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1 Introduction

This paper investigates the long-run effects of prolonged air pollution on firm-level human

capital, knowledge, and innovation composition. Given the importance of human capital

as an engine for economic growth, it is surprising how little evidence there is on how the

environment affects human capital accumulation, and its subsequent impacts on knowledge

and innovation. Environmental pollution impacts firm-level human capital both at the ex-

tensive and intensive margins, by mainly two channels: residential sorting and employees

mobility; and the health effects on human capital productivity. At the extensive margin,

geographically mobile human capital tends to move from regions with poor environmental

amenities to areas with cleaner air and better environmental quality (Hanlon, 2020; Chen

et al., 2017; Graff Zivin and Neidell, 2013). The flow of human capital is determined not only

by its marginal productivity, but also by many other factors, such as a bundle of amenities

and lifestyle options (Bilal and Rossi-Hansberg, 2021). At the intensive margin, environ-

mental pollution might harm the formation of human capital through health and cognitive

development (Graff Zivin et al., 2020; Bharadwaj et al., 2017; Ebenstein et al., 2016).

We use a novel Chinese database, Surveys of Science and Technology Activities of In-

dustrial Firms (henceforth SSTA). This dataset covers almost all industrial firms that are

engaged in science and technology activities in China, reporting comprehensive information

on firm-level human capital (e.g. educational levels, profession titles, and gender), knowledge,

and innovation (e.g. publication, invention, and trademark). It records detailed information

on employees who work on knowledge-producing activities in an independent research and

development (R&D) department, such as experimental bases, laboratories, or pilot work-

shops. The SSTA covers firms that represent more than 90 percent of industrial knowledge

and innovation across 46 two-digit industries in China, and are distributed nearly across

the whole country. We combine this dataset with information on environmental pollution

(PM2.5) and thermal inversion, which are obtained from the Earth Observing System (EOS)

of National Aeronautics and Space Administration (NASA).

In order to uncover the causal effect of air pollution on firm-level R&D human capital,

our empirical strategy uses a spatial regression discontinuity (RD) design, which exploits the

spatial discontinuity in air pollution created by China’s Huai River heating policy (Ito and

Zhang, 2020; Chen et al., 2013; Almond et al., 2009). In the 1950s, due to resource constraints

the central Chinese government decided to provide coal-based heating service only for cities

in the north of the Huai River. The division was chosen mainly because cities in the north

have no less than 90 days when the annual average temperature is below or equal to 5°C.
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It was not determined by any other political or economic reasons (Chen et al., 2013). Until

today, heating in the north primarily relies on coal-based co-generators and boilers, whereas

heating in the south primarily relies on electric power. After several decades, the difference

in air quality between the north and the south is substantial (Almond et al., 2009). Since

this pollution gap has been accumulated for more than 50 years, it enables us to explore how

the pollution stock affects firm-level human capital over a long period. While the north and

the south of China differ from each other in many fundamental ways, in our research design,

we compare firms in the south and in the north which are immediately adjacent to the Huai

River, where the social, economic, and geographic conditions are statistically continuous,

and the only existing significant discontinuity is in air pollution. We provide several tests

which give support to the validity of our RD exercise (e.g. Lee and Lemieux, 2010).

There are three potential channels of how pollution affects firm-level human capital over

the long run. The first two channels comprise the residential sorting of human capital

(extensive margin) and the negative effects of pollution on health and cognitive development

(intensive margin). Our estimates contain the overall effects. When estimating the intensive

margin effect, people’s residential sorting can be viewed as a confounding factor, since it is

likely to cause non-random assignment of pollution exposure. However, “residential sorting”

in this setting functions as a primary vital channel to attract human capital at the extensive

margin, which might take decades to affect innovation. In addition, we are interested in the

overall effect and not only on the intensive margin channel.

An additional important channel is firm spatial sorting, which may provide another

mechanism of how firm-level human capital might differ in regions which are heterogenous

in air pollution. For instance, an R&D-oriented firm may observe the negative effects of

environmental pollution and relocate itself to the south. This would be problematic for our

empirical strategy and the interpretation of our results since firms would be fundamentally

different between the north and the south borders of the Huai River. Although firm spatial

sorting can be a result of environmental pollution, we empirically test this hypothesis. First

of all, we check each firm’s address and find that only 207 out of more than 30,000 firms in

our sample changed their location between 1998 and 2013, with 81 of them still located in

the north. The remaining 126 firms which moved to the south correspond to approximately

0.3 percent of our sample. Second, we test the density of firm distribution across the cutoff,

employing the procedure of approximate sign test proposed by Bugni and Canay (2021). The

results show that there is statistical continuity of firm distribution at the cutoff, indicating

that there is no significant sorting occurring. Last, given that compared with start-up firms,

the flexibility of old firms to move across regions is generally greatly reduced, we do further

2



checks by limiting our sample to firms that have been in operation for more than 5, 10, 15

and 20 years, respectively. However, our results remain robust to various sub-samples.

Our estimates show that environmental pollution substantially diminishes both the quan-

tity and the quality of firm-level human capital who work exclusively on R&D activities.

More specifically, prolonged air pollution significantly affects firm-level human capital com-

position, reducing the share of employees with a PhD degree and master’s degree, but instead

increasing the share of employees with bachelor’s degrees. Moreover, the difference in the

composition of human capital materially change the knowledge and innovation structure of

the firms: with our estimates showing that environmental pollution decrease innovations

that demand a high level of creativity (such as publications and inventions) while increasing

innovations with a relatively low level of creativity (such as design patents).

While it is relevant to disentangle the extensive margin effects from the intensive margin

effects, data and the Huai River setting limit us to do so. In order to shed some light on the

importance of the intensive margin, we investigate the impacts of environmental pollution on

human capital productivity (innovations per R&D employee) over the short run, exploiting

the two-stage least square (2SLS) approach with thermal inversion as an instrument.1 As

a meteorological phenomenon, thermal inversion is correlated with air quality (PM2.5) but

uncorrelated with firm-level short-run R&D workers’ productivity in its neighborhood unless

through the air quality channel. In this setting, we are able to investigate the short-run effects

of air pollution, controlling for firm fixed effects and any firm-level characteristics formed

before the sample period (2011-2013), and considering only within-firm variations.

We find that one µg/m3 increase in the annual average PM2.5 concentration leads to a

0.188 loss in human capital productivity (number of innovations per R&D employee). Our

analysis shows that air pollution heterogeneously dampens human capital productivity vary-

ing across the creativity intensiveness. The results indicate that R&D employees engaged in

highly knowledge-intensive activities are more prone to productivity losses. Last, the uncon-

ditional quantile regression shows that the effects of air pollution exhibit various patterns

on quantiles with different levels of human capital productivity. The distributional patterns

suggest that the marginal losses of human capital productivity are more sizable and salient in

the upper quantiles, implying that top talents suffer more losses at work in response to poor

environmental quality. In sum, the findings indicate that air pollution diminishes human

capital formation on the intensive margin by reducing human capital’s creativity.

In order to rationalize our results, we present in Appendix C a new economic multi-

1Thermal inversion occurs when the temperature at the upper atmospheric layer is higher than that of
the lower layer, preventing pollutants from dissipating (e.g., Fu et al., 2021; Sager, 2019; Jans et al., 2018).
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region geography model, introduced by Helpman (1998). See Redding and Rossi-Hansberg

(2017) for an overview of this literature. The model features spatial distribution of economic

activity across a set of regions integrated by the trade of goods and labor mobility. Agents

in the model move across regions to spatially arbitrage away real wage differences. The real

wage depends on the price index for tradeables and the price of a non-tradeable amenity.

When air pollution rises in one region, then individuals move away from that region to

others, pushing up the price of non-traded amenity in regions with relative better air quality.

Economic activity, as well as innovation determined by the measure of varieties Mr, rise in

regions with a better non-traded amenity. Air pollution can also cause productivity to fall,

moving individuals away from regions with lower labor productivity to those with higher

labor productivity. Increasing economic activity and the production of different variety in

receiving regions.

This paper contributes to several related strands of literature. To the best of our knowl-

edge, we are the first to study how environmental pollution affects firm-level human capital

over the long run. There is a large and growing literature on the negative effects of air

pollution on labor productivity (e.g. Fu et al., 2021; Chang et al., 2019; He et al., 2019;

Chang et al., 2016; Graff Zivin and Neidell, 2012). The pioneering study by Graff Zivin

and Neidell (2012) shows that the exposure to ozone reduces the productivity of agricultural

workers. Fu et al. (2021) document that the exposure to PM2.5 decreases the productivity of

industrial workers. We contribute to this literature by showing how air pollution affects the

composition of firm-level human capital and its productivity. We also provide comprehensive

evidence on how air pollution negatively affects firm-level knowledge and innovation using

different indicators: publications, trademarks, industrial standards, and patents. Among

these indicators, patent is the most commonly used by researchers (e.g., Arora et al., 2021;

Cui et al., 2020; Cornaggia et al., 2015). However, a patent may not be a sufficient indicator

to represent a firm’s innovation capability. In addition to applying for patents, firms are

also engaged in other knowledge-producing activities, such as publishing papers, registering

trademarks, and making industrial standards (e.g., Arora et al., 2021). Moreover, to help

us gain a better understanding of firms’ innovation quality, rather than looking at total

patents, we divide patents into three types: invention, utility model, and design patents. In-

vention patents are regarded as high-quality innovation because they relate to technological

breakthroughs and upgrades in product or production process and are subject to extensive

examinations in terms of their originality and novelty prior to approval. In contrast, utility

model and design patents do not necessarily go through these examinations. In particular,

the design patent, which is usually licensed for a new package, shape, color, and pattern of
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the product, is regarded as relatively low-quality innovation. Our estimates show that the

effects of pollution on the composition of human capital is also reflected on the firm’s quality

of innovation.

This paper also relates to the literature on the effects of environmental pollution on

human capital formation via the cognitive development channel (e.g., Graff Zivin et al.,

2020; Bharadwaj et al., 2017; Ebenstein et al., 2016). The pollution-induced decrements

in neurological system and lung functioning (e.g., Jans et al., 2018; Power et al., 2015;

Schwartz, 2004; Heft-Neal et al., 2018; Chen et al., 2013) may affect human’s ability to

concentrate and thus decrease their creative ability and work efficiency. This literature

mainly focuses on students’ examination scores at school, which links to the initial stage of

human capital formation. For instance, Bharadwaj et al. (2017) study the impact of fetal

exposure to air pollution on 4th grade test scores. Compared with an adult, a child is more

susceptible to pollutants because their immune system is more vulnerable (Schwartz, 2004).

Until now, there has been very little evidence on the effects on adult human capital’s cognitive

performance, except for Heyes et al. (2016)’s research on investors’ return. Our work focuses

on adult human capital who already work for knowledge producing activities, showing that air

pollution significantly decreases human capital’s innovative ability and productivity. With

economic development understandably high on the agenda for emerging and developing

countries, they may choose to introduce policies that might sacrifice environmental quality in

exchange for economic prosperity. The hope is that pollution can be mitigated after economic

development reaches a certain level. We show that this may not be well founded when

considering the negative effects of air pollution on firm-level innovation. Overall, our results

highlight the importance of environmental quality as a significant factor for productivity and

welfare.

The rest of the paper is organized as follows. Section 2 describes our data and the Huai

River policy. Section 3 presents the empirical strategy and results, while Section 4 explores

various mechanisms. Section 5 conducts heterogeneous analysis and quantile treatment

effects. Finally, Section 6 offers concluding remarks.

2 Data and Policy Setting

2.1 Firm-Level Human Capital Data

We combine four datasets: Surveys of Science and Technology Activities of Industrial Firms

(SSTA), Annual Survey of Industrial Firms (ASIF), firm-level Industrial Patent Database,
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and air quality data from NASA. Below we introduce the novel SSTA database, and describe

the remaining databases which are widely used in the literature in Appendix A.

SSTA is an annual survey of industrial firms conducted by China’s National Bureau of

Statistics (NBS). It includes all industrial firms that are engaged in science and technology

activities, mainly covering 46 two-digit industries in China. In each year, firms are required

to fill in the form of Scientific and Technological Activities and Related Information of in-

dustrial Enterprises and submit it to China’s local NBS. This survey is also the source of

China Statistical Yearbook on Science and Technology, an authoritative and publicly avail-

able statistic. We have access to the SSTA database for the following years: 2011, 2012,

and 2013. In China Statistical Yearbook on Science and Technology, the number of surveyed

firms are 37,467, 47,204 and 54,832, respectively, in year 2011, 2012, and 2013, which are

consistent with the SSTA firm-level database. We match the SSTA database with ASIF and

90.4 percent of the sample in the SSTA can be matched. Then, we geocode the geographic

location (longitude and latitude) of each firm through the Amap interface and compute its

distance to the Huai River border. We end up with 24,722, 32,649 and 36,350 observations

in year 2011, 2012, and 2013, respectively.

The SSTA database records detailed information on firms’ science and technology activ-

ities: human capital (educational levels, titles, gender, etc.), R&D human capital’s perfor-

mance (publications, trademarks, patents, etc.), R&D expenditures, and government subsi-

dies. We focus on human capital, knowledge, and innovation in firms’ R&D departments,

such as R&D institutions, technology centers, laboratories, pilot workshops, or experimental

bases. The R&D departments are relatively independent from the production units, and

all the employees in these departments work only on science and technology development.

Thus, the measure of human capital in this paper does not include those in firms’ produc-

tion and management units. The key variables we use include: the sum of employees in the

independent R&D department (or the total number of human capital), the share of human

capital with PhD, master’s, and bachelor’s degrees; the number of publications, registered

trademarks, and industrial standards; and government subsidies. See Appendix B for the

summary statistics of the main variables, a brief description of the mean value, standard

deviation, and numbers of observations for the firm-level and county-level variables.

2.2 The Huai River Policy

In 1958, due to resource constraints, the central government only provided heating services

for the cities in the north of the Huai River. The blue line in Figure 1 shows the Huai River
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and Qinling Mountain, which divides northern China and southern China. The division

was chosen mainly because cities in the north have no less than 90 days when the annual

average temperature is below or equal to 5°C. It was not determined by any other political

or economic reasons (Chen et al., 2013).

The central heating system in north China supplies heating service to residential and

office/commercial buildings through pipeline networks, and the heat is mainly generated from

coal-based boilers and co-generators (the combined heat and power generators). By the end

of 1985, the heat generated by hot water boilers accounted for 75 percent of the heating in the

north. In July 2003, China started to commercialize the heating service, requiring users to

pay heating bills. According to the National Bureau of Statistics, in 2012, the heat generated

by co-generators and boilers accounted for 40.1 percent and 58.8 percent of heating in the

cities, respectively. At present, there are basically three conventional heating sources: coal-

based boilers, co-generators, and domestic coal-fired stoves in the north. However, heating in

the south mainly relies on electric power, either through multi-use air-conditioners or space

heaters. Burning coal releases particulate matter (PM), nitrogen dioxides, sulfur dioxides

and many other pollutants into the air. In particular, the level of the primary pollutant,

particulate matter, is even higher if the coal is not sufficiently burned. Moreover, the boilers

and generators in China frequently work under low-load conditions, as a result of which more

coal is burned for each unit of heating.

The north-south air pollution gap induced by the coal-based heating policy is substantial.

This spatial discontinuity in air provides a favorable quasi-natural experiment for RD design.

Although this policy has been explored by some studies (Ito and Zhang, 2020; Chen et al.,

2013; Almond et al., 2009), none of them investigate the effects of air pollution on firm-

level human capital, knowledge and innovation. As Graff Zivin and Neidell (2013) suggest,

due to endogeneity concerns of pollution, finding a reliable design is of first importance to

understand the impact of pollution on different economic and social outcomes. North China

differs from South China in many fundamental ways. Nevertheless, in the RD design, we

compare firms in the south and in the north that are immediately adjacent to the north-

south cutoff line, as well as geographically close in the west-east direction. The mean square

error (MSE) optimal bandwidth is quite narrow, implying that the south and north firms for

computing treatment effects are generally in the same county, where the social, economic,

and geographic conditions are statistically continuous at the cutoff, and the only significant

discontinuity exists in air pollution. The RD design has been a popular tool of empirical

economists, principally because it can be statistically tested as randomized experiments (Lee

and Lemieux, 2010). We next formally test the assumptions that establishes the validity of
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Figure 1: The Huai River Boundary and Firm’s Location

Notes: The blue line in the middle of the map is the Huai River and Qinling Mountain. The red
dots represent the sampled firms in the north, and the green dots represent the sampled firms in
the south.
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the RD design.

3 Empirical Strategy and Results

3.1 Spatial RD Design

We adopt an RD design to examine the causal effects of air pollution on firm-level R&D

human capital, knowledge, and innovation accumulation over the long run. The distance

between each firm and the Huai River border serves as the running variable. The specification

is defined as

Yijc = α1Northi + α2Disti + α3Northi ×Disti +Xijc + γj + δc + ϵijc,

such that − h ≤ Disti ≤ h,
(1)

where Yijc represents outcome variables of firm i in industry j at longitude range c. Since

the Huai River border stretches from the west to the east of China, it may have systematic

differences in the west-east dimension. We divide our sample into ten deciles based on firms’

longitudes and include the longitude range fixed effects δc. Northi is an indicator that

equals 1 if a firm is located in the north, and 0 in the south. Disti measures the distance

between firm i and the Huai River border (positive if north and negative if south). Xijc

is a vector of control variables, including firm age and total assets, and h is the estimated

MSE-optimal bandwidth suggested by Calonico et al. (2014). The coefficient of interest, α1,

represents the discontinuous change in Yijc at the Huai River border. We choose a local linear

approach because using a polynomial function of the running variable as a control tends to

generate RD estimates that are sensitive to the order of the polynomial and have some

other undesirable statistical properties (Gelman and Imbens, 2019).2 Moreover, industry

(γj), ownership, and year fixed effects are absorbed. Following Lee and Lemieux (2010),

we use a two-step approach to estimate the RD model. We first obtain the residualized

outcome variables via the OLS regressions on a set of two-digit industry dummies, ownership

dummies, longitude-quartile dummies, and year dummies, and then exploit the RD model

with residualized outcome variables. Lee and Lemieux (2010) propose that if the RD design

is valid, this procedure provides a consistent estimate of the same RD parameter of interest

without causing bias.

2We also estimated equation (1) using a polynomial function and our results are robust to the order of
the polynomial. These results are not reported here but are available upon request.
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3.2 Empirical Results
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Figure 2: The RD Design at the Huai River Border

Notes: The vertical line in the middle at Disti = 0 stands for the Huai River border. The
horizontal axis represents the distance (Disti) between firms and the Huai River border. The
northern firms are presented on the right-hand side, and the southern firms are presented
on the left-hand side. Each dot indicates a mean of the corresponding variable for firms
within a bin in a size of 100 kilometers. The solid line that represents the fitted curve of
each regression shows the discontinuity around the Huai River border.

3.2.1 Human Capital Accumulation

We begin with a graphical presentation of the spatial RD analysis in Figure 2. The horizontal

axis represents the distance (Disti) between each firm and the Huai River border. The

northern firms are presented on the right-hand side, and the southern firms are presented

on the left-hand side. The vertical line in the middle at Disti = 0 represents the Huai River

border. Each dot indicates a mean of the corresponding variable for firms within a bin in
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a size of 100 kilometers. The solid line that represents the fitted curve of each regression

shows the discontinuity around the Huai River border.

Table 1: Long-run Effects of Air Pollution on Human Capital Accumulation: North vs.
South

(1) (2) (3)
PhD Master Bachelor

Panel A: Control variables
RD Estimate -0.016*** -0.013*** 0.059***

(0.002) (0.005) (0.010)
Bandwidth 1.735 1.295 1.211

Panel B: Control variables, Longitude-quartile FE, Industry FE,
and Year FE absorbed
RD Estimate -0.017*** -0.007* 0.078***

(0.002) (0.004) (0.009)
Bandwidth 1.936 1.975 1.310

Panel C: Control variables, Longitude-quartile FE, Industry FE,
Year FE, and Ownership FE absorbed
RD Estimate -0.017*** -0.009** 0.078***

(0.002) (0.004) (0.009)
Bandwidth 1.732 1.854 1.304

Kernel Type Triangular Triangular Triangular
Observations 85,035 85,035 85,035

Notes: “PhD” represents the share of human capital with PhD degree (the number of human

capital with PhD degrees divided by total human capital); “Master” and “Bachelor” are calculated

in the same way. The running variable is the distance between a firm and the Huai River border—

positive values for the north and negative for the south. Each cell in the table represents a separate

RD regression. Following Calonico et al. (2014), we estimate the discontinuities at the Huai River

border using locally linear regressions and MSE-optimal bandwidth for the default kernel weighting

method. Standard errors are reported in parentheses below the estimates. ***, **, and * denote

significance at the 1, 5, and 10 percent levels, respectively.

In Figure 2(a), we see a sharp break in PM2.5 at the Huai River border of 15.38 µg/m3.

This is consistent with the findings that air quality in cities north of the Huai River is

significantly worse than that in the south (Ito and Zhang, 2020; Ebenstein et al., 2017; Chen

et al., 2013; Almond et al., 2009). Notably, the mean PM2.5 is 55.14 µg/m3 for firms near

the south of the border. The RD estimates represent an approximate 27.90% increase in
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PM2.5. Figures 2(b) and (c) show the RD plot for the residualized share of human capital

with PhD and master’s degrees, respectively, with industry, ownership, longitude-quartile,

and year fixed effects controlled. Given the quantity of human capital, the north has a lower

share of firm-level human capital with a PhD degree or a master’s degree. Nevertheless,

Figure 2(d) shows that firms in the north hire more human capital with bachelor’s degrees.

It is plausible that the firms in the polluted north have no choice but to hire more employees

with bachelor’s degrees in their R&D team to make up the deficit in the employees holding

a PhD or master’s degree.

Table 1 presents results consistent with the findings reported in Figure 2. Panel A

presents the RD estimates with firm age and total assets controlled. In order to account

for the vast geographical differences along the west-east direction, and the industry-specific

and year-specific factors, we use residualized dependent variables with longitude-quartile,

industry and year fixed effects absorbed in Panel B. Furthermore, in Panel C, we also control

for ownership fixed effects, which teases out confounding impacts stemming from different

ownership compositions in the north and south.3

Estimates in the three panels of Table 1 are quite similar in magnitude and significance.

In Panel C, we compare the differences in the long-run human capital accumulation between

the south and the north firms that are not only spatially adjacent to each other along north-

south direction, but also geographically close along the west-east direction, belonging to the

same industry, observed in the same year, and sharing the same ownership. Columns (1)

and (2) show that, immediately adjacent to the Huai River, the share of human capital with

PhD degrees and master’s degrees of firms in the north are 0.017 and 0.009 lower than those

in the south, and these differences are statistically significant. These findings are aligned

with the fact that people with high educational levels are more mobile (Hanlon, 2020; Chen

et al., 2017). Column (3) of this same table shows that firms in the north tend to hire more

R&D workers with bachelor’s degrees. In sum, there are important structural differences in

the composition of R&D human capital between firms in the north and in the south caused

by differences in air pollution.

3.2.2 Knowledge and Innovation Accumulation

Having shown that there are substantial differences in the structure of firm level R&D human

capital quality between the south and the north, we now turn to test whether or not this

3There are several different types of private firms in our sample: domestic private firms, Hong Kong,
Macao, and Taiwan private firms, foreign private firms, collective-owned firms, and other types of private
firms.
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Table 2: Long-run Effects of Air Pollution on Knowledge and Innovation: North vs. South

(1) (2) (3) (4)
Publication Trademark Standard Patent

Panel A: Control variables
RD Estimate -0.250* -1.634*** -0.320*** 1.183**

(0.129) (0.583) (0.079) (0.590)
Bandwidth 0.766 1.620 1.066 2.337

Panel B: Control variables, Longitude-quartile FE, Industry FE,
and Year FE absorbed
RD Estimate -0.264** -1.195** -0.256*** 0.216

(0.127) (0.511) (0.077) (0.639)
Bandwidth 0.986 2.507 1.117 1.997

Panel C: Control variables, Longitude-quartile FE, Industry FE,
Year FE, and Ownership FE absorbed
RD Estimate -0.428*** -1.281** -0.256*** 0.387

(0.136) (0.518) (0.075) (0.643)
Bandwidth 0.831 2.274 1.165 1.971

Kernel Type Triangular Triangular Triangular Triangular
Observations 99,496 99,496 99,496 93,898

Notes: “Publication” represents the annual number of papers that are published by human capital

at firm level; “Trademark” represents the annual number of registered trademarks that are created

by human capital at firm level. “Standard” represents the annual number of national or industrial

standards formed by a firm and approved by relevant official departments on the basis of indepen-

dent R&D activities at firm level. The running variable is the distance between a firm and the

Huai River border—positive values for the north and negative for the south. Each cell in the table

represents a separate RD regression. Following Calonico et al. (2014), we estimate the discontinu-

ities at the Huai River border using locally linear regressions and MSE-optimal bandwidth for the

default kernel weighting method. Standard errors are reported in parentheses below the estimates.

***, **, and * denote significance at the 1, 5, and 10 percent levels, respectively.

could result in differences in knowledge and innovation activities.

As for innovation indicators, patents are the most commonly used measure by researchers

(e.g., Arora et al., 2021; Cui et al., 2020; Cornaggia et al., 2015). However, the concern is

that patents may not be a sufficient indicator to represent a firm’s innovation capability.

In addition to applying for patents, firms are engaged in various knowledge-producing ac-

tivities, such as publishing papers. We therefore use the number of publications, registered
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Table 3: Long-run Effects of Air Pollution on Patents: North vs. South

(1) (2) (3)
Invention Utility Model Design

Panel A: Control variables
RD Estimate -0.981*** -0.060 1.107**

(0.342) (0.262) (0.434)
Bandwidth 1.167 2.506 1.981

Panel B: Control variables, Longitude-quartile FE, Industry FE,
and Year FE absorbed
RD Estimate -0.630** 0.252 1.394***

(0.312) (0.246) (0.398)
Bandwidth 1.438 2.687 2.278

Panel C: Control variables, Longitude-quartile FE, Industry FE,
Year FE, and Ownership FE absorbed
RD Estimate -0.524* 0.289 1.389***

(0.300) (0.254) (0.398)
Bandwidth 1.602 2.554 2.266

Kernel Type Triangular Triangular Triangular
Observations 93,898 93,898 93,898

Notes: The running variable is the distance between a firm and the Huai River border—positive

values for the north and negative for the south. Each cell in the table represents a separate

RD regression. Following Calonico et al. (2014), we estimate the discontinuities at the Huai River

border using locally linear regressions and MSE-optimal bandwidth for the default kernel weighting

method. Standard errors are reported in parentheses below the estimates. ***, **, and * denote

significance at the 1, 5, and 10 percent levels, respectively.

trademarks, industrial standards, and patents to measure a firm’s knowledge and innovation

capability. Columns (1)–(3) of Table 2 show that the numbers of publications, registered

trademarks, and industrial standards are significantly smaller (by 0.428, 1.281, and 0.256,

respectively) in the north firms than the south ones which are closely distributed along the

Huai River border. However, Column (4) shows that there is no statistically significant gap

in the total number of patents between firms in the north and the south, except for panel A

when controls are not considered.

In order to better assess firms’ innovation quality, rather than looking at total patents,

we divide patents into three different types: invention, utility model, and design patents
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according to China’s Patent Law. Invention patents are regarded as high-quality innovation

because they relate to technological breakthroughs and upgrades in product or production

process and are subject to extensive examinations in terms of their originality and nov-

elty prior to approval. In contrast, utility model and design patents do not necessarily go

through these examinations. In particular, the design patent, which is usually licensed for a

new package, shape, color, and pattern of the product, is regarded as relatively low-quality

innovation.

We separately estimate the effects of pollution on each type of patent and present the

results in Table 3. Column (1) shows that the number of high-quality innovations (invention

patents) is significantly smaller in the north firms than in the south ones within the MSE-

optimal bandwidth. However, the difference in utility model patents between the north and

the south is not statistically significant. Moreover, Column (3) shows that firms in the north

have significantly more low-quality innovations (design patents) than their counterparts in

the south. Interestingly, the findings on innovation are structurally consistent with the

findings regarding human capital. Tables 2 and 3 suggest that firms in the south outperform

those in the north in knowledge and innovation development, not only in terms of the quantity

but also in terms of the quality of innovations.4

3.3 Validity of the Spatial RD Design

As we use a RD design, our identifying hypothesis is that firms are supposed to be locally

randomized at the cutoff of the Huai River border. This implies that observable variables,

except for air pollution, that could affect firm-level human capital should change smoothly

at the Huai River border.

Table 4 displays a set of geographic and socioeconomic variables in the north and in the

south of the Huai River border: temperature, land price, average wage, population density,

government spending on education and science, the number of educational institutions, and

the number of teachers at educational institutions. Columns (1) and (2) of this table report

the means for the north and the south, respectively. Column (3) shows the mean difference

between the north and the south. Some of the mean differences are sizable in magnitude,

because we compare the whole northern and southern China, rather than the regions adjacent

to the cutoff. Then, we adopt the spatial RD regression to obtain RD estimates for those

observable characteristics and report the standard errors in brackets in Column (4). It is

clear that there is no evidence of discontinuity at the Huai River border for these observed

4In Appendix F we also show that government subsidies for R&D activities do not help alleviate the gap
in firm-level human capital, knowledge and innovation between the north and the south.
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Table 4: Observables: North vs. South of the Huai River

(1) (2) (3) (4)
North South Difference RD Estimates

in Means (Local Linear)

PM2.5(ug/m
3) 69.434 53.343 16.091 13.383***

(3.159)
Temperature (°C) 11.904 14.977 -3.073 0.080

(0.301)
Land price (yuan/m2) 379.56 752.07 -372.51 24.211

(36.220)
Average wage 63.298 67.952 -4.654 1.756
(thousand yuan) (1.938)
Population density 829.080 1207.93 -378.850 69.063
(people/square kilometer) (64.482)
Government spending on 48.873 102.128 -53.256 -1.022
education (millions RMB) (12.949)
Government spending on 633.131 621.825 11.306 20.605
science (millions RMB) (40.209)
Number of higher education 9.341 11.848 -2.507 -0.448
institutions (0.288)
Number of teachers in higher 6148.654 8255.307 -2106.701 -230.129
education institutions (207.677)

Notes: PM2.5, temperature, land price, average wage, and population density are averaged at

the county level. The land transaction information is maintained by the National Department

of Natural Resources Development and Utilization. There are 212,735 land transactions that are

randomly drawn from the total transactions between 2011 and 2013. Government spending on

education and science, the number of high education institutions, and number of teachers in high

education institutions are averaged at the city-level. *** denotes significance at the 1% level.

variables. It is reassuring to notice that except for the pollution indicator, other observable

variables that could explain firm-level human capital and R&D activity change smoothly

in the neighborhood of the Huai River border. Lee and Lemieux (2010) suggest that if

the continuity in these baseline covariates is verified, which we do in Table 4, then the

underlying identifying assumption of the RD design is verified. In addition, Chen et al.

(2013) have shown the continuity in other socio-economic features at the border, such as

years of education, share in manufacturing, share of minority, and share of urban population.

Finally, Ito and Zhang (2020) have shown that variables, such as years of schooling, fraction

of illiterate, fraction of those who have completed high school, fraction of those who have
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completed college, and house size, are also continuous at the border. These findings give

further support to our identifying assumption.

4 Channels

There are three potential channels of how pollution affects firm-level human capital over the

long run. The first two channels comprise the residential sorting of human capital (extensive

margin) and the negative effects of pollution on health and cognitive development (intensive

margin). Our main results represents the overall effects of the two channels. It is noteworthy

that when estimating the intensive margin effect, people’s residential sorting can be viewed

as a confounding factor, because it is likely to cause non-random assignment of pollution

exposure. However, “residential sorting” in this setting functions as a primary vital channel

to attract human capital at the extensive margin. In addition, another important channel is

firm spatial sorting (extensive margin), which may provide another mechanism of how firm-

level human capital might differ across regions because of the variations in air pollution.

4.1 Extensive Margin: Firm Spatial Sorting

Firms spatial sorting might be an important mechanism through which air pollution affects

firm-level human capital and innovation. A technology-oriented firm may observe the neg-

ative effects of environmental pollution and relocate itself to the south. Furthermore, more

innovation intensive firms are more likely to do so. This would therefore affect the selection

of firms in the north and in the south of the river, which would change the interpretation

of our main results. If firms spatial sorting is the main channel explaining our results, then

air pollution would generate a north-to-south reallocation of high quality firms but would

not directly affect the productivity of firm level human capital. As a result, air pollution

would mainly affect human capital and innovation at the extensive margin on the relocation

of more innovation intensive firms moving to areas with better air quality.

We introduce three different approaches to assess the importance of firm spatial sorting

on our results. First of all, we check each firm’s address and find that only 207 firms (out

of more than 30,000 firms) in our sample changed their locations between 1998 and 2013,

with 81 of those still located in the north. The remaining 126 firms which moved to the

south contribute to less than 0.3 percent of our sample. Second, we test the density of firm

distribution along the cutoff, using the procedure of approximate sign test proposed by Bugni

and Canay (2021). Firms in our database spans approximately 20 longitudes from 103° E to
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123°E. The results show that there is a statistical continuity of firm distribution at the cutoff

except for the area between longitudes 116° E and 119° E because of the Dabie Mountain

just in the south of the border. Therefore, there is no significant firm sorting occurring. Also

note that our main results are robust to the exclusion of the firms between these longitudes,

see Table D.1 in Appendix D. Last, given that compared with start-up firms, the flexibility

of old firms to move across regions is generally considerably lower (and air pollution is not

likely to have been a major factor for firm location 20 or 15 years ago), we re-estimate using

four different samples: firms that have been in operation for more than 5, 10, 15 or 20 years,

respectively. However, our results remain robust to various sub-samples, see Table D.2 in

Appendix D for details. Therefore, the evidence suggest that firm spatial sorting is not the

key driver of our main results.

4.2 Extensive Margin: Human Capital Residential Sorting

Given that firm spatial sorting does not seem to be the key mechanism underlying our findings

on how air pollution affects firm-level human capital and innovation, we now investigate the

other two potential channels. More recently, people have become increasingly concerned

about environmental quality when choosing where to live or work and have moved away

from cities with serious environmental pollution. Different from physical capital, the flow

of human capital is determined not only by its marginal production, but also by many

other factors that decide the location of individuals who carry human capital, such as the

preferences on environmental quality. On the extensive margin, we consider that human

capital sorting might be a critical channel because skilled people tend to migrate out of

a region with poor environmental amenities and turn to a ”clean” city over the long run

(Hanlon, 2020; Chen et al., 2017; Graff Zivin and Neidell, 2013). While it is relevant to

disentangle the extensive margin effects from the intensive margin effects, data and the Huai

River setting limit us to do so. In order to shed some light on the importance of the channels,

we instead use an economic geography model developed by Helpman (1998) to discuss how

environmental pollution might lead to the losses of human capital through the channel of

individual’s residential sorting. For the details of our conceptual analysis as well as some

model simulations see Appendix C.

4.3 Intensive Margin: Human Capital’s Productivity

We next empirically explore the intensive margin channel: how air pollution impacts firm-

level human capital’s capacity for innovation. The idea is that air pollution can influence
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not only the composition of firm-level human capital, as we have shown in Table 1, but it

can also negatively affect the health and cognitive productivity of the employees. That is,

while having more knowledgeable employees can lead to more innovation, their health and

well-being can also increase their productivity.

Below we provide evidence on the importance of how air pollution affects firm-level human

capital productivity. We consider a different empirical strategy from the previous section,

and investigate how temporary changes in air pollution affect human capital productivity

(innovations per employees in the firm-level R&D sector) over the short run. We consider

the following empirical specification:

Yit = β0 + β1Pit + β2Wit + µi + ψt + σit, (2)

where i and t denote firm and year, respectively; Yit represents human capital productivity,5

and Pit represents air pollution measured by PM2.5. Error term (σit) absorbs unobservable

factors varying with year and firm. Air quality in the neighborhood of each firm is obtained

and calculated from satellite data. The variation of air pollution is aggregated from grid

level to county level and shown in Figure 3. Firm fixed effects (µi) control for time-invariant

firm-level variables and any firm-level characteristics formed before the sample period (2011-

2013), such as the firm’s stock of assets, human capital, and innovation. Year fixed effects (ψt)

are included to control for common shocks like national policies that affect human capital’s

productivity. Wit denotes a vector of firm-level and meteorological controls, including firm

age and total assets, hours of sunlight, wind speed, and precipitation.

Endogeneity of air pollution is a critical issue for causal inference of its effects on different

socio-economic outcomes. There are unobserved factors which vary with regions and time

that could bias the estimates. A region might introduce a more stringent environmental

regulation due to pollution, which could also affect innovation. In addition, more produc-

tive firms might produce and pollute more, leading to a concern for reverse causality. In

order to address the omitted-variable bias and the concern for reverse causality, we use an

instrumental variable (IV) approach, which instruments air pollution with thermal inversion.

As a meteorological phenomenon, thermal inversion is correlated with air quality (PM2.5)

but uncorrelated with firm-level human capital’s productivity in its neighborhood unless

through the air quality channel. Naturally, atmospheric temperature decreases with the in-

crease of altitude. Thermal inversion occurs when the temperature at the upper atmospheric

5Human capital productivity is defined as innovations divided by employees in the R&D sector. Innova-
tions include all the surveyed types of innovation: invention, publication, trademark, and industrial standard.
Human capital are those who work exclusively on science and technology activities.
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Figure 3: PM2.5 (µg/m3) Distribution in 2013
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Table 5: Short-run Effects of Air Pollution on Human Capital Productivity (2SLS)

First Stage
Dependent variable PM2.5

(1) (2)

Thermal inversion 0.020*** 0.020***
(0.005) (0.005)

Second Stage
Dependent variable Human capital productivity (innovations per capita)

(3) (4)

PM2.5 -0.188*** -0.188***
(0.082) (0.082)

Firm fixed effects Yes Yes
Year fixed effects Yes Yes
Firm controls No Yes
Weather controls Yes Yes
KP F-statistic 18.41 18.52
Sample size 74,667 74,667

Notes: Human capital productivity is measured by total innovations divided by human capital

stock. Total innovations include all the surveyed types of innovations: invention, publication,

trademark, and industrial standard. Human capital are those who work exclusively on science and

technology activities and most of them have academic degrees. Thermal inversion is measured by

annual days with thermal inversions. Firm controls include firm age and firm total assets, and

weather controls include precipitation, temperature, and hours of sunlight. Standard errors are

reported in parentheses. *** denotes significance at the 1 percent level.

layer is higher than that of the lower layer. As a result, the denser (cooler) air layer floats

below the less dense (warmer) air layer and prevents pollutants from dissipating. During

the days with thermal inversion, air pollutants will largely be trapped in the air close to the

ground. For this reason, economists widely employ it as a plausible instrument for air pollu-

tion (e.g., Fu et al., 2021; Sager, 2019; Jans et al., 2018). Therefore, our empirical strategy

explores how exogenous changes in air pollution (e.g. annual days with thermal inversions)

affects human capital’s productivity at the firm.

We present the 2SLS results in Table 5, with the OLS results reported in Table E.1 of

Appendix E. Columns (1) and (2) of Table 5 show that thermal inversion is a strong predictor
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for PM2.5, both when excluding and including firm controls. Columns (3) and (4) present the

second-stage estimates, which suggest that one µg/m3 increase in the annual average PM2.5

significantly reduces firm-level human capital’s productivity by 0.188 innovation per RD

employee. The total innovation considered here includes all the surveyed types of innovations:

invention, publication, trademark, and industrial standard in the SSTA database. Both the

sign and the magnitude of the estimate remain unchanged once firm controls are introduced.

To further test the validity of the instrument, we carry out the Kleibergen-Paap (KP) Wald

rk F-statistic test (Kleibergen and Paap, 2006) and the KP F-statistic is shown in each

column. They all corroborate that thermal inversion is a valid instrument for air pollution.

Our findings suggest that air pollution not only change the firm-level R&D composition

of human capital (see Table 1) but it also affects the firm-level labor productivity (see Table

5), by reducing innovation per R&D employee.

5 Heterogeneous Analysis and Quantile Treatment Ef-

fects

The estimates in Section 3 identify the average effects in the treated samples, but they show

little information about the heterogeneous effects of air pollution on R&D activity. In this

section, we assess how industrial sectors and R&D activities are differently affected by air

pollution.

5.1 Heterogeneous Analysis across Industries

We begin by splitting our sample into various sub-samples based on two-digit industries and

also by classifying these industries into two broad categories: low-tech and high-tech intensity

following the OECD ISIC Technology Intensity Definition. There are good reasons to suspect

that the negative effects of air pollution vary across industries because different industries

typically conduct research and experiments in different conditions and intensity. In order

to investigate how and to what extent different industries are affected, we run separate RD

regressions on firm-level innovations and summarize the estimates in Figure 4. The figure

clearly shows that the treatment effects are relatively dispersed across industries over the

long run (with all significant effects being negative), thereby confirming the heterogenous

impacts of air pollution across industries. However, there is no clear pattern in terms of the

differential impacts of air pollution on innovation across low vs. high tech industries.
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5.2 Heterogeneous Analysis across Creativity

We next investigate the implications of air pollution for human capital productivity across

different R&D activities. It could be that the requirements of physical health, mental status,

and concentration vary substantially across different types of R&D activity, such as inno-

vation and industrial standard. Hence, the productivity of employees who are employed to

work on different R&D projects may be depressed by air pollution differently.

In Table 6, we separately calculate human capital productivity by different types of R&D

activities. For instance, firm level human capital’s invention productivity is measured by the

total inventions in a firm divided by total employment in the firm’s R&D department. In

Column (1), our estimates show that one µg/m3 increase in the annual average PM2.5 sig-

nificantly reduces workers’ productivity of invention by 0.174. Columns (2) implies that the

effect of air pollution on workers’ productivity of publication is negative but statistically

insignificant, and similarly, Columns (3) and (4) suggest that the effects of air pollution

on workers’ productivity of trademark and industrial standard are not statistically different

from zero. The estimates in Columns (1)–(4) are consistently negative but differ in sta-

tistical significance, suggesting that air pollution heterogeneously dampens R&D workers’

productivity across different types of R&D activities.
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Figure 4: Estimates of the Heterogeneous Effects of Air Pollution Across Industries

Notes: The dependent variable is the number of inventions at firm level. The solid dots represent
the coefficients that are separately estimated using samples from low-tech and high-tech industries.
The range bars indicate the 90% confidence intervals.
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Table 6: Heterogeneous Effects of Air Pollution on Human Capital Productivity Based on
Creativity Intensiveness (2SLS)

(1) (2) (3) (4)
Prod. on
invention

Prod. on
publication

Prod. on
trademark

Prod. on
standard

Instrumented PM2.5 -0.174** -0.004 -0.005 -0.005
(0.070) (0.027) (0.024) (0.009)

Firm fixed effects Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes
Firm controls Yes Yes Yes Yes
Weather controls Yes Yes Yes Yes
KP test 37.72 37.72 37.72 37.72
Observations 74,667 74,667 74,667 74,667

Notes: Based on different levels of creativity intensiveness, human capital productivity is measured

by invention divided by human capital, publication divided by human capital, trademark divided

by human capital, and industrial standard divided by human capital, respectively. Firm controls

include firm age and firm total assets, and weather controls include precipitation, temperature, and

hours of sunlight. Standard errors in parentheses. ***, **, and * denote significance at the 1, 5,

and 10 percent levels respectively.

5.3 Quantile Treatment Effects

We further explore the distributional effects of air pollution by carrying out unconditional

quantile regressions. Recent advances in quantile regression enable us to investigate the

effects of air pollution on human capital productivity in different quantiles. The recentered

influence function (RIF) regression procedure developed by Firpo et al. (2009) can depict

the quantile treatment effects into an unconditional outcome distribution. In practice, the

RIF first predicts a couple of thresholds with respect to the specified unconditional quantiles

of an outcome variable, and then runs the RIF-2SLS regressions, separately, averaging up

the treatment effects on the probability of being above each quantile threshold.

We create 19 RIF-2SLS statistics for each quantile, distributing from the 5th to the 95th

percentiles of the outcome variable. These estimates corresponding to each RIF-2SLS quan-

tile represent the effects of air pollution on the qth quantile of the unconditional distribution

of human capital productivity. Intuitively, the effects of air pollution may exhibit various

patterns on quantiles with different levels of human capital productivity. Environmental pol-

lution might disproportionately impact human capital productivity because different levels
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of productivity demand different knowledge intensiveness and workload.

Figure 5 depicts the 19 separate 2SLS estimates on the left panel, and 19 separate OLS

regression estimates for comparison on the right panel. The figure presents the effects of

air pollution on various quantiles of the unconditional distribution of the outcome variable

(human capital productivity). Among the lower quantiles, the confidence intervals almost

overlap, suggesting that the treatment effects at the lower quantiles are not statistically

different. On the upper quantiles, however, the estimates are more salient, suggesting that to

a large extent, the significant negative effects of air pollution on human capital productivity

reported in Table 5 are typically attributed to the treatment effects on human capital with

high productivity in terms of R&D activities.

6 Concluding remarks

This paper provides comprehensive evidence on the long-run effects of prolonged air pollu-

tion on firm-level human capital, knowledge and innovation. Using a novel firm-level dataset

covering almost all industrial firms engaged in science and technology activities in China,

and employing a spatial regression discontinuity design, we find that prolonged pollution

significantly diminishes both the quantity and the quality of human capital at firm level,

reducing the share of employees with a PhD degree and master’s degree but increasing the
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Figure 5: Recentered Influence Function (RIF) Quantile Effects

Notes: The figures are the RIF-2SLS estimates of coefficient β1 on the left side, and the RIF-OLS
estimates on the right side. There are 19 RIF-2SLS statistics for each quantile distributing from the
5th to the 95th percentiles of outcome variable. The red line represents 95% confidence interval.
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share of employees with bachelor’s degrees. We also find adverse effects of environmental

pollution on knowledge and innovation. More specifically, we show that air pollution de-

creases firm-level innovation which demand a high level of creativity, such as publications

and inventions, while increasing innovations with a relatively low level of creativity, such as

design patents. Moreover, using an instrumental variable approach and thermal inversion as

an instrument, we also provide evidence that air pollution substantially decreases firm-level

human capital productivity in the short run.

With economic development understandably high on the agenda for emerging and de-

veloping countries, they may choose to introduce policies that might sacrifice environmental

quality in exchange for economic prosperity. The hope is that pollution can be mitigated af-

ter economic development reaches a certain level. We show that this may not be well founded

when considering the negative effects of air pollution on firm-level innovation. Our findings

highlight the importance of environmental quality as a significant factor for productivity and

welfare.
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Appendices

A Data Sources

ASIF Database. This database is conducted by China’s National Bureau of Statistics (NBS).

This annual survey includes private enterprises with annual sales exceeding 5 million RMB

and all the SOEs. The output value of firms included in ASIF accounts for approximately 90

percent of the total industrial output value of China, covering 46 two-digit code industries.

The ASIF database is widely used in the literature (e.g., Brandt et al., 2012; Song et al., 2011;

Hsieh and Klenow, 2009). It contains almost all the information on a firm’s major accounting

sheets, including more than 100 financial-related variables. We follow the procedure provided

by Brandt et al. (2012) to process the data: merge the dataset year by year; correct the mis-

recorded firm identifier; and drop observations that apparently violate accounting principles.

Based on the ASIF data, we use total assets, interest income, and profits to calculate a

firm’s ROA (Return on Assets), and include age, two-digit industry code, ownership, and

total assets as control variables in the regressions.

County-level air quality. we use publicly available air pollution (PM2.5) data monitored

by Earth Observing System (EOS), National Aeronautics and Space Administration (NASA)

and processed by the Atmospheric Composition Analysis Group of Dalhousie University. We

average the PM2.5 value at county-year level (about 3000 counties in China). The thermal

inversion data is also monitored by NASA and constructed by the Modern-Era Retrospective

Analysis for Research and Application (version 2). It reports meteorological temperature

for each 50*60 km grid on different atmospheric layers for every six hours. We aggregate

the annual average value of thermal inversions from grid level to county level. Since the air

quality data from satellite covers the entire China, we are able to include all the firm samples

in the SSTA database.

Industrial Patent Database. It is collected and maintained by the State Intellectual

Property Office of China. This patent dataset records detailed information on patent type

(invention, utility model, and design), abstract, application time, certification time, ID code

and address of the owner. We match the patent database with ASIF to control for firm-

specific characteristics in the regression analysis of patents. The patents are divided into

three types to measure the quality of innovation. The invention patent is regarded as high-

quality innovation because it is licensed for technological breakthroughs and upgrades in

approach, product, or materials. Additionally, substantive examinations are carried out to

examine the originality and novelty of invention patents. According to China’s Patent Law,
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the duration of protection for invention is 20 years, but only 10 years for the utility model

and design patents. Additionally, the patent application fee for an invention is seven times

higher, and the application duration is two years longer than the utility model and design

patents. Comparatively, the threshold for creativity is lower for utility model and design

patents, as they do not necessarily go through extensive examinations and are less costly to

get granted. In particular, the design patent, which is for instance, related to the package,

shape, color, and pattern of the product, is considered a relatively low-quality innovation.

Table B.1: Summary Statistics

(1) (2) (3)
North South Difference

in Means

A. Indicators for Human Capital
Total human capital 52.851 52.616 0.235
Share of human capital with PhD degrees 0.038 0.027 0.011
Share of human capital with master’s degrees 0.119 0.079 0.040
Share of human capital with bachelor’s degrees 0.569 0.524 0.045
Observations 20,245 64,790

B. Indicators for Knowledge and Innovation
Publications 1.518 0.638 0.880
Trademarks 5.261 4.534 0.727
Standards 0.527 0.331 0.196
Observations 21,983 77,513

C. Patents
Total patents 8.556 12.451 -3.895
Invention patents 3.540 3.746 -0.206
Utility model patents 3.875 4.619 -0.744
Design patents 1.141 4.086 -2.945
Observations 21,746 72,322

Notes: All variables are measured at firm level and constructed by the authors using data from

Surveys of Science and Technology Activities of Industrial Firms and China’s Industrial Patents

databases.
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B Summary Statistics

In Table B.1, we report the means and the differences for indicators related to human capital

in Panel A, knowledge and innovation in Panel B, and patent in Panel C. Columns (1) and

(2) report the sample mean for the north and the south of the Huai River, respectively.

Column (3) reports the raw difference between the sample means. In Panel A, we see that

firms in northern China have higher human capital quality than those in southern China.

Panels B and C show that firms in northern China have more publications, trademarks, and

industrial standards but have fewer patents than those in southern China.

In Table B.2, the measures of human capital’s productivity are reported at firm-year

level, and the PM2.5 and thermal inversion values are reported at county-year level. Human

capital productivity is defined by total innovations divided by human capital. Total innova-

tion includes all the reported types of innovation in SSTA database, comprising invention,

Table B.2: Summary Statistics on Human capital’s Productivity and Pollution

Mean SD Observations

Firm-level Sample
Human capital’s prod. 0.177 1.133 93,721
(Total innovation/human capital)
Human capital’s invention prod. 0.075 0.802 93,721
(Invention/human capital)
Human capital’s publication prod. 0.016 0.423 93,721
(Publication/human capital)
Human capital’s trademark prod. 0.077 0.603 93,721
(Trademark/human capital)
Human capital’s standard prod. 0.009 0.154 93,721
(Standard/human capital)

County-level Sample
Air pollution 56.545 16.270 1990
PM2.5 (µg/m3)
Thermal inversion 67.905 22.916 1990
(Annual days with thermal inversions)

Notes: The firm-level human capital data comes from SSTA database. The county-level air pol-

lution data is reported by Earth Observing System (EOS), National Aeronautics and Space Ad-

ministration (NASA) and processed by the Atmospheric Composition Analysis Group of Dalhousie

University. The thermal inversion data is also monitored by EOS of NASA and constructed by the

Modern-Era Retrospective Analysis for Research and Application (version 2).
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publication, trademark, and industrial standard. Human capital are those who work only

on science and technology activities in the R&D department, and most of them have uni-

versity degrees (bachelor’s degree, master’s degree, or PhD’s degree). In order to examine

the heterogeneous effects, we further separately calculate human capital’s productivity in

terms of creativity intensiveness. The harmful effects of air pollution on the productivity

of human capital are expected to vary across different types of innovation. For instance,

invention is viewed as a highly knowledge-intensive activity, which is related to technological

breakthroughs and upgrades and subject to extensive examinations in terms of their origi-

nality and novelty. Correspondingly, human capital’s invention productivity is measured by

invention divided by human capital. Likewise, human capital’s productivity of publication,

trademark, and industrial standard are computed.
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C A Conceptual Analysis on Human Capital Sorting

C.1 General Equilibrium Effects

We rationalize our analysis on the channel of human capital sorting with an economic ge-

ography model introduced by Helpman (1998). See also Redding and Sturm (2008) and

Redding and Rossi-Hansberg (2017).

The economy is populated by a mass of individuals, L. Individuals are endowed with one

unit of time, which they supply inelastically in the labor market. They live where they work.

Preferences are defined over a consumption index of tradeable varieties, Cr, and consumption

of a non-tradeable amenity, Hr with

Ur = Cα
r H

1−α
r , α ∈ (0, 1).

The supply of non-tradeable amenity is given and equal to Hr > 0.

For simplicity, assume that there are only two regions: the North (N) region and the

South (S) region, such that r ∈ {N,S}. Goods consumption index (Cr) is defined over the

endogenous measures of differentiated varieties (Mr) supplied by each region with dual price

index (PM
r ):

Cr =

 ∑
i∈{N,S}

∫ Mi

0

cri(j)
ρdj

 1
ρ

; PM
r =

 ∑
i∈{N,S}

∫ Mi

0

pri(j)
1−σdj

 1
1−σ

,

where σ = 1
1−ρ

and −∞ < σ < 1. Goods can be transported from one region to the other

without any cost. Varieties are produced under monopolistic competition. To produce a

variety xr(j), a firm must incur a fixed cost F in units of labor and a variable cost in terms

of labor that depends on a region’s productivity Ar: lr(j) = F + xr(j)
Ar

. Producer of each

variety chooses prices to maximize profits subject to its downward-sloping demand curve:

pr(j) =

(
σ

σ − 1

)
wr

Ar

= pr. (A.1)

Consequently, we have that:

PM
r =

(
MSp

1−σ
S +MNp

1−σ
N

)
. (A.2)

Profit maximization and free entry in tradeables imply that xr(j) = Ai(σ − 1)F = xr
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and lr(j) = σF = l̄. Labor market clearing requires demand equals the supply for labor,

Lr = Mr l̄, such that the mass of varieties produced by each region is proportional to its

supply of labor

Mr =
Lr

σF
. (A.3)

It can also be shown that wages can be written as:

wr =

(
σ − 1

σ

)σ−1
σ

Ar(σF )
− 1

σ

(
wSLS(P

M
S )σ−1 + wNLN(P

M
N )σ−1

) 1
σ . (A.4)

With a Cobb-Douglas utility function and an inelastic supply of the non-tradeable amenity

Hr, the equilibrium price of the non-tradeable amenity depends on its expenditure share,

(1− α) and total expenditure, Er, such that:

PH
r =

(1− α)Er

Hr

. (A.5)

Total expenditure is the sum of labor income and expenditure on the non-tradeable amenity

which is assumed to be redistributed to the region population, such that Er = wrLr + (1−
α)Er and

Er =
wrLr

α
. (A.6)

With integrated labor markets, individuals move across cities to spatially arbitrage away

real wage differences. The real wage depends on the price index for tradeables and the price

of the non-tradeable amenity:

ωr =
wr

(PM
r )α(PH

r )1−α
= ω for all r ∈ {N,S}. (A.7)

Equilibrium is characterized by a vector of seven variables {wr, pr, Lr,Mr, P
M
r , PH

r , Er} with

r ∈ {N,S}. These seven endogenous objects are determined by solving the seven simulta-

neous equations defined by (A.1)-(A.7).As usual in these type of models, it is not possible

to find closed form solutions for equilibrium objects.

Changing units of the non-traded amenity in one region modifies the value of real wage

in both regions. In general, when the non-trade amenity falls in one region (air pollution

rises), then individuals move away from that region to the other, pushing up the price of

the non-traded amenity in the region with relative better amenity. Economic activity, as

well as innovation determined by the total measure of varieties Mr, rise in the region with

a better non-traded amenity. Table C.1 contains some model simulations showing exactly
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such results for some parameter values.

Similarly, a fall in individual’s productivity (due to the effects of air pollution on health)

in one region relative to the other, move workers away from the region experiencing a fall in

productivity to another in which productivity is unchanged. This would increase innovation

M in the receiving region and the price of its non-traded amenity. This process would

continue until the rise in the price of the non-traded amenity equalizes real wages in both

regions. See also Table C.1.

C.2 Simulation

Table C.1: Model Simulations

Symmetric
regions

Better amenity in
the south region

Better prod. in
the south region

HS = HN = 1.7265, HS = 1.7265,
HN = 0.9 ∗HS

HS = HN = 1.7265,

AS = AN = 1 AS = AN = 1 AS = 1, AN = 0.9

Labor force, LS 0.500 0.550 0.640
Labor force, LN 0.500 0.450 0.360
Amenity price, PH

S 0.149 0.172 0.179
Amenity price, PH

N 0.149 0.141 0.123
Variety, MS 0.125 0.144 0.160
Variety, MN 0.125 0.106 0.081

Notes: Model is solved with L = 1, α = 0.66, σ = 4 and F = 1. The first column contains results

for the equilibrium with symmetric regions such that HS = HN = 1.7265 and AS = AN = 1. The

second column contains results for the equilibrium in which amenity HN is 10% lower in the north

relative to the symmetric equilibrium, while all other parameters are the same. The third column

contains results for the equilibrium in which productivity AN is 10% lower in the north relative to

the symmetric equilibrium, while all other parameters are the same.

We next provide some simulations, which should not be used as a quantitative exercise

but rather to show the mechanisms of the model, which cannot be solved analytically.

We use some common numbers in the literature for some parameters of the model, such

as the elasticity of substitution σ = 4 and the share of expenditure on tradeables α = 0.66.

See Redding and Sturm (2008). We normalize the total population to one L = 1, as well as

the fixed cost of production F = 1, and the labor productivity factor AS = AN = 1. We

search for values of the amenity (HS and HN) in each region such that the real wage is equal
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to one. In this case HS = HN = 1.7297. We then decrease the level of amenity in the north

by 10% while keeping all the other parameters similar to those of the symmetric equilibrium

- results reported in the second column. The third column report results when we decrease

the productivity in the north by 10% while keeping all the other parameters similar to those

of the symmetric equilibrium.
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D Robustness Checks on Firm Spatial Sorting

In section 4.1, in order to assess firm spatial sorting, we exploit an approximate sign test

proposed by Bugni and Canay (2021) to test the continuity of firm distribution across to

the cutoff. Firms in our database spans approximately 20 longitudes from 103° E to 123°
E. Exploiting the approximate sign test, we find that the distribution of firms is continuous

at the border except for the area between 116° E to 119° E. This might be affected by an

exogenous geographic factor—the location of the Dabie Mountain. As a robustness check,

we exclude the observations between 116° E to 119° E and report the results in Table D.1.

In addition, given that compared with start-up firms, the flexibility of old firms to move

across regions is generally lower (and air pollution is not likely to have been a major factor

for firm location 20 or 15 years ago), we restrict our sample to firms that have been in

operation for more than 5, 10, 15, and 20 years, respectively. The corresponding results are

presented in Table D.2.

As can be seen from Tables D.1 and D.2, our results remain robust to various sub-samples,

which provide further evidence that firm spatial sorting is not the key driver of our results.

Table D.1: Robustness Check: Excluding Firms between 116° E and 119° E

(1) (2) (3)
PhD Master Bachelor

Control variables, Longitude-quartile FE, Industry FE, Year FE, and
Ownership FE absorbed
RD Estimate -0.013*** -0.002 0.190***

(0.004) (0.006) (0.020)
Bandwidth 1.742 2.107 0.679

Kernel Type Triangular Triangular Triangular
Observations 64,021 64,021 64,021

Notes: “PhD” represents the share of human capital with PhD degrees; “Master” and “Bachelor”

are calculated in the same way. The running variable is the distance between a firm and the Huai

River border—positive values for the north and negative for the south. Each cell in the table repre-

sents a separate RD regression. Following Calonico et al. (2014), we estimate the discontinuities at

the Huai River border using locally linear regressions and MSE-optimal bandwidth for the default

kernel weighting method. Standard errors are reported in parentheses below the estimates. ***,

**, and * denote significance at the 1, 5, and 10 percent levels, respectively.
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Table D.2: Robustness Check: Firms Operating More than 5, 10, 15, and 20 Years

(1) (2) (3)
PhD Master Bachelor

Firms Operating More than 5 Years
RD Estimate -0.017*** -0.007* 0.067***

(0.003) (0.004) (0.021)
Bandwidth 1.763 2.001 1.343
Kernel Type Triangular Triangular Triangular
Observations 73,408 73,408 73,408

Firms Operating More than 10 Years
RD Estimate -0.013*** -0.007 0.083***

(0.002) (0.005) (0.014)
Bandwidth 2.391 3.131 1.641
Kernel Type Triangular Triangular Triangular
Observations 44,149 44,149 44,149

Firms Operating More than 15 Years
RD Estimate -0.009* -0.009 0.064***

(0.005) (0.008) (0.022)
Bandwidth 2.790 2.449 1.837
Kernel Type Triangular Triangular Triangular
Observations 19,379 19,379 19,379

Firms Operating More than 20 Years
RD Estimate -0.003 -0.015* 0.062**

(0.005) (0.009) (0.029)
Bandwidth 2.832 2.910 1.964
Kernel Type Triangular Triangular Triangular
Observations 8,055 8,055 8,055

Notes: Firm level control variables, longitude-quartile, industry, year, and ownership fixed effects

are absorbed. “PhD” represents the share of human capital with PhD degrees; “Master” and

“Bachelor” are calculated in the same way. The running variable is the distance between a firm

and the Huai River border—positive values for the north and negative for the south. Each cell in

the table represents a separate RD regression. Following Calonico et al. (2014), we estimate the

discontinuities at the Huai River border using locally linear regressions and MSE-optimal bandwidth

for the default kernel weighting method. Standard errors are reported in parentheses below the

estimates. ***, **, and * denote significance at the 1, 5, and 10 percent levels, respectively.
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E OLS Estimation

Table E.1: Short-run Effects of Air Pollution on Human Capital Productivity (OLS)

Dependent variable Human capital productivity (innovations per capita)

(1) (2)

PM2.5 -0.001 -0.001
(0.001) (0.001)

Firm fixed effects Yes Yes
Year fixed effects Yes Yes
Firm controls No Yes
Weather controls Yes Yes
Sample size 74,667 74,667

Notes: Human capital productivity is measured by total innovation divided by human capital.

Total innovations include all the reported types of innovation: invention, publication, trademark,

and industrial standard. Firm controls include firm age and firm total assets, and weather con-

trols include precipitation, temperature, and hours of sunlight. Standard errors are reported in

parentheses.

Without taking endogeneity of air pollution into account, Table E.1 reports the OLS

results from the liner specification in Equation 2. The estimate in Column (1) shows that

the effect of air pollution (PM2.5) on human capital’s productivity is not significantly different

from zero. In Column (2), including firm controls does not change this result. However, as

discussed in Section 4.3, endogeneity of air pollution is a critical issue for causal inference of

its effects on different socio-economic outcomes, therefore, the estimates presented in Table

E.1 are likely to be inconsistent. To address this issue, we present the 2SLS results, in which

air pollution (PM2.5 ) is instrumented by thermal inversion, in Table 5 from which we can see

that one µg/m3 increase in the annual average PM2.5 significantly reduces firm-level human

capital’s productivity by 0.188 innovation per RD employee.
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F Subsidy Policy Analysis

Our quasi-experimental approach has shown that air pollution has created a gap in human

capital, knowledge, and innovation between firms in the north and south of China. The

question is whether this gap could be bridged by government R&D subsidies (such as “the war

for talent” we have seen recently in China). Following existing work (Giambona and Ribas,

2020; Grembi et al., 2016), we adopt an augmented difference-in-discontinuities specification

Yijc =αNorthi + f(Disti) +Northi × f(Disti) + ρNorthi × subsidyi

+ f(Disti)× subsidyi + υijc,
(A.1)

where subsidyi is a dummy variable equal to 1 if firm i in industry j receives government

subsidies for R&D, and 0 otherwise. ρ captures the within-firm changes in the differences in

human capital, knowledge, and innovation between the north and the south with the subsidy

policy. Yijc is a set of residualized outcome variables, with firm fixed effects, industry-by-year

fixed effects, and longitude-quantile-by-year fixed effects absorbed. υijc represents the error

term.

Table F.1 reports the difference-in-discontinuities estimates on the long-run human capi-

tal accumulation. Columns (1)–(3) show that the firm-level difference of PhD, master’s, and

bachelor’s degree proportions between the north and the south are not significantly different

depending on whether they receive government subsidy on R&D. Moreover, Table F.2 shows

that the R&D subsidies do not significantly bridge the firm-level knowledge and innovation

gap between the north and the south, either. In other words, government subsidies for R&D

activities do not help alleviate the gap in firm-level human capital, knowledge and innovation

between the north and the south.
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Table F.1: Long-run Effects on Human Capital Gap: Difference-in-Discontinuities Estimates

(1) (2) (3)
PhD Master Bachelor

Northitc × subsidyit 0.003 0.002 0.000
(0.002) (0.004) (0.008)

Bandwidth 4.749 4.138 5.006
Kernel Type Triangular Triangular Triangular
Observations 85,035 85,035 85,035

Notes: All specifications include firm fixed effects, industry-by-year fixed effects, and longitude-

quantile-by-year fixed effects; these are absorbed in OLS regressions before the difference-in-

discontinuities estimations. The running variable is the distance between a firm and the Huai

River border—positive values for the north and negative for the south. Each cell in the table rep-

resents a separate difference-in-discontinuities estimate: the difference between the human capital

gap “with R&D subsidies” and “without RD subsidies”. Following Calonico et al. (2014), we esti-

mate the discontinuities at the Huai River border using locally linear regressions and MSE-optimal

bandwidth for the default kernel weighting method. Standard errors are reported in parentheses

below the estimates.

Table F.2: Long-run Effects on Knowledge and Innovation Gap: Difference-in-Discontinuities
Estimates

(1) (2) (3) (4)
Publication Trademark Standard Patent

Northitc × subsidyit -0.050 0.402 0.010 0.026
(0.154) (0.487) (0.089) (0.255)

Bandwidth 2.031 1.849 1.352 1.968
Kernel Type Triangular Triangular Triangular Triangular
Observations 99,496 99,496 99,496 93,898

Notes: All specifications include firm fixed effects, industry-by-year fixed effects, and longitude-

quantile-by-year fixed effects, these are absorbed in OLS regressions before the difference-in-

discontinuities estimations. The running variable is the distance between a firm and the Huai

River border—positive values for the north and negative for the south. Each cell in the table

represents a separate difference-in-discontinuities estimate: the difference between the knowledge

and innovation gaps “with RD subsidies” and “without RD subsidies”. Following Calonico et al.

(2014), we estimate the discontinuities at the Huai River border using locally linear regressions and

MSE-optimal bandwidth for the default kernel weighting method. Standard errors are reported in

parentheses below the estimates.
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