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1 Introduction

Empirical macroeconomists increasingly use Vector Autoregressions (VARs) with
datasets involving a hundred or more variables. However, in many applications,
there is strong evidence for stochastic volatility. Adding multivariate stochastic
volatility to large VARs has proved challenging. With small data sets, popular
specifications for VARs with stochastic volatility (VAR-SV) exist but Bayesian
estimation and forecasting with these VAR-SV’s is not computationally feasible
with large data sets. This paper develops a computationally feasible approach
with uses all the data available and allows for stochastic volatility. The idea
of our approach is to work with many small VAR-SVs. Each of these contains
only a few of the large number of variables available, but everyone one of the
variables appears in one or more of the small models. Forecasts from the many
small models are then combined to produce forecasts which reflect all the data
available. We use composite likelihood methods to theoretically justify and
implement such a strategy.

The fact that large VARs are being found increasingly useful in an era of
Big Data needs little justification. The large VAR literature began with the US
macroeconomic application of Banbura, Giannone and Reichlin (2010) but large
VARs are now used with similar macroeconomic data sets for other countries
(e.g. Bloor and Matheson, 2010). There are also applications where large VARs
arise due to the need to build a model involving variables for many countries
(e.g. Carriero, Kapetanios and Marcellino, 2010, and Koop and Korobilis, 2016).
In addition, large VARs have arisen through having to deal with many related
variants of a single variable (e.g. interest rates of different maturities or the
different components that make up an inflation index), see Carriero, Kapetanios
and Marcellino (2012) or Giannone, Lenza, Momferatou and Onorante (2014).
They can also arise through the use of mixed frequency data (e.g. McCracken,
Owyang and Sekhposyan, 2016). Large VARs have also been used for structural
economic analysis or scenario forecasting in papers such as Bańbura, Giannone
and Lenza (2015) and Jarociński and Máckowiak (2016). In short, large VARs
are increasingly used for a plethora of purposes and are promising to become
one of the major tools of modern empirical macroeconomics.

Similarly, the facts that macroeconomic variables often exhibit structural
instabilities and have variances that change over time is increasingly accepted.
Papers such as Clark (2011) highlight the particular importance in macroeco-
nomic applications of allowing for time-variation in the error covariance matrix.
Hence, this is what we focus on in this paper (although the econometric methods
we develop could also be used with the time-varying parameter VAR). Since the
elements of this matrix enter impulse responses and have a large impact on pre-
dictive variances, use of mis-specified homoskedastic models can lead to invalid
structural inference and poor forecasts.

The arguments in the preceding two paragraphs justify why there is a de-
sire to work with large VAR-SVs. But Bayesian methods, requiring the use of
Markov Chain Monte Carlo (MCMC) methods, quickly become computationally
infeasible as the number of variables in the VAR increases. Bayesian methods
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are typically used with large VARs since they allow for prior shrinkage which is
of great use with over-parameterized models. For instance, when working with
a large VAR with N = 100 variables and a lag length of p = 13 (as might be
required with monthly data), the researcher will have over 100, 000 VAR coef-
ficients to estimate and 5, 050 free parameters in the error covariance matrix.
Bayesian prior shrinkage, often using natural conjugate or Minnesota priors, is
used to surmount the problems caused by a shortage of data information relative
to the number of coefficients being estimated. Even with these priors, which
imply that the posterior and one-step ahead predictive densities have analyt-
ical forms, the researcher can face a substantial computational burden. The
main computational bottleneck is dealing with the huge posterior covariance
matrix of the VAR coefficients (even in the absence of deterministic terms it is
an N2p × N2p matrix).1 Use of the natural conjugate prior in a standard ho-
moskedastic VAR leads to a particular Kronecker product form for the posterior
covariance matrix involving separate N×N and Np×Np matrices which can be
manipulated independently of one another (see Chan, 2018 or Carriero, Clark
and Marcellino, 2016a). This vastly simplifies computation. The problem is that
small departures from the natural conjugate prior VAR destroy the Kronecker
structure and, thus, lead to huge increases in the computational burden. With
large VARs this makes many sensible alternative approaches untenable. This
holds true for alternative approaches using less subjective priors that allow for
automatic shrinkage of coefficients found to be unimportant (e.g. the variable
selection prior of George, Sun and Ni, 2008, Koop, 2013 and Korobilis, 2013,
or the Lasso prior of Gefang, 2014). It also holds true for specifications which
allow for time-variation in parameters. It is the latter which is the focus of the
present paper.

As noted, with large VARs standard approaches (e.g. Primiceri, 2005) which
allow for multivariate stochastic volatility are not computationally feasible. But
there are stochastic volatility specifications that can be used with larger VARs
(e.g. Chan 2018 and Carriero, Clark and Marcellino, 2016a,b,c). However,
these place restrictions on the form of time variation allowed for. And even
these have a large computational burden which means they cannot be used
for forecasting with the large VARs involving hundreds of dependent variables
which are increasingly being used.2

These considerations motivate the present paper. Working with many small
VAR-SVs is computationally feasible even with very high dimensional data sets

1 It is worth stressing that the main computational hurdle does not relate to the error
covariance matrix but the VAR coefficients. In finance, there are several methods (see, among
many others, Creal and Tsay, 2015) for dealing with large-dimensional covariance matrices
(e.g. involving asset returns for a huge number of assets) in models where the conditional
means of the dependent variables are of low dimension (often zero). These are not relevant
for our purposes.

2Perhaps the best of the current approaches is developed in Carriero, Clark and Marcellino
(2016b). In this paper, impulse responses are presented using a 125 variable VAR, but when
forecasting only a 20 variable VAR is used. Repeatedly forecasting with this model on an
expanding window of data with the 196 variables used in this paper would take months or
more of computer time on a good PC.
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and composite likelihood methods can be used to combine forecasts from these
many smaller models. So the methods we develop are practical and can be used
with hundreds of variables. But we also address several other questions to fur-
ther strengthen the case for our composite likelihood based methods. The first
of these is whether there is a theoretically strong justification for use of compos-
ite likelihood methods in our context. We discuss relevant econometric theory
in the next section of the paper. The second question is: How should the various
small models that arise with composite likelihood methods be combined? This
question we also address in the next section of the paper. In particular, we dis-
cuss various methods for doing so, drawing on the literature on opinion pools.
The third question is: How well do these methods work in practice? We answer
this using a large quarterly US macroeconomic data set involving 196 variables.
We find our composite likelihood methods to forecast substantially better than
the only computationally practical competitor: a homoskedastic VAR using a
natural conjugate prior. We would like to compare our methods to other ap-
proaches which involve multivariate stochastic volatility using this large data
set, but cannot do since the computational burden of popular Bayesian alter-
natives is too large. Instead, we compare our methods to a range of different
Bayesian VARs with multivariate stochastic volatility using a small data set
involving 7 variables. We find parameter estimates produced by our approach
to be very similar to those produced by these alternatives. We also carry out a
small Monte Carlo study which offers additional reassurance that the approxi-
mation inherent in the use of composite likelihood methods with VAR-SVs is an
accurate one. We also find our (large data set) composite likelihood methods to
forecast slightly better than the (small data set) Bayesian VAR-SV alternatives.

2 Composite LikelihoodMethods for large VARs
with Stochastic Volatility

2.1 Overview

A traditional likelihood function is based on the p.d.f. of the N × 1 vector of
dependent variables, yt for t = 1, .., T . In many empirical cases, particularly
if N is large, computation involving a likelihood function can be difficult or
infeasible. In such cases, it may be possible to develop statistical methods
for estimation of the parameters or forecasting using the composite likelihood
instead of the full likelihood. The composite likelihood is built up as a weighted
average of likelihoods for yi,t for i = 1, ..,M which are sub-vectors of yt. The
likelihoods for these sub-vectors are often called quasi-likelihoods and we will
use this terminology. Bayesian methods can then be used by combining a prior
with the composite likelihood in the standard way. Thus, if yi,t is of much lower
dimension than yt, a computationally difficult problem of working with a high
dimensional likelihood can be turned into a much simpler one of working with
many small quasi-likelihoods.

The statistical literature on composite likelihood methods (see, e.g., Varin,
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Reid and Firth, 2011, Ribatet, Cooley and Davison, 2012 and Roche 2016)
provides theoretical and empirical justification for working with the composite
likelihood function. For instance, depending on how the quasi-likelihoods are
chosen, the composite likelihood can be shown to asymptotically converge to the
likelihood function suggesting that, in such cases, the composite likelihood can
provide a good approximation to the likelihood function. In addition, composite
likelihood methods can be useful for reasons of robustness. That is, with high
dimensional models, there are more ways to become mis-specified than with low
dimensional densities and, thus, working with the latter can be more robust.

Composite likelihood methods can also have advantages in terms of par-
simony. That is, high dimensional models like large VARs are hugely over-
parameterized. The correct specification is likely a highly restricted version of
the large VAR. The existing Bayesian large VAR literature tries to overcome
this problem through the use of prior shrinkage. But this prior information
often has to be very strong to obtain reasonable forecasts. For instance, the
popular Minnesota prior involves a shrinkage parameter. Giannone, Lenza and
Primiceri (2015) develop a method for estimating this shrinkage parameter and
show how it becomes small (indicating stronger prior shrinkage) as the size of
the data set increases. Using composite likelihood methods, we are only working
with small VARs which can yield good forecasts even in the absence of strong
prior information.

Another way of conceptualizing the over-parameterization issue is to note
that there are various ways of treating this issue in large VARs. Some re-
searchers use prior shrinkage to address it while others use parametric restric-
tions. These are useful approaches, but each has its possible drawbacks (i.e.
sensitivity to prior and risk of mis-specification, respectively). Composite like-
lihood methods offer another avenue for inducing parsimony: working only with
small models based on the chosen quasi-likelihoods. This approach, too, requires
the researcher to make choices. But it may be easier to make (and justify) good
choices for quasi-likelihoods than for a particular prior or parametric restriction.
For instance, below we argue that the desire to forecast a core set of variables
of interest in the context of a large data set which includes many other vari-
ables motivates our particular choice of quasi-likelihoods. Beyond the choice of
quasi-likelihoods, we require no additional choices to be made about prior or
parametric restrictions.

The preceding paragraphs provide the basic justifications and insights that
underlie the methods we use in this paper and which we elaborate on in the
remainder of this section. Composite likelihood methods have been exploited
in several fields. For instance, Pakel, Shephard, Sheppard and Engle (2014) is
a financial application involving a large number of stock returns. These meth-
ods have also been used in spatial statistics (e.g. Ribatet, Cooley and Davison,
2012). But they have been rarely used in macroeconomics. Two exceptions to
this lie in the field of Dynamic Stochastic General Equilibrium (DSGE) mod-
elling: Canova and Matthes (2017) and Qu (2016). To our knowledge, our paper
is the first to use them in the large VAR field in order to add flexible and com-
putationally feasible forms of multivariate stochastic volatility to large VARs.
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2.2 The VAR-SV

We begin by defining the VAR-SVs that our quasi-likelihoods are based on.
Specifications identical or similar to this have been used in a huge range of
papers, including Primiceri (2005), Koop, Leon-Gonzalez and Strachan (2009),
Clark (2011), D’Agostino, Gambetti and Giannone (2013) and Chan and Eisen-
stat (2018). The VAR-SV model can be written as:

A0tyt = c+A1yt−1 + · · ·+Apyt−p + �t,
where c is an N ×1 vector of intercepts, A1, . . . , Ap are N ×N matrices of VAR
coefficients, Σt = diag

�
eh1,t , . . . , ehn,t

�
and A0t is a time varying N ×N lower

triangular matrix with ones on the diagonal, to be specific,

A0t =

⎛⎜⎜⎜⎝
1 0 · · · 0
a21,t 1 · · · 0
...

...
. . .

...
an1,t an2,t · · · 1

⎞⎟⎟⎟⎠ .
It is convenient to re-write the VAR-SV as

yt = Xtβ +Wtat + �t, �t ∼ N(0,Σt), (1)

where Xt = In ⊗ (1, y�t−1, . . . , y�t−p), at is an N(N−1)
2 × 1 vector consists of the

free elements of A0t stacked by rows, and Wt is an N × N(N−1)
2 matrix,

Wt =

⎛⎜⎜⎜⎜⎜⎝
0 0 0 · · · · · · · · · 0

−y1,t 0 0 · · · · · · · · · 0
0 −y1,t −y2,t · · · · · · · · · 0
...

...
. . .

... · · · · · · 0
0 · · · · · · −y1,t −y2,t · · · −yN−1,t

⎞⎟⎟⎟⎟⎟⎠ .

The log-volatilities ht = (h1,t, . . . , hN,t)� and the time-varying parameters at are
assumed to follow random walk processes:

ht = ht−1 + �ht , �ht ∼ N(0,Σh), (2)

at = at−1 + �at , �at ∼ N(0,Σa), (3)

where Σh = diag(σ2h,1, . . . ,σ
2
h,N ) and Σa = diag(σ2a,1, . . . ,σ

2

a,
N(N−1)

2

).

It can be seen that the VAR-SV can have an enormous number of para-
meters when N is large. This has led large VAR researchers to work with re-
stricted versions of the stochastic volatility process. An influential recent model
is the common drifting volatility specification of Carriero, Clark and Marcellino
(2016a) which we denote by VAR-CCM1 and use in our empirical work. This is
the same as the VAR-SV except that at = 0 and Σt = e

htΣ, where the Σ is an
N ×N positive definite matrix and ht is a scalar stochastic volatility process:

ht = ρht−1 + �ht , �ht ∼ N (0,σ2h).
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This, much more parsimonious, specification has been successfully used with
large VARs. But it does severely restrict the form that the time variation in
the error covariance matrix can take. In our empirical work, we compare our
new approach to the VAR-CCM1. We also use another specification proposed
in Carriero, Clark and Marcellino (2016b) which we label VAR-CCM2. This
amounts to the VAR-SV with at restricted to be time-invariant.

2.3 The Theory of Composite Likelihood Methods

2.3.1 Preliminaries

Assuming serially independent errors, the likelihood function for y = (y�1, .., y
�
T )
�

can be written as:

L (y; θ) =

T$
t=1

L (yt; θ) , (4)

where L (yt; θ) = p (yt|θ). The composite likelihood is defined as

LC (y; θ) =

T$
t=1

M$
i=1

LC (yi,t; θ)
wi , (5)

where LC (yi,t; θ) = p (yi,t|θ) is the quasi-likelihood and wi is the weight attached
to each quasi-likelihood with

 M
i=1 wi = 1. The weights will be discussed in sub-

section 2.3.3.
The maximum composite likelihood estimator (MCLE) involves taking the

maximum of LC (y; θ). Bayesian estimation proceeds using a posterior based
on the composite likelihood (i.e. the Bayesian composite posterior is pC (θ|y) ∝
LC (y; θ) p (θ) where p (θ) is the prior).
In theory, the likelihood components used to build a composite likelihood can

be anything. That is, yi,t for i = 1, ..,M can be any sub-sets of yt and, indeed,
yi,t and yj,t can overlap. For computational purposes, the key issue is that yi,t
and M should be small enough to lead to fast estimation. For instance, Pakel,
Shephard, Sheppard and Engle (2014), in an application involving stock returns
for 129 companies, achieve these goals by considering all bivariate distributions
involving each distinct pair of assets. Thus, they work with M = N(N−1)

2 =
8, 256 bivariate Dynamic Conditional Correlation (DCC) models which is much
easier than trying to work with a 129 dimensional DCC model.

With large VARs, it is common to have a few core variables of interest either
for impulse response analysis (e.g. as in the FAVAR approach of Bernanke,
Boivin and Eliasz, 2005, where the interest rate is isolated in order to identify
a monetary policy shock) or forecasting. In this spirit, we propose partitioning

yt =

�
y∗t
zt

�
where y∗t is N∗-dimensional and contains the core variables of

interest and zt (with elements denoted by zi,t) is the Nother = N − N∗ vector
which contains the remaining variables. Then we can let yi,t =

�
y∗t
zi,t

�
for
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i = 1, .., Nother and, thus, M = Nother. Our composite likelihood VAR-SV
(VAR-CL-SV) application will involve quasi-likelihoods which are all N∗ + 1
dimensional VAR-SVs.

2.3.2 Asymptotic Results

The standard frequentist way of investigating the theoretical properties of com-
posite likelihoods is to assume that L (y; θ) is the true data generating process
involving a true parameter value θ = θ0 and derive the behavior of the MCLE.
Results exist in the literature noting that the MCLE should converge asymp-
totically to θ0 under certain assumptions (see, e.g., Varin, Reid and Firth, 2011
or Ribatet, Cooley and Davison, 2012). But such results are limited and model
dependent. In a recent survey, Varin, Reid and Furth (2011, page 34) conclude:
“Using the most general definition of composite likelihood, it may be difficult
to derive very many specific properties beyond perhaps consistency of the point
estimator.” Ribatet, Cooley and Davison (2012, section 2.3.1) derive asymptotic
Bayesian results using pC (θ|y) and show that this posterior will also converge to
θ0 under certain assumptions. We take these results as offering general support
for the idea that, in finite samples, the composite likelihood is often a reasonable
approximation to L (yt; θ).
However, it is important to dig a bit deeper into the assumptions that un-

derlie both frequentist and Bayesian asymptotic theories discussed above. In
(5), we have written the likelihood components as L (yi,t; θ) which all depend
upon a common parameter vector θ. In the VAR-CL-SV this will not be the
case. Some parameters will not appear in any of the likelihood components. For
instance, consider the equations for zi,t and zj,t for i �= j. A large VAR-SV will
contain a time-varying error covariance between these two equations. However,
this error covariance will not appear in the composite likelihood function and
so it will be impossible to obtain consistent estimates of it using LC (y; θ). In
other words, our choice of quasi-likelihoods means that we can never aim for
asymptotic convergence to an unrestricted large VAR-SV. However, it is inter-
esting to investigate what our methods do converge to. In this sub-section,
we prove asymptotic convergence to a particular restricted VAR-SV. We also
highlight the connections between this restricted VAR-SV and the Minnesota
prior, but emphasize that our approach allows for stochastic volatility while the
conventional Minnesota prior does not.

Pakel, Shephard, Sheppard and Engle (2014) set up the composite likelihood
function somewhat differently, involving likelihood components L (yi,t; θ, ηi) where
ηi are nuisance parameters specific to sub-model i and θ are the parameters of
interest which are common to all models. This set-up is more appropriate for
our case since we are interested in the time-varying error covariance matrix cor-
responding to the upper left-hand N∗×N∗ block of the error covariance matrix
(which is common to all quasi-likelihoods). In our case, the time-varying error
covariances of the other variables are of subsidiary interest. Pakel, Shephard,
Sheppard and Engle (2014) show that, under a set of stronger assumptions,3

3 Standard assumptions relating to asymptotic mixing either involve the dependence be-
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θ is consistent (although they do not provide a central limit theorem). Under
these assumptions they show that the incidental parameter bias present in many
related approaches vanishes asymptotically. We rely on this theory to justify
including a set of y∗t variables in each quasi-likelihood and using the remaining
zt variables as only being useful insofar as they improve estimation of the error
covariance matrix for the y∗t variables.
For the choice of quasi-likelihoods made in the preceding sub-section, we

have been able to prove asymptotic convergence of the composite likelihood to
that of a restricted VAR-SV of the following form:⎛⎜⎜⎜⎝

Ay,t 0 · · · 0
−α�z,1,t 1 · · · 0
...

...
. . .

...
−α�z,M,t 0 · · · 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
y∗t
z1,t
...

zM,t

⎞⎟⎟⎟⎠ =
⎛⎜⎜⎜⎝
cy
cz,1
...

cz,M

⎞⎟⎟⎟⎠+

p#
j=1

⎛⎜⎜⎜⎝
Byy,j

w1
g(M)βyz,1,j · · · wM

g(M)βyz,M,j

β�zy,1,j βzz,1,j · · · 0
...

...
. . .

...
β�zy,M,j 0 · · · βzz,M,j

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
y∗t−j
z1,t−j
...

zM,t−j

⎞⎟⎟⎟⎠+
⎛⎜⎜⎜⎝

�y,t
�z,1,t
...

�z,M,t

⎞⎟⎟⎟⎠ ,

with �y,t ∼ N(0,Σy,t), �z,i,t
iid∼ N(0, ehN∗+i,t−lnwi) independent of each other

and

Ay,t =

⎛⎜⎜⎜⎝
1 0 · · · 0

−α21,t 1 · · · 0
...

...
. . .

...
−αN∗1,t −αN∗2,t · · · 1

⎞⎟⎟⎟⎠ ,Σy,t =
⎛⎜⎜⎜⎝
eh1,t

eh2,t

. . .
ehN∗,t

⎞⎟⎟⎟⎠ .
Observe that this is a VAR-SV of the form

Ãtyt = c+

p#
j=1

B̃jyt−j + �t, (6)

with some elements of Ãt and B̃j restricted to zero and some elements of B̃j
shrunk towards zero by factors w1

g(M) , . . . ,
wM
g(M) where g (M) is a function of M .

We stress that the target model is a restricted VAR-SV with random walk laws
of motion as in equations (2) and (3).

A word of explanation is in order about g(M). A sufficient condition for
the proof of the following proposition requires

√
M

g(M) to be bounded for all M

(e.g. if g (M) =
√
M our proof follows standard law of large numbers results).

But this condition is exactly what prior shrinkage in VARs usually does. That

tween the same variable at different points in time or different variables at the same point in
time. They add to these standard assumptions, additional mixing assumptions relating to the
dependence between different variables at different points in time.
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is, in our approach as M increases N also increases and the VAR dimension
increases. It is standard for Bayesians working with large VARs to increase
prior shrinkage (e.g. using the Minnesota prior) when VAR dimension increases
(see, e.g., Table 1 of Banbura Giannone and Reichlin, 2010). Hence, the presence
(and interpretation) of g(M) is justified as being comparable to the types of prior
shrinkage commonly used in large Bayesian VARs. Note too that g (M) only
applies to other lags in the equations for the core variables, so the convergence of
the composite likelihood to a restricted VAR-SV only depends on the presence
of shrinkage on these coefficients.

It is important to emphasize that LC (y; θ) is not a true likelihood in the sense
that it is not a density in the data (conditional on parameters) that integrates
to one. To compare it to a conventional likelihood for the restricted VAR-SV
given in (6), L (y; θ), we consider the normalized composite likelihood

L̃C(y; θ) =
LC (y; θ)"

y
LC (y; θ) dy

.

A useful measure of the approximation error associated with using LC(y; θ)
instead of L(y; θ) is the Kulback-Liebler divergence of L(y; θ) from L̃C(y; θ),
denoted DKL(L�L̃C), which is summarized in the following proposition.
Proposition 1 Assume max{wi} is decreasing in M and

√
M

g(M) < ∞ for all
M ≥ 1. Then

lim
M→∞

DKL (L�L̃C) = 0.

The proof of this proposition is in the Technical Appendix. The assumption
that max{wi} is decreasing in M is innocuous as it implies only that when we
add a new sub-model it has non-zero weight which will leave less weight for the
other models, including the model with maximum weight. Thus, our composite
likelihood using small VAR-SVs as quasi-likelihoods asymptotically converges
to the likelihood of particular large VAR-SV under sensible assumptions.

Of course, given the way we have defined our quasi-likelihoods, it is not
possible to asymptotically converge to an unrestricted large VAR-SV since (as
noted previously) some of the unrestricted model’s parameters appear in none
of the quasi-likelihoods. If interest lies in using composite likelihood meth-
ods to provide estimates of all the parameters in a large VAR-SV, then other
quasi-likelihoods should be chosen to build a composite likelihood function (e.g.
building a set of quasi-likelihoods involving all possible bivariate or tri-variate
combinations of the variables). Our choice of quasi-likelihoods is based on our
choice of empirical problem. We are interested in forecasting a small number
of variables, using the other variables only to improve these forecasts. For this,
our choice of quasi-likelihoods is a sensible one.

2.3.3 Composite Likelihoods as Opinion Pools

An alternative way of theorizing about composite likelihoods, popular among
Bayesians (see, e.g., Roche, 2016) is to begin by assuming there is some feature
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of interest, θ (in our case, the error covariance matrix relating to the core vari-
ables). There are many “agents” each of which uses a (possibly agent-specific)
information set to produce an “opinion” (i.e. a posterior) about θ. The opinions
going into the pool can be obtained from any source. The question arises as to
how to pool these opinions? There is a literature on such opinion or prediction
pools. Hall and Mitchell (2007) and Geweke and Amisano (2011) are influen-
tial approaches in econometrics. Genest, Weerahandi, Zidek (1984) and Genest,
McConway and Schervish (1986) are influential early references which establish
or review many theoretical properties of opinion pools.

If, in our case, we interpret each quasi-likelihood, LC (yi,t; θ), as arising from
an agent, we can draw on this literature to obtain a theoretical justification for
our approach. In sub-section 2.2.1, we defined the Bayesian composite posterior
pC (θ|y) based on the composite likelihood (5). Papers such Roche (2016) show
that Bayesian inference using the composite likelihood can be interpreted as aris-
ing from a generalized logarithmic opinion pool. This offers strong theoretical
justification for our approach. Genest et al (1984) show that such opinion pools
have attractive properties including external Bayesianity. External Bayesian-
ity implies that, if all agents agree on the same prior, then it does not matter
whether the prior is added before or after the opinions are pooled. General-
ized logarithmic opinion pools are the only class of opinion pools that have this
property.

An alternative approach is to use linear opinion pools (e.g. Hall and Mitchell,
2007, and Geweke and Amisano, 2011). The use of linear opinion pools means
this approach does not satisfy external Bayesianity nor lead to Bayesian infer-
ence based on pC (θ|y). However, as discussed in Geweke and Amisano (2011),
linear pools sometimes give results that are different from logarithmic opinion
pools. Hence, even though they are not a composite likelihood approach, they
are closely related and we include them in our set of empirical results.

The advantage of drawing on the opinion pool literature is that it offers
insights into how the weights, wi for i = 1, ..,M , can be chosen. In our empirical
work, we consider a range of approaches. Setting the weights to be equal (wi =
1
M ) is simple and commonly done. However, this often leads to a problem
known as “information overload”. Adding more and more agents can lead to
less precise inference as the agents with good opinions will find their signal
swamped. In the linear opinion pool formulation, Geweke and Amisano (2011)
derive a set of weights which are optimal for the linear pool and provide a
method for calculating them.

In the logarithmic opinion pool formulation, a logical thing to do (see Canova
and Matthes, 2017) is to base the weights based on some measure of the fit
of each quasi-likelihood. In our application, where each quasi-likelihood is a
VAR-SV involving a set of core variables (y∗t ) and one other variable, it makes
sense to use the marginal likelihood or an approximation to it to calculate the
weights. Hence, we consider weighting schemes based on the Bayesian informa-
tion criterion (BIC), the Deviance Information criterion (DIC) and the marginal
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likelihood. Letting BICi be the BIC for sub-model i, we have

BICi = −2 logL
�
y∗;&θi�+ d log(T ),

where &θ is the maximum likelihood estimate using sub-model i, y∗ = (y∗�1 , .., y∗�T )�and
d is the number of free parameters. We stress that, in each quasi-likelihood, we
are only using the core variables (which are common to all quasi-likelihoods)
to define the BIC. The maximum likelihood estimate is computed using the
integrated likelihood as in Chan and Eisenstat (2018). The weight for each
sub-model is computed as

wBICi =
e−

1
2BICi M

j=1 e
− 1
2BICj

, for i = 1, ..,M.

Our second set of weights follows the same strategy, but using DIC instead of
BIC. DIC is calculated based on the integrated likelihood for the core variables
of interest (see Chan and Grant, 2016, for details).

The third weighting scheme is based on the marginal likelihood. We use the
following marginal likelihood for sub-model i:

MLi =
%
pi(y

∗|θ)p(θ)dθ,

where pi(y|θ) =
T$
t=1

LC (yi,t; θ) and pi(y∗|θ) implies evaluating the marginal like-
lihood only using the core variables. The weight for each sub-model is computed
as

wML
i =

MLi M
j=1MLj

.

We calculate the marginal likelihood using the methods of Chan and Eisenstat
(2018). We use the abbreviations, VAR-CL-BIC, VAR-CL-DIC and VAR-CL-
ML for composite likelihood methods involving these three different weights.

In the linear opinion pool approach calculating the optimal weights involves
the following steps. Let pi(y∗t |y1:t−1) be the one-step-ahead predictive density
for the core variables for the ith sub-model and w = (w1, w2, .., wM )

�. The
predictive log score function is given by

f(w) =

T#
t=1

log



M#
i=1

wipi(y
∗
t |y1:t−1))

�
.

The optimal weight is obtained by solving the optimization problem &w = argmaxwf(w).
We use VAR-LIN as the abbreviation for this approach. Even though these
weights are calculated to be optimal in the linear opinion pool case, we can use
them as weights in the composite likelihood. We refer to such an approach as
VAR-CL-LIN.
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The main research question of interest in this paper is whether composite
likelihood methods involving many small models can forecast well in the presence
of large data sets. A subsidiary question though, is whether the general idea
of combining many small models for forecasting is a good one. By including
linear opinion pooling methods we can address the second question. To preview
our empirical findings, we find that all approaches which combine many small
models forecast well. That is, it seems that the empirical success of our approach
is largely due to the choice of quasi-likelihoods as opposed to the way they
are combined. However, it is worth noting that (as we shall see in Section 6)
the linear opinion pool has significant computational drawbacks relative to the
composite likelihood approach.

3 Bayesian Analysis Using the Composite Pos-
terior

Our goal is to carry out Bayesian analysis on the composite posterior, pC (θ|y),
using MCMC draws from each of the quasi-posterior distributions. This section
develops an algorithm for doing so.

3.1 Quasi-Posterior Distributions

We first extend our earlier notation to define the quasi-likelihoods. Remember
that each of these is a VAR-SV that combines core variables of interest, y∗t , with
an additional variable, zi,t. Thus, quasi-likelihood i (for i = 1, . . . ,M) can be
expressed in the form:

Ay,ty
∗
t = Xy,tβy +Xzi,tβyzi + �y,t, �y,t ∼ N(0,Σy,t), (7)

zi,t = y
∗
t αzi,t +Xtβzi + �zi,t, �zi,t ∼ N

�
0, ehN∗+i,t

�
, (8)

Ay,t =

⎛⎜⎜⎜⎝
1 0 · · · 0

α21,t 1 · · · 0
...

...
. . .

...
αN∗1,t αN∗2,t · · · 1

⎞⎟⎟⎟⎠ , Σy,t =

⎛⎜⎜⎜⎝
eh1,t

eh2,t

. . .
ehN∗,t

⎞⎟⎟⎟⎠ .
In (7), the matrix Xy,t contains lags of y∗t , and the matrix Xzi,t contains lags
of zi,t. The log-volatilities hi,t and the time-varying parameters αzi,t and αjk,t,
i = 1, . . . ,M, j = 2, . . . , N∗, k = 1, . . . , j − 1 are assumed to follow random walk
processes:

hi,t = hi,t−1 + �hi,t, �hi,t ∼ N(0,σ2h,i), (9)

αjk,t = αjk,t−1 + �αjk,t, �αjk,t ∼ N(0,σ2α,jk), (10)

αzi,t = αzi,t−1 + �
α
i,t, �αi,t ∼ N(0,Σα,i), (11)

where Σα,i is a diagonal matrix.
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Let θ = {βy, Ay,1, . . . , Ay,T ,Σy,1, . . . ,Σy,T } be the set of parameters that
are common in all quasi-likelihoods, and denote by

ηi = {βyzi ,βzi ,αzi,0, . . . ,αzi,T , hN∗+i,0, . . . , hN∗+i,T ,Σα,i}
the parameters that appear only in quasi-likelihood i. Each quasi-posterior i is
given by

pi(θ, ηi | y∗, zi) = p(θ, ηi)p(y∗, zi | θ, ηi)/p(y∗, zi),
where zi = (zi,1, .., zi,T )

�.
A key feature of our set-up is that the density that defines each quasi-

likelihood can be conveniently decomposed as:

p(y∗, zi | θ, ηi) =
T$
t=1

p(y∗t | y∗t−1, . . . , y∗t−p, zi,t−1, . . . , zi,t−p,βy,βyzi , Ay,t,Σy,t)

× p(zi,t | y∗t , y∗t−1, . . . , y∗t−p, zi,t−1, . . . , zi,t−p,βzi ,αzi,t, hN∗+i,t),

=



T$
t=1

p(y∗t | · )
�


T$
t=1

p(zi,t | y∗t , · )
�
,

= p(y∗ | z̃i, θ,βyzi)p(zi | y∗, η̃i),
where z̃i = {zi,1, . . . , zi,T−1} and η̃i = {βzi ,αzi,0, . . . ,αzi,T , hN∗+i,0, . . . , hN∗+i,T ,Σα,i}.

In this decomposition, p(y∗ | z̃i, θ,βyzi) is the density of a multivariate nor-
mal distribution that can be regarded as the likelihood for the model in (7), with
zi,1, . . . , zi,T−1 treated as exogenous regressors. Moreover, this density can be in-
tegrated analytically with respect to a prior on βyzi to obtain a density that only
contains common parameters θ, i.e., p(y∗ | z̃i, θ) =

"
βyzi

p(βyzi)p(y
∗ | z̃i, θ,βyzi)dβyzi .

Similarly, p(zi | y∗, η̃i) can be viewed as the multivariate normal likelihood for
a time-varying parameter autoregressive distributed lag model (TVP-ARDL)
with exogenous y∗t defined by (8), with the important feature that it contains
only nuisance parameters.

Consequently, if θ and η̃i are independent in the prior (as we assume in this
paper), then they are also independent in the i-th quasi-posterior. Moreover,
this independence carries over to the composite posterior defined as

pC(θ, η̃1, . . . , η̃M | y∗, z1, . . . , zM ) ∝ p(θ)
M$
i=1

p(η̃i)p(y
∗, zi | θ, η̃i)wi ,

= pC(θ | y∗, z̃1, . . . , z̃M )
M$
i=1

pC(η̃i | y∗, zi),

(12)

where

pC(θ | y∗, z̃1, . . . , z̃M ) ∝ p(θ)
M$
i=1

p(y∗ | z̃i, θ)wi ,

pC(η̃i | y∗, zi) ∝ p(η̃i)p(zi | y∗, η̃i)wi .
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Note that we have used the following identity to construct the composite likeli-
hood in the definition of the composite posterior:

p(y∗, zi | θ, η̃i) =
%
βyzi

p(βyzi)p(y
∗, zi | θ, ηi)dβyzi

=

%
βyzi

p(βyzi)p(y
∗|z̃i, θ,βyzi)p(zi | y∗, η̃i)dβyzi

= p(y∗|z̃i, θ)p(zi | y∗, η̃i).
The decomposition in (12) is crucial as it allows us to sample the common
parameters θ and each η̃i, i = 1, . . . ,M independently. Consequently, we can
parallelize the computations and vastly reduce the computational time. This is
taken up in the next sub-section.

3.2 Simulation from the Composite Posterior

This section describes our computational algorithm to simulate from the com-
posite posterior pC(θ, η̃1, . . . , η̃M | y∗, z1, . . . , zM ). Instead of designing an MCMC
algorithm to directly sample from this composite posterior, we develop an
accept-reject algorithm using MCMC draws from the individual quasi-posterior
distributions as proposals. The key advantage of this approach is that sampling
from each of the quasi-posterior distributions can be done in parallel and using
standard MCMC methods for small VAR-SV models. This allows us to work
with hundreds of variables where other approaches which involve use of MCMC
methods with large VAR-SV are not feasible.

Using the decomposition of the composite posterior in (12), we can generate
samples from pC(θ | y∗, z̃1, . . . , z̃M ), pC(η̃1 | y∗, z1), . . . , pC(η̃M | y∗, zM ) indepen-
dently. We start with simulating the common parameters θ from pC(θ | y∗, z̃1, . . . , z̃M )
by appropriately pooling draws of θ from the quasi-posteriors. We develop an
accept-reject algorithm for this purpose.

Consider the proposal density q(θ) that is a mixture of theM quasi-posteriors,
i.e.,

q(θ) =

M#
i=1

wipi(θ | y∗, zi) = p(θ)
M#
i=1

wip(y
∗ | z̃i, θ)

p(y∗ | z̃i) ,

where p(y ∗| z̃i) =
"
θ
p(θ)p(y∗ | z̃i, θ)dθ can be regarded as the marginal likelihood

of the VAR-SV with exogenous variables defined in (7).
Given draws from the M quasi-posteriors pi(θ | y∗, zi) for i = 1, ..,M and

a set of weights wi for i = 1, ..,M–which can be any of those described in
section 2.3.3–it is easy to obtain a set of draws from q(θ). Moreover, q(θ) can
be readily evaluated: p(y∗ | z̃i) can be computed using the algorithm of Chan
and Eisenstat (2018) that we use to obtain the marginal likelihood in a VAR-SV
(see Section 2.3.3) and p(y∗ | z̃i, θ) is a multivariate normal density.

To show the latter claim, let βyzi ∼ N(βyz, V β,z) denote the prior for βyzi .
Let αy,t represent the free elements in Ay,t stacked by row, and let Wy,t de-
note the associated covariate matrix (see the discussion in Section 2.2). Then,
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p(y∗ | z̃i, θ) has the following multivariate normal form:

(y∗ | zi, θ) ∼ N
�
Wyαy +Xyβy +Xziβyz, XziV β,zX

�
zi + Σy

�
,

where Σy is a block diagonal matrix with diagonal blocks Σy,t, t = 1, . . . , T .
Finally, Xy, Xzi , Wy and αy respectively stack Xy,t, Xzi,t Wy,t and αy,t over
t = 1, . . . , T .
To be a valid accept-reject algorithm with proposal density q(θ), we need to

show that the ratio pC(θ | y∗, z̃1, . . . , z̃M )/q(θ) is bounded for all θ in its support.
To that end, observe that

r(θ) =

!M
i=1 [p(y

∗ | z̃i, θ)/p(y∗ | z̃i)]wi M
i=1 wip(y

∗ | z̃i, θ)/p(y∗ | z̃i)
≤ 1.

This inequality follows from the fact that a geometric average is always less than
or equal to the corresponding arithmetic average. Now, write the target density
as

pC(θ | y∗, z̃1, . . . , z̃M ) = p(θ)
!M
i=1 p(y

∗ | z̃i, θ)wi
Ki

,

where Ki =
"
p(θ)
!M
i=1 p(y

∗ | z̃i, θ)widθ is the normalizing constant. If we let
K =

!M
i=1 p(y

∗ | z̃i)wi/Ki, then we can show that pC(θ | y∗, z̃1, . . . , z̃M ) ≤ Kq(θ)
for all θ:

pC(θ | y∗, z̃1, . . . , z̃M )
Kq(θ)

=
p(θ)
!M
i=1 [p(y

∗ | z̃i, θ)p(y∗ | z̃i)]wi
p(θ)
 M

i=1 wip(y
∗ | z̃i, θ)/p(y∗ | z̃i)

= r(θ) ≤ 1.

This suggests an accept-reject sampling approach to pool draws of common
parameters obtained from individual quasi-posteriors.4 We summarize the al-
gorithm as follows:

1. obtain a proposal draw θ∗ ∼ q(θ);
2. accept θ∗ with probability r(θ∗).

Next, we consider obtaining draws from pC(η̃i | y∗, zi) for each i = 1, . . . ,M .5
To that end we focus on the TVP-ARDL model defined by (8). Note that each
η̃i is relatively low-dimensional and is independent of θ. Consequently, sampling
η̃1, . . . , η̃M can be done in parallel and is fast in practice. More specifically, when
wi = 1, sampling from pC(η̃i | y∗, zi) is equivalent to sampling from the TVP-
ARDL posterior, which is standard. For the more general case with wi < 1, the
standard MCMC method needs only minor modifications.

4For a general discussion of the accept-reject method, see, e.g., Section 3.1.5 in Kroese,
Taimre and Botev (2011). Since the proposal draws are obtained from the quasi-posteriors
using MCMC, they are correlated by construction. Consequently, the sample obtained from
this accept-reject algorithm would also be correlated.

5Note that the draws of ηi are only needed to compute MLs, DICs, and BICs, which are
only used to compute the weights w1, . . . , wM . If the weights are known (e.g. as in the equal
weights case), then there is no need to obtain ηi.
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In particular, the Gibbs steps for σ2h,i, Σα,i, αzi,0 and hN∗+i,0, conditional on
draws of αzi,1, . . . ,αzi,T and hN∗+i,1, . . . , hN∗+i,T are identical to the standard
case. The Gibbs steps to sample αzi,1, . . . ,αzi,T and βzi are also very similar–
the only modification is to replace hN∗+i,t by h̄N∗+i,t = hN∗+i,t − lnwi for all
t = 1, . . . , T and i = 1, . . . ,M in the conditional distributions. Finally, we
sample hN∗+i,1, . . . , hN∗+i,T from its conditional distribution

p(hN∗+i,1, . . . , hN∗+i,T |hN∗+i,0,σ
2
h,N∗+1,αzi,0,αzi,1, . . . ,αzi,T ,βzi , zi, y

∗)

∝ p(hN∗+i,1, . . . , hN∗+i,T |hN∗+i,0,σ
2
h,N∗+1)

p(zi | y∗, hN∗+i,1, . . . , hN∗+i,T ,αzi,1, . . . ,αzi,T ,βzi)
wi . (13)

This is done by considering the following auxiliary state space model

zi,t = y
∗�
t αzi,t + x

�
tβzi + �zi,t, �zi,t ∼ N

�
0, eh̃N∗+i,t

�
,

h̃N∗+i,t =
T − t+ 1

2
(1− wi)σ2h,N∗+i + h̃N∗+i,t−1 + �

h
N∗+i,t, �hN∗+i,t ∼ N

�
0,σ2h,N∗+i

�
.

Clearly, we can sample h̃N∗+i,1, . . . , h̃N∗+i,T using standard methods for stochas-
tic volatility models. Given these draws, we set hN∗+i,t = h̃N∗+i,t+lnwi. It can
be shown that the draws thus obtained follow the same conditional distribution
given in (13).

4 Forecasting

In this section we describe how one can compute the joint predictive den-
sity of the core variables using simulation. To start we first introduce some
notation. For a time series x1, . . . , xT , we use xs:t to denote the observa-
tions from time s to time t, i.e., xs:t = {xs, xs+1, . . . , xt−1, xt}. For exam-
ple, θ1:t represents the set of common parameters from time 1 to time t, i.e.,
θ1:t = {βy, Ay,1, . . . , Ay,t,Σy,1, . . . ,Σy,t}. Furthermore, let zt−p:t−1 denote the
set of non-core variables: {z1,t−p:t−1, . . . , zM,t−p:t−1}.

The one-step-ahead composite predictive density, conditional on the para-
meters up to time t, is given by:

pC(y∗t , z1,t, . . . , zM,t | yt−p:t−1, zt−p:t−1, θ1:t, η̃1,1:t, . . . , η̃M,1:t) =

pC(y∗t | y∗t−p:t−1, zt−p:t−1, θ1:t)
M$
i=1

pC(zi,t | y∗t−p:t, zi,t−p:t−1, η̃i,1:t),

where

pC(y∗t | y∗t−p:t−1, zt−p:t−1, θ1:t) ∝
M$
i=1

p(y∗t | y∗t−p:t−1, zi,t−p:t−1, θ1:t)wi ,

pC(zi,t | y∗t−p:t, zi,t−p:t−1, η̃i,1:t) ∝ p(zi,t | y∗t−p:t, zi,t−p:t−1, η̃i,1:t)wi .
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The density pC(y∗t | y∗t−p:t−1, zt−p:t−1, θ1:t) is multivariate normal and has the
form

(y∗t | y∗t−p:t−1, zt−p:t−1, θ1:t) ∼ N(ŷt, Vy,t),

ŷt =Wy,tαy,t +Xy,tβy + Vy,t



M#
i=1

wiV
−1
y,i,tXziβyz

�
,

Vy,t =



M#
i=1

wiV
−1
y,i,t

�−1
,

Vy,i,t = Xzi,tV β,zX
�
zi,t + Σy,t.

The density pC(zi,t | y∗t−p:t, zi,t−p:t−1, η̃i,1:t) is also normal and has the form

(zi,t | y∗t−p:t, zi,t−p:t−1, η̃i,1:t) ∼ N
�
y∗�t αzi,t +Xtβzi , e

hN∗+i,t−lnwi� .
Accordingly, the one-step ahead predictive density is given by

pC(y∗t+1 | y∗1:t, z1,1:t, . . . , zM,1:t) =

%
θ1:t+1

pC(y∗t+1 | y∗t−p+1:t, zt−p+1:t, θ1:t+1)

pC(θ1:t | y∗1:t, z̃1,1:t, . . . , z̃M,1:t)p(θt+1|θt)dθ1:t+1,

where p(θt+1|θt) is a product of normal densities implied by the state equations
(9)—(10). Hence, we can obtain the one-step ahead predictive density as follows:
given a posterior draw of θ1:t, we use the state equations (9)—(10) to obtain
θt+1. Conditional on these draws, pC(y∗t+1 | y∗t−p+1:t, zt−p+1:t, θ1:t+1) is a nor-
mal density given above. Finally, we average these densities over the posterior
simulator output.

This predictive simulation method can be applied to generate forecasts for
longer horizons. Specifically, the same procedure can be applied, once we gen-
erate future core and auxiliary variables using the model. Furthermore, observe
that sampling from the one-step-ahead predictive density pC(y∗t+1 | y∗1:t, z1,1:t, . . . , zM,1:t)
does not require draws of η̃i,1:t, and therefore, the extra steps involved in sam-
pling η̃i,t can be omitted if the researcher is interested only in one-step ahead
forecasting or uses the direct method of forecasting. The empirical results in
the following section use the direct method of forecasting.

5 Empirical Results

5.1 Overview

We carry out an empirical investigation of our composite likelihood methods
using a small data set of quarterly US data for 7 variables and a large quarterly
data set involving 196 variables. The data is taken from the Federal Reserve
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Bank of St. Louis’ FRED-QD data set and runs from 1959Q1- 2015Q3.6 All data
are transformed to stationarity following the recommendations in the FRED-
QD data base and then standardized to have mean zero and standard deviation
one. We focus on empirical results relating to three core variables: CPI inflation,
GDP growth and the Federal Funds rate. The 4 other variables in the small data
set are the Civilian Unemployment Rate, Industrial Production Index, Real M2
Money Stock and S&P’s Common Stock Price Index. A lag length of four is
used for all models.

In our empirical application involving a high-dimensional data set, there are
two issues that need to be kept conceptually clear. The first issue is whether
composite likelihood methods forecast well when working with such high di-
mensional data as compared to other high dimensional approaches. The second
is a general issue which is related to any modelling approach. This is whether
working with large data sets improves forecasts or whether working with smaller
data sets is adequate. To address the first issue the key comparison is with the
homoskedastic large VAR with natural conjugate prior as this is the only ap-
proach that is computationally feasible using the large data set. Accordingly,
this is the main model we use in our forecast comparison. It is labelled Large
VAR in the tables.

With regards to the second issue, other papers working with similar US
quarterly data sets and alternative modelling approaches have tended to find
that working with large VARs does improve forecast performance relative to
small VARs. However, the evidence is often not that strong. For instance,
Koop (2013) finds that, compared to small VARs, moving towards larger VARs
does improve forecast performance, but there comes a point where adding extra
variables into the VAR offers only modest improvements in forecast performance.
To shed light on this issue, we include the small data set. With this data set
it is computationally feasible to estimate a wide range of VARs with stochastic
volatility.

Our composite likelihood approach differs from some or all of the competitor
models in three aspects: i) it uses all the variables in the large data set (whereas
some of the other approaches do not), ii) it has stochastic volatility (whereas
some of the other approaches do not) and iii) it involves combining results from
many models (whereas other approaches work with single models). It is only
through an extensive comparison involving both small and large data sets can
we examine the separate roles of these three aspects.

The VAR-SV is the most flexible model we consider and, with 7 variables
should not be over-parameterized. Thus, it should provide us reasonable bench-
mark estimates to compare the alternative approaches to. We begin by pre-
senting a small Monte Carlo study where we use parameter estimates from the
VAR-SV using the small data set to construct a data generating process (DGP).
We artificially generate 100 artificial data sets from this DGP and investigate
the performance of our composite likelihood methods using them. Subsequently,

6The data is available through https://research.stlouisfed.org/econ/mccracken/fred-
databases/. See also McCracken and Ng (2015). Complete details of all the variables in
the data set are provided there.
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we present estimates using the small data set for our composite likelihood ap-
proaches, the VAR-CCM1 and VAR-CCM2 (see sub-section 2.2 for a definition
of these models). We also present results from a homoskedastic VAR using the
small data set (labelled VAR-HM in the tables).

Further details about the specification of all models, including prior choice,
are given in the Technical Appendix. For the VAR coefficients in all models
we make standard Minnesota prior choices. Where possible, we make identical
specification and prior hyperparameter choices across models. It is worth stress-
ing that, in conventional large VAR approaches where the number of parameters
being estimated exceeds the number of observations, prior elicitation is crucial.
Priors must be very informative and results can be sensitive to prior choice. An
advantage of composite likelihood approaches is that, since all sub-models used
are small, prior elicitation is a less important issue. It is possible to use less
informative priors and prior sensitivity concerns are mitigated.

A summary of all the models used in the paper, including their acronyms,
is given in Table 1.

Table 1: Models used in Forecasting Exercise
VAR-HM 7-variable Homoskedastic VAR
VAR-SV 7-variable VAR with stochastic volatility
VAR-CCM1 7-variable model of CCM (2016a)
VAR-CCM2 7-variable model of CCM (2016b)
Large VAR Large Homoskedastic VAR
VAR-CL-BIC VAR-CL-SV with BIC based weights
VAR-CL-DIC VAR-CL-SV with DIC based weights
VAR-CL-EQ VAR-CL-SV with equal weights
VAR-CL-ML VAR—SV with ML weights
VAR-CL-LIN VAR—CL-SV with linear pool weights
VAR-LIN VAR-SV with linear pool weights
small VAR-HM 3-variable Homoskedastic VAR
small VAR-SV 3-variable VAR with stochastic volatility
VAR-SV-R 3-variable VAR-SV with the other 4 variables included on the RHS
VAR-SV-R1 3-variable VAR-SV with one lag of all variables included on the RHS

We discuss the empirical performance of each model in terms of their fore-
casting performance and the reasonableness of the estimates of features of in-
terest they produce. Our features of interest focus on the error variances and
covariances involving the three core variables.

To evaluate forecast performance, we use two point forecast metrics and
two density forecast metrics for the core variables. Let y∗t =

�
y∗t,1, y

∗
t,2, y

∗
t,3

��
denote the random variables being forecast and yRt =

�
yRt,1, y

R
t,2, y

R
t,3

��
be their

realizations. For the point forecast, we report the root mean squared forecast
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error (RMSFE) and the mean absolute forecast error (MAFE),

RMSFEi =

+**) T−h
t=t0

�
yRt+h,i − E(y∗t+h,i|yR1:t)

�2
T − h− t0 + 1 .

MAFEi =

 T−h
t=t0

���yRt+h,i − ŷt+h,i���
T − h− t0 + 1 ,

for i = 1, 2, 3 where E(yt+h|yR1:t) is the mean of the predictive density and ŷMt+h
is the median of the predictive density. For the density forecasts, we report
the average log-predictive likelihoods (ALPL) and the average continuous rank
probability score (ACRPS),

ALPLi =

 T−h
t=t0

log pt+h(y
∗
t+h,i = y

R
t+h,i|yR1:t)

T − h− t0 + 1 ,

ACRPSi =
1

T − h− t0 + 1
T−h#
t=t0

CRPSt,i,

for i = 1, 2, 3 where CRPSt,i =
"∞
−∞
�
Ft+h(z)− 1(yRt+h < z)

�2
dz = Ept+h |y∗t+h,i−

yRt+h,i|− 0.5Ept+h |y∗t+h,i− yRt+h,i| and Ft+h(•) is the c.d.f. of the predictive den-
sity. A small value of the ACRPSi indicates a better forecasting performance.

We also present a joint ALPL for the three core variables of interest:

ALPL =

 T−h
t=t0

log pt+h(y
∗
t+h = y

R
t+h|yR1:t)

T − h− t0 + 1 .

5.2 Estimating Variances and Covariances

5.2.1 Monte Carlo Study

The DGP is obtained by first estimating the VAR-SV in (1), (2) and (3) using
the small data set so as to obtain estimates (posterior means) of at, ht and β. We
then generate 100 artificial datasets (with same sample size as the actual data)
from the VAR-SV with parameters and states set to these estimates. For each
dataset, we use various VAR-CL approaches to estimate σijt for i, j = 1, 2, 3

where σijt denotes the (i, j)
th element of the error covariance matrix at time t.

The results are in Figures 1 through 4. All lines in these figures (except the one
for the true parameter path) represents an average over the 100 datasets. It can
be seen that the average of the point estimates for all approaches tracks the true
parameter path fairly well and that the coverage of the intervals is excellent for
all the choices of weights used with the composite likelihood approaches. Even
the use of equal weights leads to good coverage properties.
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Figure 1: Monte Carlo Results for VAR-CL-ML. Solid red
line: true parameter path. Black line: posterior median.
Dotted lines: 16th/84th and 5th/95th percentiles.

1960 1980 2000 2020
0

0.5

1

1.5

1960 1980 2000 2020
-0.1

0

0.1

0.2

1960 1980 2000 2020
-0.02

0

0.02

0.04

0.06

1960 1980 2000 2020
0

1

2

1960 1980 2000 2020
-0.05

0

0.05

0.1

1960 1980 2000 2020
0

0.2

0.4

Figure 2: Monte Carlo Results for VAR-CL-BIC. Solid red
line: true parameter path. Black line: posterior median.
Dotted lines: 16th/84th and 5th/95th percentiles.
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Figure 3: Monte Carlo Results for VAR-CL-DIC. Solid red
line: true parameter path. Black line: posterior median.
Dotted lines: 16th/84th and 5th/95th percentiles.
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Figure 4: Monte Carlo Results for VAR-CL-EQ. Solid red
line: true parameter path. Black line: posterior median.
Dotted lines: 16th/84th and 5th/95th percentiles.
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5.2.2 Estimation Results Using the Small Data Set

In this sub-section, we present results for a variety of approaches using the
actual data. For the sake of brevity, the figures only presents results for a few
main approaches. The credible intervals in this sub-section cover the 16th to
84th percentiles.

Figure 5 provides point estimates from two of the main composite likelihood
approaches as well as VAR-SV and VAR-CCM2 (as we shall see below, VAR-
CCM2 is in many cases the best alternative approach). It can be seen that all
of the approaches track the VAR-SV fairly well, although VAR-CCM2 tracks
it slightly more closely than our composite likelihood approaches for σ31t and
σ32t.
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Figure 5: Point estimates of σij,t for i, j = 1, 2, 3

Figure 6 offers a more detailed comparison of one of our major composite
likelihood approaches (VAR-CL-ML) to the unrestricted VAR-SV (the other
composite likelihood and linear pooling approaches reveal similar patterns). It
can be seen that, even for σ31t and σ32t, where the point estimates differ some-
what, the credible intervals always overlap. We take this as evidence that our
composite likelihood approaches are doing a good job of matching the VAR-SV.
The VAR-CCM2 produces similarly accurate estimates. However, it is worth
noting that the VAR-CCM1 and VAR-HM do not. This is revealed in Figures
7 and 8 which present detailed results for these two models. From the former,
we can see that the common drifting volatility assumption in VAR-CCM1 is too
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restrictive, with high volatility in σ11,t spilling over inappropriately into some of
the other variances and covariances. From Figure 8 we can see the homoskedas-
tic model is failing to pick up changes in volatility that are clearly present in
the data.
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Figure 6: Comparison of VAR-CL-ML to VAR-SV (Point estimates of
σij,t with 16%-84th percentiles, VAR-SV in red)
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Figure 7: Comparison of VAR-CCM1 to VAR-SV (Point estimates of
σij,t with 16%-84th percentiles, VAR-SV in red)
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Figure 8: Comparison of VAR-HM to VAR-SV (Point estimates of σij,t
with 16%-84th percentiles, VAR-SV in red)

In this sub-section, we have compared our composite likelihood approaches
to a range of alternatives using a small data set where such a comparison is
feasible. Of course, with such a small data set, the researcher would probably
want to work with a VAR-SV (or similar model) since it is the more flexible
approach and, thus, more able to capture empirically-relevant features of the
data. But it is re-assuring to see that even with the small data set, composite
likelihood methods are producing results which are very similar to the VAR-SV.

5.3 Forecasting

In this sub-section, we investigate how well composite likelihood methods fore-
cast using the large data set involving 196 variables. We remind the reader
that, with this many variables, the only other feasible Bayesian VAR approach
is the one with acronym Large VAR which is homoskedastic and uses a natural
conjugate prior. We also include all the models of the preceding sub-section,
but for these other models we are using the small data set to produce forecasts.
We present results for a long forecast evaluation period (beginning in 1970) and
a short forecast evaluation period that begins in 2008Q1 so as to take in the
financial crisis and subsequent period. In both cases the forecast evaluation pe-
riod runs to the end of the sample. We provide forecasts of quarterly variables
(h = 1) and quarterly variables one year in the future (h = 4). To aid in inter-
pretation, note that all variables are standardized to have zero mean and unit
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standard deviation and that our forecast metrics are not benchmarked against
any model. We carry out the sign test of equal predictive accuracy of Diebold
and Mariano (1995). All tests compare a specific model to the homoskedastic
large VAR. In the tables, ***, ** and * denote rejection of the null hypothesis
of equal predictive accuracy of a model and the benchmark at the 1%, 5% and
10% level of significance, respectively.

The best overall summary of forecast performance involves the entire joint
predictive density for the three core variables. This is presented in Table 2 for
h = 1 and h = 4. The most important comparison is between the Large VAR
and the methods which pool results from many small models, since these are
the only feasible approaches with large data sets. In this comparison, it can
be seen that the composite likelihood approaches are clearly winning for both
forecast horizons, particularly for the forecast evaluation period which begins in
2008Q1. For the longer forecast evaluation period with h = 1, the linear pooling
method actually forecasts slightly better than logarithmic pooling used with
the composite likelihood approaches. In general, any method which involves
homoskedasticity or highly restrictive forms for the error covariance matrix (i.e.
VAR-CCM1) forecast poorly when evaluated using the ALPL for the 3 core
variables. The less restrictive VAR-CCM2 forecasts well over the longer forecast
evaluation period but is beaten by composite likelihood methods for the shorter
evaluation period. These statements hold true for both h = 1 and h = 4. The
forecast improvements relative to the Large VAR are statistically significant in
almost every case. The only exceptions are for h = 4 for the forecast evaluation
period which begins in 2008Q1.

Table 2: Forecasting Evaluation Using Joint ALPL for 3 Core Variables
Horizon h = 1 h = 4
Evaluation begins: 1970Q1 2008Q1 1970Q1 2008Q1
VAR-HM 0.33∗∗∗ −0.58∗∗∗ −1.04∗∗∗ −1.60
VAR-SV 0.65∗∗∗ 0.44∗∗∗ −1.04∗∗∗ −1.61
VAR-CCM1 0.06∗∗∗ −0.51∗∗ −0.98∗∗∗ −1.85
VAR-CCM2 0.90∗∗∗ 0.52∗∗∗ −0.84∗∗∗ −1.58
Large VAR −0.47 −1.69 −1.41 −2.02
VAR-CL-ML 0.90∗∗∗ 1.27∗∗∗ −0.99∗∗∗ −1.49
VAR-CL-DIC 0.85∗∗∗ 0.67∗∗∗ −0.72∗∗∗ −0.92∗∗∗
VAR-CL-BIC 0.90∗∗∗ 1.15∗∗∗ −0.88∗∗∗ −1.51
VAR-CL-EQ 0.88∗∗∗ 0.89∗∗∗ −0.71∗∗∗ −0.84∗∗∗
VAR-CL-LIN 0.89∗∗∗ 0.92∗∗∗ −0.71∗∗∗ −0.79∗∗∗
VAR-LIN 0.91∗∗∗ 1.01∗∗∗ −0.75∗∗∗ −0.83∗∗∗
small VAR-HM 0.27∗∗∗ −0.36∗∗∗ −1.03∗∗∗ −0.69
small VAR-SV 0.63∗∗∗ 0.77∗∗∗ −0.98∗∗∗ −0.48∗∗
VAR-SV-R 0.89∗∗∗ 0.59∗∗∗ −0.76∗∗∗ −0.75
VAR-SV-R1 −0.01∗∗∗ −0.14∗∗ −1.19∗∗ −0.99
The following tables present detailed results for the individual variables using

the full range of forecast metrics. The good forecast performance of composite
likelihood methods and relatively poor forecasting performance of the large ho-
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moskedastic VAR noted in Table 2 are also found in these tables, but there are
some differences across variables and forecast metrics worth noting.

The general pattern is that composite likelihood and linear pooling methods
forecast particularly well for inflation and the interest rate, for the post-2008
period and using metrics that involve the entire predictive density (i.e. ACRPS
and ALPL). The last point is not that surprising in that incorporation of sto-
chastic volatility is usually found to be more important in getting the shape
of the entire predictive density correct as opposed to just getting a reasonable
point forecast. For example, for inflation over the longer forecast evaluation
period with h = 1, the homoskedastic VAR-HM model is actually forecasting
quite well if we look at RMSFE and MAE. However its ALPL is not as high as
other methods for this case. It is worth noting that this pattern does not hold
for h = 4. Also, for the interest rate, the small homoskedastic model produces
poor point forecasts, especially after 2008. And the homoskedastic large VAR
often produces high RMSFEs. So the reader should not take away the message
that, if point forecasts are all that matter, then working with homoskedastic
models is adequate.

For GDP growth, Tables 7 and 8 indicate that the small VAR-SV forecasts
best for h = 1 and, in general, small models such as VAR-CCM2 tend to forecast
well. But even here, the forecast performance of composite likelihood methods is
only slightly worse than these models. For h = 4, composite likelihood methods
tend to produce superior forecasts.

In general, of the alternative models, the VAR-CCM2 tends to forecast al-
most as well as our methods (and forecasts much better than VAR-CCM1).
However, we stress that VAR-CCM2 is not computationally feasible in the re-
ally large VARs macroeconomists are increasingly interested in.

These tables also reinforce the finding that, among the various composite
likelihood approaches, the alternative ways of doing the weighting typically do
not make a great deal of difference for forecasting. There is no consistent pat-
tern where one weighting method dominates and it is always possible to find
case where a particular set of weights forecasts best. There are also cases where
a linear pool of sub-models forecasts best. Indeed, even using equal weights pro-
duces forecasts which are only slightly inferior to other methods which estimate
weights in a data-based fashion.
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Table 3: Evaluation of Inflation Forecasts Beginning in 1970
h = 1 h = 4
RMSFE MAE ACRPS ALPL RMSFE MAE ACRPS ALPL

VAR-HM 0.66 0.45 0.36∗∗∗ −0.15∗∗∗ 0.88 0.64 0.50∗∗∗ −0.53
VAR-SV 0.67 0.46 0.36∗∗∗ −0.06∗∗∗ 0.88∗∗ 0.65∗∗ 0.51∗∗∗ −0.49∗∗
VAR-CCM1 0.71 0.51 0.39∗∗∗ −0.12 0.90 0.65 0.50∗∗∗ −0.43∗∗∗
VAR-CCM2 0.67 0.46 0.36∗∗∗ −0.00∗∗∗ 0.87∗∗∗ 0.64∗∗∗ 0.50∗∗∗ −0.39∗∗∗
Large VAR 0.73 0.52 0.56 −0.14 1.03 0.79 0.82 −0.64∗∗∗
VAR-CL-ML 0.69 0.47 0.36∗∗∗ −0.01∗∗ 0.68∗∗∗ 0.48∗∗∗ 0.48∗∗∗ −0.39∗∗∗
VAR-CL-DIC 0.68 0.47 0.36∗∗∗ −0.01 0.67∗∗∗ 0.47∗∗∗ 0.49∗∗∗ −0.36∗∗∗
VAR-CL-BIC 0.69 0.46 0.36∗∗∗ −0.01∗∗ 0.66∗∗∗ 0.47∗∗∗ 0.48∗∗∗ −0.38∗∗∗
VAR-CL-EQ 0.68 0.47 0.36∗∗∗ −0.01 0.66∗∗∗ 0.47∗∗∗ 0.48∗∗∗ −0.35∗∗∗
VAR-CL-LIN 0.68 0.47 0.36∗∗∗ 0.00 0.66∗∗∗ 0.47∗∗∗ 0.48∗∗∗ −0.34∗∗∗
VAR-LIN 0.68 0.47 0.38∗∗∗ −0.00 0.67∗∗∗ 0.48∗∗∗ 0.50∗∗∗ −0.36∗∗∗
small VAR-HM 0.67∗ 0.46 0.35∗∗∗ −0.16∗∗ 0.88 0.64 0.49∗∗∗ −0.52
small VAR-SV 0.68 0.46 0.36∗∗∗ −0.08∗∗∗ 0.87∗∗ 0.63∗∗ 0.48∗∗∗ −0.47∗∗∗
VAR-SV-R 0.67 0.46 0.36∗∗∗ 0.00∗∗∗ 0.86∗∗∗ 0.62∗∗∗ 0.49∗∗∗ −0.37∗∗∗
VAR-SV-R1 0.81 0.58 0.66∗∗∗ −0.18∗∗∗ 1.04 0.79 0.85∗∗∗ −0.53∗∗∗
Table 4: Evaluation of Inflation Forecasts Beginning in 2008

h = 1 h = 4
RMSFE MAE ACRPS ALPL RMSFE MAE ACRPS ALPL

VAR-HM 1.04 0.66 0.52∗∗∗ −1.16 1.13 0.79 0.61∗∗∗ −0.94
VAR-SV 1.06 0.68 0.54∗∗∗ −0.68 1.11 0.75 0.60∗∗∗ −0.80
VAR-CCM1 1.04 0.66 0.52∗∗∗ −0.71 1.06 0.71 0.56∗∗∗ −0.78
VAR-CCM2 1.05 0.68 0.53∗∗∗ −0.57 1.08 0.72 0.58∗∗∗ −0.65
Large VAR 1.03 0.65 0.69 −0.71 1.25 0.88 0.94 −1.00
VAR-CL-ML 1.04 0.65 0.51∗∗∗ −0.54 0.97 0.60 0.54∗∗∗ −0.59
VAR-CL-DIC 1.04 0.66 0.52∗∗ −0.57 0.95 0.59 0.54∗∗∗ −0.57∗∗∗
VAR-CL-BIC 1.02 0.63 0.50∗∗∗ −0.50 0.97 0.60 0.54∗∗∗ −0.60
VAR-CL-EQ 1.04 0.66 0.52∗∗∗ −0.57 0.96 0.61 0.54∗∗∗ −0.57∗∗∗
VAR-CL-LIN 1.04 0.66 0.52∗∗ −0.50 0.95 0.58 0.54∗∗∗ −0.55∗∗∗
VAR-LIN 1.03 0.66 0.54∗∗ −0.48 0.96 0.61 0.54∗∗∗ −0.55∗∗∗
small VAR-HM 1.02 0.63 0.49∗∗∗ −1.11 1.10 0.67 0.53∗∗∗ −0.77
small VAR-SV 1.04 0.66 0.51∗∗ −0.67 1.02 0.58 0.49∗∗∗ −0.59
VAR-SV-R 1.05 0.68 0.53∗∗∗ −0.56∗∗ 1.05 0.64 0.53∗∗∗ −0.52
VAR-SV-R1 1.28∗∗ 0.88∗∗ 0.77 −0.63∗∗ 1.21 0.77 0.78 −0.68∗∗∗
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Table 5: Evaluation of Interest Rate Forecasts Beginning in 1970
h = 1 h = 4
RMSFE MAE ACRPS ALPL RMSFE MAE ACRPS ALPL

VAR-HM 0.29∗∗∗ 0.18∗∗∗ 0.15∗∗∗ 0.81∗∗∗ 0.62∗∗ 0.47∗∗ 0.36∗∗∗ −0.06∗∗∗
VAR-SV 0.28∗∗∗ 0.17∗∗∗ 0.14∗∗∗ 1.03∗∗∗ 0.59∗∗ 0.45∗∗ 0.35∗∗∗ −0.01∗∗∗
VAR-CCM1 0.51∗∗∗ 0.33∗∗∗ 0.25∗∗∗ 0.53∗∗∗ 0.68 0.51 0.39∗∗∗ −0.10∗∗
VAR-CCM2 0.28∗∗∗ 0.17∗∗∗ 0.14∗∗∗ 1.19∗∗∗ 0.59∗∗∗ 0.44∗∗∗ 0.34∗∗∗ 0.02∗∗∗

Large VAR 0.56 0.42 0.44 0.17 0.75∗∗∗ 0.55∗∗∗ 0.60 −0.15
VAR-CL-ML 0.28∗∗∗ 0.17∗∗∗ 0.13∗∗∗ 1.18∗∗∗ 0.46∗∗∗ 0.34∗∗∗ 0.38∗∗∗ −0.20
VAR-CL-DIC 0.28∗∗∗ 0.16∗∗∗ 0.13∗∗∗ 1.17∗∗∗ 0.36∗∗∗ 0.26∗∗∗ 0.34∗∗∗ 0.04∗∗∗

VAR-CL-BIC 0.28∗∗∗ 0.17∗∗∗ 0.13∗∗∗ 1.20∗∗∗ 0.41∗∗∗ 0.32∗∗∗ 0.36∗∗∗ −0.10
VAR-CL-EQ 0.27∗∗∗ 0.16∗∗∗ 0.13∗∗∗ 1.19∗∗∗ 0.37∗∗∗ 0.26∗∗∗ 0.34∗∗∗ 0.02∗∗∗

VAR-CL-LIN 0.27∗∗∗ 0.16∗∗∗ 0.13∗∗∗ 1.20∗∗∗ 0.36∗∗∗ 0.26∗∗∗ 0.34∗∗∗ 0.01∗∗∗

VAR-LIN 0.27∗∗∗ 0.16∗∗∗ 0.13∗∗∗ 1.21∗∗∗ 0.37∗∗∗ 0.26∗∗∗ 0.35∗∗∗ −0.01∗∗∗
small VAR-HM 0.28∗∗∗ 0.17∗∗∗ 0.15∗∗∗ 0.82∗∗∗ 0.62 0.46 0.35∗∗∗ −0.06
small VAR-SV 0.28∗∗∗ 0.17∗∗∗ 0.14∗∗∗ 1.06∗∗∗ 0.60 0.44 0.34∗∗∗ −0.03∗∗∗
VAR-SV-R 0.28∗∗∗ 0.17∗∗∗ 0.14∗∗∗ 1.18∗∗∗ 0.58∗∗ 0.43∗∗ 0.34∗∗∗ 0.04∗∗∗

VAR-SV-R1 0.40∗∗∗ 0.26∗∗∗ 0.37∗∗∗ 0.64∗∗∗ 0.76 0.55 0.68∗∗∗ −0.11∗∗
Table 6: Evaluation of Interest Rate Forecasts Beginning in 2008

h = 1 h = 4
RMSFE MAE ACRPS ALPL RMSFE MAE ACRPS ALPL

VAR-HM 0.25∗∗∗ 0.18∗∗∗ 0.14∗∗∗ 0.97∗∗∗ 0.65 0.56 0.39∗∗∗ −0.12
VAR-SV 0.18∗∗∗ 0.12∗∗∗ 0.10∗∗∗ 1.50∗∗∗ 0.62 0.56 0.39∗∗∗ −0.16
VAR-CCM1 0.36∗∗∗ 0.30∗∗∗ 0.20∗∗∗ 0.66∗∗∗ 0.74 0.70 0.48∗∗∗ −0.49
VAR-CCM2 0.20∗∗∗ 0.12∗∗∗ 0.10∗∗∗ 1.45∗∗∗ 0.64 0.57 0.40∗∗∗ −0.15
Large VAR 0.51 0.45 0.46 0.09 0.72 0.62 0.62 −0.21
VAR-CL-ML 0.13∗∗∗ 0.07∗∗∗ 0.06∗∗∗ 2.00∗∗∗ 0.46∗∗ 0.43 0.39∗∗∗ −0.32
VAR-CL-DIC 0.13∗∗∗ 0.08∗∗∗ 0.07∗∗∗ 1.67∗∗∗ 0.27∗∗∗ 0.25∗∗∗ 0.26∗∗∗ 0.27∗∗∗

VAR-CL-BIC 0.13∗∗∗ 0.07∗∗∗ 0.06∗∗∗ 1.88∗∗∗ 0.48 0.45 0.39∗∗∗ −0.28
VAR-CL-EQ 0.12∗∗∗ 0.08∗∗∗ 0.07∗∗∗ 1.79∗∗∗ 0.28∗∗∗ 0.26∗∗∗ 0.26∗∗∗ 0.27∗∗∗

VAR-CL-LIN 0.12∗∗∗ 0.08∗∗∗ 0.07∗∗∗ 1.78∗∗∗ 0.29∗∗∗ 0.26∗∗∗ 0.27∗∗∗ 0.24∗∗∗

VAR-LIN 0.12∗∗∗ 0.08∗∗∗ 0.07∗∗∗ 1.83∗∗∗ 0.29∗∗∗ 0.26∗∗∗ 0.30∗∗∗ 0.25∗∗∗

small VAR-HM 0.16∗∗∗ 0.11∗∗∗ 0.10∗∗∗ 1.17∗∗∗ 0.45∗ 0.36∗ 0.25∗∗∗ 0.29∗∗

small VAR-SV 0.12∗∗∗ 0.08∗∗∗ 0.07∗∗∗ 1.83∗∗∗ 0.42 0.33 0.23∗∗∗ 0.36∗∗

VAR-SV-R 0.17∗∗∗ 0.11∗∗∗ 0.09∗∗∗ 1.54∗∗∗ 0.56 0.49 0.34∗∗∗ 0.04
VAR-SV-R1 0.52∗∗∗ 0.27∗∗∗ 0.32∗∗∗ 0.90∗∗∗ 0.67 0.48 0.52 0.08

31



Table 7: Evaluation of GDP Growth Forecasts Beginning in 1970
h = 1 h = 4
RMSFE MAE ACRPS ALPL RMSFE MAE ACRPS ALPL

VAR-HM 0.89 0.68 0.51∗∗∗ −0.38 1.01∗∗ 0.76∗∗ 0.58∗∗∗ −0.51∗∗
VAR-SV 0.86 0.65 0.50∗∗∗ −0.32∗∗ 1.00∗∗∗ 0.74∗∗∗ 0.57∗∗∗ −0.51∗∗∗
VAR-CCM1 0.87 0.67 0.51∗∗∗ −0.36 1.00∗∗ 0.76∗∗ 0.58∗∗∗ −0.52∗∗∗
VAR-CCM2 0.86 0.66 0.50∗∗∗ −0.31∗∗ 1.00∗∗∗ 0.74∗∗∗ 0.58∗∗∗ −0.50∗∗∗
Large VAR 0.93 0.70 0.77 −0.39 1.14 0.89 0.98 −0.62
VAR-CL-ML 0.92 0.67 0.51∗∗∗ −0.35 0.98∗∗ 0.72∗∗∗ 0.56∗∗∗ −0.49∗∗∗
VAR-CL-DIC 0.91 0.67 0.51∗∗∗ −0.36 0.97∗∗ 0.72∗∗ 0.56∗∗∗ −0.48∗∗∗
VAR-CL-BIC 0.93 0.68 0.52∗∗∗ −0.35∗∗∗ 0.99∗∗ 0.73∗∗ 0.57∗∗∗ −0.49∗∗∗
VAR-CL-EQ 0.92 0.68 0.51∗∗∗ −0.35 0.97∗∗ 0.71∗∗ 0.56∗∗∗ −0.47∗∗∗
VAR-CL-LIN 0.92 0.68 0.51∗∗∗ −0.35 0.97∗∗ 0.71∗∗ 0.55∗∗∗ −0.47∗∗∗
VAR-LIN 0.92 0.68 0.54∗∗∗ −0.36 0.98∗∗ 0.72∗∗ 0.57∗∗∗ −0.47∗∗∗
small VAR-HM 0.96 0.71 0.54∗∗∗ −0.45∗∗∗ 1.01 0.74 0.56∗∗∗ −0.49∗∗
small VAR-SV 0.92 0.68 0.52∗∗∗ −0.39 0.98∗∗ 0.71∗∗ 0.55∗∗∗ −0.47∗∗∗
VAR-SV-R 0.86 0.65 0.49∗∗∗ −0.30∗ 0.98∗∗ 0.72∗∗ 0.56∗∗∗ −0.46∗∗∗
VAR-SV-R1 1.04 0.78 0.89∗∗∗ −0.46∗∗∗ 1.17 0.91 0.98 −0.61∗∗∗
Table 8: Evaluation of GDP Growth Forecasts Beginning in 2008

h = 1 h = 4
RMSFE MAE ACRPS ALPL RMSFE MAE ACRPS ALPL

VAR-HM 0.96 0.72 0.56∗∗∗ −0.48 1.14 0.85 0.64∗∗∗ −0.70
VAR-SV 0.86 0.63 0.50∗∗∗ −0.42 1.07 0.77 0.62∗∗∗ −0.83
VAR-CCM1 0.94 0.73 0.57∗∗∗ −0.57 1.16 0.87 0.67∗∗∗ −0.88
VAR-CCM2 0.88 0.65 0.52∗∗∗ −0.46 1.11 0.82 0.65∗∗∗ −0.85
Large VAR 0.96 0.77 0.80 −0.47 1.14 0.87 0.99 −0.69
VAR-CL-ML 0.95 0.65 0.52∗∗∗ −0.46 1.20 0.81 0.63∗∗∗ −0.83
VAR-CL-DIC 0.95 0.66 0.53∗∗∗ −0.50 1.11 0.76 0.61∗∗∗ −0.79
VAR-CL-BIC 0.96 0.67 0.52∗∗∗ −0.47 1.20 0.83 0.65∗∗∗ −0.86
VAR-CL-EQ 0.95 0.66 0.52∗∗∗ −0.47 1.11 0.75 0.60∗∗∗ −0.76
VAR-CL-LIN 0.95 0.66 0.52∗∗∗ −0.45 1.10 0.75 0.60∗∗∗ −0.77
VAR-LIN 0.96 0.68 0.56∗∗ −0.46 1.12 0.76 0.62∗∗∗ −0.77
small VAR-HM 1.07 0.76 0.58∗∗ −0.57 1.04 0.69 0.53∗∗∗ −0.48
small VAR-SV 0.94 0.66 0.52∗∗ −0.50 0.95 0.61 0.49∗∗∗ −0.52
VAR-SV-R 0.86 0.63 0.51∗∗∗ −0.42 0.98 0.66 0.53∗∗∗ −0.52
VAR-SV-R1 1.11 0.84 0.87 −0.54 1.05∗ 0.75∗ 0.85 −0.47

6 The Computational Advantages of Composite
Likelihood Methods

We have argued in this paper that the main advantage of our composite like-
lihood approach is computational. It is computationally feasible in a Big Data
context where other approaches which incorporate stochastic volatility are not.
To reinforce this point, in this section we present some results showing the com-

32



putational properties of the composite likelihood approaches relative to others.
Table 9 presents results relating to the composite likelihood approach when

using the large data set and doing one run of our simulation algorithm using
the full sample.7 Note that our algorithm involves two steps: (i) estimating
all the quasi-posteriors using MCMC (labelled “Estimation” in Table 9) and
(ii) using an accept-reject algorithm to pool draws (labelled “Pooling” in Table
9). Note also that, within step (i), we run things in parallel across different
quasi-posteriors and some variants require marginal likelihood or information
criteria estimation. The results in the table are based on taking 22,000 draws
from each quasi-posterior which, we have found, is the minimum necessary to
obtain reasonable effective sample sizes for all our MCMC algorithms. The first
2,000 draws from each quasi-posterior are burn-in draws which are dropped.
The remaining 20,000 are then thinned to 1,000 to reduce correlation between
draws. This leaves us with 1,000×193=193,000 draws which are used in step (ii).
The time to do step (ii) is calculated as the time taken to obtain 1,000 retained
draws from these 193,000 draws. Note that these final 1,000 may contain some
repeating draws and, if such repeats are too high, this will make the effective
sample size of the algorithm low. To show that this is not a substantive problem
with our composite likelihood approaches, the table also contains a column
labelled "Unique" which is the percentage of draws which are unique and do
not repeat.

It can be seen that, even with our very large data set, computation can easily
be done by a good PC with running time being roughly an hour. The equally-
weighted composite likelihood approach is faster due to the fact that it does not
require the calculation of marginal likelihoods or an information criterion.

Table 9: Computational Time in Minutes of
Composite Likelihood Approaches

Estimation Pooling Total Unique
VAR-CL-ML 62.4 5.5 67.9 46.7%
VAR-CL-DIC 60.6 0.4 61.0 65.0%
VAR-CL-BIC 60.6 2.7 63.3 53.2%
VAR-CL-EQ 34.3 11.2 45.5 99.9%
It is worth noting that the linear opinion pool (VAR-LIN) is much more

computationally demanding since it involves recursive estimation and numer-
ical optimization (see Geweke and Amisano, 2011). The computational time
comparable to those reported in Table 9 is 62.4 hours.

Table 10 presents computational time for VARs of different dimensions for
the alternative approaches which allow for stochastic volatility and for one of
our composite likelihood approaches. For the composite likelihood approach,
the time reported is to carry out the same exercise as was used to produce the
numbers in Table 9. For the other approaches, it is the time to produce 22,000
MCMC draws.

Table 10 shows that the composite likelihood approach and VAR-CCM1 are

7All computation was done on a Dell Precision Tower 7910 with 2 Intel Xeon 3.10Ghz
processors (total of 20 cores) and 256GB of memory.
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the only approaches likely to be computationally feasible in truly large VARs.
But, as we have seen, VAR-CCM1 is likely to be too restrictive in many empirical
contexts. Computational times, of course, increase with VAR dimension. But
with the composite likelihood approach this increase is approximately linear in
N . With VAR-SV the increase is much more rapid (not quadratic, but close to
it). Even for N = 100, computation time with the VAR-SV is more than a week
on a good PC for a single run of the algorithm. VAR-CCM2 is not this bad
(for N = 100 its running time is a few hours), but running time is much more
than for our composite likelihood approaches and it is increasing at a more than
linear rate in N . The latter fact is likely to preclude its use in very large VARs.

Table 10: Computation Time in Minutes for Different VAR dimensions
N VAR-CL-EQ VAR-SV VAR-CCM1 VAR-CCM2
3 n.a. 0.74 0.27 0.44
7 2.67 6.34 0.40 1.34
20 4.01 112.67 0.82 5.42
50 10.95 1602.61 1.79 37.89
100 21.14 13071.09 7.72 160.24

7 Summary and Conclusions

Large VARs are emerging as a popular tool in modern macroeconomics. Adding
multivariate stochastic volatility to them has emerged as one of the unresolved
challenges in the field. It arises since it is not computationally practical to
carry out Bayesian estimation in large VARs with multivariate stochastic volatil-
ity. Even if computation were possible, conventional approaches can be over-
parameterized when working with large data sets leading to problems with over-
fitting, imprecise estimation and the need for strong prior information. In this
paper, we propose the use of composite likelihood methods for meeting this
challenge. These involve averaging over many smaller models. In our context,
we use many small VAR-SVs thus enabling computation to be feasible even in
data sets involving hundreds of variables. By working with smaller models, con-
cerns over over-parameterization and the need for careful prior elicitation are
lessened. We explore these themes in the paper. In addition, we discuss the
econometric theory of composite likelihood methods drawing on conventional
asymptotic results as well as the literature on prediction pools. All in all, there
are strong theoretical reasons for thinking composite likelihood methods may
be an attractive way of adding stochastic volatility to large VARs.

The issue of how well composite likelihood methods work in practice is ex-
plored in our empirical work. Working with a large US quarterly macroeconomic
data set involving 196 variables, we find encouraging results. When we use all
196 variables and compare the forecast performance of our composite likelihood
methods against the only practical alternative (a large homoskedastic VAR with
natural conjugate prior), we find strong evidence of the superiority of our meth-
ods. Clearly, stochastic volatility is an important feature of this data set and
our VAR-CL-SV methods allow for this.
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When we compare our methods to a range of existing methods which include
stochastic volatility we must restrict ourselves to smaller data sets. Using these,
we find our composite likelihood methods are producing parameter estimates
which are similar to those produced by state-of-the-art approaches. We also find
that composite likelihood methods using the large data set forecast well relative
to these other methods which use the small data set. Overall, we conclude that
the strategy of combining forecasts from many small models is computationally
feasible even with large VARs and leads to forecast performance that is better
than other computationally feasible approaches.
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Technical Appendix

Priors and Specification Choices
For the VAR-SV model, we assume normal priors for the initial condition

a0 ∼ N(0, Va) and h0 ∼ N(0, Vh). Moreover, we assume an independent prior
for parameters in Σh and Σa which are distributed as

σ2h,i ∼ IG(νh,i, Sh,i), σ2a,j ∼ IG(νa,j , Sa,2),

for i = 1, . . . , N and j = 1, . . . , N(N−1)2 . We set νh,i = 10, Sh,i = 0.12(νh,i − 1),
νa,j = 10 and Sh,j = 0.012(νh,j − 1). For the initial states, we set Vh = 10× IN
and Va = 10× IN(N−1)

2
.

For the VAR coefficients β = vec ((c, A1, , . . . , Ap)�), we use a Minnesota prior
and assume β ∼ N(β0, Vβ). For the prior mean, we set β0 = 0. The prior
covariance matrix Vβ is set to be diagonal and its corresponding values are set
as follows:

Var(c) = 10× IN ,

Var(Aijl ) =

�
λ21λ2
lλ3

σi
σj

for l = 1, . . . , p and i �= j,
λ21
lλ3

for l = 1, . . . , p and i = j.

where Aijl denotes the (i, j) th element of the matrix Al and σr is set equal to
the standard deviation of the residual from an AR(p) model for the variable r.
For the hyperparameters, we set λ1 = 0.2, λ2 = 0.5, λ3 = 2, p = 4.

The VAR-CCM2 is the same as the VAR-SV except that the at is restricted
to be time-invariant, i.e. at = a. We assume a normal prior a ∼ N (0,Ωa) with
Ωa = 10 × IN(N−1)

2
. The priors for other parameters are set the same as those

in the VAR-SV.

For the VAR-HM
y +Xβ + �, �t ∼ N(0, IN ⊗ Σ),

we assume an independent prior for the model parameters. The prior for the
VAR coefficients is set equal to that in the VAR-SV. For the covariance matrix,
we set Σ ∼ IW (Σ0, ν0) with ν0 = N + 2 and Σ0 = (ν0 − N − 1)IN , where
IW (·, ·) denotes the inverse Wishart distribution. This implies that the prior
mean E(Σ) = IN . We also include a natural conjugate prior version of the
homoskedastic VAR for use with the large data set. For this we choose the
same prior with the exception that the prior covariance matrix for β is the same
as for VAR-CCM1 (see below).
For the VAR-CCM1, we first let x�t = (1, y�t−1, . . . , y

�
t−p). It is convenient to

specify the model as

Y = XA+ U, vec(U) ∼ N(0,Σ⊗ Ω)
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where Y = (y1, . . . , yT )
�, X = (x1, . . . , xT )

�, A = (c, A1, . . . , Ap)
� and Ω =

diag(eh1 , . . . , ehT ). Recall that the log volatility follow an AR(1) process

ht = ρht−1 + �ht , ρ ∼ N (0,σ2h),

with |ρ| < 1. A standard normal-inverse-Wishart prior are set for model para-
meters (A,Σ) as

Σ ∼ IW (Σ0, ν0), vec(A)|Σ ∼ N(vec(A0),Σ⊗ VA).

The hyperparameters Σ0 and ν0 are set equal to those in VAR-HM. We set
A0 = 0 for the prior mean of the VAR coefficients. For the covariance matrix,
we assume it to be VA = diag(v1, . . . , vk) and set vi =

λ21σr
lλ3

for coefficients
associated to lag l of variable r for i = 2, . . . , k and v1 = 10. The other hyper-
parameters are set equal to those in VAR-SV. For the AR coefficient and the
variance of the log volatility process, we assume

ρ ∼ N (ρ0, Vρ) for |ρ| < 1, σ2h ∼ N (νh, Sh)

with ρ0 = 0.9, Vρ = 0.2
2, νh = 10 and Sh = 0.12(νh − 1).
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Proof of Proposition 1
Proof. Defining ỹ∗t = Ay,ty

∗
t −cy−

 p
j=1Byy,jy

∗
t−j it is straightforward to show

the form of the restricted VAR-SV implies:

p(yt | · ) ∝ exp
⎧⎨⎩−12

⎛⎝ỹ∗t − M#
i=1

wi

p#
j=1

βyz,i,jzi,t−j
g(M)

⎞⎠� Σ−1y,t
⎛⎝ỹ∗t − M#

i=1

wi

p#
j=1

βyz,i,jzi,t−j
g(M)

⎞⎠⎫⎬⎭
×

M$
i=1

exp

	
−1
2
[hN∗+i,t − lnwi

+ e−hN∗+i,t+lnwi

⎛⎝zi,t − α�z,i,ty∗t − cz,i − p#
j=1

β�zy,i,jy
∗
t−j −

p#
j=1

βzz,i,jzi,t−j

⎞⎠2
⎤⎥⎦
⎫⎪⎬⎪⎭

∝ exp
⎧⎨⎩

M#
i=1

−wi
2

⎛⎝ỹ∗t − p#
j=1

βyz,i,jzi,t−j
g(M)

⎞⎠� Σ−1y,t
⎛⎝ỹ∗t − p#

j=1

βyz,i,jzi,t−j
g(M)

⎞⎠⎫⎬⎭
× exp

⎧⎨⎩− 1

2g(M)2

⎛⎝ M#
i=1

wi

p#
j=1

βyz,i,jzi,t−j

⎞⎠� Σ−1y,t
⎛⎝ M#
i=1

wi

p#
j=1

βyz,i,jzi,t−j

⎞⎠⎫⎬⎭
× exp

⎧⎨⎩
M#
i=1

wi
2g(M)2

⎛⎝ p#
j=1

βyz,i,jzi,t−j

⎞⎠� Σ−1y,t
⎛⎝ p#
j=1

βyz,i,jzi,t−j

⎞⎠⎫⎬⎭
×

M$
i=1

exp

	
−1
2
[hN∗+i,t − lnwi

+ e−hN∗+i,t+lnwi

⎛⎝zi,t − α�z,i,ty∗t − cz,i − p#
j=1

β�zy,i,jy
∗
t−j −

p#
j=1

βzz,i,jzi,t−j

⎞⎠2
⎤⎥⎦
⎫⎪⎬⎪⎭ ,

where we used the fact that (y∗t )
�Σ−1y,t(y

∗
t ) =

 M
i=1 wi(y

∗
t )
�Σ−1y,t(y

∗
t ). The likeli-

hood of the restricted VAR-SV is

L(y; θ) =

T$
t=1

p(yt | · ). (14)

Now, suppose that our composite likelihood is constructed from sub-models:

Ay,tyt = cy +

p#
j=1

Byy,jy
∗
t−j +

p#
j=1

βyz,i,jzi,t−j
g(M)

+ �y,t, �y,t ∼ N(0,Σy,t),

(15)

zi,t − α�z,i,ty∗t = cz,i +
p#
j=1

β�zy,jy
∗
t−j +

p#
j=1

β�zz,i,jzi,t−j + �z,i,t, �z,i,t ∼ N
�
0, ehN∗+i,t

�
,

(16)
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which leads to

pC(yt | · ) ∝ exp
⎧⎨⎩

M#
i=1

−wi
2

⎛⎝ỹ∗t − p#
j=1

βyz,i,jzi,t−j
g(M)

⎞⎠� Σ−1y,t
⎛⎝ỹ∗t − p#

j=1

βyz,i,jzi,t−j
g(M)

⎞⎠⎫⎬⎭
×

M$
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exp

	
−1
2
[wihN∗+i,t

+ e−hN∗+i,t+lnwi
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β�zy,i,jy
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t−j −

p#
j=1

βzz,i,jzi,t−j

⎞⎠2
⎤⎥⎦
⎫⎪⎬⎪⎭

and the composite likelihood LC(y; θ) =
!T
t=1 p

C(yt | · ).
Observe that

LC(y; θ) ∝ L(y; θ)

× exp
⎧⎨⎩− 1

2g(M)2

T#
t=1

⎡⎣ M#
i=1

wi

⎛⎝ p#
j=1

βyz,i,jzi,t−j
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−
⎛⎝ M#
i=1

wi

p#
j=1

βyz,i,jzi,t−j
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∝ L(y; θ) exp

�
− 1

2g(M)2

T#
t=1

z̃�tΞtz̃t


,

where z̃t = (z1,t−1, . . . , z1,t−p, . . . , zM,t−1, . . . , zM,t−p)�, Bi = (βyz,i,1, . . . ,βyz,i,p),
and Ξt is a Mp ×Mp positive semi-definite matrix with the (i, k) block given
by

Ξik,t =

	
wi(1− wi)B�iΣ−1y,tBi if i = k,

−wiwkB�iΣ−1y,tBk if i �= k.
Let z̃i = (zi,1, . . . , zi,T−1)�, z̃ = (z�1, . . . , z

�
M )

�, zT = (zi,T , . . . , zM,T )
� and y∗ =

((y∗1)
�, . . . , (y∗T )

�)�. Then, we may write the likelihood L(y; θ) as the density
L(y; θ) = p(y∗, zT , z̃ |ϑ). Consequently,

L̃C(y; θ) =
p(y∗, zT , z̃ | θ) exp

'
− 1
2g(M)2
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(� ,

and

DKL(L�L̃C) = lnEz̃


exp

�
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z̃�tΞtz̃t

�
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�
.
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To prove that DKL(L�L̃C) −→ 0 as M −→ ∞, note that Ξt can be repre-
sented by the Hadamard product Ξ̃t � (W ⊗ ιpι�p), with the M ×M matrix W
defined by elements

Wik =

	
wi(1− wi) if i = k
−wiwk if i �= k ,

and ιp = (1, . . . , 1)� being the p × 1 vector of ones. In particular, W is posi-
tive semi-definite and contains information regarding the weights, while Ξ̃ik,t =
B�iΣ

−1
y,tBk, for all i and k, depends only on the parameters.
Accordingly,

z̃�tΞtz̃t
g(M)2

=
z̃�tz̃t
g(M)2

× z̃
�
tΞtz̃t
z̃�tz̃t

≤ z̃�tz̃t
g(M)2

�Ξt�,

where � · � denotes the spectral norm. Since Ξ̃t and W ⊗ ιpι�p are positive semi-
definite, Schur’s inequality (Horn and Johnson, 1991, Theorem 5.5.1) implies
�Ξt� ≤ p�Ξ̃t��W�. Moreover, there exists a unit vector u (satisfying u�u = 1)
such that

�W� = u�Wu =
M#
i=1

wiu
2
i −



M#
i=1

uiwi

�2
.

Since
 M

i=1 wiu
2
i ≤ max{wi}

 M
i=1 u

2
i = max{wi} and

� M
i=1 uiwi

�2
≥ 0, we

obtain �W� ≤ max{wi}. Consequently, max{wi} −→ 0 implies �W� −→ 0 and
�Ξt� −→ 0 follows from the fact that �Ξ̃t� is constant with respect to M .

It remains to show that z̃�tz̃t
g(M)2 =

 p
j=1

M
i=1 z

2
i,t−j

g(M)2 does not diverge for fixed
T and M −→ ∞. Since zi,t−j is normally distributed conditional on y∗, with
conditional expectation μi(y

∗) ≡ E(zi,t−j | y∗) and variance v2i , the quantity
ζi =

zi,t−j−μi(y
∗)

g(M) is conditionally independently (though not identically) dis-
tributed, and has the following properties:

1. E(ζi | y∗) = 0,

2. E(ζ2i | y∗) = v2i
g(M)2 ,

3.
 M

i=1Var(ζi | y∗) = v̄ M
g(M)2 <∞, where v̄ = 1

M

 M
i=1 v

2
i ,

4.
 M

i=1Var(ζ
2
i | y∗) ≤ 3ṽ M

g(M)4 <∞, where ṽ = 1
M

 M
i=1 v

4
i .

Hence
 M

i=1 ζi and
 M

i=1 ζ
2
i − v̄ M

g(M)2 both converge in R almost surely (Dur-

rett, 2010, Theorem 2.5.3), which implies
M
i=1 z

2
i,t−j

g(M)2 converges in R almost

surely. In this case, the product z̃�z̃t
g(M)2 �Ξt� −→ 0 and DKL(L�L̃C) vanishes in

the limit.
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