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Will the real eigensystem VAR please stand up?
A univariate primer

Leo Krippner∗

16 January 2019

Abstract

I introduce the essential aspects of the eigensystem vector autoregression (EVAR),
which allows VARs to be specified and estimated directly in terms of their eigen-
system, using univariate examples for clarity. The EVAR guarantees non-explosive
dynamics and, if included, non-redundant moving-average components. In the em-
pirical application, constraining the EVAR eigenvalues to be real and positive leads
to “desirable” impulse response functions and improved out-of-sample forecasts.
JEL classification: C22, C32, C53
Keywords: vector autoregression; moaving average, lag polynomial

1 Introduction

In this note I introduce the essential aspects of the eigensystem vector autoregression
(EVAR), where VARs are specified and estimated directly in terms of their eigensystem.
Relative to the typical ordinary least squares (OLS) estimation of VARs, I show that
EVARs have three distinct advantages: (1) stable (i.e. non-explosive) dynamics can be
enforced by constraining the eigenvector magnitudes; (2) the eigenvalues may be addi-
tionally constrained to be real and positive, which produces “desirable” dynamics; and
(3) an EVAR may be extended to include moving-average (MA) components that are
guaranteed to avoid redundant lag polynomial factors in the resulting VARMA.
I use univariate models in this paper to make the points above most clearly.1 Hence, in

section 2, I use the AR(2) exposition to illustrate the nature of autoregressive dynamics,
and also to provide the basis for generalizing to higher-order models. Section 3 develops
the generalization. Section 4 contains the results of an empirical application to forecasting
3-month United States Treasury bill data. Section 5 concludes with the main points and
potential extensions.

∗Reserve Bank of New Zealand, University of Waikato, and Centre for Applied Macroeconomic Analy-
sis. Email: leo.krippner@rbnz.govt.nz. I thank Iris Claus, James Morley, Christie Smith, and Benjamin
Wong for useful comments on this note and related work.

1A univariate model is, of course, simply the special case of a VAR with one variable. Hence, the
names and abbreviations introduced in this note apply in the univariate and multivariate contexts.
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2 The AR(2) model and VAR dynamics

The AR(2) model is typically represented in OLS regression form as follows:

yt = α + φ1yt−1 + φ2yt−2 + εt (1)

where α is the constant parameter, and φ1 and φ2 are the AR parameters. An alternative
representation is the lag polynomial form:

1− φ1L− φ2L2 (yt − μ) = εt (2)

where L is the lag (or backshift) operator so that Lxt = xt−1, and μ = α/ (1− φ1 − φ2)
is the series mean (if the model is stationary). Equation 2 may be factored as:

(1− λ1L) (1− λ2L) (yt − μ) = εt (3)

where:

(λ1,λ2) =
φ1 ± φ21 + 4φ2

2
(4)

are the two eigenvalues for the AR(2) model. For reference later in section 3, note that:

(φ1,φ2) = (λ1 + λ2,−λ1λ2) (5)

The first thing a researcher will hope for in an estimated VAR is a stable model, which
is typically tested by calculating the model’s eigenvalues to ensure they have an absolute
value of less than 1. For the AR(2) model, both eigenvalues need to be inside the complex
unit circle, as illustrated in the top-right subplot of figure 1. The equivalent is for the
(φ1,φ2) point to be within the stability triangle plotted in the top-left subplot of figure
1.2

Depending on the particular application, the second thing a researcher may hope for
is “desirable” impulse response functions (IRFs). While this criteria is subjective, smooth
and either monotonic or “hump-shaped” decays, like those in the bottom-right subplot of
figure 1, are generally preferred.3 Such IRFs are guaranteed when both eigenvalues (λ1,λ2)
are real and positive, which corresponds to (φ1,φ2) being within the shaded region of the
stability triangle. For example, the two eigenvalues indicated with a “+” (i.e. 0.8 and 0.6)
produce (φ1,φ2) = (1.40,−0.48). A pure monotonic decay is the (φ1, 0) special case, which
is an AR(1) model with the eigenvalue φ1. The remaining regions of the stability triangle
result in oscillatory IRFs, which are associated with complex or negative real eigenvalues.4

The “+” cloud in figure 1 illustrates that AR(2) models estimated from simulated data
(20 samples each of 30 data points) using OLS often produce oscillatory results even when
the true data-generating process is the non-oscillatory 0.8 and 0.6 eigenvalue example.

2See Hamilton (1994) pp. 7—18 and Sargent (1987) pp. 183-191 for related discussion, and on the
aspects discussed earlier in this section.

3For example, such IRFs feature in the Smets andWouters (2007) model, and Barnichon and Brownlees
(2018) impose those properties empirically using B-spline functions. The IRFs from empirical VARs, e.g.
Stock and Watson (2001) for the United States, are typically hump-shaped with some superimposed
oscillatory dynamics.

4The region in the stability triangle below the parabola φ2 = − 1
4φ

2
1 corresponds to a complex conjugate

pair of eigenvalues, the region above φ2 = 0 corresponds to one positive and one negative eigenvalue, and
the mirror of the shaded region in the stability triangle corresponds to two real negative eigenvalues.
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The third aspect a researcher should hope for is that the model provides “good”
forecasts. Unlike IRFs, this criterion may be tested objectively using a quantitative
assessment, like the application in section 4.5

Figure 1: Four AR(2) model examples, denoted ‘+’, ‘o’, ‘×’, ‘*’, and their IRFs. The top-left
figure plots the AR(2) coefficients as the points (φ1,φ2), the top-right figure plots the pairs of
eigenvalues associated with each model, and the remaining four figures plot the IRFs from each

model (all standardized to a maximum of 1.9 units).

5As a separate issue, institutional forecasts appear to have a qualitative dimension analogous to IRFs,
in that monotonic decays or hump-shaped dynamics are typically published.
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3 EVAR specification and estimation

Generalizing the AR(2) representation in equation 3, any univariate VAR with P lags
may be represented by P eigenvalues as follows:

P

k=1

(1− λkL) (yt − μ) = εt (6)

where k = 1, . . . , P are the index numbers for the eigenvalues. Analogous to equation 2,
equation 6 multiples out to the following lag polynomial:

1−
P

p=1

φpL
p (yt − μ) = εt (7)

where φp is the coefficient associated with the lag exponent L
p. Applying the operators

Lp to (yt − μ) thereby produces:

yt = μ+
P

p=1

φp (yt−1 − μ) + εt (8)

which is analogous to equation 1.
Maximum likelihood estimation (MLE) of the EVAR is easiest when conditioned on

the initial P observations of the 1 × T dataset {y}T1 , as for the conditional MLE that
underlies the OLS estimation of VARs.6 The MLE of the EVAR is therefore the following
non-linear constrained minimization:

minimize (εε�) subject to |λk| < 1 (9)

where ε = ε [λ1, . . . ,λP ,μ] , {y}T1 is the 1 × T vector of residuals associated with the
parameters [λ1, . . . ,λP ,μ] and {y}T1 , and λk can be real or complex. The EVAR with real
(and positive) eigenvalues, which I hereafter abbreviate to REVAR, is:

minimize (εε�) subject to 0 < λk < 1 (10)

It is convenient to transform the constrained estimation to an unconstrained estima-
tion by expressing the eigenvalues λk in terms of unconstrained parameters xk. This is
straightforward for the REVAR, by simply using the logistic function as specified in ap-
pendix A. For the EVAR, (xk, xk+1) pairs are required so the eigenvalues can be positive,
negative, or complex conjugate pairs while ensuring |λk| < 1. I achieve this via the AR(2)
stability triangle, as detailed in appendix A.
The eigenvalues resulting from the unconstrained parameters [x1, . . . , xP ] are used

to create the lag polynomial equation in equation 6, which is undertaken in practice
using vector convolution.7 For example, with the AR(2) model in section 2, (1− λ1L) is

6I have also undertaken exact MLE using the Kalman filter. The results are immaterially different,
but the estimations take longer.

7If u and v are vectors of polynomial coefficients, the convolution of u and v is equivalent to multiplying
the two polynomials. The function is “conv(u, v)” in MatLab, and appendix B provides the algorithm
and sample code applicable to other programming languages.
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represented as the two-element vector u = [1,−λ1] and (1− λ2L) as v = [1,−λ2]. The
convolution of those two vectors is:

w2 = conv (u, v)

= conv ([1,−λ1] , [1,−λ2])
= [1,− (λ1 + λ2) ,λ1λ2] (11)

where w2 is a three-element vector representing the lag polynomial for the AR(2) model.8

Generalizing to P eigenvalues, iterating on w3 = conv(w2, [1,−λ3]), etc., produces the
convolution of all [1,−λk] vectors. The resulting vector wP will contain 1 + P elements,
with the first element being 1. Negating the remaining P elements obtains the coefficients
φp for equation 8. Together with μ, which is an unconstrained parameter to be estimated
(or it can be fixed as discussed in section 4), the residual vector ε may be calculated from
the data {y}T1 for the current set of parameters [x1, . . . , xP ,μ].
In summary, the estimation is now simply the unconstrained non-linear minimization:

minimize ε [x1, . . . , xP ,μ] , {y}T1 ε [x1, . . . , xP ,μ] , {y}T1
�

(12)

which is estimated using standard algorithms (e.g. I use the MatLab function “lsqnon-
lin”). I have found fast convergence with arbitrary starting values for [x1, . . . , xP ,μ], but
appendix A discusses how better starting values may be obtained.
There are two ready extensions to the EVAR and REVAR. First, it is straightforward

to allow for unit root dynamics, as with standard OLS VARs, by setting λk = 1 for
k = 1, . . . , D, where D is the imposed order of integration. For example, in the case of a
single unit root, setting λ1 = 1 gives (1− L) (yt − μ) = (yt − μ)− (yt−1 − μ) = Δyt, and
therefore:

P

k=2

(1− λkL) Δyt = εt (13)

Hence, the OLS VAR, EVAR, and REVAR estimations would simply be undertaken on
the first difference of yt, i.e. Δyt, with the constant α or mean μ parameters set to zero.
The second, and I believe more important, extension is to use a constrained EVAR to

avoid the issue of parameter redundancy that arises in VARMA models from the cancel-
lation (or near-cancellation in practice) of factors in the VAR and MA lag polynomials.9

For example, a given ARMA(P,Q) may be written as:

P

k=1

(1− λkL) (yt − μ) =
Q

j=1

1− γjL εt (14)

where γj are the eigenvalues from the MA lag polynomial. Any instance of λk = γj (or
λk � γj in practice) means that an equivalent ARMA(P − 1, Q− 1) may be obtained
by cancelling the (1− λkL) factor from both sides of equation 14. But specifying the
eigenvalues of an EVAR to come from a particular region, and the eigenvalues of the
MA component to come from a non-overlapping region will guarantee that no factor

8This result may be verified using the coefficients 1, − (λ1 + λ2) = −φ1, and λ1λ2 = −φ2 that
respectively apply to L0 = 1 (i.e. no lag), L1 = L, and L2 from equations 5 and 2.

9See, for example, Lütkepohl (2006) section 12 for further discussion on this issue and its implications.
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cancellations in the ARMA can occur. At the same time, the MA eigenvalues may be
constrained to ensure that the MA component is invertible.
Regarding the lag lengths P andQ, any methods typically used for the OLS estimation

of VARs could be applied (e.g. imposing 12 lags for monthly data, or 4 for quarterly data).
In section 4, I select them using information criteria.

4 Empirical application

In this section, I compare the EVAR and the REVAR models to standard OLS VAR
models using an out-of-sample forecasting exercise using a cumulating sample. Specifi-
cally, I forecast the monthly 3-month United States Treasury bill rate, which is convenient
because it is not subject to revision (hence avoiding real-time considerations that would
otherwise need to accounted for), and it also presents non-trivial and challenging dynamics
to model in real time (i.e. inspection of the data plotted below in figure 2 indicates that
it could be represented as a persistent but stationary process or a unit root process).10

Using a cumulating sample avoids any possibility of coincidently selecting a rolling win-
dow favorable to any particular model, and it makes full use of all information from past
data.
The data are obtained from the Federal Reserve Economic Database (FRED) on the

St. Louis Federal Reserve Bank website. The sample period is July 1948 to October 2008,
which represents the longest period over which the data could move freely (the rate was
fixed at 0.38 percent for the five years prior to July 1948, and it was constrained by the
lower bound from November 2008 to December 2015).
The forecasting models I have tested are combinations of the following three aspects:

(1) OLS, EVAR, or REVAR estimation; (2) lag selection using the Akaike or Schwarz
Information Criterion (AIC or SIC, respectively); and (3) using yt in levels or first differ-
ences. As a proof of concept, I have also estimated a single VARMA model that uses a
REVAR specification in conjunction with a MA process specified to have real and “Neg-
ative” eigenvalues (the REVARMAN), and I also select the P and Q using the AIC and
SIC, with min (P ) = min (Q) = 1. I use the random walk (RW) model as a benchmark.
For all models estimated in levels, I set the mean parameter μ equal to the mean of the
current sample used for estimation.11

The out-of-sample-forecasting exercise begins in June 1967 using the sample of 240
data points (20 years). For each model, the lag lengths are selected using the AIC and
SIC, the model is estimated, and the estimated model is then used to obtain forecasts for
horizons of 1 to 60 months (5 years). I then expand the sample to 241 data points by
including the July 1967 data point, and repeat the lag selection, estimation, and forecasts.
That process continues until the final forecasts are made using the 738 data points for the
full sample.

10The Dickey-Fuller and Phillips-Perron tests do not reject a unit root, and the Kwiatkowski-Phillips-
Schmidt-Shin test rejects stationarity.
11The forecast results from models when μ is estimated are very similar, but for all models (particularly

the OLS estimations) there are many occasions where the estimated μ has extreme values, i.e. it is well
outside the range of the sample. The models with Δyt have μ = 0.
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Figure 2: The data used for the cumulative out-of-sample forecast exercise (top), and examples
of the forecasts from models estimated using the data from July 1948 to October 1980 (O =

OLS VAR, E = EVAR, R = REVAR, and M = REVARMAN).

The bottom subplots of figure 2 provide examples of the out-of-sample forecasts for
five years using the models estimated with data up to October 1980. I have selected this
set of forecasts because they provide the clearest empirical illustrations of the phenomena
raised in the introduction and discussed in section 2 for the AR(2) model. That is,
when the model is estimated with yt in levels, the OLS forecasts are both explosive and
markedly oscillating. The EVAR estimation results in a stable model, consistent with all
eigenvalues being constrained to have absolute values of less than 1, but the oscillations
remain because the eigenvalues can still be complex (or real and negative). The REVAR
and REVARMAN estimations produce forecasts with a minor hump shape, i.e. a higher
forecast for the first horizon and then a monotonic reversion to the mean. For the models
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estimated using Δyt, the OLS and EVAR estimations produce identical forecasts that still
have marked oscillations as they revert to their implicit steady-state level as at October
1980. The REVAR forecasts contain a small monotonic increase before settling at the
implied steady-state level, while the RW forecast simply maintains the October 1980
level.
I evaluate the forecasts from each model by subtracting the forecasts from the asso-

ciated future realized values, and then using the series of forecast errors for each horizon
to calculate the mean absolute forecast error (MAFE) associated with that horizon. To
facilitate comparisons across the different models, table 1 expresses the MAFEs for each
model and horizon as a percentage relative to the MAFEs for the RW model, i.e.:

Table Entry (Model j, Horizon h) =
MAFE (j, h)
MAFE (RW, h)

− 1 (15)

Hence, a positive (negative) entry shows a higher (lower) MAFE than the RW model,
and the actual RW MAFEs are displayed in the end column. I use a one-sided Diebold-
Mariano test to obtain the statistical significance of MAFE(j, h) − MAFE(RW, h).

Table 1: MAFEs relative to RW for models with SIC-selected lags
yt models Δyt models RW

Model O OE E R M O E R % pts
h = 1 -2.0 -2.0 -2.1 -4.7v -5.2v -2.1 -2.1 -6.1i 0.29
2 3.1 3.2 2.8 -1.3 -1.6 2.7 2.7 -3.2v 0.47
3 7.6 8.0 7.5 2.0 1.1 7.1 7.1 -1.0 0.62
6 9.4 8.8 8.5 2.5 1.2 7.8 7.8 -1.0 0.97
9 5.4 4.8 4.1 -1.7 -2.0 3.5 3.5 -1.7v 1.23
12 2.9 1.0 -0.1 -3.9 -3.9 0.5 0.5 -0.9 1.50
18 2.1 -1.1 -1.9 -7.9x -7.1x -0.4 -0.4 -0.5 1.98
24 3.6 -3.3 -4.0 -11.2v -9.9v -0.5 -0.5 0.1 2.30
36 6.9 -4.5x -5.2 -14.8v -13.8v 0.3 0.3 0.6 2.62
48 9.0 -2.9 -2.8 -14.5 -15.3x -0.5 -0.5 1.2 2.58
60 11.8 6.6 7.2 -2.3 -5.1 -0.0 -0.0 0.9 2.44

Notes: O = OLS VAR, E = EVAR, R = REVAR, M = REVARMAN, and
OE = O with E override if O produces explosive dynamics. Superscripts
“x” = 10%, “v” = 5%, and “i” = 1% indicate statistical significance.

The main point from table 1 is that the REVAR and REVARMAN models applied to
yt produce better forecasts than the competing yt and Δyt models. Indeed, the REVAR
and REVARMAN forecasts are better than the RW for all horizons, except the 2 to 10
or 9 month range, and the results for h = 1 and 17 ≤ h ≤ 47 or 49 are statistically
significant.
Other notable points from table 1 are: (1) the OLS VAR (O) produces the highest

MAFEs, consistent with about 27 percent of the estimated models being explosive; (2)
using the EVAR as the override in those cases (OE) improves the longer-horizon forecasts,
consistent with the EVARs always being stable; (3) the EVAR forecast results (E) are
very similar to OE, consistent with stable OLS VARs being close or identical to the EVAR.
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Appendix C contains additional results, from using AIC lag selection, and forecasts
assessments using root mean squared forecast errors (RMSFEs). None of those results
overturn the comments already made, except the statistical significance varies. In addi-
tion, forecast comparisons over the so-called Great Moderation period (from 1985) show
that the REVAR and REVARMAN models outperform the RW at all horizons tested,
and the lower MAFEs and RMSFEs are all statistically significant.

5 Conclusion

The eigensystem VAR (EVAR) introduced in this note allows VARs to be specified and
estimated directly in terms of their eigensystem. Hence, rather than having to accept the
dynamics implied by an OLS estimation, which are sometimes explosive and often oscil-
latory, one can impose the dynamics desired. For example, imposing positive real eigen-
values to create the REVAR produces models with smooth IRFs that can be monotonic
or hump-shaped, and it also improves the forecasts in the empirical application to United
States 3-month Treasury bill data.
There are several potential extensions to the univariate illustrations and applications in

this note. The most straightforward is the application to other univariate series, including
polynomial time trends and/or unit roots with drift as might be required, and then to
multivariate time series. The early results from such applications are encouraging, in
particular generally favoring the REVAR as in this note, even against Bayesian VAR
models (which is a standard method of constraining/influencing VAR estimations).
In summary, the EVAR and REVAR, plus the inclusion of MA components as illus-

trated in this note, offer interesting extensions to standard VAR applications, and further
investigation is warranted.
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A Unconstrained estimation set-up

Section A.1 details the transformations that produce constrained eigenvalues from un-
constrained parameters, therefore allowing the EVAR and REVAR to be estimated as an
unconstrained non-linear minimization. Section A.2 details how suitable starting values
may be obtained for EVAR and REVAR estimation.

A.1 Producing constrained eigenvalues

Using an unconstrained value xk to produce 0 < λk < 1 for the REVAR is straightforward,
by simply using the logistic function:

λk =
1

1 + exp (−xk) (16)

For the EVAR, eigenvalue pairs (λk,λk+1) are required to allow for real or complex
values, at the same time as ensuring |λk| < 1. Such eigenvalue pairs are obtainable
indirectly using a geometric method to choose AR(2) coefficient pairs φk,φk+1 within
the stability triangle from figure 1.12 Hence, I use the scaled shifted logistic function of
the unconstrained value xk:

φk =
4

1 + exp (−xk) − 2 (17)

to first obtain a value for φk such that −2 < φk < 2 (which is the range of allowable values
for the base of the stability triangle). Given φk, the upper constraint for φk+1, which I
denote φk+1, to ensure that φk,φk+1 falls within the stability triangle is:

φk+1 =
1 + φk ; if φk < 0
1− φk ; if φk ≥ 0 (18)

and the lower constraint for φk+1 is −1. Hence, given an unconstrained value xk+1, the
following scaled shifted logistic function:

φk+1 =
φk+1 + 1

1 + exp (−xk+1) − 1 (19)

will ensure a value of φk+1 so that φk,φk+1 falls within the stability triangle. Equation
4 is then used to obtain (λk,λk+1) from φk,φk+1 .
Note that if there is an odd number of lags (and hence eigenvalues) for the EVAR,

then the single remaining unpaired eigenvalue must be real. However, it could be negative
or positive so long as −1 < λk < 1. This result is readily obtained from an unconstrained
value xk within the following shifted scaled logistic function:

λk =
2

1 + exp (−xk) − 1 (20)

12Morley (1999) provides an alternative method based on the algebraic eigenvalues of the AR(2) lag
polynomial and a constraining device similar to the logistic function.
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A.2 EVAR and REVAR starting values

For both the EVAR and the REVAR, if μ is to be estimated then a suitable starting value
is μ0 =mean(y).
For the EVAR, one could use arbitrary starting values for [x1, . . . , xP ]. However,

very good starting values, which make for convergence within a few iterations, may be
obtained from the OLS VAR estimates as follows: (1) use the φp estimates in the AR(P )
companion matrix to calculate the eigenvalues λk; (2) if any eigenvalues |λk| > 1, scale
them to |λk| < 1 (I scale them to |λk| = 0.99); (3) convert (λk,λk+1) pairs to AR(2)
φk,φk+1 pairs using equation 5; and (4) invert AR(2) φk,φk+1 pairs to unconstrained
(xk, xk+1) pairs using equations 17 and 19.
For the REVAR, OLS estimates will not necessarily be available. Hence, I simply use

arbitrary starting values [x1, . . . , xP ] obtained with linear spacing between −2.197 and
2.944 (which are the values that would produce 0.1 and 0.95 from equation 16). If values
closely related to the current sample are available, e.g. the REVAR parameters from the
previous sample, then they could be used as starting values that would converge more
quickly. However, for the empirical exericise in this paper, I use the arbitrary starting
values noted earlier to ensure that all REVAR estimations are fully independent from
each other.

B Vector convolution code

The MatLab function “conv(u, v)” is the simplest way within MatLab to undertake the
vector convolution evaluations noted in the main text. Otherwise, as detailed below,
the algorithm is a straightforward double summation that may readily be coded in other
programming languages.
MatLab documentation for the function “conv”provides the following expression for

the convolution of an m× 1 vector u and an n× 1 vector v:

w (k) =
j

u (j) v (k − j + 1) (21)

where w (k) is element k of the (m+ n− 1)× 1 vector w. The sum is over all the values
of j that lead to legal subscripts for u (j) and v (k − j + 1), which is a minimum index of
j = max (1, k + 1− n) and a maximum index of j = min (k,m).
The full expression for w is therefore:

w =
m+n−1

k=1

min(k,m)

j=max(1,k+1−n)
u (j) v (k − j + 1) (22)

and I have written MatLab code for this algorithm in table B.1. Note, however, that
the MatLab function and the code in table B.1 is only for vectors, which applies to
the univariate EVARs as outlined in the main text. Krippner (2019) generalizes the
convolution technique and also shows how the VAR companion form may be used for the
application to multivariate EVARs.
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Table B.1: MatLab vector convolution code
function w=VectorConvolution(u,v)
% Matrix polynomial convolution.
% u is an m-element vector.
% v is an n-element vector.

[~,m]=size(u);
[~,n]=size(v);
w=zeros(1,m+n-1);
for k=1:m+n-1

for j=max(1,k+1-n):1:min(k,m)
w(:,k)=w(:,k)+u(:,j)*v(:,k-j+1);

end
end

end
Table B.1: MatLab vector convolution code

C All forecast comparison results

This appendix contains the forecast comparison results for all the models mentioned in
the main text. To make the set of results self-contained, I have first repeated table 1 from
section 4 of the main text, which summarizes the MAFE results for the full sample from
the models using the SIC to select the lags. Table B.2 uses the AIC to select the lags.
Tables B.3 and B.4 contain the RMSFE results for the full sample, using SIC and AIC
respectively. Note that the insignificance of the full-sample RMSFE comparisons is due
to all models having some very large forecast errors in the middle of the sample, but the
relative improvements are otherwise all similar to those using MAFEs.
Tables B.5 to B.8 contain the results as in tables B.1 to B.4, but for the Great Mod-

eration period (i.e. from 1985 to 2008). I am happy to provide any further results on
request.
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Table B.1: Full-sample MAFEs relative to RW (SIC-selected lags)
yt models Δyt models RW

Model O OE E R M O E R % pts
h = 1 -2.0 -2.0 -2.1 -4.7v -5.2v -2.1 -2.1 -6.1i 0.29
2 3.1 3.2 2.8 -1.3 -1.6 2.7 2.7 -3.2v 0.47
3 7.6 8.0 7.5 2.0 1.1 7.1 7.1 -1.0 0.62
6 9.4 8.8 8.5 2.5 1.2 7.8 7.8 -1.0 0.97
9 5.4 4.8 4.1 -1.7 -2.0 3.5 3.5 -1.7v 1.23
12 2.9 1.0 -0.1 -3.9 -3.9 0.5 0.5 -0.9 1.50
18 2.1 -1.1 -1.9 -7.9x -7.1x -0.4 -0.4 -0.5 1.98
24 3.6 -3.3 -4.0 -11.2v -9.9v -0.5 -0.5 0.1 2.30
36 6.9 -4.5x -5.2 -14.8v -13.8v 0.3 0.3 0.6 2.62
48 9.0 -2.9 -2.8 -14.5 -15.3x -0.5 -0.5 1.2 2.58
60 11.8 6.6 7.2 -2.3 -5.1 -0.0 -0.0 0.9 2.44

Notes: O = OLS VAR, E = EVAR, R = REVAR, M = REVARMAN, and
OE = O with E override if O produces explosive dynamics. Superscripts
“x” = 10%, “v” = 5%, and “i” = 1% indicate statistical significance.

Table B.2: Full-sample MAFEs relative to RW (AIC-selected lags)
yt models Δyt models RW

Model O OE E R M O E R % pts
h = 1 3.5 3.2 3.5 -4.6v -5.0v 3.3 3.3 -6.3i 0.29
2 9.2 8.8 9.1 -1.3 -1.1 8.8 8.8 -3.3v 0.47
3 11.1 11.3 12.7 2.0 1.7 11.3 11.3 -1.1 0.62
6 9.1 8.3 9.7 2.3 1.7 8.2 8.2 -1.0 0.97
9 5.4 4.2 4.9 -1.7 -1.4 4.1 4.1 -1.7v 1.23
12 5.5 1.3 1.9 -3.9 -3.5 2.8 2.8 -0.9 1.50
18 3.8 -1.1 0.3 -7.9x -6.8x 0.8 0.8 -0.5 1.98
24 4.2 -3.7x -3.0 -11.1v -9.9v -0.0 -0.0 0.1 2.30
36 3.4 -8.1v -7.5 -14.7v -14.2v -2.3 -2.3 0.6 2.62
48 6.3 -7.6v -7.8 -14.3 -14.3x -1.5 -1.5 1.2 2.58
60 13.5 1.2 0.8 -2.0 -3.1 2.6 2.6 0.8 2.44

Notes: O = OLS VAR, E = EVAR, R = REVAR, M = REVARMAN, and
OE = O with E override if O produces explosive dynamics. Superscripts
“x” = 10%, “v” = 5%, and “i” = 1% indicate statistical significance.
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Table B.3: Full-sample RMSFEs relative to RW (SIC-selected lags)
yt models Δyt models RW

Model O OE E R M O E R % pts
h = 1 -2.4 -2.7 -2.7 -3.2 -4.6 -2.9 -2.9 -3.5 0.50
2 3.8 3.3 3.4 2.5 0.1 2.9 2.9 1.3 0.82
3 5.9 5.2 5.3 3.7 0.9 4.5 4.5 2.2 1.02
6 7.3 5.9 6.3 4.2 1.2 4.9 4.9 2.4 1.43
9 5.6 4.1 4.6 1.1 -0.4 2.6 2.6 0.6 1.64
12 3.8 1.4 1.9 -0.1 -1.3 0.1 0.1 1.1 1.95
18 4.8 0.3 0.8 -4.0 -3.9 -0.2 -0.2 0.1 2.44
24 5.1 -1.4 -0.6 -5.3 -5.0 -1.1 -1.1 1.0 2.80
36 9.5 -1.9 -0.3 -6.3 -6.2 -0.1 -0.1 1.0 3.21
48 14.1 -1.7 1.2 -6.3 -6.8 -0.5 -0.5 1.2 3.38
60 22.1 3.3 7.1 -1.9 -3.2 -0.5 -0.5 1.1 3.38

Notes: O = OLS VAR, E = EVAR, R = REVAR, M = REVARMAN, and
OE = O with E override if O produces explosive dynamics. Superscripts
“x” = 10%, “v” = 5%, and “i” = 1% indicate statistical significance.

Table B.4: Full-sample RMSFEs relative to RW (AIC-selected lags)
yt models Δyt models RW

Model O OE E R M O E R % pts
h = 1 4.0 3.6 4.1 -3.2 -4.2 3.5 3.5 -3.9 0.50
2 14.0 13.6 14.7 2.4 1.2 13.3 13.3 1.1 0.82
3 14.6 14.0 16.0 3.5 2.0 13.8 13.8 1.9 1.02
6 7.4 5.7 8.4 3.9 1.9 6.1 6.1 2.2 1.43
9 6.2 3.6 5.9 1.0 -0.0 3.6 3.6 0.5 1.64
12 6.9 2.7 5.5 -0.1 -1.0 3.2 3.2 0.9 1.95
18 6.1 1.0 3.6 -3.7 -3.8 1.3 1.3 0.1 2.44
24 5.8 -0.3 1.3 -5.0 -4.8 0.1 0.1 1.0 2.80
36 9.1 -2.3 -0.2 -5.9 -6.2 0.4 0.4 1.0 3.21
48 14.8 -2.6 0.9 -5.8 -6.4 1.3 1.3 1.2 3.38
60 23.8 1.4 6.0 -1.1 -2.0 2.6 2.6 1.1 3.38

Notes: O = OLS VAR, E = EVAR, R = REVAR, M = REVARMAN, and
OE = O with E override if O produces explosive dynamics. Superscripts
“x” = 10%, “v” = 5%, and “i” = 1% indicate statistical significance.
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Table B.5: 1985—2008 MAFEs relative to RW (SIC-selected lags)
yt models Δyt models RW

Model O OE E R M O E R % pts
h = 1 2.0 2.0 1.0 -9.9i -10.4i 1.9 1.9 -10.8i 0.16
2 10.7 10.7 8.7 -6.7i -4.1x 10.9 10.9 -9.1i 0.27
3 13.7 13.7 10.5 -6.9v -4.3x 14.1 14.1 -8.4i 0.37
6 12.9 12.9 8.5 -3.6 -2.3 13.5 13.5 -4.8i 0.65
9 6.1 6.1 1.1 -5.6 -4.8 6.9 6.9 -3.6i 0.92
12 3.1 3.1 -2.4 -8.5x -7.7x 4.1 4.1 -2.6i 1.18
18 1.1 1.1 -5.9 -12.9v -11.7v 2.6 2.6 -1.4i 1.56
24 -0.5 -0.5 -9.3x -16.7v -15.3v 1.5 1.5 -0.9v 1.85
36 -3.3v -3.3v -14.4v -20.8v -19.5v -0.3 -0.3 -0.1 2.15
48 -6.1i -6.1i -18.5i -24.7v -23.4v -2.1v -2.1v 0.6 2.16
60 -6.3i -6.3i -20.9i -27.9v -27.3v -1.5x -1.5x 0.7 2.01

Notes: O = OLS VAR, E = EVAR, R = REVAR, M = REVARMAN, and
OE = O with E override if O produces explosive dynamics. Superscripts
“x” = 10%, “v” = 5%, and “i” = 1% indicate statistical significance.

Table B.6: 1985—2008 MAFEs relative to RW (AIC-selected lags)
yt models Δyt models RW

Model O OE E R M O E R % pts
h = 1 4.2 4.2 3.9 -10.1i -10.4i 4.4 4.4 -10.8i 0.16
2 9.9 9.9 8.2 -6.7i -4.1x 10.5 10.5 -8.6i 0.27
3 8.7 8.7 6.1 -6.9v -4.3x 9.5 9.5 -8.2i 0.37
6 6.2 6.2 3.2 -3.6 -2.3 7.1 7.1 -4.4i 0.65
9 -0.3 -0.3 -4.5 -5.6 -4.8 0.9 0.9 -3.4i 0.92
12 -1.7 -1.7 -7.4x -8.5x -7.7x -0.3 -0.3 -2.5i 1.18
18 -1.3 -1.3 -8.6x -12.9v -11.7v 0.3 0.3 -1.4i 1.56
24 -2.4 -2.4 -11.3v -16.7v -15.3v -0.4 -0.4 -0.9v 1.85
36 -9.8i -9.8i -18.9i -20.7v -19.5v -7.2i -7.2i -0.1 2.15
48 -10.8i -10.8i -22.0i -24.7v -23.4v -7.0i -7.0i 0.6 2.16
60 -7.4v -7.4v -23.9i -27.9v -27.3v -2.5 -2.5 0.6 2.01

Notes: O = OLS VAR, E = EVAR, R = REVAR, M = REVARMAN, and
OE = O with E override if O produces explosive dynamics. Superscripts
“x” = 10%, “v” = 5%, and “i” = 1% indicate statistical significance.
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Table B.7: 1985—2008 RMSFEs relative to RW (SIC-selected lags)
yt models Δyt models RW

Model O OE E R M O E R % pts
h = 1 0.5 0.5 -0.1 -10.8i -11.0i 0.7 0.7 -10.9i 0.22
2 10.0 10.0 8.9 -6.6i -4.9i 10.3 10.3 -7.6i 0.38
3 10.9 10.9 9.4 -6.6i -4.7i 11.3 11.3 -7.7i 0.50
6 11.4 11.4 8.7 -5.2v -4.1x 12.0 12.0 -4.8i 0.86
9 4.8 4.8 1.4 -6.1x -5.3x 5.6 5.6 -3.4i 1.20
12 2.2 2.2 -2.2 -7.8v -7.1v 3.3 3.3 -2.2i 1.49
18 0.8 0.8 -5.5x -11.3v -10.5v 2.3 2.3 -1.3i 1.92
24 -0.9 -0.9 -8.8v -14.6v -13.7v 1.1 1.1 -0.7x 2.25
36 -3.2v -3.2v -13.8v -19.6v -18.6v -0.4 -0.4 -0.1 2.60
48 -5.3i -5.3i -17.6i -22.3v -21.6v -1.9i -1.9i 0.6 2.63
60 -5.3i -5.3i -16.6v -19.9v -19.9v -2.1v -2.1v 0.7 2.41

Notes: O = OLS VAR, E = EVAR, R = REVAR, M = REVARMAN, and
OE = O with E override if O produces explosive dynamics. Superscripts
“x” = 10%, “v” = 5%, and “i” = 1% indicate statistical significance.

Table B.8: 1985—2008 RMSFEs relative to RW (AIC-selected lags)
yt models Δyt models RW

Model O OE E R M O E R % pts
h = 1 2.4 2.4 1.8 -10.8i -11.0i 2.6 2.6 -11.0i 0.22
2 8.1 8.1 7.0 -6.5i -4.9i 8.5 8.5 -7.3i 0.38
3 5.7 5.7 4.2 -6.6i -4.7i 6.2 6.2 -7.5i 0.50
6 4.4 4.4 1.7 -5.2v -4.1x 5.1 5.1 -4.5i 0.86
9 -2.1 -2.1 -5.6v -6.1x -5.3x -1.1 -1.1 -3.2i 1.20
12 -3.0 -3.0 -7.7v -7.8v -7.1v -1.8 -1.8 -2.1i 1.49
18 -2.9 -2.9 -9.5v -11.3v -10.5v -1.3 -1.3 -1.3i 1.92
24 -3.9v -3.9v -11.8v -14.6v -13.7v -1.9 -1.9 -0.7x 2.25
36 -7.4i -7.4i -17.4i -19.6v -18.6v -4.8i -4.8i -0.0 2.60
48 -8.8i -8.8i -20.2i -22.3v -21.6v -5.7i -5.7i 0.6 2.63
60 -6.5v -6.5v -18.0v -19.9v -19.9v -3.4v -3.4v 0.7 2.41

Notes: O = OLS VAR, E = EVAR, R = REVAR, M = REVARMAN, and
OE = O with E override if O produces explosive dynamics. Superscripts
“x” = 10%, “v” = 5%, and “i” = 1% indicate statistical significance.
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