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1 Introduction

Agents form and update their beliefs when they receive new information. The as-
sumptions about how they do this are fundamental to a plethora of theoretical and
empirical models, both in micro- and macroeconomics. In the presence of ratio-
nal expectations, new information leads to smooth and continuous belief updating
according to Bayes’ rule. In reality many agents systematically misunderstand ba-
sic statistics, and complexity and inattention may contribute to deviations from
Bayesian predictions (Rabin, 2013). Such violations of rational expectations have
been studied in static settings, where all the information is presented at once to sub-
jects who discount priors (Tversky and Kahneman, 1982; Camerer, 1987; El-Gamal
and Grether, 1995). In this paper we study a dynamic setting in which new infor-
mation arrives sequentially and consider the frequency as well as the extent of belief
adjustment, referring to sticky belief adjustment when it is insufficient in either do-
main. Furthermore, we construct a double hurdle econometric model to combine
in a single framework different types of belief adjustment we observe in the labora-
tory: time-dependent (random) belief adjustment and state-dependent (Bayesian,
Quasi-Bayesian) belief adjustment. We control for risk aversion using Offerman et
al.’s (2009) technique and we also consider how increased task complexity or scope
for inattention affect our results.

There exists no widely accepted, fully developed alternative to rational expec-
tations. In microeconomics, Quasi-Bayesian (QB) belief adjustment has been the
preferred route to think about boundedly rational belief adjustment. Rabin (2013)
distinguishes between warped Bayesian models which encapsulate a false model of
how signals are generated, for example by ignoring the law of large numbers (Ben-
jamin et al., 2015), and information-misreading Bayesian models that misinterpret
signals as supporting agents’ hypotheses, thus giving rise to confirmation bias (Rabin
and Schrag, 1999) which underweights information. While various anomalies have
been considered within this framework, one simple way of modeling QB adjustment
is that the agent adjusts beliefs continuously in response to new information—in the
sense that it takes place whenever there is new information—but this adjustment is
either too big or too small (Massey and Wu, 2005; Ambuehl and Li, 2014). See also
Schmalensee (1976).

In macroeconomics, too, there have been many attempts to model departures
from rational expectations. For example, there is a large literature examining time-
dependent versus state-dependent price adjustment, with mixed empirical findings
(e.g., Costain and Nakov, 2011; Aucremann and Dhyne, 2005; Stahl, 2005; Dias et
al., 2007; Klenow and Kryvtsov, 2008; Midrigan, 2010). State-dependence implies
a dependence of belief adjustment on the economic state, which in turn depends on
new information arriving. Time-dependence is often viewed stochastically (as for
example in Caballero, 1989) and therefore yields random belief adjustment.1 Insuf-

1We do not consider non-stochastic time-dependence as in Fischer (1977) and Taylor (1980).
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ficient belief adjustment can be seen as a possible microfoundation of sticky price
adjustment, for example as a result of inattention and observation costs (Alvarez
et al., 2016), information costs (Abel et al., 2013), cognitive costs (Magnani et al.,
2016) and the costly consultation of experts by inattentive agents (Carroll, 2003).

In this paper we analyze the results of an experiment using an econometric model
based on the inferential expectations (IE) framework of Menzies and Zizzo (2009).
This provides a stylized way of modeling infrequent belief adjustment, and can
be modified to allow for partial or excessive belief adjustment. We assume subjects
hold a belief until enough evidence has accumulated to pass a threshold of statistical
significance, at which point beliefs are updated. Each subject is assumed to draw a
test size α from a distribution, which we derive from the results of our econometric
model. Furthermore, once the decision is made to update, subjects can under- or
overreact to data according to Quasi-Bayesian updating. Sticky belief adjustment
is then fully specified by an agent’s α distribution and a Quasi-Bayesian adjustment
parameter, both of which are generated by a double hurdle model.

One source of deviation from Bayesian updating could be task complexity (Caplin
et al., 2011, Charness and Levin, 2005), providing our rationale for including a
complexity treatment. For instance, within consumer markets, complexity has often
been blamed for suboptimality of consumer choices (e.g., Joskow, 2008; Ofgem,
2011; Independent Commission on Banking, 2011); the evidence from consumer
experiments is less clear but consistent with at least some effect of complexity on
consumer choice (Kalayci and Potters, 2011; Sitzia and Zizzo, 2011; Sitzia et al.,
2015).

Another possible source of deviation from Bayesian updating is inattention (Al-
varez et al., 2016; Magnani et al., 2016; Carroll, 2003). We thus also include an
inattention treatment, which consists of an alternative task being available to the
main task. The setup is closest to Corgnet et al. (2014), who find an effect on
team effort in a work experiment, and Sitzia and Zizzo (2015), who find an effect
on consumption choices.

We are not aware of research on complexity and inattention that has identified
their effect on belief updating with sequential information flow. In brief, our results
are as follows. Subjects change their beliefs about half the time, which is consistent
with random belief adjustment, but they also consider the amount of evidence avail-
able, which is consistent with state-dependent belief adjustment. When subjects
do change beliefs, they do so by around 35 per cent of the full Bayesian update,
which is consistent with our version of Quasi-Bayesian belief adjustment. There is
substantial heterogeneity in our results and, importantly, the frequency and extent
of belief adjustment are positively correlated: agents who update with low frequency
do so by even less than 35 percent of the full Bayesian update. Our results are per-
haps surprisingly robust to either the task complexity or inattention treatment, but

In macroeconomics these types of models have been largely superceded by stochastic models such
as Calvo (1983).
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we find evidence that inattention reduces the propensity to update and complexity
reduces the extent of updating.

Section 2 presents our experimental design and treatments, section 3 our expec-
tation models, Sections 4 and 5 our results. Section 5 provides a discussion and
concludes.

2 Experimental Design and Treatments

Our experiment was fully computerized and run in the experimental laboratory
of the University of East Anglia with n = 245 subjects who were separated by
partitions. The experiment was divided in two parts, labelled the practice part
and the main part. Experimental instructions were provided at the beginning of
each part for the tasks in that part (see the online appendix for a copy of the
instructions). A questionnaire was administered to ensure understanding after each
batch of instructions.

Main part of the experiment. After the practice part described below, in the
main part of the experiment subjects played 7 stages, each with 8 rounds, thus
generating T = 56 observations. At the beginning of each stage the computer
randomly chose one of two urns (Urn 1 or Urn 2), with Urn 1 being selected at a
known probability of 0.6. Each urn represents a different state of the world. While
this prior probability was known and it was known that the urn would remain the
same throughout the stage, the chosen urn was not known to subjects. It was known
that Urn 1 had seven white balls and three orange balls, and Urn 2 had three white
balls and seven orange balls. At the beginning of each of the 8 rounds (round = t),
there was a draw from the chosen urn (with replacement) and subjects were told the
color of the drawn ball. These were therefore signals that could be used by subjects
to update their beliefs. It was made clear to the subjects that the probability an
urn was chosen in each of the seven stages was entirely independent of the choices
of urns in previous stages.

Once they saw the draw for the round, subjects were asked to make a probability
guess between 0% and 100%, on how likely it was that the chosen urn was Urn 1.
The corresponding variable for analysis is their probability guess expressed as a
proportion, denoted g. Once a round was completed, the following round started
with a new ball draw, up to the end of the 8th round.

Payment for the main part of the experiment was based on the guess made
in a randomly chosen stage and round picked at the end of the experiment. A
standard quadratic scoring rule (e.g. Davis and Holt, 1993) was used in relation to
this round to penalize incorrect answers. The payoff for each subject was equal to 18
GBP minus 18 GBP × (guess − correct probability)2. Therefore, for the randomly
chosen stage and round, subjects could earn between 0 and 18 GBP depending on
the accuracy of their guesses.
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Practice part of the experiment. The practice part was similar to the main
part but simpler and therefore genuinely useful as practice. It was modelled after
Offerman et al. (2009) to enable us to infer people’s risk attitude, as detailed in
section 3.

It consisted of 10 stages with one round each. In each stage a new urn was drawn
(with probabilities 0.05, 0.1, 0.15, 0.2, 0.25, 0.75, 0.8, 0.85, 0.9, 0.95). Subjects were
told the prior probability of Urn 1 being chosen but did not receive any futher infor-
mation. In particular, no balls were drawn. The guessing task (single round) was to
nominate a probability that Urn 1 was chosen; this is non-trivial because subjects
should take account of the payoff structure rather than repeat the announced prob-
abilities. Payment for the practice part of the experiment was based on the guess
made in a randomly chosen round picked at the end of the experiment. A quadratic
scoring rule was applied as in the main part, but this time this was equal to 3 GBP
minus 3 GBP × (guess − correct probability)2.2

Experimental treatments. There were three treatments. The practice parts
were identical across all treatments, and the main part of the Baseline treatment
was as described.

In the main part (only) of the Complexity treatment, the information on the ball
drawn from the chosen urn at the beginning of each round was presented as follows:
it was presented as a statement about whether the sum of three numbers (of three
digits each) is true or false. If true (e.g., 731 + 443 + 927 = 2101), this meant that a
white ball draw was drawn. If false (e.g., 731 + 443 + 927 = 2121), this meant that
an orange ball draw was drawn.

In the main part (only) of the Inattention treatment, subjects were given a
non-incentivized alternative counting task which they could do instead of working
on the probability. The counting exercise was a standard one from the real effort
experimental literature (see Abeler et al., 2011, for an example) and consisted in
counting the number of 1s in matrices of 0s and 1s. Subjects were told that they
could do this exercise for as little or as long as they liked within 60 seconds for each
round, and that we were not asking them in any way to engage in this exercise at
all unless they wanted to.3

2This ensured similar marginal incentives for each round in the practice part (3 GBP prize
picked up from 1 out of 10 rounds) and the main part (18 GBP prize picked up from 1 out of 56
rounds).

3They were also told that, if they did not make a guess in the guessing task within 60 seconds,
they would automatically keep the guess from the previous round and move to the next round (or
to the next stage). The length of 60 seconds was chosen based on piloting, in such a way that this
would not be a binding constraint if subjects focused on the guessing task.
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3 Model Variables, Risk and Expectation Process

3.1 Model Variables and Risk Attitude Correction

Table 1 lays out the main model variables and the interrelationships between them,
when the event is described in terms of the chosen urn (row 1) and when it is
described in terms of the probability of a white ball being drawn (row 2). The two
descriptions are equivalent since the subject’s subjective guess of the probability that
Urn 1 was chosen generates an implied subjective probability that a white ball is
drawn.4 In our modelling, we sometimes use the former probability—that Urn 1 was
chosen—and it will be useful to transform this probability guess using the inverse
cumulative Normal distribution, so that the support has the same dimensionality as
a classic z-statistic. Alternatively, we sometimes describe agents’ guesses in terms
of the probability that a white ball is drawn.

Time is measured by t, the draw (round) number for the ball draws in each stage.
We define the value of t for which subjects last moved their guess (viz. updated their
beliefs) to be m (for ‘last Move’). Thus, for any sequence of ball draws at time t,
the time that has elapsed since the last change in the guess is always t−m.

Event
Estimator of
event
probability

Estimator
symbol

P(Event)
Subject guesses

Transformed
guess

Strength of Evidence
zt against earlier
choice at m

Urn 1
drawn

Bayes rule Pt

gt : optimal guess
(observed)
g∗t : inferred guess

r∗t = Φ−1(g∗t ) zt = Φ−1(Pt)−(Φm)√
t

White
drawn

Prop. white
balls out of t

Pw
t Not guessed Not guessed zt ≈ 1√

3

(
Pw

t −P
w
m√

0.52/t

)
Table 1: Model variables

Along the top row the theoretical estimator for the probability that Urn 1 was
drawn is provided by Bayes rule, which we denote by Pt after t ball draws. Many
subjects do not use Bayes rule when they are guessing the probability that Urn 1 is
chosen, though some guesses are closer to it than others.

As derived in Offerman et al. (2009), the elicited guess gt in the fourth column is
the result of maximizing utility based on a Constant Relative Risk Aversion (CRRA)
utility function, U{Payoff}:

U{Payoff} =
Payoff1−θ − 1

1− θ
,

4For example, at the start of the experiment, before any ball is drawn, subjects know that the
chance that Urn 1 was drawn is 0.6. It therefore follows that the chance of a white ball being
drawn for the very first time is 0.7*0.6+0.3*(1-0.6) = 0.54.
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and a true guess g∗t in E [U{Payoff}] = g∗tU{1 − (1− gt)2} + (1 − g∗t )U{1 − g2
t }

where the payoffs for Urn 1 and Urn 2 are proportional to 1− (1− gt)2 and 1− g2
t ,

according to the quadratic scoring rule, as explained in section 2. Expected utility
is assumed to be maximized with respect to gt and yields the following relationship
between g∗t and gt:

ln

(
g∗t (1− gt)
gt (1− g∗t )

)
= θ ln

(
gt (2− gt)

(1 + gt) (1− gt)

)
. (1)

In the practice part the prior probabilities given to the subjects (by way of re-
minder, 0.05, 0.1, 0.15, 0.2, 0.25, 0.75, 0.8, 0.85, 0.9, 0.95 for 10 separate stages/rounds)
are in fact the correct probabilities Pt. We see no reason not to credit subjects with
realizing this, and they possess no other information anyway, so we define their true
guess to be g∗t = Φ−1 (Pt). Offerman et al. (2009) then interpret the deviations of
gt from g∗t as being due to the subjects’ risk preferences, and so do we. We use the
ten datapoints (g∗t , gt) for each subject to estimate θ in a version of (1) appended
with a regression error.5 Armed with a subject-specific value of θ from the practice
part, all the observable gt values in the main experiment can be transformed to a set
of inferred g∗t . This transformation is accomplished by exponentiating both sides of
(1), and solving for g∗t . By taking the inverse cumulative Normal function, Φ−1, of
g∗t we move it outside the [0, 1] interval and give it the same dimensionality as a test
statistic, namely (−∞,∞). The variable in the penultimate column, r∗t = Φ−1 (g∗t ),
thus becomes the basis for all subsequent analysis.

In the final column of Table 1, we provide a measure zt of the strength of evidence
against the probability guess at the time of the last change. Agents change their
guesses from time to time, and zt tells us if the value of P at the last change, denoted
Pm, seems mistaken in the light of subsequent evidence.

As shown in Appendix A, zt is a good approximation for the standard test
statistic for a proportion, using the maximal value of the variance of the sampling
distribution (namely (1

2
)2):

zt ≈
Pw
t − Pw

m

(0.52/t)1/2
. (2)

When we analyze the inferential expectations of each agent we use (2) to recover
from subject behaviour the entire distribution of the test size as a key component
in our description of sticky belief adjustment.

3.2 Expectation Processes

Using the notation of Table 1, we define three processes of expectation formation
that will be relevant for our double hurdle model in section 4.

5If an agent ever declared zero or unity in this preliminary stage, a regression version of (1)
cannot be run, and so we set θ = −1 in those cases.
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Rational Expectations
The rational expectations (RE) solution predicts straightforward Bayesian up-

dating. The (conditional) probability that the subject is being asked to guess is
the rational expectation (RE) which is given by Pt. Calling Pinitial the initial prior
probability and noting that the number of white balls is tPw

t we can write down Pt
in a number of ways:

Pt =

(
(0.7)tP

w
t (0.3)t−tP

w
t

(0.7)tP
w
t (0.3)t−tP

w
t Pinitial + (0.3)tP

w
t (0.7)t−tP

w
t (1− Pinitial)

)
Pinitial

=
1

1 + (0.3)tP
w
t (0.7)t−tP

w
t (1−Pinitial)

(0.7)tP
w
t (0.3)t−tP

w
t Pinitial

. (3)

The second line is a useful simplification (which we use in appendix A) whereas
the bracketed fraction in the first line is the probability of obtaining the tPw

t white
balls when Urn 1 is drawn versus the total probability of obtaining this number of
white balls.

Quasi-Bayesian Updating
In our version of Quasi-Bayesian updating (QB), agents use Bayesian updating

as each new draw is received, but they incorrectly weight this bracketed probability
fraction:

PQB
t =

(
(0.7)tP

w
t (0.3)t−tP

w
t

(0.7)tP
w
t (0.3)t−tP

w
t Pinitial + (0.3)tP

w
t (0.7)t−tP

w
t (1− Pinitial)

)β

Pinitial (4)

The parameter β may be thought of as the QB parameter: if β = 1, agents
are straightforward Bayesians; if β > 1 they overuse information and under-weight
priors; if 0 ≤ β < 1 they underuse information and over-weight priors and if β < 0
they respond the wrong way to information—raising the conditional probability
when they should be lowering it, and vice versa.

Agents’ attitude towards the extent of belief change in the light of evidence can
be summarized by the distribution f(β) across subjects. If f(β) has most probability
mass between 0 and 1, most agents only partially adjust, and subjects converge to
full adjustment at β = 1 to the extent that the probability mass in f(β) converges
towards unity.

Inferential Expectations
In our version of state dependent belief adjustment, agents form a belief and

do not depart from that belief until the weight of evidence against the belief is
sufficiently strong, as measured by |zt| from equation (2).

Under inferential expectations (IE), each agent is assumed to start with a belief
about the probability of U (that is, P0 = 0.6) and an implied probability of a
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white ball (Pw
0 = 0.54) and conducts a hypothesis test that the latter is true after

drawing a test size from his or her own distribution of α, namely fi (α). Agents
are assumed to draw this every round during the experiment. The p-value is then
derived using (2) as the test statistic. We assume for simplicity that zt is distributed
as a standard Normal. The purpose of modeling the full distribution of α is to let
the data adjudicate whether our subjects act as “classical statisticians” with a high
probability mass for α over 5− 10%.

To flag one of our main results, we need to develop a more nuanced account of
agents’ attitude towards evidence. If fi (α) has most probability mass near zero,
agent i is sluggish to adjust. Probability mass in fi (α) near unity implies a very
strong willingness to use evidence, and probability mass at unity implies (stochastic)
time dependent updating. That is, if the probability mass at unity in fi (α) is, say,
0.3, it implies that there is a thirty per cent chance that agent i will update regardless
of what the evidence says. This is because the decision rule in a hypothesis test is
to reject H0, the status quo, if the p-value ≤ α. A value for α of unity implies the
status quo will be rejected, which is the same as updating in this context, for any
p-value whatsoever.

Relationship between Expectations Benchmarks
When agent i rejects H0 within the IE framework we assume she updates her

probability guess. This agent can then either be fully Bayesian (βi = 1), or she
can be quasi-Bayesian. If 0 < βi < 1, she moves by a fraction βi of the distance
she should move; if βi > 1, she over-reacts, and if βi < 0, she misinterprets the
information.

Since each agent has a full distribution of α, namely fi (α), we need a repre-
sentative αi to summarize the extent of sticky belief adjustment for agent i and to
relate to her βi. There are a number of possibilities, but a natural choice which
permits analytic solutions is the median αi from their fi (α). For the purposes of
our empirical analysis a fully rational (Bayesian) agent is one who has (median)
αi = βi = 1, whereas any other sort of agent does not have RE.

We now parameterize all three expectation processes in a double hurdle model.
We find evidence for all of them in our data, and importantly we find that the IE
representation of fi (α) has non-zero measure at unity. As discussed above, this is
the fraction of agents who undertake random belief adjustment.

4 Experimental Results

4.1 Preliminary Analysis of “No-change”

The baseline and complex treatments each had 82 subjects, and the inattention
treatment had 81 subjects. In this sub-section, we consider the number of times our
subjects executed a “no-change”, meaning a guessed probability equal to that of the
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previous period. This is interesting because, given the nature of the information and
comparatively small number of draws, incidences of “no-change” are not predicted
by either Bayesian or Quasi-Bayesian updating, and so, if such observations are
widespread in the data, this is the first piece of evidence that these standard models
are incomplete.

The maximum of the number of “no-changes” for each subject is 49: seven oppor-
tunities for no change out of eight draws, times the seven stages. The distributions
over subjects separately by treatment are shown in Figure 1. The baseline distribu-
tion shows a concentration at low values; for both Complex and Inattention, there
appears to be a shift in the distribution towards higher values, as one might expect.
The means for each treatment are represented by the vertical lines on the right hand
side. The vertical lines on the left hand side show the mean number of no-changes
due to subjects rounding the Bayesian probabilities to two decimal places. Clearly,
rounding cannot account for the prevalence of no-changes found in the empirical
distribution.

The mean is higher under C (22.79) than under B (18.74) (Mann-Whitney test
gives p = 0.007); and higher under I (26.97) than under B (p < 0.001).6 This is
expected: complexity and inattention are both expected to increase the tendency to
leave guesses unchanged. When C and I are compared, the p-value is 0.06, indicating
mild evidence of a difference between the two treatments.

In Figure 1 it is clear from the nonparametric evidence of widespread incidence
of “no-changes” that any successful model of our data will have to deal with the
phenomenon of whether to adjust, before considering how much to adjust. This in
turn can imply that the waiting process is stochastic and is unrelated to the actual
information arriving (time-dependent belief adjustment) or, that the information
that arrives influences the timing (state-dependent belief adjustment). Our double
hurdle model enables us to consider both together.

4.2 A Double Hurdle Model of Belief Adjustment

In this section, we develop a parametric double hurdle model which simultaneously
considers the decision to update beliefs and the extent to which beliefs are changed
when updates occur. The purpose of the model is to act as a testing tool for state-
dependent belief adjustment, namely Bayesian belief adjustment and Quasi Bayesian
belief adjustment in the simple version previously defined, as well as (stochastic)
time-dependent belief adjustment.

Our econometric task is to model the transformed implied belief r∗t = Φ−1 (g∗t (θi)),
which in turn requires an estimate for risk aversion. We estimate this at the indi-
vidual level using the technique by Offerman et al. (2009). Appendix B contains the
subject-level details surrounding the estimation of θi.

6All p-values in the paper are two tailed. All bivariate tests use subject level means as the
independent observations to avoid the problem of dependence of within-subject choices.
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Figure 1: Distributions of number of no-changes over subjects separately by treat-
ment. In each panel, the vertical line on the right represents the mean number of
no-changes, while the vertical line on the left represents the mean number of no-
changes that would arise if subjects rounded Bayesian probabilities to two decimal
places.

We will refer to r∗it as subject i’s “belief” in period t, as shorthand for ‘transformed
implied belief’. We will treat r∗it as the focus of the analysis, because r∗it has the same
dimensionality as z

it
, the test statistic defined in (2). That is, both have support

(−∞,∞). Sometimes r∗it changes between t − 1 and t; other times, it remains the
same. Let ∆r∗it be the change in belief of subject i between t − 1 and t. That is,
∆r∗it = r∗it − r∗it−1.

In the following estimation we exploit the near equivalence between (2) and the
scaled difference since the last update (Φ−1 (Pt) − Φ−1 (Pm))/

√
t. In round 1 Pm

equals the prior 0.6 and the movement of the guess for a given subject is ∆r∗it =
r∗1 − Φ−1 (0.6). That is, both the objective measure of the information change and
the subjective guess of the agent are assumed to anchor onto the prior probability
that Urn 1 is chosen, 0.6, in the first period.

First Hurdle: The probability that a belief is updated (in either direction) in
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period t is given by:

P (∆r∗it 6= 0) = Φ [δi + x′iθ1 + γ |zit|] , (5)

where Φ [·] is the standard Normal cdf and δi represents subject i’s idiosyncratic
propensity to update beliefs, and therefore models random probabilistic belief ad-
justment (time-dependent belief adjustment). The probability of an update is as-
sumed to depend (positively) on the absolute value of zit, the test statistic. The
vector xi contains treatment and gender dummy variables together with an age vari-
able, all of which are time invariant and can be expected to affect the propensity to
update.

One econometric problem that arises is the endogeneity of the variable |zit|:
subjects who are averse to updating tend to generate large values of |zit| while
subjects who update regularly do not allow it to grow beyond small values. This is
likely to create a severe downward bias in the estimate of the parameter γ in the first
hurdle. To address this problem we use an instrumental variables (IV) estimator

which uses the variable |̂zit| in place of |zit|, where |̂zit| comprises the fitted values
from a regression of |zit| on a set of suitable instruments. This IV procedure is
explained in detail in Appendix C.

Second hurdle: Conditional on subject i choosing to update beliefs in draw t,
the next question relates to how much they do so. This is given by:

∆r∗it = (βi + x′iθ2)
√
tzit + εit, εit ∼ N

(
0, σ2

)
. (6)

As a reminder, the Quasi-Bayesian belief adjustment parameter βi represents
subject i’s idiosyncratic responsiveness to the accumulation of new information:
if βi = 1, subject i responds fully; if βi = 0, subject i does not respond at all.
Remember that βi is not constrained to [0, 1]. In particular, a value of βi greater than
one would indicate the plausible phenomenon of over-reaction. Again, treatment
variables are included: the elements of the vector θ2 tell us how responsiveness
differs by treatment.

Considering the complete model, there are two idiosyncratic parameters, δi and
βi. These are assumed to be distributed over the population of subjects as follows:(

δi
βi

)
∼ N

[(
µ1

µ2

)
,

(
η2

1 ρη1η2

ρη1η2 η2
2

)]
. (7)

In total, there are fifteen parameters to estimate: µ1, η1, µ2, η2, ρ, γ, σ, four
treatment effects (two in each hurdle); two gender effects (one in each hurdle); and
two age effects (one in each hurdle).

The results are presented in Table 2, for four different models. The last column
shows the preferred model.

Model 1 estimates the QB benchmark, in which it is assumed that the “first
hurdle” is crossed for every observation—that is updates always occur. Zero updates
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QB IE IE-QB (ρ=0)
IE-QB

Preferred model
(1) (2) (3) (4)

Propensity to update:
µ1 +∞ 0.065∗∗(0.222) −0.007(0.175) −0.165(0.161)
[Baseline time-dependent update
probability Φ(µ1)]

[1.00] [0.53] [0.50] [0.43]

η1 0 0.979∗∗(0.044) 0.987∗∗(0.064) 1.014∗∗(0.045)
γ extent of state-dependence 0 1.250∗∗(0.055) 1.242∗∗(0.056) 1.239∗∗(0.056)
Complex 0 −0.044(0.112) −0.155(0.134) −0.036(0.114)
Inattention 0 −0.249∗(0.115) −0.270∗(0.121) −0.263∗∗(0.101)
Male 0 −0.118(0.091) −0.148(0.127) −0.022(0.089)
Age-22 0 −0.003(0.009) −0.009(0.007) −0.014∗(0.006)
Extent of update:
µ2 0.506∗∗(0.134) 1 0.467∗∗(0.084) 0.350∗∗(0.078)
η2 0.516∗∗(0.030) 0 0.315∗∗(0.021) 0.337∗∗(0.022)
Complex −0.242∗∗(0.055) 0 −0.217∗∗(0.047) −0.172 ∗ (0.057)
Inattention −0.235∗∗(0.064) 0 −0.102∗(0.050) −0.028(0.049)
Male 0.014(0.045) 0 0.058(0.038) 0.080∗(0.042)
Age-22 0.017∗∗(0.005) 0 0.009∗∗(0.003) 0.007∗(0.003)
σ 0.513∗∗(0.003) 0.760∗∗(0.006) 0.676∗∗(0.006) 0.675∗∗(0.006)
ρ propensity to update vs. extent
of update correlation

0.454∗∗(0.080)

LogL -9944.9997 -16,277.909 -14740.158 -14723.67
AIC (=2k-2LogL) N/A 32,571.8 29,508.3 29,477.3
Wald test (df, p-value) 58,367(8, 0.000) 1,237(7, 0.000) 24.3(1, 0.000) N/A
Number of subjects (n) 245 245 245 245
Observations per subject (T) 56 56 56 56
Note: LogL for QB cannot be compared with that of other columns.

Table 2: Results of hurdle model with risk adjustment

are treated as zero realizations of the update variable in the second hurdle, and their
likelihood contribution is a density instead of a probability. Because of this difference
in the way the likelihood function is computed, the log-likelihoods and AICs cannot
be used to compare the performance of QB to that of the other models.

Model 2 estimates the IE benchmark, in which the update parameter (βi) is
fixed at 1 for all subjects. Consequently the extra residual variation in updates is
reflected in the higher estimate of σ. The parameters in the first hurdle are free.

Model 3 combines IE and QB, but constrains the correlation (ρ) between δ and
β to be zero. Model 4 is the same model with ρ unconstrained.

The overall performance of a model is best judged using the AIC; the preferred
model is the one with the lowest AIC. Among the models that can be compared, the
best model is the most general model 4: IE-QB with ρ unrestricted, whose results
are presented in the final column of Table 2.

To confirm the superiority of the general model over the restricted models, we
conduct Wald tests of the restrictions implied by the three less general models. We
see that, in all three cases, the implied restrictions are strongly rejected, implying
that the general model is superior. Note in particular that this establishes the
superiority of the general model 4 (IE-QB with ρ unrestricted) over the QB model
1 (a comparison that was not possible on the basis of AIC).

We interpret the results from the preferred model as follows. Consider the first
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hurdle (propensity to update). The intercept parameter in the first hurdle (µ1)
tells us that a typical subject has a predicted probability of Φ (−0.165) = 0.43 of
updating in any task, in the absence of any evidence (i.e. when |zit| = 0). We note
that this estimate is not significantly different from zero, which would imply a 50%
probability of updating:

Result 1 There is evidence of time-dependent (random) belief adjustment. In
every period subjects update their beliefs idiosyncratically around half the time.

The Inattention treatment effect is significant, suggesting that Result 1 is more
pronounced when subjects are not paying attention. The large estimate of η1 tells
us that there is however considerable heterogeneity in this propensity to update
(see Figures 2 and 3 below), something we will explore further in section 4.3. The
parameter γ is estimated to be significantly positive, and this tells us, as expected,
that the more cumulative evidence there is, in either direction, the greater the
probability of an update:

Result 2 There is evidence of state-dependent belief adjustment. Subjects are more
likely to adjust if there is more evidence to suggest that an update is appropriate (thus
making it costlier not to update).

In the second hurdle, the intercept (µ2) is estimated to be 0.35 in our preferred
model 4: when a typical (baseline) subject does update, she updates by a proportion
0.35 of the difference from the Bayes probability. The large estimate of η2 tells us
that there is considerable heterogeneity in this proportion also (see Figure 2 below).
However, in all models where the second hurdle is meaningful (models 1, 3 and 4),
many of the βi’s are between 0 and 1. If we take model 4, only 18 out of 245 subjects
have β < 0, which indicates noise or confused subjects who adjusted in the wrong
direction. More interestingly, only 4 out of 245 subjects (< 2%) display overreaction
to the evidence in model 4. We summarize this in the following result:

Result 3 There is evidence of Quasi-Bayesian partial belief adjustment. On av-
erage, subjects who adjust do so by around 35%. There is no evidence of prior
information under-weighting: virtually none of the subjects overreact to evidence
once they decide to adjust.

The estimate of ρ is strongly positive, indicating that subjects who have a higher
propensity to update, also tend to update by a higher proportion of the difference
from the Bayes probability. This positive correlation is seen in the Model 4 plot in
Figure 2.

The treatment effects in the second hurdle are of the expected sign but the
Inattention effect is insignificant in the second hurdle while being significant in
the first hurdle. There is instead evidence that further complexity in the decision
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Figure 2: Posterior probability of updating

problem reduces the extent of update by around 15 percentage points (from 35% to
approx. 20%):

Result 4 Complexity does not affect whether subjects decide to update or not,
but, if they do, they partially adjust by around 15 percentage points less on average.
Inattention reduces the propensity to update but does not affect the extent of updating.

4.3 The Empirical Distribution of α and β

To get a better sense of the population heterogeneity in belief adjustment, this
subsection maps out the empirical distribution of the IE αi and QB βi parameters
across subjects against each other. Estimating f (β) is easy enough to see from our
double hurdle model since βi is directly estimated and we have done so in Figure 2.
We next use the first hurdle information to generate fi (α), the empirical distribution
of αi.

As we flagged earlier each agent has a full distribution of α and so we need a
representative αi to summarize the extent of sticky belief adjustment for agent i,
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to then relate to their βi. As will be clear below, the choice that permits analytic
solutions is the median αi from fi (α).

The econometric equation for the first hurdle is equivalent to the probability of
rejecting the null under IE. We omit the dummy variables. We begin by re-writing
the first hurdle, namely (5) without dummies:

Pr (reject H0)it = Φ (δi + γ |zit|) , (8)

where δi and γ are estimated parameters and |zit| is the test statistic based on the
proportion of white balls.

zit =
Pw
it − Pw

im√
0.52/t

. (9)

For any |zit| it is possible to work out an implied p-value and we do so by assuming
that (9) is approximately distributed N(0, 1). This in turn allows us to work out
fi (α) from the econometric equation for the first hurdle. When |zit| = 0, the p-value
for a hypothesis test is unity, and so the equation says that a fraction of agents will
reject H0 if the p-value is unity. Since the criteria for rejecting H0 in a hypothesis
test is always α ≥ p-value it implies that there must be a non-zero probability mass
on fi (α) at the value of α exactly equal to 1. The pdf of αi will thus have a discrete
‘spike’ at unity and be continuous elsewhere. We know what that spike is from
equation (8) with |zit| = 0, namely Φ (δi).

The probability of rejecting H0 depends on the probability that the test size is
greater than the p-value, but this is also equal to the econometric equation for the
first hurdle.

Pr (reject H0)it =

∫ 1

p-valueit

fi (α) dαi = 1− Fi (p-valueit) = Φ (δi + γ |zit|) (10)

Upper case F in the last equality is the anti-derivative of the density. We define
Fi (1) to be unity since 1 is the upper end of the support of α but we also note
that there is a discontinuity such that F jumps from 1 − Φ (δi) to 1 at α = 1, as
a consequence of the non-zero probability mass on fi (α) at unity. To solve the
equation we use an expression for the p-value of |zit| on a two-sided Normal test.

p-valueit = 2 (1− Φ (|zit|)) . (11)

We use a ‘single parameter’ approximation to the cumulative Normal (see Bowl-
ing et al. 2009). For our purposes

√
3 is sufficient for the single parameter.

Φ (|zit|) =
1

1 + exp
(
−
√

3 |zit|
) . (12)

We can now write down |zit| as a function of the p-value using (11) and (12).

|zit| =
1√
3

ln

(
2− p-valueit
p-valueit

)
. (13)
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Intuitively, a p-value of zero implies an infinite |zit| and p-value of unity implies
|zit| is zero. We can now use the relationship between Fi (p-valueit) and our estimated
first hurdle to generate Fi (α).

1− Fi (p-valueit) = Φ (δi + γ |zit|)
∴ Fi (p-valueit) = 1− Φ (δi + γ |zit|)

= 1− Φ

(
δi + γ

{
1√
3

ln

(
2− p-valueit
p-valueit

)})
. (14)

In the above expression the variable ‘p-value’ is just a place-holder and can be
replaced by anything with the same support leaving the meaning of (14) unchanged.
Thus, it can be replaced by α giving the cumulative density of α.

Fi (α) = 1− Φ

(
δi + γ

{
1√
3

ln

(
2− α
α

)})
= 1− 1

1 +
[

α
2−α

]γ
exp

(
−
√

3δi
) . (15)

Substitution of α = 1 does not give unity, which is what we earlier assumed for
the value of Fi (1). However, it does give 1 − Φ (δi), which of course concurs with
the econometric equation for the first hurdle when |zit| = 0. This discontinuity in Fi
is consistent with a discrete probability mass in fi (α) at unity, as we noted earlier.
It now just remains to differentiate Fi to obtain the continuous density fi (α) for
α strictly less than unity. The description of the function at the upper end of the
support (unity) is completed with a discrete mass at unity of Φ (δi).

fi (α) =
2γαγ−1 exp(−

√
3δi)

(2−α)1+γ{1+[ α
2−α ]

γ
exp(−

√
3δi)}2

, α < 1

Pri (α = 1) = 1

1+exp(−
√

3δi)
= Φ (δi) , α = 1

 (16)

Figure 3 illustrates the distribution fi (α) for δi = −0.17 and γ = 1.24 together
with the distributions one standard deviation either side of δi. The former is the
mean of δ across subjects, from our estimation (from the last column of Table 2,
rounded to two decimal places. On the right-most of the chart is the probability
mass when α = 1. As discussed earlier, this corresponds to the proportion of agents
who update without any evidence at all (|zit| = 0). There is clearly a great deal of
interesting heterogeneity. One distribution has a near-zero probability of a random
update (11%) and when the agent uses information they are very conservative, with
α close to zero. Another distribution has a virtually certain probability of a random
update (81%) and agents who look at information are not conservative at all (α is
likely close to unity).

Since there are idiosyncratic values of δi there will be a separate distribution for
every subject varying over δi. So we must use a summary statistic for fi (α), and the
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Figure 3: Distribution of fi (α) for δi = −0.17 and γ = 1.24 together with the
distributions one standard deviation either side of δi

one which comes to hand is the median α value, obtained by solving Fi (α) = 0.5 in
equation (15). In Figure 4, we plot the collection of subject i’s (median α, β) duples
for model 4, our preferred equation, along with a regression line. Table 3 lists the
percentage of subjects in each (median αi, βi) 0.2 bracket.

Fully rational agents, whose αi are always identically equal to unity, are hard to
come by since they would require a modelled probability mass of unity at α = 1 in
the distribution of αi (16), which in turn would require an infinite δi in (5). So, our
procedure in columns of Table 3 is to describe agents as rational on the α-dimension
(the rows of Table 3) if they have a median in the top range (0.8 to 1.0).

With that in mind, we can now comment on the subjects’ use of information.
Roughly half of the subjects update regardless of evidence, so the median α’s cluster
at unity along the bottom axis with over half of them (52%) in the range at or above
0.8. Only 5% of agents could be described as classical statisticians with median
α’s around the 5-10% level. However, nearly one quarter of median α’s point to
conservative belief adjustment, with α-values no more than 0.2.

Regarding the size of updating, we already know from Result 3 that it is far from
complete. In Table 3 just under one third of subjects (29 per cent) only update
between 20 and 40 per cent of what they should, and we have already noted from
model 4 of Table 2 that the average amount of updating over all subjects is within
this range (35%). Figure 4 and Table 3 show that those agents who are relatively
likely to update (α→ 1) are likely to accomplish relatively more complete updating
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Figure 4: The collection of subject i’s (median α, β) duples for model 4.

than those who do not.

Result 5 Estimated test sizes spread over the whole support [0, 1]. There is a
positive correlation (0.45) between the median αi and the extent of belief adjustment
when it occurs.

This positive correlation between αi and βi suggest the existence of a small group
(less than 5%) of rational agents. They inhabit the bottom RHS of Table 3, where
αi and βi both exceed 0.8.

5 Discussion and Conclusion

Our paper reframes the debate about time- versus state-dependent behavior and
finds clear evidence for both in subject play. To date each of these has been consid-
ered separately, and this has clearly been a good starting point to observe them in
the laboratory. Sticky belief adjustment—inadequate frequency and extent of belief
updating—is not a novel idea, and initial experimental evidence for it in settings
with evidence presented all at once were discussed as long ago as Phillips and Ed-
wards (1966) and Edwards (1968). A pilot study described in Menzies and Zizzo
(2005) found evidence for sticky belief adjustment in an experiment with dynami-
cally provided information, but, apart from the small nature of the study, it neither
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αi
βi 0 - 0.2 0.2 - 0.4 0.4 - 0.6 0.6 - 0.8 0.8 - 1 Total
−0.4 - −0.2 1 0 0 0 0 0.4%
−0.2 - 0 6 4 2 1 4 6.9%
0 - 0.2 7 23 13 9 16 27.8%
0.2 - 0.4 0 13 8 12 39 29.4%
0.4 - 0.6 0 3 4 8 39 22.0%
0.6 - 0.8 0 0 0 2 16 7.3%
0.8 - 1 0 0 0 1 10 4.5%
1 - 1.2 0 0 0 0 3 1.2%
1.2 - 1.4 0 0 0 0 1 0.4%
Total 5.7% 17.6% 11.0% 13.5% 52.2% 100.0%

Table 3: Percentage of subjects in each (αi, βi) bracket in model 4

controlled for risk aversion nor did it account for different forms of sticky belief
adjustment. Massey and Wu (2005) contains a related but different experiment
with dynamically provided information where the goal of the subjects is to identify
whether a regime shift has taken place, but they are allowed to change their mind
only once; they identify conditions for which, in a decision problem of this kind,
their subjects display underweighting or overweighting of priors.

In the context of an experiment in which there is only one piece of information
provided at the beginning of trading, Camerer (1987) argues that probability up-
dating anomalies wash away in the light of market discipline. Conversely, again in
a setting where information is provided all at once, Menzies and Zizzo (2012) find
greater evidence of stickiness in market prices in a Walrasian auction market setting
intended to model an exchange rate market, than in the corresponding individual
beliefs as revealed by the market choices of traders. There is a range of empirical
applications where belief stickiness appears plausible in natural economic environ-
ments, including markets. Applications of sticky belief adjustment include, among
others, optimal principal agent contracts (Rabin and Schrag, 1999), individual re-
sponses to market signals (Sims, 2003), a micro-foundation for the New Keynesian
Phillips curve (Mankiw and Reis, 2002), consumer and producer behavior (Reis,
2006a, 2006b), and pricing under information costs (Woodford, 2009). Inferential
expectations modeling has been applied to explain the uncovered interest rate par-
ity failure (Menzies and Zizzo, 2009, 2012), central bank credibility (Henckel et al.,
2011, 2013) and merger decisions by competition regulators (Lyons et al., 2012).

The double hurdle model we have developed in this paper allows us to inte-
grate both time- and state-dependent belief adjustment in a unified econometric
framework. Our experiment uses a quadratic scoring rule with monetary payoffs to
incentivize subjects, and we operationalize Offerman et al. (2009) in order to gen-
erate risk-adjusted beliefs for our regression analysis. To our knowledge this is one
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of the first such applications.
Our econometric model found evidence for considerable heterogeneity in both

the propensity and extent of updating, with only a relatively small subset of sub-
jects displaying rational expectations. We observe random belief adjustment around
half the time, which is consistent with stochastic time-dependent belief adjustment.
Deviations from Bayesian updating are systematically in the direction of under-
adjustment, with around 5% in the neighborhood of full adjustment (0.8 < β < 1.2).
We find that, when beliefs change, they do so by only around 35% of the amount
required by Bayesian updating, well short of what full rationality requires. The
likelihood of a belief change increases as the amount of evidence against the null
hypothesis increases, which is consistent with state-dependent belief adjustment.

Our quadratic scoring incentive mechanism implies that the greater the amount
of evidence against the currently held belief, the greater the expected costs of main-
taining this belief. Thus, threshold-based rational inattention models of belief ad-
justment (Sims, 2003) are consistent with agents holding inferential expectations
(Menzies and Zizzo, 2009). That is, agents hold onto their status quo belief until
the cumulated evidence makes this too costly, modeled as passing a threshold de-
termined by the test size α. We estimate that roughly one quarter of agents are
belief conservative with α ≤ 0.4. Deriving the full α distribution, as we do in Figure
3, summarizes a great deal about subject behavior. First, the probability mass at
α = 1 measures the extent of time-dependent adjustment. Second, where agents
instead adopt state-dependent adjustment, the density over the support α = [0, 1),
as shown in Figure 3, informs about the extent of belief conservatism.

As evidenced by a significant positive correlation between α and β, subjects who
are less likely to adjust their beliefs (low α’s) are also subjects who adjust them
less when they do (low β’s). This departs from common statistical practice which,
while adopting low α’s (1%, 5%, 10%), recommends full adjustment when beliefs do
change. Our results are robust to treatments effect, but we do find that, plausibly,
our inattention manipulation makes subjects less likely to adjust their stated beliefs,
whereas additional complexity makes it harder to adjust fully. Finally, older subjects
tend to have a slightly lower propensity to update but adjust by more when they
do update.

The evidence presented for the co-existence of time- and state-dependent be-
havior has important implications for the modelling of expectations. Having shown
their co-existence we leave to future research the task of incorporating them into
theoretical models and refining their properties in specific economic contexts.
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A Closeness of Two Strength-of-Evidence Mea-

sures

Our measure of evidence that the guess should change between times t and m is:

zt =
Φ−1 (Pt)− Φ−1 (Pm)√

t
,

where the cumulative Normal Φ, and its inverse, are approximated.

Φ (Pt) ≈
1

1 + exp
(
−
√

3Pt
) ⇔ Φ−1 (Pt) ≈

1√
3

ln

(
Pt

1− Pt

)
.

Writing Pt in terms of t, and noting that the number of white balls is tPw
t , we obtain:

Pt =
(0.7)tP

w
t (0.3)t−tP

w
t (0.6)

(0.7)tP
w
t (0.3)t−tP

w
t (0.6) + (0.3)tP

w
t (0.7)t−tP

w
t (1− 0.6)
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1

1 + (0.3)tP
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t (0.7)t−tP

w
t

(0.7)tP
w
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2
3

∴
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1− Pt
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3

2

(
7

3

)2tPwt −t

≈ 3

2
e2tPwt −t

zt =
Φ−1 (Pt)− Φ−1 (Pm)√

t

≈ 1√
3t

[
ln

(
3

2

)
e2tPwt −t − ln

(
3

2

)
e2mPwm−m

]
=

1√
3t

[(2tPw
t − t)− (2mPw

m −m)] .

If t ≈ m, we have

zt ≈
1√
3

Pw
t − Pw

m√
0.52

t

 .

Numerical simulations are available from the authors, which confirm the closeness
of the first and last lines.
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B Method for Estimating CRRA Risk Parameter

The log relationship between transformations of gt and g∗t in the text has an i.i.d.
error added to it and run with 10 observations as an OLS regression. The variable
t in (17) refers to the 10 rounds in the practice part, not to the rounds in the main
part. The estimated parameter θi is subscripted for subjects, because (17) is run for
each subject to provide her own θ.

ln

(
g∗t (1− gt)
gt (1− g∗t )

)
= θi ln

(
gt (2− gt)

(1 + gt) (1− gt)

)
+ ηt, t = 1, 2, . . . , 10. (17)

We note the following:

1. The regression has no intercept. If an intercept is included the θi estimates
are inefficient.

2. For some subjects gt = 0.5 in every period. In this case, the RHS variable is
ln (1) in every period. This means that θ approaches +∞. These estimates
need to be re-coded to a high positive number, and we use +10.

3. There is a logical requirement that θ cannot be less than -1 in this model.
Hence, any estimates less than -1 need to be re-coded to -1.

The above procedure gives rise to the following distribution of θ over the 245
subjects:

Once each subject has her own estimated θi, the full set of implied g∗t values can
be generated from the observed guesses gt in the main experiment. As discussed
in the main text, this is accomplished by rewriting (17) without an error, which is
identical to equation (1), exponentiating both sides, and then solving for g∗t . The
following figure shows g∗t against gt for the full sample. The multiple values of g∗t
for every gt are due to the different estimated values of θi for each subject.
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Figure 5: Distribution of θ over the 245 subjects.

C IV Estimator

As mentioned in subsection 4.2, there is an endogeneity problem with using the
strength of evidence against the previously chosen value as an explanatory variable
in the first hurdle, and in this appendix we resolve this problem. The problem is
that the variable is endogenous, because subjects with a low propensity to update
are clearly likely to generate large values of |zit| simply by virtue of rarely updating.
Hence |zit| always appears to have a perverse negative effect on the propensity to
update.

We proceed using an IV estimator. We first create a prediction of the absolute

value of zit, |̂zit|, for use in the second stage of a two-stage least squares estimation.
The two instruments for |zit| that we use to create this predictor are the round
number (t), and the absolute value of the contribution to |zit| in the current round
|∆zit|. This is not to be confused with the difference built into zit which spans the
current period to period m, namely, Φ−1 (Pit) − Φ−1 (Pim). We note that, because
Φ−1 (Pim) is fixed, a difference operator will eliminate it, leaving ∆zit as the change
in Φ−1 (Pit) over the last period.
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Figure 6: g∗t against gt for the full sample.

The stage 1 OLS regression therefore is:

|zit| = π0 + π1t+ π3 |∆zit|+ εit. (18)

It is important that the dependent variable in (18) is |zit| and not zit. If zit
were used as the dependent variable, and consequently the absolute value of the
prediction, ẑit, were used in the second stage, we would have what Wooldridge
(2010, pp 267-8) refers to as a “forbidden regression”. Using |zit| as the dependent
variable in (18) avoids this problem.

The results are shown below. Both variables show strong significance in the
expected direction, implying that the weak instrument problem is avoided.

Having estimated the stage 1 regression we obtain the predicted values, |̂zit|, and
use these in place of |zit| in the first hurdle of the main model. To underline the
importance of the instruments, we show two plots below. The left panel of Figure
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Source SS df MS
Model 1121.54757 2 560.773786
Residual 1145.09497 13, 717 .083479986
Total 2266.64254 13,719 0.165219225
cumtbayes r s Coef. Std. Err. t P > |t| [95% Conf. Interval]
dtbayes r abs .9154853 .0089259 102.57 0.000 .8979894 - .9329812
round .0131963 .0012816 10.30 0.000 .0106842 - .0157084
cons .0502277 .0079752 6.30 0.000 .0345952 - .0658602

Number of obs 13,720
F(2, 13717) 6717.46
Prob > F 0.0000
R-squared 0.4948
Adj R-squared 0.4947
Root MSE .28893

Table 4: Estimation of (18) in Appendix C

7 shows the estimated probability of updating against |zit|, while the right panel

Figure 7 displays the estimated probability of updating against |̂zit|.
The left panel makes clear the endogeneity problem identified above: over most

of the range of |zit| its effect on the propensity to update is negative. The right

panel is of the same binary variable against |̂zit| (the prediction from the stage 1
regression). It shows completely the opposite pattern: a monotonically increasing

effect of |̂zit| on the propensity to update.
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Figure 7: Estimated probability of updating

31


	1_Henckel_Menzies_Moffatt_Zizzo_Coversheet_2018.pdf
	CAMA
	Centre for Applied Macroeconomic Analysis


