials (Multiple Treatments), as Functions of Parental
Income

Notes: This figure presents the probability differentials of being in various income classes between
children from non-Black families whose parents have a college degree and were aged 30 at childbirth,
and those from Black families whose parents do not have a college degree and were aged 18 at
childbirth, as functions of parental income, with income groups classified using quartiles. The upper-
left panel displays the probability differentials of being in the 1st-, 2nd-, 3rd-, and 4th-quartiles of
incomes within one single plot. The rest panels depict the four differential curves individually, each
accompanied by its 90% and 95% pointwise confidence bands delineated by dark and light gray
areas, respectively.
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Figure 31: Probability Differentials Between Males and Females, as Functions of
Parental Income

Notes: This figure presents the probability differentials of being in various income classes between
male and female children, as functions of parental income, with income groups classified using
quintiles. The upper-left panel displays the probability differentials of being in the 1st-, 2nd-, 3rd-,
4th-, and 5th-quintiles of incomes within one single plot. The rest panels depict the five differential
curves individually, each accompanied by its 90% and 95% pointwise confidence bands delineated
by dark and light gray areas, respectively.
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Figure 32: Probability Differentials Between Blacks and Non-Blacks, as Functions
of Parental Income

Notes: This figure presents the probability differentials of being in various income classes between
Black and non-Black children, as functions of parental income, with income groups classified using
quintiles. The upper-left panel displays the probability differentials of being in the 1st-, 2nd-, 3rd-,
4th-, and 5th-quintiles of incomes within one single plot. The rest panels depict the five differential
curves individually, each accompanied by its 90% and 95% pointwise confidence bands delineated
by dark and light gray areas, respectively.
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Figure 33: Probability Differentials Between Children with Parents as College and
Non-college Graduates, as Functions of Parental Income

Notes: This figure presents the probability differentials of being in various income classes between
children whose parents have a college degree and those whose parents do not, as functions of parental
income, with income groups classified using quintiles. The upper-left panel displays the probability
differentials of being in the 1st-, 2nd-, 3rd-, 4th-, and 5th-quintiles of incomes within one single
plot. The rest panels depict the five differential curves individually, each accompanied by its 90%
and 95% pointwise confidence bands delineated by dark and light gray areas, respectively.
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Figure 34: Probability Differentials Between Children with Parents as College and
Non-College Graduates, as Functions of Parental Age at Childbirth

Notes: This figure presents the probability differentials of being in various income classes between
children whose parents have a college degree and those whose parents do not, as functions of parental
age at childbirth, with income groups classified using quintiles. The upper-left panel displays the
probability differentials of being in the 1st-, 2nd-, 3rd-, 4th-, and 5th-quintiles of incomes within
one single plot. The rest panels depict the five differential curves individually, each accompanied by
its 90% and 95% pointwise confidence bands delineated by dark and light gray areas, respectively.
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Figure 35: Probability Differentials (Multiple Treatments), as Functions of Parental
Income

Notes: This figure presents the probability differentials of being in various income classes between
children from non-Black families whose parents have a college degree and were aged 30 at childbirth,
and those from Black families whose parents do not have a college degree and were aged 18 at
childbirth, as functions of parental income, with income groups classified using quintiles. The
upper-left panel displays the probability differentials of being in the 1st-, 2nd-, 3rd-, 4th-, and
5th-quintiles of incomes within one single plot. The rest panels depict the five differential curves
individually, each accompanied by its 90% and 95% pointwise confidence bands delineated by dark
and light gray areas, respectively.
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