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Introduction 

Governments and international organizations are expecting energy efficiency improvements 

to make a major contribution to reducing greenhouse gas emissions (Stern, 2017). As energy 

is used to transform, move, and heat matter, reduced energy use can contribute to improving 

sustainability more generally. But increases in energy efficiency do not translate perfectly 

into reductions in energy use. Energy use “rebounds” due to the reduced cost of providing 

energy services and other flow-on effects. As a result, energy savings and emissions 

reductions, may be a lot less than expected. The size of this rebound effect at the economy-

wide level is controversial (Gillingham et al., 2013). Existing estimates vary widely from 

“backfire” (also known as “Jevons paradox”), where energy use increases following an 

efficiency improvement, to super-conservation where energy use falls by more than the 

efficiency improvement (Saunders, 2013; Turner, 2013).  

Previous research uses either computable general equilibrium (CGE) simulation models (e.g. 

Turner 2009; Barker et.al. 2009; Koesler et al., 2016; Lu et al., 2017, Wei and Liu, 2017) or 

partial equilibrium – where the prices of other goods and inputs are held constant – 

econometric models (e.g. Adetutu et al., 2016; Saunders, 2013; Orea et al., 2015, Shao et al., 

2014; Lin and Du, 2015). The former depend on many a priori assumptions and the 

parameter values adopted, and the latter do not include all mechanisms that might increase or 

reduce the rebound. Furthermore, as discussed below in more detail, most of the econometric 

studies do not credibly identify the rebound effect.  

Here, we develop a structural vector autoregressive (SVAR) model that is empirically 

identified using independent component analysis (ICA) (Comon, 1994; Hyvarinen et al., 

2001; Gouriéroux et al., 2017) a search method developed in the machine learning literature. 

SVAR modeling imposes a minimum of assumptions (Sims, 1980) but allows for general 

equilibrium effects allowing energy prices and output to adapt dynamically in response to a 

change in energy efficiency. Changes in energy efficiency are modeled as independent 

exogenous shocks to energy use that are not explained by changes in prices and income. We 

apply the model to U.S. data, finding that the economy-wide rebound is around 100%. 

The economy-wide rebound effect is the sum of the direct rebound effect at the 

microeconomic level and a series of indirect rebound effects. The direct rebound effect 

occurs when an energy efficiency innovation is adopted that reduces the energy required to 

provide an energy service such as heating, lighting, or transport, and, therefore, its cost. As a 
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result, users consume more of the energy service offsetting some of the energy efficiency 

improvement. Specifically, we define energy efficiency improvements as those that save 

energy due to the adoption of more efficient cost-reducing technology. We define the 

rebound effect as the resulting behavioral responses of economic agents that cause the actual 

energy savings to differ from the potential energy savings. 

Indirect rebound effects include: changes in energy use due to the increase in demand for 

complementary energy services (and reduction in demand for substitutes); the increase in the 

use of energy to produce other complementary goods and services (and reduction for 

substitute goods and services); the effect of reduced energy prices due to the fall in energy 

demand on energy use (Borenstein, 2015); and a long-run increase in total factor 

productivity, which increases capital accumulation and economic growth and, as a result, 

energy use (Saunders, 1992). 

Previous Research 

Most empirical research on the rebound effect focuses on the direct rebound effect (Sorrell et 

al., 2009). Estimates of the size of the direct rebound effect tend to be fairly modest (Sorrell 

et al., 2009). It is usually assumed that the indirect rebound is positive and that the economy-

wide rebound will be larger in the long run than in the short run (Saunders, 2008). However, 

it is possible that, instead, the indirect rebound could be negative and the economy-wide 

rebound might also be negative in the long run (Turner, 2013; Borenstein, 2015). Lemoine 

(2017) conducts a general equilibrium analysis of the rebound effect. Assuming that all 

sectors share the same technology, general equilibrium effects amplify the partial (with prices 

held constant) equilibrium rebound, which is positive. With heterogeneous technologies, 

general equilibrium effects amplify the rebound for low elasticities of substitution between 

energy and non-energy inputs in production and reduce it for high elasticities of substitution. 

Backfire is possible for elasticities of substitution less than unity, especially for innovations 

in those sectors that are relatively energy inefficient or energy intensive. In general, this 

analysis shows that the economy-wide rebound effect is likely to be large and backfire is 

likely. 

Evidence on the size of the economy-wide rebound effect to date depends on CGE simulation 

models and partial equilibrium econometric estimates. Turner (2009) finds that, depending on 

the assumed values of the parameters in a CGE model, the rebound effect for the UK can 

range from negative to more than 100%. Single sector simulation methods (e.g. Saunders, 
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1992, 2014) reduce the degrees of freedom in CGE models but, therefore, impose far more 

restrictions and still depend on good estimates of the production parameters – a notoriously 

difficult problem (Leon-Ledesma et al., 2010). Several methods have been proposed to 

econometrically estimate the rebound effect, but all of these are partial equilibrium methods 

and, in most cases, do not credibly identify a causal effect of energy efficiency changes on 

energy use, which is needed to claim a rebound effect (Gillingham et al., 2016). For example, 

some studies (e.g. Lin and Du, 2015) assume that changes in (intra-industry) energy intensity 

are equivalent to changes in energy efficiency. But energy intensity already incorporates 

rebound as well as the effects of many other variables.  

Historical research hints that the economy-wide rebound effect could be large. Both van 

Benthem (2015) and Csereklyei et al. (2016) find that energy intensity in developing 

countries today is similar to what it was in today’s developed countries when they were at 

similar income levels. But, van Benthem (2015) shows that the energy efficiency of many 

products currently sold in developing countries is much better than that of comparable 

products sold in developed countries when they were at the same income level. He finds that 

energy savings from access to more efficient technologies have been offset by other trends, 

including a shift toward more energy-intensive consumption bundles and compositional 

changes in industry such as outsourcing. Though such studies cannot identify causal effects, 

because they do not control for other relevant variables such as the price of energy and other 

sources of economic growth, they suggest that the economy-wide rebound effect is close to 

100%. 

Our Approach 

Structural vector autoregressive (SVAR) models have several advantages in the context of 

estimating the economy-wide rebound effect. SVAR models are small, multivariate, 

dynamic, time series econometric models that are estimated directly from the data but have 

restrictions imposed to identify the effects of specific structural shocks. SVAR models 

originated in the work of Sims (1980) and are widely used in empirical macroeconomic 

research. We use a data-driven approach to identify the model, based on general statistical 

assumptions, thus avoiding the usual practice of imposing restrictions based on economic 

theory. Unlike previous econometric approaches in the economy-wide rebound literature, 

impulse response functions derived from SVAR models can capture general equilibrium 

effects, as all the variables are endogenous and can evolve in response to a shock. Moreover, 
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SVAR models can recover the response to truly exogenous shocks addressing the credible 

identification issue. 

Thinking of energy use as the equilibrium outcome of the demand and supply of energy, the 

major factors driving changes in energy use will be changes in the price of energy and in 

income – at the macroeconomic level, gross domestic product (GDP). We can represent this 

vector of three variables as the outcome of cumulative shocks to GDP, the price of energy, 

and a residual energy-specific shock: 

𝑥𝑥𝑡𝑡 = 𝜇𝜇 + �Π𝑖𝑖𝑥𝑥𝑡𝑡−𝑖𝑖 + 𝐵𝐵𝜀𝜀𝑡𝑡

𝑝𝑝

𝑖𝑖=1

(1) 

where 𝑥𝑥𝑡𝑡 = [𝑒𝑒𝑡𝑡,𝑝𝑝𝑡𝑡,𝑦𝑦𝑡𝑡]′ is the vector of the logs of energy use, the price of energy, and GDP, 

respectively observed in period t, 𝜀𝜀𝑡𝑡 = �ε𝑒𝑒𝑡𝑡, ε𝑝𝑝𝑡𝑡, ε𝑦𝑦𝑡𝑡�
′
 is the vector of exogenous shocks with 

var(𝜀𝜀𝑡𝑡) = 𝐼𝐼, 𝜇𝜇 is a vector of constants, and B and the Π𝑖𝑖 are matrices of parameters to be 

estimated. We interpret ε𝑒𝑒𝑡𝑡 as an energy efficiency shock, as it represents the exogenous 

reduction in energy use that is not due to exogenous shocks to GDP or energy prices and 

previous changes in those variables themselves. The mixing matrix, B, transmits the effect of 

the shocks to the dependent variables. Therefore, each of the shocks can have immediate 

effects on each of the variables. 

The matrix B is estimated and hence the shocks are identified using four different search 

methods that use unsupervised statistical learning typical of machine learning research. Each 

of these makes assumptions about the statistical properties of the vector of shocks, 𝜀𝜀𝑡𝑡. The 

key assumptions are the statistical independence of the shocks and the non-Gaussianity of the 

data, which can be easily checked empirically. The first two approaches – distance 

covariance (dcov) (Matteson and Tsay, 2011) and non-Gaussian Maximum Likelihood 

(ngml) (Lanne et al., 2017) – have been recently studied in the econometric literature in the 

context of SVAR models (Herwartz, 2018). The third approach is the FastICA algorithm 

(Hyvärinen and Oja, 1997) which is the most popular approach to Independent Component 

Analysis (ICA) estimation in machine learning. We further probe the robustness of our 

results by applying an ICA-based identification scheme – Linear Non-Gaussian Acyclic 

Model (LiNGAM) which, besides assuming non-Gaussianity and independence of the 

structural shocks, makes the further assumption of recursiveness (Shimizu et al., 2006; 

Hyvärinen et al., 2008; Moneta et al., 2013). 
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We use the impulse response function of energy with respect to the energy efficiency shock 

to measure the rebound effect. Using the subscript i to denote the number of periods since the 

energy efficiency improvement, the rebound effect is given by: 

𝑅𝑅𝑖𝑖 = 1 −
Δ�̂�𝑒𝑖𝑖
ε𝑒𝑒1

= 1 −
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

𝑃𝑃𝑃𝑃𝐴𝐴𝑒𝑒𝑃𝑃𝐴𝐴𝑃𝑃𝐴𝐴𝐴𝐴
(2) 

where ε𝑒𝑒1 the energy efficiency shock in the initial period that represents the potential 

“engineering” change in log energy use, e, and Δ�̂�𝑒𝑖𝑖 is the actual change in log energy use due 

to the shock as given by the impulse response function. 

As an example, if in response to a 1% improvement in energy efficiency actual energy use 

declines by 0.5%, the rebound effect is 50%. On the other hand, if energy use actually 

increased by 0.2%, rebound would be 120%. Figure 1 shows an example impulse response 

function of the log of energy with respect to an energy-specific shock of -1. Initially, energy 

use is reduced in response to the shock. Over time these savings decrease and, in this 

example, eventually energy use increases over its pre-shock level so that there is backfire. 

Results 

We apply our approach to U.S. monthly and quarterly data shown in Figure 2. Energy 

intensity – energy use per dollar of GDP – has declined fairly consistently over the last 

quarter century and at a casual glance seems unaffected by the large fluctuations in the price 

of energy over the same period (Figure 2a). There is more variation in the rate of decline in 

the quarterly data, which extend over a longer period. The rate of decline does seem to 

negatively correlate with the price changes in the 1970s and 80s (Figure 2b). Primary energy 

use has not increased since 2007 partly due to the slowdown in the rate of economic growth 

since the Great Recession. Note that our model actually uses GDP rather than energy 

intensity. GDP can be recovered by dividing energy use by energy intensity. 

Figure 3 shows the impulse response functions for an SVAR identified using the distance 

covariance method and monthly data. The first column shows the effect of the energy 

efficiency shock on energy use, GDP, and the energy price. The effects on GDP and the 

energy price are generally not statistically significant. The energy efficiency shock results in 

a strong decrease in energy use initially, but this effect is eliminated over time resulting in 

backfire. 
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We also see that though the initial effect of the price shock on energy use and GDP is 

positive (but not statistically significant), in the longer run it has the expected negative and 

statistically significant effects on both variables. On the other hand, the price shock appears 

to have transitory effects on the price of energy but what look like permanent effects on at 

least GDP. The GDP shock has positive long-run effects on all three variables. The long-run 

effects, therefore, conform with standard economic theory.  

Estimates for the rebound effect after 1, 2, 4, and 6 years are presented in Table 1. Estimates 

of the mixing matrix B are presented in Appendix Tables 1 and 2. The estimates of the 

rebound effect are very similar for the four methods of identification but differ with respect to 

the data frequencies. The rebound effect after 6 years tends to be smaller for monthly data 

(Models 1 to 4) compared to quarterly data (Models 5 to 8). The different estimates of the 

rebound effect may result from the different frequencies of the data or from the different time 

periods covered. We also estimate the rebound effect using quarterly data for the time span 

1992-2016 (Models 9 to 12) and the differences in estimated long-run rebound effects reduce 

suggesting that the time period explains most of the differences. As discussed in the Methods, 

the quarterly data should estimate a lower rebound than monthly data when the rebound is 

less than unity and a greater rebound than monthly data when it is greater than unity. 

We extend the VAR by adding two further control variables – the log of industrial production 

and the log of energy quality – to reduce potential omitted variable biases in identifying the 

energy efficiency shock (Figure 4). Table 2 again presents the rebound effect after 1, 2, 4, 

and 6 years, while estimates of the mixing matrix B are presented in Appendix Tables 3 and 

4. The estimated rebound effects are very similar to those for the VARs with three variables. 

This robustness analysis shows that the magnitude of the rebound effect obtained by the VAR 

with three variables is robust to controlling for two further determinants of energy use.  

Discussion 

We have produced the first empirical general equilibrium estimate of the size of the 

economy-wide rebound effect by using SVAR models which are the workhorse of causal 

inference in macroeconomics and recent advances in machine learning. Causal inference is 

always difficult in macroeconomics as controlled experiments are impossible and identifying 

exogenous sources of variation difficult. Our approach is the best that can be done without 

imposing a priori economic theory on the data. 
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Estimates of the rebound effect after 4 years are close to 100%, regardless of the method or 

data frequency used. As some part of the rebound might occur instantaneously, our estimates 

may differ from the true rebound. However, as discussed in the Methods, the true rebound is 

likely to be closer to 100% than the estimated rebound and our estimates of the long-run 

rebound are almost exactly 100%. These results are congruent with the historical (e.g. van 

Benthem, 2015; Csereklyei et al., 2016 and theoretical (Lemoine, 2017; Hart, 2018) research 

that hints that the economy-wide rebound effect could be large. This implies that policies to 

encourage costless energy efficiency innovation are not likely to significantly reduce energy 

use and, therefore, greenhouse gas emissions. On the other hand, energy efficiency policies 

that increase costs, by for example mandating equipment that is more expensive despite being 

more energy efficient, are likely to reduce energy use by more than the engineering effect. 

We can also use our model to understand the drivers of energy use in the U.S. Energy 

intensity has declined over time in the United States (Figure 2). Based on our three variable 

SVAR, there are three possible mechanisms that can explain this. First, energy efficiency 

shocks may increase GDP by more than they increase energy use. In Figure 2 this seems to 

be the case, if we ignore the very wide confidence interval around the impulse response 

function for the effect of an energy efficiency shock on GDP. Second, as shown in Figure 2, 

GDP shocks tend to increase GDP by proportionally much more than they increase energy 

use. This may be because, as we can see, GDP shocks also increase the price of energy, 

which then restricts the increase in energy use. Finally, increasing energy prices can reduce 

energy use though they also reduce GDP. However, in Figure 2, they reduce GDP by more 

than they reduce energy use in the long run. 

Methods 

Reduced Form and Structural Models 

We use an SVAR to determine the effect of a permanent exogenous improvement to energy 

efficiency that we identify as a “technology shock” on macro-level energy use in future 

periods. The three-dimensional reduced form vector autoregressive (VAR) model is given by 

𝑥𝑥𝑡𝑡 = 𝜇𝜇 + �Π𝑖𝑖𝑥𝑥𝑡𝑡−𝑖𝑖 + 𝐴𝐴𝑡𝑡

𝑝𝑝

𝑖𝑖=1

(3) 
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where 𝐴𝐴𝑡𝑡 = 𝐵𝐵−1𝜀𝜀𝑡𝑡 is a vector of white noise errors that may be correlated across equations, 

and the other terms are as in Equation (1). As the model assumes it is equally likely that the 

stochastic component of a technology shock is positive or negative, there will be a constant 

negative drift term in log energy use (see King et al., 1991, Equation 2). This may be the case 

for log GDP too. Potential cointegrating relations may also need a constant term.  

In addition to the three variable SVAR used in our main analysis, we estimate a five variable 

SVAR as a sensitivity analysis. This second model includes measures of the structure of the 

economy and energy quality. We measure energy quantity in joules rather than a volume 

index because our focus is on the standard definition of the rebound effect, which refers to 

heat units of energy. The price of energy is, therefore, the total cost of energy divided by 

joules. Changes in this energy price may reflect a shift in the energy mix as well as changes 

in the prices of individual energy carriers. As energy inputs vary in their productivity or 

energy quality (Stern, 2010), a shift to higher quality energy carriers such as primary 

electricity instead of coal would tend to reduce energy use, ceteris paribus. Shifts in 

economic activity from more energy intensive sectors to less energy intensive sectors and 

vice versa, will also affect energy use (Stern, 2012). This five variable and shock framework 

accounts for the most important other factors: 

𝑥𝑥�𝑡𝑡 = 𝜇𝜇� + �Π�𝑖𝑖𝑥𝑥�𝑡𝑡−𝑖𝑖 + 𝐵𝐵�𝜀𝜀�̃�𝑡

𝑝𝑝

𝑖𝑖=1

(4) 

where 𝑥𝑥�𝑡𝑡 = [𝑒𝑒𝑡𝑡,𝑝𝑝𝑡𝑡,𝑦𝑦𝑡𝑡, 𝑠𝑠𝑡𝑡, 𝑞𝑞𝑡𝑡]′ and s and q are the logs of structure (in practice the log of 

industrial production) and energy quality variables, respectively and 𝜀𝜀�̃�𝑡 =

�𝜀𝜀�̃�𝑒𝑡𝑡, 𝜀𝜀�̃�𝑝𝑡𝑡, 𝜀𝜀�̃�𝑦𝑡𝑡, 𝜀𝜀�̃�𝑠𝑡𝑡, 𝜀𝜀�̃�𝑞𝑡𝑡�′ is the vector of shocks. 

An alternative representation of the structural model to that in Equation (1) is given by: 

𝐵𝐵−1𝑥𝑥𝑡𝑡 = 𝐵𝐵−1𝜇𝜇 + �𝐵𝐵−1Π𝑖𝑖𝑥𝑥𝑡𝑡−𝑖𝑖 + 𝜀𝜀𝑡𝑡

𝑝𝑝

𝑖𝑖=1

(5) 

where the diagonal entries of 𝐵𝐵−1 are unity (normalization), 𝜀𝜀𝑡𝑡 = 𝐵𝐵−1𝐴𝐴𝑡𝑡, and var(𝜀𝜀𝑡𝑡) = 𝐼𝐼. 

Now the effects of shocks on the dependent variables can be independently assessed and each 

is associated with a particular equation. 𝐵𝐵−1 is, therefore, the matrix of the contemporaneous 

effects of the endogenous variables on each other. This results in a simultaneity and 

identification problem, which will be discussed below. 
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Independent Component Analysis (ICA) 

SVAR models have more parameters than reduced-form VAR models. The reduced form 

parameters can be estimated directly from the data using standard regression methods. The 

structural parameters are then usually recovered by applying identifying restrictions, which 

are usually based on economic theory. Instead, we identify SVAR models exclusively based 

on statistical theory. There is a quite established econometric tradition of identification 

methods based on atheoretical search procedures (e.g. Swanson and Granger, 1997; Demiralp 

and Hoover, 2003; Moneta, 2008). This specific approach, although it eschews economic-

theoretic assumptions, is based on graph-theoretic conditions (Spirtes et al., 2000), whose 

reliability in an economic time-series context is often hard to assess (see Hoover 2001). 

Moreover, it typically makes use of the normality assumption, which can fail to hold in 

economic data. 

Here, we also use a statistical identification procedure, but one based on a quite different 

framework. This framework is called Independent Component Analysis, a set of tools that 

has been shown to be particularly powerful in the statistical identification of SVAR models 

(e.g. Moneta et al., 2013; Gouriéroux et al., 2017; Lanne et al. 2017; Herwartz, 2018). Its key 

assumptions are the statistical independence of the shocks and the non-Gaussianity of the 

data, which can be easily checked empirically. 

ICA is based on a theorem, first proved by Comon (1994, Th. 11), according to which if we 

assume that the elements of are (mutually) independent and non-Gaussian (with at 

maximum one exception), then the invertible matrix 𝐵𝐵, such that 𝜀𝜀𝑡𝑡 = 𝐵𝐵−1𝐴𝐴𝑡𝑡, is “almost 

identifiable.” This means that 𝐵𝐵 is identifiable up to a column permutation and the 

multiplication of each of its diagonal elements by an arbitrary non-zero scalar. In other 

words, the matrix 𝐵𝐵 is identifiable up to the post multiplication by DP where P is a column 

permutation matrix and D a diagonal matrix with non-zero diagonal elements (Gourieroux et 

al., 2017: 112). In the ICA literature, several techniques have been developed to estimate the 

matrices 𝐵𝐵 and 𝐵𝐵−1, where they are usually referred to as the mixing and unmixing matrix, 

respectively (Hyvärinen et al., 2001). These techniques are usually based on searching for the 

linear combinations of the reduced form residuals that are maximally independent. This is 

done in the style of unsupervised statistical learning that is typical of the machine learning 

research (Hyvärinen et al., 2001). We apply three ICA techniques to estimate 𝐵𝐵 and 𝐵𝐵−1. 
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Using three different approaches allows us to explore the robustness of our rebound 

estimates.  

The first method is the distance covariance (dcov) approach (Matteson and Tsay, 2017). This 

approach minimizes a nonparametric measure of dependence among n linear combinations of 

the observed data ( ), namely the distance covariance (Székely et al., 2007). For example, 

the distance covariance between, say,  and  is defined as: 

𝐼𝐼 (𝐴𝐴1𝑡𝑡,𝐴𝐴2𝑡𝑡) = 𝐸𝐸 | 𝐴𝐴1𝑡𝑡 −  𝐴𝐴1𝑡𝑡∗ ||𝐴𝐴2𝑡𝑡 −  𝐴𝐴2𝑡𝑡∗ | +  𝐸𝐸 | 𝐴𝐴1𝑡𝑡 −  𝐴𝐴1𝑡𝑡∗ |𝐸𝐸|𝐴𝐴2𝑡𝑡 −  𝐴𝐴2𝑡𝑡∗ | 

− 𝐸𝐸 | 𝐴𝐴1𝑡𝑡 −  𝐴𝐴1𝑡𝑡∗ ||𝐴𝐴2𝑡𝑡 −  𝐴𝐴2𝑡𝑡∗∗| − 𝐸𝐸 | 𝐴𝐴1𝑡𝑡 −  𝐴𝐴1𝑡𝑡∗∗||𝐴𝐴2𝑡𝑡 −  𝐴𝐴2𝑡𝑡∗ | (6) 

where | ∙ | denotes the Euclidean distance and (𝐴𝐴1𝑡𝑡,
∗  𝐴𝐴2𝑡𝑡∗ ) and (𝐴𝐴1𝑡𝑡,

∗∗  𝐴𝐴2𝑡𝑡∗∗) denote two distinct 

i.i.d. samples of (𝐴𝐴1𝑡𝑡,𝐴𝐴2𝑡𝑡). To estimate the matrices 𝐵𝐵 and 𝐵𝐵−1, Matteson and Tsay (2011) 

use this measure of dependence, defining an objective function ℑ(𝜃𝜃), whose argument is a 

vector of rotation angles 𝜃𝜃. Each choice of 𝜃𝜃 determines a product of rotation matrices 𝐺𝐺(𝜃𝜃), 

which in turn determines a mixing matrix 𝐵𝐵(𝜃𝜃) and a vector of structural shocks 

𝜀𝜀𝑡𝑡(𝜃𝜃) = 𝐵𝐵(𝜃𝜃)−1𝐴𝐴𝑡𝑡. Matteson and Tsay (2011) show that the choice of 𝜃𝜃 that corresponds to 

𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎𝑃𝑃𝑃𝑃𝜃𝜃  ℑ(𝜃𝜃) determines a consistent estimator of 𝐵𝐵 and that this mixing matrix is 

associated with structural shocks 𝜀𝜀𝑡𝑡(𝜃𝜃) = 𝐵𝐵(𝜃𝜃)−1𝐴𝐴𝑡𝑡 that are maximally independent (i.e. 

least dependent).  

The second ICA estimator we consider in our study is the Maximum Likelihood estimator 

proposed by Lanne et al. (2017). In contrast to other ICA estimators, this approach is 

parametric because it assumes that the n structural shocks 𝜀𝜀𝑡𝑡 = 𝐵𝐵−1𝐴𝐴𝑡𝑡 are distributed 

according to specific distributions, besides assuming their mutual independence. The 

distributions of the shocks may be different, even belonging to different families of densities 

with their own parameters, but at maximum one is allowed to be Gaussian. To construct the 

likelihood function, one has to choose the non-Gaussian error distributions. In our 

application, we employ the t-distribution with different degrees of freedom. The likelihood 

function allows us to estimate the unmixing matrix 𝐵𝐵−1 and the independent components (i.e. 

the structural shocks, 𝜀𝜀𝑡𝑡). 

The third ICA estimator is the fastICA algorithm (Hyvärinen and Oja, 1997), which is based 

on minimization of mutual information and maximization of negentropy. These two notions 

are based on information theory, and in particular on the notion of differential entropy. Let x 
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be a random vector and 𝑓𝑓(𝑥𝑥) its density. The differential entropy H of x is defined as 

(Papoulis 1991) 

𝐻𝐻(𝑥𝑥) = −�𝑓𝑓(𝑥𝑥)ln𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥 . (7) 

A fundamental result in information theory is that if x is Gaussian, then it has the largest 

entropy among all the random vectors with the same covariance matrix (see again Papoulis 

1991). Let 𝑥𝑥𝐺𝐺  be a Gaussian random vector with the same covariance as x. Negentropy is 

defined as 

𝐽𝐽(𝑥𝑥) = 𝐻𝐻(𝑥𝑥𝐺𝐺) − 𝐻𝐻(𝑥𝑥) (8) 

which is necessarily non-negative and is zero if x is Gaussian. It is then a measure of non-

Gaussianity (Hyvärinen and Oja, 2000). Let 𝑥𝑥1, … , 𝑥𝑥𝑚𝑚 be a set of (scalar) random variables 

and let 𝑥𝑥 = (𝑥𝑥1, … , 𝑥𝑥𝑚𝑚)′. The mutual information I between the m scalar random variables is 

defined as 

𝐼𝐼(𝑥𝑥1, … , 𝑥𝑥𝑚𝑚) = �𝐻𝐻(𝑥𝑥𝑖𝑖) − 𝐻𝐻(𝑥𝑥)
𝑚𝑚

𝑖𝑖=1

. (9) 

Mutual information is a measure of (mutual) statistical dependence (Hyvärinen and Oja, 

2000). It turns out that finding linear combinations of the observed variables (e.g. 𝐴𝐴1𝑡𝑡, … ,𝐴𝐴𝑛𝑛𝑡𝑡) 

that minimize mutual information (i.e. are maximally independent) is equivalent to finding 

directions in which the negentropy (i.e. non-Gaussianity) is maximized (Hyvärinen 1999). A 

potential problem is that estimating mutual information or negentropy would require 

estimating the probability density function f(x) (see Equation (7)). The FastICA algorithm 

circumvents this problem using an approximation of negentropy (see Hyvärinen and Oja, 

2000). Given such an approximation, the algorithm is based on a fixed-point iteration scheme 

for finding linear combinations of the data that maximizes non-Gaussianity. Given the tight 

link between mutual information and negentropy, this is equivalent to find linear 

combinations that are maximally independent.  

As mentioned above, ICA per se does not deliver full identification of 𝐵𝐵; one still needs to 

find the right order and scale of its columns. The scale indeterminacy is easily solved by post-

multiplying the ICA-estimated 𝐵𝐵 in 𝐴𝐴𝑡𝑡 = 𝐵𝐵𝜀𝜀𝑡𝑡 by a matrix 𝐷𝐷𝐷𝐷−1 such that D is diagonal (with 

non-zero diagonal elements) and 𝐷𝐷−1𝜀𝜀𝑡𝑡 has unit variance. The column indeterminacy is 
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solved by assuring that the diagonal element of 𝐵𝐵𝐷𝐷𝑃𝑃 (where P is a column permutation 

matrix) contains the maximum elements of each row of 𝐵𝐵𝐷𝐷𝑃𝑃, so that the ith shock maximally 

impacts on the ith-variable. It is important to notice that this is a further a priori assumption 

that we impose on the system to achieve identification, jointly with non-Gaussianity (which 

can be indirectly tested) and independence of the shocks. These assumptions are detached 

from any specific economic-theoretical model, but still form those a priori restrictions 

needed to achieve SVAR identification. 

Lastly, the columns of 𝐵𝐵𝐷𝐷𝑃𝑃 are normalized such that the diagonal of 𝐵𝐵𝐷𝐷𝑃𝑃 has entries greater 

than zero, except the entry corresponding to energy use, the entry (1,1) in our application, 

which we set as negative. We impose these restrictions because we focus on the impacts of 

positive shocks on variables, except for the impact of energy use, where we want to study 

effects of its reduction. 

Linear Non-Gaussian Acyclic Model (LiNGAM) 

We further probe the robustness of our results by applying an ICA-based identification 

scheme, which, besides assuming non-Gaussianity and independence of the structural shocks, 

makes the further assumption of recursiveness. This identification scheme is called Linear 

Non-Gaussian Acyclic Model (LiNGAM) (Shimizu et al., 2006; Hyvärinen et al., 2008; 

Moneta et al., 2013). Recursiveness here means that there is a particular contemporaneous 

causal order of the variables (which the algorithm is able to identify from the data), such that 

the unmixing (or, equivalently, mixing) matrix can be rearranged into a lower-triangular 

matrix (after a rows/columns permutation). In other words, the contemporaneous causal order 

of the variables can be represented as a directed acyclic graph (Moneta et al., 2013). The 

standard Choleski identification scheme (Sims, 1980) also makes the assumption that the 

instantaneous impact matrix (i.e. the mixing matrix) is lower triangular. In the Choleski 

scheme, however, the order of the variables that enter in the vector 𝑥𝑥𝑡𝑡 is given a priori and, in 

many applications, may appear arbitrary. In LiNGAM the ordering is discovered from the 

data. Given an arbitrary initial variable order, FastICA is first used to estimate the unmixing 

matrix 𝐵𝐵−1 and the mixing matrix 𝐵𝐵. Then, in a second step, LiNGAM finds the right 

permutation matrix P, which we mentioned above as fundamental to solving the ICA 

indeterminacy problem. To obtain P, the algorithm makes use of recursiveness: there will be 

indeed only one permutation that makes 𝐵𝐵−1 and 𝐵𝐵 lower triangular. Since these matrices are 

estimated with errors, the algorithm searches for the permutation which makes one of these 
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matrices the closest as possible to lower triangular. In comparison with our criterion, 

mentioned above, to identify the energy shock simply based on picking the shock that has 

maximal contemporaneous impact on the energy time series variable (our baseline results 

will hinge on this criterion), LiNGAM has the clear advantage of providing a complete 

identification of the mixing and unmixing matrix, with the entire causal graph of the 

contemporaneous structure. It has, however, the disadvantage of relying heavily on a lower-

triangular scheme, which is the reason why we use it only for robustness analysis. 

Measurement Error and the Rebound Effect 

Assuming that our model captures the important factors that affect energy use apart from 

energy efficiency, there are two important limitations on our ability to identify energy 

efficiency shocks and the rebound effect: Not all energy efficiency changes might be 

captured by our identified energy efficiency shock and we will not be able to account for 

instantaneous rebound that takes place at 𝑃𝑃 = 0.  

Price shocks might affect the rate of energy efficiency improvements too. Note that it is not 

changes in prices that directly cause changes in technology in the theory of directed technical 

change. Rather the level of price affects the rate of innovation (Acemoglu, 2002). If the 

elasticity of substitution between energy and other inputs is less than unity, then an increase 

in the price of energy relative to other inputs will increase the rate of energy-augmenting 

technical change. Hence, changes in energy prices themselves may have little effect on 

energy efficiency improvements.  

If energy efficiency improvements are positively correlated with labor-augmenting technical 

change, then shocks to GDP due to labor-augmenting innovations will be associated with 

improvements in energy efficiency. Our energy efficiency shocks can only measure the part 

of energy efficiency improvements which are orthogonal to labor augmenting technical 

change shocks. Our estimate of the rebound effect will be only that in response to these 

energy-specific efficiency improvements. If the response of energy use to other innovations is 

different then we will not capture the average rebound effect in response to all energy 

efficiency improvements. 

Some of the rebound may happen contemporaneously with the energy efficiency 

improvement. For example, a car manufacturer might introduce a new model with a more 

fuel-efficient engine, which is larger and heavier than the previous model, so that the fuel 
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economy of the new model shows less improvement than the engine efficiency improvement. 

In Austria, for example, the weight and engine capacity of cars increased from 1990 to 2007 

as fuel efficiency increased (Meyer and Wessely, 2009). New more energy efficient houses 

might be larger than existing houses thus requiring more energy services than older houses. 

Consumers might also immediately adapt their behavior to the new technology. As our 

approach relies on the rebound taking place over a period of time to measure the size of the 

rebound, if all the rebound occurred instantaneously we would measure 0% rebound. 

The effect on measured rebound depends if the true rebound is greater or smaller than 100%. 

Assume, for example that the observed shock is 75% of the true energy efficiency shock. If 

the true rebound is, for example, 50% then the observed rebound is 1 − 0.5
0.75

= 33%. If 

instead the true rebound is 125%, then the observed rebound is 1 + 0.25
0.75

= 133%. So, where 

there are energy savings our estimated rebound will underestimate the true rebound and 

where there is backfire our estimated rebound will exaggerate the rebound. The closer the 

true rebound is to 100%, the smaller will this error likely be in percentage points. 

In the econometric analysis we use both monthly and quarterly data. Monthly data should 

provide a better estimate of the size of the efficiency shock. 
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Table 1. Rebound Effect 
Model Frequency Period Method 1 year 2 years 4 years 6 years 

1 Monthly 1992-2016 dcov 0.78 0.94 1.01 1.01 

    [0.61,0.88] [0.76,1.04] [0.91,1.1] [0.95,1.08] 
2   ngml 0.76 0.91 0.99 0.99 

    [0.62,0.89] [0.76,1.04] [0.9,1.09] [0.94,1.06] 
3   fastICA 0.77 0.92 1.00 1.00 

    [0.85, 0.93] [0.93, 1.06] [0.96, 1.06] [0.97, 1.04] 
4   LiNGAM 0.90 0.99 1.01 1.00 

    [0.88, 0.92] [0.98, 1.01] [1, 1.02] [1, 1.01] 
5 Quarterly 1973-2016 dcov 0.61 0.90 1.16 1.23 

    [0.34,0.68] [0.57,1.03] [0.81,1.38] [0.94,1.47] 
6   ngml 0.61 0.90 1.17 1.24 

    [0.35,0.63] [0.6,0.97] [0.84,1.32] [0.96,1.45] 
7   fastICA 0.59 0.88 1.16 1.23 

    [0.52, 0.75] [0.55, 1.14] [0.80, 1.37] [0.88, 1.35] 
8   LiNGAM 0.63 0.88 1.08 1.12 

    [0.61, 0.64] [0.84, 0.95] [1.01, 1.16] [1.06, 1.18] 
9 Quarterly 1992-2016 dcov 0.58 0.91 1.09 1.07 

    [0.35,0.81] [0.58,1.2] [0.8,1.35] [0.87,1.3] 
10   ngml 0.45 0.77 1.01 1.03 

    [0.34,0.8] [0.58,1.14] [0.8,1.31] [0.88,1.28] 
11   fastICA 0.54 0.88 1.08 1.06 

    [0.62, 0.8] [0.78, 1.16] [0.89, 1.18] [0.94, 1.12] 
12   LiNGAM 0.71 0.95 1.03 1.02 

    [0.67, 0.79] [0.87, 1.06] [0.98, 1.11] [0.99, 1.08] 
Notes: Bootstrapped 0.90 confidence interval in brackets. Number of monthly and quarterly 

observations are 298 and 175, respectively. 
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Table 2. Rebound Effect (Robustness Analysis) 
Model Frequency Period Method 1 year 2 years 4 years 6 years 

1 Monthly 1992-2016 dcov 0.94 1.03 1.09 1.06 

    [0.65,1.19] [0.83,1.32] [0.94,1.43] [0.95,1.33] 

2   ngml 0.98 1.06 1.13 1.09 

    [0.64,1.93] [0.83,2] [0.97,2.22] [0.97,1.91] 

3   fastICA 0.84 0.94 0.99 1.00 

    [0.89, 1.03] [0.91, 1.07] [0.91, 1.08] [0.94, 1.07] 

4   LiNGAM 0.96 0.97 0.98 0.99 

    [0.94, 0.98] [0.95, 1] [0.96, 1.01] [0.98, 1.01] 

5 Quarterly 1973-2016 dcov 0.72 0.85 0.93 0.97 

    [0.52,1.42] [0.66,1.92] [0.65,1.84] [0.64,1.64] 
6   ngml 0.63 0.82 1.16 1.30 

    [-0.07,0.63] [-0.1,0.91] [0.31,1.46] [0.54,1.84] 
7   fastICA 0.59 0.83 1.16 1.28 

    [0.55, 1.13] [0.61, 1.41] [0.78, 1.43] [0.87, 1.36] 
8   LiNGAM 0.71 0.84 0.97 1.03 

    [0.64, 0.78] [0.77, 0.93] [0.89, 1.08] [0.96, 1.12] 
Notes: Bootstrapped 0.90 confidence interval in brackets. 
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Figure 1. The Rebound Effect 
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a. 

 
b. 

 
 
Figure 2. Main Variables: Energy intensity is shown instead of GDP. Data have been 
deseasonalized. See Appendix for data sources. a. Monthly U.S. data b. Quarterly data. 
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Figure 3. Impulse Response Functions for Monthly Data: SVAR estimated using distance 
covariance method. Grey shading is a 90% confidence interval computed using the wild 
bootstrap with 1000 iterations. All variables are in natural logarithms. 
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a. 

 
b. 

 
 

Figure 4. Additional Variables: Data have been deseasonalized. See Appendix  for data 
sources. Energy quality is the ratio of a volume index of energy use to total joules. Industrial 
structure is the ratio of industrial production to GDP. See Methods for more details. a. 
Monthly U.S. data b. Quarterly data.  
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Appendix 

Data 

We estimate models for the United States using monthly and quarterly data. Identifying 

restrictions are generally more plausible the more frequent the data is (Kilian, 2009) but it is 

also possible that estimates using monthly data will focus on the short run and underestimate 

the long-run effects. 

Monthly Data 

As energy intensity is conventionally measured in terms of primary energy we use both 

primary energy quantities and prices that are as close as possible to the price of primary 

energy. We compile a data set for the period January 1992 to October 2016, which is 

restricted by the availability of monthly GDP (beginning of sample) and monthly energy use 

data and prices (end of sample). 

Energy Quantities: We use Energy Information Administration data on consumption of 

primary energy from various sources measured in quadrillion BTU. This data is reported in 

the Monthly Energy Review (MER) and available from the EIA website. The primary sources 

are petroleum, natural gas, coal, primary electricity (which is reported for several sources), 

and biomass energy. We assume that geothermal and solar power is all primary electricity in 

our computation of the aggregate energy price index and energy quality. We treat biomass as 

primary energy whether it is used to generate electricity or not. We deseasonalize energy 

quantity and price data using the X11 procedure as implemented in RATS using a 

multiplicative seasonality model. 

Energy Prices and Quality: EIA provide a variety of energy price series. For crude oil we 

use the “Refiner Acquisition Cost of Crude Oil, Composite” series from Table 9.1 in the 

MER. For electricity prices (for primary electricity) we use “Average Retail Price of 

Electricity, Industrial” from Table 9.8 in the MER. This price averaged $61 per MWh from 

January 2001 to December 2013. Using data on wholesale electricity prices provided by the 

Intercontinental Exchange to EIA (https://www.eia.gov/electricity/wholesale/#history), over 

the same period the Northeast Pool wholesale electricity price also averaged $61. The Mid-

Columbia wholesale price averaged $42, Palo Verde $49, and PJM West $54. However, 

using these wholesale prices would further restrict our sample to start in January 2001 and 

https://www.eia.gov/electricity/wholesale/#history
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not all of the US has liberalized electricity markets. Monthly electricity prices are not 

available for 1992-1994 and we used annual prices for this period. 

For natural gas prices we use the Henry Hub spot prices available on this page: 

http://www.eia.gov/dnav/ng/hist/rngwhhdA.htm 

from January 1997. Prior to that we use EIA’s “Natural Gas Price, Wellhead” from Table 

9.10 in the MER. For the price of coal we use “Cost of Coal Receipts at Electric Generating 

Plants” from Table 9.9 in the MER.  

Annual biomass prices for 1970 to 2014 are available from this webpage: 

http://www.eia.gov/state/seds/data.cfm?incfile=/state/seds/sep_prices/total/pr_tot_US.html&s

id=US 

For months after 2014 we applied the growth rate of the price of crude oil as the correlation 

between the price of oil and biomass was 0.92 from 1992 to 2014. 

All these prices are converted to prices per BTU using standard conversion factors. For 

primary electricity we use the ratio of primary energy to electricity produced to obtain a price 

for primary energy from the price of electricity. Table 7.2 in the MER provides the generation 

of electricity from various sources. We use this to get conversion factors for nuclear, 

hydropower, solar, and wind. For geothermal and solar energy we use the data in this table 

and the amount of geothermal power used in electricity generation in MER Table 10.2c. But 

we apply the derived price to all geothermal and solar energy as described above. 

As monthly energy quantities and prices are often highly seasonal, we deseasonalized each 

series at the fuel level before aggregating using the X11 procedure in RATS and a 

multiplicative specification of the seasonal factor. 

To obtain the price of energy we simply compute the total cost of energy in our data and 

divide by total BTUs of primary energy. To obtain the energy quality index we compute a 

Divisia energy volume index and divide this by total BTUs. 

GDP: Macroeconomic Advisors have interpolated a monthly GDP series, which appears to 

be seasonally adjusted, for the U.S. using many of the underlying variables used by the 

Bureau of Economic Analysis to update quarterly GDP: 

http://www.eia.gov/dnav/ng/hist/rngwhhdA.htm
http://www.eia.gov/state/seds/data.cfm?incfile=/state/seds/sep_prices/total/pr_tot_US.html&sid=US
http://www.eia.gov/state/seds/data.cfm?incfile=/state/seds/sep_prices/total/pr_tot_US.html&sid=US
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http://www.macroadvisers.com/monthly-gdp/ 

This data includes nominal and real series, which can be used to compute a monthly GDP 

deflator, which we use to deflate energy prices.  

Industrial Structure: McCracken and Ng (2015) have compiled a large monthly 

macroeconomic data set for the United States (“FRED-MD”), which is available through the 

Federal Reserve Bank of St. Louis FRED data tool at  

https://research.stlouisfed.org/econ/mccracken/fred-databases/ 

We use their series for industrial production, which is seasonally adjusted. The ratio of 

industrial production to GDP is our measure of industry structure. 

Quarterly Data 

We compiled a quarterly dataset for 1973:1 to 2016:3. 

We use quarterly GDP data from the Bureau of Economic Analysis (BEA) National Income 

and Product Accounts (NIPA). GDP data is real GDP in chained 2009 dollars. All other data 

is from the same sources as the monthly data. We aggregated the monthly data into quarterly 

data and deseasonalized the energy series before computing energy quantity and price 

aggregates as described for the monthly data.  

Monthly oil prices are only available from 1974 and electricity and gas prices from 1976. 

Monthly electricity prices are not available for 1984-1994 either. We used annual prices for 

this missing data. 

Additional Econometric Results 

Based on Kilian and Lütkepohl (2017), we use the Akaike Information Criterion (AIC) to 

choose the lag length. Based on the Schwert (1989) criterion, we use a maximum of 5 lags for 

the quarterly data and a maximum of 6 lags for the monthly data. We select 3 lags for both 

frequencies.  

Identification of the energy efficiency shock requires that at most one of the structural shocks 

is Gaussian. The estimated reduced-form residuals are linear combinations of the structural 

shocks. According to the central limit theorem, the structural shocks tend to be non-Gaussian 

if the reduced-form residuals are non-Gaussian. Using a Jarque-Bera test with 𝛼𝛼 = 0.05, we 

find that for all reduced-form VAR models used in the subsequent analysis, at most one of 

http://www.macroadvisers.com/monthly-gdp/
https://research.stlouisfed.org/econ/mccracken/fred-databases/
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the reduced-form residuals exhibits a Gaussian distribution. We use the R package svars to 

estimate the dcov and ngml models.  

The contemporaneous effect on GDP of an improvement in energy efficiency should be 

positive due to the increase in TFP this represents and the effect on energy prices should be 

negative due to the reduction in demand for energy. However, we expect the 

contemporaneous effect of energy efficiency improvements on GDP and energy prices to be 

small as the transmission of these effects is likely to take some time. In the long run too, the 

effect on GDP should be small as energy costs are a small share of GDP. The 

contemporaneous effect on energy use should be large. As the column sign is not identified, 

we chose the effect on energy use to be negative. While our focus is on the energy efficiency 

shock and partial identification of the SVAR would be sufficient to estimate the rebound 

effect, we also discuss the GDP and energy price shocks to ensure that the estimated SVAR is 

generally consistent with economic theory. We expect the contemporaneous effect of a 

positive energy price shock on energy use and GDP to be small, especially in monthly data. 

The effect should be negative on both energy use and GDP. We also do not expect a strong 

contemporaneous effect of a positive GDP shock on energy use and energy prices, but these 

effects should be positive. 

Appendix Table 1 shows the 𝐵𝐵 matrices obtained by the four identification methods for 

monthly data. For the three ICA approaches (dcov, ngml, FastICA) the first column shows 

what we label as the energy efficiency shock. This shock has the largest contemporaneous 

effect on energy use and comparably small effects on GDP and energy prices as expected 

from economic theory. While the signs of the contemporaneous effect on GDP and energy 

price are in line with theory if dcov is used, applying ngml and FastICA result in a positive 

sign for the effect on energy prices and a negative sign for the effect on GDP. However, these 

effects are small compared to the effect on energy use, and bootstrapped confidence intervals. 

We, therefore, conclude that the energy efficiency shock conforms with economic theory.  

Applying LiNGAM, we estimate the causal order as 𝑦𝑦 → 𝑒𝑒 → 𝑝𝑝 assuming a recursive causal 

structure.1 While the effect of energy efficiency improvements on GDP is set to zero, the 

effect on energy prices is relatively large, but the sign conforms to economic theory. 

                                                 
1 Note that the mixing matrix reported in Table S2 for LiNGAM results in a lower triangular impact (mixing) 
matrix as required by a recursive causal structure. It is important to assess how stable this causal order is when 
we change the initial condition of the FastICA algorithm (which constitutes the first step of LiNGAM). We then 
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Regarding the GDP shock, the bootstrapped confidence intervals again suggest that only the 

contemporaneous effect on GDP is statistically significant, except for LiNGAM where the 

effect on energy prices is also significant. The signs are consistent with theory if Distance 

Covariance is applied. Regarding the energy price shock, it is again only the 

contemporaneous effect on energy prices that is statistically significant. Overall, we conclude 

that the identified shocks are consistent with economic theory.  

Appendix Table 2 shows the 𝐵𝐵 matrices for quarterly data. Results for the energy efficiency 

shock are very similar to those obtained for monthly data. The contemporaneous effects on 

GDP and energy prices tend to zero and are not statistically significant. For quarterly data, 

the energy efficiency shock identified by LiNGAM is also more consistent with economic 

theory. Moreover, the signs are consistent with economic theory for all approaches except for 

distance covariance. LiNGAM suggests the same contemporaneous causal structure as for 

monthly data (𝑦𝑦 → 𝑒𝑒 → 𝑝𝑝).2 

Regarding the GDP shock, it is again only the contemporaneous effect on GDP that is 

statistically significant, except for LiNGAM where all effects are statistically significant. For 

all methods, the price shock is only statistically significant for the contemporaneous effect on 

prices.  

The 𝐵𝐵 matrices for monthly and quarterly data for the five variable SVAR can be found in 

Appendix Tables 3 and 4. Labeling shocks by the largest contemporaneous effect size is not 

unique for the VAR with five variables as in some cases the same shock has the largest 

contemporaneous effect for two variables – GDP and economic structure (industrial 

production). As our interest is in the robustness of the rebound effect, we focus on the energy 

efficiency shock.  

For LiNGAM, the identified contemporaneous causal structures are much less stable than 

they are for the three variable VARs. For monthly data, the most stable structure is 𝑦𝑦 → 𝑠𝑠 →

𝑞𝑞 → 𝑒𝑒 → 𝑝𝑝. However, this structure reaches only 58% stability under random variation of the 

algorithm’s initial conditions and 64.5% stability under bootstrap resampling of the data. 

                                                 
run a simulation where LiNGAM is iteratively applied to the same data set but resampling the initial conditions 
each time. LiNGAM results in this case are 100% stable. A further, and more severe, exercise to check stability 
is to run a bootstrap in which we do not only change initial conditions of the algorithm, but also resample the 
data. In this case, we get the same causal structure 95.4% of the time. Our conclusion is that the causal order y -
> e->p output of LiNGAM is satisfactorily stable. 
2 While resampling initial conditions we also have here complete stability, bootstrap stability (resampling the 
observed data) is a bit lower here: 91.8%. 
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Therefore, we examined the robustness of our results under the second most stable causal 

structure (𝑠𝑠 → 𝑦𝑦 → 𝑞𝑞 → 𝑒𝑒 → 𝑝𝑝) and find that the estimated rebound effect is robust to this 

second causal structure as well. For quarterly data, the most stable causal structures is 𝑞𝑞 →

𝑦𝑦 → 𝑠𝑠 → 𝑒𝑒 → 𝑝𝑝 (73% initial conditions stability, 38.7% bootstrap stability). We also find the 

rebound effect to be robust if the second most stable structure 𝑠𝑠 → 𝑞𝑞 → 𝑦𝑦 → 𝑒𝑒 → is used.  

In conclusion, LiNGAM does not provide stable and sufficiently reliable results for the VAR 

with five variables. It is interesting to note, however, that among the diverse causal structures 

suggested by the algorithm (including others we did not present), each of them singularly 

unstable, it is always the case that y comes before e and e before p in the contemporaneous 

causal chain, which was also the output of the 3-variable model. This probably means that the 

structure 𝑦𝑦 → 𝑒𝑒 → 𝑝𝑝 is remarkably stable, with the other variables (s, q) playing diverse 

causal roles that cannot be described by a recursive scheme. This is why it was important to 

show results with methods not committed to such a scheme (dcov, ngml, FastICA).  
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Appendix Table 1. Mixing Matrices, 𝑩𝑩, for SVARs with Three Variables: Monthly Data 
  𝜀𝜀𝑒𝑒 𝜀𝜀𝑦𝑦 𝜀𝜀𝑝𝑝 
Distance covariance     

𝑒𝑒𝑡𝑡  
-1.68 

[-1.73, -1.24] 
0.32 

[-0.59, 0.86] 
0.29 

[-0.33, 0.87] 

𝑦𝑦𝑡𝑡   
0.09 

[-0.18, 0.27] 
0.51 

[0.38, 0.51] 
0.03 

[-0.15, 0.27] 

𝑝𝑝𝑡𝑡   
-0.02 

[-1.89, 1.55] 
0.57 

[-1.95, 2.38] 
5.04 

[4.04, 5.06] 
    
Non-Gaussian Maximum Likelihood   

𝑒𝑒𝑡𝑡  
-1.50 

[-1.71, -0.82] 
-0.66 

[-1.40, 0.52] 
0.47 

[0.32, 0.75] 

𝑦𝑦𝑡𝑡   
-0.21 

[-0.40, 0.16] 
0.45 

[0.25, 0.50] 
0.03 

[-0.15, 0.26] 

𝑝𝑝𝑡𝑡   
0.14 

[-1.89, 1.37] 
0.51 

[-1.87, 2.17] 
4.81 

[-4.97, -4.07] 
    
FastICA    

𝑒𝑒𝑡𝑡  
-1.61 

[-1.71, -1.15] 
-0.39 

[-1.18, 0.59] 
0.43 

[-0.29, 0.73] 

𝑦𝑦𝑡𝑡   
-0.13 

[-0.34, 0.17] 
0.49 

[0.33, 0.50] 
-0.01 

[-0.21, 0.26] 

𝑝𝑝𝑡𝑡   
0.07 

[-1.80, 1.31] 
0.99 

[-1.99, 2.67] 
4.90 

[3.84, 4.97] 
    
LiNGAM 

𝑒𝑒𝑡𝑡  
-2.18 

[-2.33, -2.02] 
0.00 

[-0.19, 0.20] 
0.00 

 

𝑦𝑦𝑡𝑡   
0.00 

 
0.69 

[0.64, 0.73] 
0.00 

 

𝑝𝑝𝑡𝑡   
-1.25 

[-2.01, -0.36] 
1.23 

[0.39, 2.08] 
8.93 

[8.36, 9.49] 
Notes: LiNGAM (Causal structure y → e → p): 95.4 % bootstrap stability; 100% initial conditions stability. 
90% confidence intervals in brackets using wild bootstrap with 1000 iterations. 
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Appendix Table 2. Mixing Matrices, 𝑩𝑩, for SVARs with Three Variables: Quarterly Data 
  𝜀𝜀𝑒𝑒 𝜀𝜀𝑦𝑦 𝜀𝜀𝑝𝑝 
Distance covariance    

𝑒𝑒𝑡𝑡  
-1.55 

[-1.63, -1.45] 
0.51 

[-0.40, 0.54] 
0.05 

[-0.46, 0.45] 

𝑦𝑦𝑡𝑡   
0.16 

[-0.24, 0.18] 
0.71 

[0.63, 0.72] 
0.03 

[-0.23, 0.18] 

𝑝𝑝𝑡𝑡   
0.05 

[-2.47, 2.36] 
-0.52 

[-2.29, 2.58] 
8.59 

[7.51, 8.59] 
    
Non-Gaussian Maximum Likelihood   

𝑒𝑒𝑡𝑡  
-1.55 

[-1.62, -1.51] 
0.42 

[-0.32, 0.40] 
0.14 

[-0.23, 0.25] 

𝑦𝑦𝑡𝑡   
0.15 

[-0.21, 0.12] 
0.72 

[0.64, 0.73] 
0.07 

[-0.16, 0.14] 

𝑝𝑝𝑡𝑡   
-0.05 

[-1.20, 1.24] 
-0.74 

[-1.61, 1.63] 
8.85 

[7.79, 9.30] 
    
FastICA    

𝑒𝑒𝑡𝑡  
-1.53 

[-1.59, -1.52] 
0.41 

[-0.32, 0.40] 
0.02 

[-0.21, 0.23] 

𝑦𝑦𝑡𝑡   
0.12 

[-0.21, 0.11] 
0.69 

[0.67, 0.70] 
0.06 

[-0.12, 0.10] 

𝑝𝑝𝑡𝑡   
-0.15 

[-1.08, 1.13] 
-0.80 

[-1.31, 1.34] 
8.33 

[8.17, 8.37] 
    
LiNGAM  

𝑒𝑒𝑡𝑡  
-2.05 

[-2.28, -1.82] 
0.52 

[0.23, 0.80] 
0.00 

 

𝑦𝑦𝑡𝑡   
0.00 

 
1.30 

[1.17, 1.43] 
0.00 

 

𝑝𝑝𝑡𝑡   
-1.90 

[-3.94, 0.22] 
0.731 

[1.17, 1.43] 
15.25 

[13.81, 16.75] 
Notes: LiNGAM (Causal structure y → e → p): 91.8 % bootstrap stability; 100% initial conditions stability. 
90% confidence intervals in brackets using wild bootstrap with 1000 iterations. 
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Appendix Table 3. Mixing Matrices, 𝑩𝑩, for SVARs with five variables: Monthly data 
  𝜀𝜀𝑒𝑒 𝜀𝜀𝑦𝑦 𝜀𝜀𝑝𝑝 𝜀𝜀𝑠𝑠 𝜀𝜀𝑞𝑞 

Distance covariance           
  -1.24 0.40 0.29 0.52 -0.77 
  0.22 0.37 0.08 0.16 -0.05 
  -0.09 -0.01 5.02 -0.23 -0.06 

  0.14 -0.08 0.03 0.54 -0.17 
  -0.07 0.03 0.07 0.20 0.63 

      
Non-Gaussian Maximum Likelihood       

  -1.14 -0.09 0.43 0.55 -1.01 
  0.02 0.46 0.01 0.07 -0.07 
  -0.06 0.73 4.57 -1.13 -0.44 

  0.26 0.07 0.10 0.42 -0.21 
  -0.07 0.05 0.14 0.22 0.63 

      
FastICA (Negentropy)         

  -1.15 -0.21 -0.12 -0.13 1.09 
  -0.12 0.36 -0.21 0.24 0.01 
  -0.80 -0.13 -4.37 -2.17 -0.32 

  0.13 -0.45 0.15 -0.17 -0.02 
  -0.29 0.00 0.05 -0.04 -0.56 

      
LiNGAM  

  -1.57 0.19 0.00 0.11 -0.11 
  0.00 0.49 0.00 0.00 0.00 
  -0.88 1.00 4.71 0.66 0.21 

  0.00 -0.51 0.00 0.13 0.00 
  0.00 0.00 0.00 0.02 0.63 

      
Notes: LiNGAM (Causal structure: y → s → q → e → p) 64.5% bootstrap stability, 58% initial conditions 
stability. 
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Appendix Table 4. Mixing Matrices, 𝑩𝑩, for SVARs with five variables: Quarterly data 
 

  𝜀𝜀𝑒𝑒 𝜀𝜀𝑦𝑦 𝜀𝜀𝑝𝑝 𝜀𝜀𝑠𝑠 𝜀𝜀𝑞𝑞 

Distance covariance           

  -1.28 -0.20 0.05 0.43 -0.79 
  -0.06 0.63 0.22 0.19 -0.06 
  2.20 -2.74 7.61 -0.42 -2.21 

  -0.12 0.48 0.35 0.96 -0.01 
  0.45 0.18 -0.23 0.10 -0.32 

      
Non-Gaussian Maximum Likelihood         

  -1.06 0.44 -0.23 0.13 -1.04 
  0.15 0.64 0.08 -0.21 0.01 
  -1.60 -0.68 8.11 0.19 -0.26 

  0.11 0.93 0.18 0.47 -0.07 
  -0.17 0.15 -0.06 -0.03 0.64 

      
FastICA (Negentropy)           

  -1.07 0.45 0.18 0.24 -0.91 
  0.16 0.64 -0.09 -0.09 0.00 
  -1.39 -1.06 -8.10 0.14 -0.19 

  -0.05 0.21 -0.11 0.72 -0.07 
  -0.14 0.15 0.06 -0.02 0.57 

      
LiNGAM  

  -1.36 0.05 0.00 0.34 -0.35 
  0.00 0.66 0.00 0.00 0.05 
  0.98 1.35 8.38 2.12 -0.61 

  0.00 0.00 0.00 0.76 -0.06 
  0.00 0.00 0.00 0.00 0.60 

      
Notes: (Causal structure: q → y → s → e → p) 38.7% bootstrap-stable; 73% initial conditions stable. 
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