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Perfect so far? Substitutability between wind & solar and dirty 

electricity generation 

By ANTHONY WISKICH*  

Wind and solar are driving the clean transition in electricity: this 

paper uses panel data to investigate how these technologies substitute 

with dirty (fossil fuel) electricity generation. Production functions 

with a constant and a variable elasticity of substitution are estimated. 

Results suggest a higher elasticity of substitution than previous 

estimates, aligning with long-run analysis from electricity dispatch 

models and assumptions often made in economic models. Little 

evidence is found of the elasticity decreasing so far. However, the 

uptake of wind and solar decreases the utilisation rates of dirty 

capital. (JEL O33, Q41, Q42, Q54, Q58) 

Keywords: Elasticity of substitution; climate change; energy; electricity; 

production function. 
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Responding to climate change involves transitioning the global economy from 

dirty to clean energy. The substitutability between these inputs is an important 

factor in determining optimal policy and the cost of this transition. Transformation 

of the electricity generation sector is crucial as it is a major source of greenhouse 

gas emissions, and electrification allows other sectors, such as transport, to 
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transition away from fossil fuels. Wind and solar (W&S) generation is predicted to 

drive the clean transformation of the electricity sector globally, making up most of 

the clean generation in 2050 in the IEA’s net zero pathway.1 This paper examines 

how these technologies have substituted with fossil-fuel generation so far. 

At a high level, one can conceptualise a W&S aggregate displacing a fossil fuel 

aggregate consisting mostly of coal and natural gas. While in one sense, electricity 

is identical no matter the generation source, the intermittent nature of W&S and 

other factors imply imperfect substitutability between these generation types. In 

economic models, a constant elasticity of substitution (CES) function between such 

aggregates is a parsimonious way to reflect imperfect substitutability, 

parameterised by a share parameter and the elasticity of substitution. 2 

There is a disconnect between empirical estimates of the elasticity of substitution 

between clean and dirty inputs and the elasticity adopted in many economic models 

used to study climate mitigation. Such models often have a long-term focus and 

adopt a high elasticity greater than 2 for clean and dirty energy substitution.3 For 

example, Acemoglu, Aghion, Bursztyn, and Hemous (2012) adopt elasticities of 3 

and 10, pointing out that electricity is the same no matter the generation source. A 

high elasticity is supported by detailed electricity dispatch (supply) models, which 

indicate almost perfect long-run substitutability for moderate (under 50% or so) 

W&S shares (Stöckl & Zerrahn, 2023; Wiskich, 2019).  

But the limited empirical estimates do not support such high elasticities: 1.6 

between fossil fuel and renewable energy (Lanzi & Sue Wing, 2011); and for 

electricity around 0.5 (Pelli, 2012) and 2 (Papageorgiou, Saam, & Schulte, 2017). 

 

1
 https://www.iea.org/reports/net-zero-by-2050 

2
 Rather than use a stylised production function of clean and dirty inputs, some models explicitly consider intermittency 

such as Ambec and Crampes (2012) and Ambec and Crampes (2019). 
3
 In principle, a long-run value below 1 in a CES function implies nonsensical results for electricity: aggregate output 

becomes zero without clean generation, no matter how much dirty generation exists; and the expenditure share on clean 

energy falls as the clean share rises. 
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However, through replication, I find the result in Papageorgiou et al. (2017) relies 

on an inconsistency between their regressions and their paper, so the gap between 

the elasticity used in economic models and empirical estimates persists.4  

My empirical approach uses a nonlinear, direct estimation of production 

functions of two inputs - clean (W&S) and dirty (fossil fuel) aggregates – to 

generate electricity. Panel data comes from the International Energy Agency and 

Global Energy Monitor. I exclude hydro and nuclear in the main specification, 

which dominate over W&S, as I expect this approach will provide a better 

indication of substitutability under a clean transition. Unlike the estimation of a 

first-order condition equation, this supply-side approach does not consider prices, 

avoiding some difficulties in untangling the effects of regional policies that may 

induce W&S investment through price or quantity mechanisms. It is also well suited 

to capture reductions in the utilization rates (the proportion of time that a generator 

produces electricity, also known as capacity factors) of fossil generation due to the 

introduction of intermittent generation (Ueckerdt, Hirth, Luderer, & Edenhofer, 

2013). An initial investigation of the data confirms that dirty utilization rates have 

fallen markedly with W&S uptake. 

Reduced utilization of incumbent generation is the largest integration cost of 

intermittency, defined as the marginal long-run cost (per unit of output) borne by 

an electricity supply system from an additional unit of intermittent generation. 

These integration costs are close to zero when no W&S is present and increase as 

the W&S share rises (Hirth, Ueckerdt, & Edenhofer, 2015; Ueckerdt et al., 2013), 

implying a decreasing elasticity of substitution with the W&S share (Stöckl & 

Zerrahn, 2023; Wiskich, 2019).5 Due to this fundamental asymmetry, I estimate 

 

4
 I discuss some limitations of Papageorgiou et al. (2017) in Section 5.  

5
 A decreasing elasticity is found at least for W&S shares below 50%. The conversion of integration costs to an elasticity 

of substitution is discussed in Wiskich (2019). Aleti and Hochman (2020) also find a decreasing elasticity from a model that 

considers consumer preferences. 
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variable elasticity of substitution (VES) functions in addition to CES functions. The 

VES form I use has an infinite elasticity at zero W&S share, which declines as the 

share rises. 

Results for the standard CES function suggest an infinite, or high, elasticity of 

substitution. But the substitution, while close to “perfect”, is “less-than-complete”: 

one unit of W&S electricity substitutes for 0.57 units of generation-normalised dirty 

capacity in the main specification.6 Results using the VES function are consistent, 

showing little evidence of the elasticity declining. 

Perfect substitutability applied in an economic model means once the W&S price 

(relative to dirty) falls below a certain point, it is optimal to use W&S entirely in 

the long run once capital can adjust. However, caution should apply if extrapolating 

results to very high W&S shares, which are absent in the data I analyse: hence 

substitution appears “perfect so far”. Further, in section 5, I explain that while 

previous estimation based on first-order conditions tends to understate the 

elasticity, the production function method I use probably overstates it, partly due to 

sluggish capital adjustment. Estimation challenges will likely diminish as the 

decarbonisation of the electricity sector unfolds and more data points become 

available. This paper provides a basis for further analysis and for using a high long-

run elasticity of substitution in economic models. 

1. An initial investigation  

To help understand the results in Section 4 and to motivate the estimation of a 

VES function, this section considers the effect that W&S uptake has on dirty 

utilization rates. Figure 1 suggests the utilisation of a measure of dirty capital 

 

6
 Dirty capacity is normalised so that it corresponds to generation in an initial period with little W&S, that is when the 

utilisation rates of dirty capacity have not yet been materially reduced by intermittent technologies.  
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(Dutil) has fallen as the W&S share of electricity generation (W&Sshr) has risen.7 

Dispatch models that analyse long-run optimal supply also predict this outcome, 

indicating the result is not just due to sluggish capital adjustment (Ueckerdt et al., 

2013). Consider a regression that includes time and country fixed effects 

(𝑎𝑖 and 𝑏𝑡) and the growth in electricity production (𝑔𝑌𝑖𝑡), which may affect 

utilisation rates, as follows: 

(1.1)          𝐷𝑢𝑡𝑖𝑙𝑖𝑡 = 𝑊&𝑆𝑠ℎ𝑟𝑖𝑡 + 𝑔𝑌𝑖𝑡 + 𝑎𝑖 + 𝑏𝑡 + 𝜀𝑖𝑡 .   

 

  A strongly significant, negative effect of W&Sshr on dirty utilisation is found, 

with coefficient -1.105 with robust standard error 0.349.8 What type of production 

function would be consistent with this characteristic of declining dirty utilisation? 

Consider a CES production function that combines a clean generation input (𝐶𝑡, 

GWh) with dirty capacity input (𝐷𝑡, GW) to generate electricity (𝑌𝑡, GWh):9  

(1.2)          𝑌𝑡 = 𝐴(𝜔𝐶𝑡
𝜓 + (1 − 𝜔)𝐷𝑡

𝜓)
1/𝜓

.   

 

The elasticity of substitution is 𝜎 = 1/(1 − 𝜓) and define the dirty utilisation as  

 𝑈𝑡 = (𝑌𝑡 −  𝐶𝑡)/ 𝐷𝑡. It is straightforward to show that dirty utilisation will 

decrease initially (when W&S input is zero) if 𝜔 < 0.5 and 𝜓 = 1 or if 𝜓 > 1.10 

The latter case is not generally classed as CES, as the production possibilities 

 

7
 Definitions of Dutil and W&Sshr are underneath Figure 1. 

8
 This finding is robust to compositional effects, such as the inclusion of growth in gas capacity and the initial coal share. 

9
 Clean capacity could also be used instead of generation, if a fixed capacity factor for this technology was assumed (this 

would just change 𝜔 and 𝐴), but using clean generation is simpler. 
10

 Set 𝐷 = 1 and 𝑌|𝐶=0 = 1 without loss of generality. 𝑈 = 𝑌 − 𝐶 so 𝑑𝑈/𝑑𝐶|𝐶=0 = 𝜔𝐶𝜓−1/(1 − 𝜔) − 1 =

{

𝜔/(1 − 𝜔) − 1 if 𝜓 = 1

−1 if 𝜓 > 1
∞ if 𝜓 < 1 
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frontier becomes convex to the origin.11 So the only standard CES class of functions 

with initially decreasing dirty utilisation have perfect substitutability and vary only 

by the share parameter 𝜔. Figure 2 shows some examples of CES functions. 

Now consider a VES function – the specification is close to Karagiannis, Palivos, 

and Papageorgiou (2005). For clean (Ct) and dirty (Dt) inputs as before and 

parameters 𝛼 and 𝛽, electricity output (Yt) is given by: 

(1.3)       𝑌𝑡 = 𝐴𝐷𝑡
𝛼(𝐶𝑡 + 𝛽𝛼𝐷𝑡)1−𝛼  where 0 < 𝛼 ≤ 1 and 𝛽 > 0.  

 

The elasticity of substitution is given by 𝜎𝑡 = 1 + 𝛽 𝐷𝑡 𝐶𝑡⁄ , so the elasticity 

approaches infinity as the clean share approaches zero, 1 + 𝛽 when clean and dirty 

inputs are equal and 1 when dirty inputs are zero. The function is asymmetric, and 

optimal clean inputs are zero unless the price of clean relative to dirty is below a 

threshold. Now the condition for dirty utilisation to decrease initially is (1 −

𝛼)/(𝛼𝛽) < 1, which can occur given any permitted value of 𝛼 or 𝛽 with the 

freedom to choose the other.12 Thus, a VES function may better capture this data 

characteristic, and Figure 2 shows some examples. 

 

 

11
 Convexity implies that, like the perfect substitution case, there is a relative price where the optimal solution jumps 

from one corner to the other (i.e. from all dirty to all clean inputs). Unlike perfect substitution where any share is optimal if 

prices are equal, output is maximised at the corners so an internal solution is never optimal – it is always optimal to either 

go dirty or clean, never a combination. 
12

 Set 𝐷 = 1 and 𝑌|𝐶=0 = 1 without loss of generality. 𝑈 = 𝑌 − 𝐶 so 𝑑𝑈/𝑑𝐶|𝐶=0 = (1 − 𝛼)/(𝛼𝛽) − 1. 
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FIGURE 1: W&S SHARE AND DIRTY CAPITAL UTILISATION 

W&Sshr is the share of W&S in combined W&S and dirty generation. Dirty capital utilisation (Dutil) is generation per GW 

of all fossil fuel generation, normalised to 1 based on 1995-1999 data. The data source and inclusion criteria are described 

in Section 3. 

 

 

FIGURE 2: DIRTY UTILISATION FOR SOME CES AND VES FUNCTIONS 
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2. Production function estimation approach 

The estimation is based on aggregate CES and VES production functions for 

electricity, combining an input measure for W&S and a measure representing dirty 

inputs.  

CES Specification 

For substitution parameter 𝜓 and share parameter 0 ≤ 𝜔 ≤ 1, country i, year t, 

output 𝑌𝑖𝑡, W&S input 𝐶𝑖𝑡 and dirty input 𝐷𝑖𝑡, the CES specification is: 

(2.1)          𝑙𝑛𝑌𝑖𝑡 = 𝑎𝑖 + 𝑏𝑡 +
1

𝜓
𝑙𝑛(𝜔𝐶𝑖𝑡

𝜓 + (1 − 𝜔)𝐷𝑖𝑡
𝜓) + 𝜀𝑖𝑡 .  

 

The elasticity of substitution relates to the curvature of the isoquant of the two 

inputs (𝐶𝑖𝑡 and 𝐷𝑖𝑡) and is derived as 𝜎 = 1/(1 − 𝜓). The dependent variable of 

electricity output (𝑌𝑖𝑡) is measured as generation in GWh. This measure is simple 

but excludes reliability, the electricity grid, demand management costs and 

different regional economic values of generation. The dirty input is measured by 

generation capacity (GW). I normalise this measure based on an initial period, so 

the value represents the amount of generation in each region that would be 

generated from the dirty capacity without effects from W&S.13 Electricity 

generation assets are long-lived and take years to build, so there is little risk of 

endogeneity between these regressors and the error term. As dirty generation is 

typically dispatchable, there probably is a strong correlation between fuel inputs 

and the error term as dispatchable dirty generation is worked harder (greater fuel 

 

13
 That is, without material effects (such as reduced utilisation) from the presence of W&S generation. This normalisation 

puts clean and dirty inputs into common units (generation) – see León-Ledesma, McAdam, and Willman (2010) for a 

discussion of the importance of normalisation.    
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input) under a demand shock. For this reason and simplicity, fuel is excluded from 

the specification. 

The country dummies 𝑎𝑖 take care of different time-independent factors between 

regions. The time dummies 𝑏𝑡 capture global demand or supply shocks, such as to 

fuel prices, that affect electricity output across all regions. The main specification 

and 7 “robustness” specifications are listed in Table 1, reflecting different choices 

in approach. 

A first choice is what data points to include. As described above, a key reason for 

imperfect long-run substitutability between W&S and dirty energy is a reduction in 

dirty capital utilisation rates, resulting from the link between intermittency and 

inelastic demand. Two key factors reduce the effect of this link: the presence of 

dispatchable clean generation, particularly hydro, and the presence of electricity 

trade. I limit their effect by removing data points where the share of hydro or trade 

(half the sum of imports and exports over production) is above a certain value. 

Thus, I focus on substitutability in systems where integration is relatively hard. 

Further, other generation technologies, such as nuclear, may bias results. To limit 

this potential effect, I also exclude data points with a high nuclear share (using a 

more lenient cutoff). Finally, after the previous exclusions, I remove regions with 

either less than 5 data points or less than 5 dirty generators to avoid the effect of 

capital lumpiness. The robustness specifications Lenient and Strict consider 

different data cutoffs. 

The clean input measure (𝐶𝑖𝑡) in the main specification is the combined 

generation from W&S technologies (GWh). Using generation rather than capacity 

may avoid bias from input-augmenting technical change due to relative changes in 

clean and dirty utilization rates, such as from W&S technology improvements. As 

W&S generation depends on the weather and typically cannot respond to demand 

like dispatchable generation, endogeneity through simultaneity should not be a 

problem. Further, given inelastic demand for electricity, variation in annual 
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generation per unit of W&S capacity will be counterbalanced by a change in dirty 

dispatchable output, assuming no trade, which should limit correlation with the 

error term. A potential concern with using generation instead of capacity is it may 

not capture the effects of curtailment at high W&S shares – however, such effects 

should be minor as the W&S share is less than 50% in the data. Further, using 

generation does not allow for different quality of sites within a region which may 

be an important source of variation in the aggregate production function. For 

example, as W&S shares increase, the remaining potential areas may be less 

productive as the best sites are exploited first. Thus, the robustness specification 

W&Scap combines W&S capacity (GW) as the clean input instead. 

The dirty input measure in the main specification combines the generation 

capacity of different fuel-based technologies (predominantly coal, gas and oil). 

While simple, this approach does not reflect the economic cost of different 

technologies per GW. Coal requires higher utilisation rates and is less flexible than 

gas, so W&S affect these technologies differently. The DirtyCost robustness 

specification considers the higher cost per GW of coal, reducing the data points 

available.14  

As clean inputs approach zero in the CES function, the marginal gain in output 

per marginal increase in clean input approaches 0 if 𝜓 > 1, 𝜔 if 𝜓 = 1 and ∞ if 

𝜓 < 1. Such divergent behaviour, combined with the indeterminacy of 𝜓 when 

clean inputs are zero, could make estimation of the elasticity imprecise and 

unstable, compounding the difficulties of using nonlinear estimation. The 

robustness specification MinW&S removes data points with a W&S share below a 

threshold. 

 

14
 Labour costs are excluded due to a relative lack of data, but are a minor part of generation costs. 
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A challenge with focusing on W&S is how to treat other clean generation 

technologies: hydro, nuclear and (to a lesser extent) geothermal and tidal.15 The 

main specification excludes these sources from all variables, allowing identification 

of the substitutability between W&S and dirty energy but potentially resulting in 

bias. As nuclear may perform a similar “baseload” role to coal in generation, 

robustness specification Nuclear includes it both in the “dirty” measure and its 

generation in the LHS dependent variable.16 

Finally, the robustness specification CapDelay considers the effect of the delayed 

adjustment in dirty capital from increases in clean generation. As electricity capital 

is long-lived and has high fixed costs, the adjustment to long-run equilibrium may 

take years: dirty capital will persist, provided it remains profitable operationally. 

Sluggish capital adjustment likely biases the long-run estimate of 𝜓 upwards 

(discussed further in section 5). To verify, the dirty input measure 𝐷̂𝑖𝑡 assumes 

capital adjustment from a change in clean inputs takes 𝛿 periods, so long-run dirty 

capital levels at time 𝑡 are set according to clean inputs at time 𝜏 = 𝑡 −  𝛿. Then 

dirty inputs are adjusted by the multiple of the increase in clean input over that 

period, times the ratio of the marginal gains in output from each input.17 

(2.2)      𝐷̂𝑖𝑡 = 𝐷𝑖𝑡 −
𝜕𝑌𝑖𝑡 𝜕𝐶𝑖𝑡⁄

𝜕𝑌𝑖𝑡 𝜕𝐷𝑖𝑡⁄
(𝐶𝑖𝑡 − 𝐶𝑖𝜏) = 𝐷𝑖𝑡 −

𝜔

1 − 𝜔
(

𝐶𝑖𝑡

𝐷𝑖𝑡
)

𝜓−1

(𝐶𝑖𝑡 − 𝐶𝑖𝜏). 

VES specification 

For clean (𝐶𝑖𝑡) and dirty (𝐷𝑖𝑡) inputs and parameters 0 < 𝛼 ≤ 1 and 𝛽 > 0, 

electricity output (𝑌𝑖𝑡) is given by: 

 

15
 As described above, data points with high hydro and nuclear shares are excluded, but generation from these sources 

remains and still needs to be considered. 
16

 Nuclear generation typically has a very high utilization rate due to high fixed costs and low variable costs, similar to 

coal generation historically. 
17

 W&S inputs increase almost monotonically in the data, so the adjustment decreases dirty inputs. 
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(2.3)          𝑙𝑛𝑌𝑖𝑡 = 𝑎𝑖 + 𝑏𝑡 + 𝛼𝑙𝑛(𝐷𝑖𝑡) + (1 − 𝛼)𝑙𝑛(𝐶𝑖𝑡 + 𝛼𝛽𝐷𝑖𝑡) + 𝜀𝑖𝑡 . 

 

The elasticity of substitution is given by 𝜎𝑖𝑡 = 1 + 𝛽 𝐷𝑖𝑡 𝐶𝑖𝑡⁄ . The same 

robustness specifications described above are applied, with the dirty capital 

adjustment equation for the CapDelay robustness specification as follows: 

(2.4)           𝐷̂𝑖𝑡 = 𝐷𝑖𝑡 −
𝜕𝑌𝑖𝑡 𝜕𝐶𝑖𝑡⁄

𝜕𝑌𝑖𝑡 𝜕𝐷𝑖𝑡⁄
(𝐶𝑖𝑡 − 𝐶𝑖𝜏) = 𝐷𝑖𝑡 −

1 − 𝛼

α (
𝐶𝑖𝑡
𝐷𝑖𝑡

) + 𝛼β
(𝐶𝑖𝑡 − 𝐶𝑖𝜏). 

 

TABLE 1 —ESTIMATION SPECIFICATIONS  

Name  Clean input (C) Dirty input (D) Notes 

Main GWh GW  

W&Scap GW GW W&S capital input 

DirtyCost GWh Capital Cost Uplift factor for coal GW 

MinW&S GWh GW Exclude very low W&S shares 

Nuclear GWh GW Include nuclear in dirty aggregate 
CapDelay GWh GW Delay in dirty capital adjustment 

Lenient GWh GW Less data excluded 

Strict GWh GW More data excluded 

Capacities (GW) and capital costs are normalised at the country level to match electricity output. 

 

3. Data 

Data on generation and capacity is primarily from the International Energy Agency 

(IEA) Electricity Information Statistics. As the uptake of W&S has predominantly 

occurred this century, I consider the years from 2000 to the most recent year of 

2020. Dirty capacity is normalised based on average generation from 1995 to 1999 

when W&S shares were low.18 In the DirtyCost robustness specification, I use data 

from Global Coal Plant Tracker as the IEA data has some gaps in the capital stock 

 

18
 If this data does not exist, I use the earliest 5 periods in the data for each region. 
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breakdown for different technologies.19 Coal capacity is valued at 3 times the cost 

of all other dirty capacities (mostly gas generation), roughly consistent with the 

relative overnight costs of ultra-supercritical coal and combined cycle gas 

generation listed in the EIA Annual Energy Outlook (AEO) 2021. In the W&Scap 

robustness specification, W&S capacity is normalised at the region level to reflect 

average generation for all periods. Table 2 lists the assumptions for data 

construction. The number of dirty plants comes from the World Resources 

Institute.20 

 

TABLE 2 —DATA CONSTRUCTION DETAILS  

 Name  Main Lenient Strict 

Criteria for inclusion 
Trade share 0.2 0.3 0.1 

Hydro share of production 0.2 0.3 0.1 

 Nuclear share of production 0.25 0.35 0.15 

 Minimum number of dirty plants 5   

DirtyCost  Coal economic cost uplift factor (per GW) 3   

MinW&S Minimum W&S share 1%   

CapDelay Delay in dirty capital adjustment (𝛿) 5 years   

4. Results  

I use difference regressions in all specifications due to serial correlation in the 

residuals from levels regressions and evidence of unit roots (discussed further in 

Appendix A). Table 3 shows the CES results. Ensuring consistency with a standard 

CES function (𝜓 ≤ 1) leads to perfect substitution (estimate 𝜓̂ → 1) in the main 

specification. This result is common across most sensitivities except Nuclear and 

CapDelay, where the estimated elasticity is still high (5.7 and 2.3). Without 

restricting 𝜓 leads to estimations 𝜓̂ > 1 (except for Nuclear and CapDelay), as 

foreshadowed in Section 1 (results in Appendix A). Estimates of the share 

 

19
 Global Energy Monitor, January 2021 

 https://globalenergymonitor.org/projects/global-coal-plant-tracker/summary-data/ 

 
20

 http://resourcewatch.org/ 

https://globalenergymonitor.org/projects/global-coal-plant-tracker/summary-data/
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parameter 𝜔 are close to 0.5, as expected for a high degree of substitutability (due 

to normalization). For the main specification, 𝜔̂ is 0.365, which implies that one 

unit of W&S electricity substitutes for 𝜔/(1 − 𝜔) = 0.57 units of generation-

normalised dirty capital.   

 

TABLE 3 —NONLINEAR CES ESTIMATIONS  

 Main W&Scap DirtyCost MinW&S Nuclear CapDelay Lenient Strict 

𝝍 < 𝟏 1.000 1.000 1.000 1.000 0.826 0.574 1.000 1.000 

     (0.270) (0.220)   

𝝎 0.365 0.466 0.444 0.383 0.287 0.275 0.353 0.492 

 (0.163) (0.0834) (0.0838) (0.146) (0.159) (0.113) (0.115) (0.113) 

         

Regressors 23 23 23 23 23 23 23 23 

Obs 226 226 226 171 226 226 351 91 
Regions 14 14 14 14 14 14 22 7 

Standard errors are in parentheses. 𝜓 < 1 indicates that 𝜓 is restricted, and hence standard errors are not shown 

if 𝜓̂ → 1 (an invlogit function is used in this case).  

 

A perfect (or high) long-run elasticity seems most appropriate for an economic 

model with a standard CES function. Figure 2 shows the residual sum of squares 

(RSS) for the main specification using a differenced (2.1) with different exogenous 

values of substitution parameter 𝜓, indicating rapidly declining performance as 𝜓 

decreases below 1. The main results are also robust to country omission and 

different time frames (see Appendix A for a discussion).  

 



15 
 

 

FIGURE 3: RESIDUAL SUM OF SQUARES (RSS) FOR THE MAIN SPECIFICATION FOR VALUES OF SUBSTITUTION PARAMETER  𝜓 

 

Table 4 shows the results for the VES specifications. Note that when estimate 𝛼̂ 

approaches zero, as for most specifications, (2.3) approaches (2.1) with 𝜓 = 1, so 

the results are almost the same as for CES. The central estimates for the 

specifications Nuclear and CapDelay imply the elasticity falls to 7.7 and 1.5 when 

the W&S and dirty inputs are equal (so the elasticity is 1 + 𝛽̂), but the standard 

errors are very large. Due to small values of 𝛼̂ and large values of 𝛽̂ (which implies 

the high elasticity persists), the regression estimates 𝛼𝛽 directly. The implied 

values of  𝛽̂ are also shown. 

 

TABLE 4 —NONLINEAR VES ESTIMATIONS 

 Main W&Scap DirtyCost MinW&S Nuclear CapDelay Lenient Strict 

𝜶 0.000 0.000 0.000 0.000 0.214 0.652 0.000 0.000 

     (2.877) (0.413)   

𝜶𝜷 1.943 1.145 1.251 1.610 1.440 0.337 1.830 1.032 

 (1.285) (0.384) (0.424) (0.997) (6.136) (0.697) (0.922) (0.465) 

         

Implied 𝜷 >999 >999 >999 >999 6.729 0.517 >999 >999 

Regressors 23 23 23 23 23 23 23 23 

Obs 226 226 226 171 226 226 351 91 
Regions 14 14 14 14 14 14 22 7 

Standard errors are in parentheses. 
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5. Comparison with previous literature 

The theoretical approach owes a debt to Papageorgiou et al. (2017), who report a 

robust elasticity estimate of 2 undertaking supply-side regressions of clean, 

including hydro and nuclear, and dirty energy substitutability in electricity. But in 

my view, their analysis is problematic. Regarding their specification, I prefer to 

exclude hydro and nuclear in the clean aggregate, as I presume W&S will drive the 

clean transition. On their execution, while they (correctly in my view) note that 

Luxembourg should be excluded due to a high trade share, it is not. Excluding 

Luxembourg using their data and specifications changes their estimates for 𝜓 from 

0.46 to 2.05 for the levels regression and from 0.49 to 1.80 for the first difference 

regression, implying convex production functions as found in the current paper and 

highlighting the importance of checking dominance from a single region.  Further, 

their approach to estimating standard errors from bootstrapping errors is 

unconvincing.21  

Regarding previous estimates from changes in input shares induced by price 

changes (the price approach), used for example by Pelli (2012) who finds an 

elasticity of around 0.5, I see two reasons that help explain higher elasticity 

estimates in the current paper. First, in the price approach, every period where 

relative prices change “contributes” to the estimation. If price falls had no effect 

until the W&S price became sufficiently competitive, then including these periods 

would reduce the elasticity estimate. In contrast, the supply approach relies on 

changes in input shares. Consider a hypothetical with two regions: in one, W&S 

and dirty inputs (and total output) do not change despite price falls in W&S, and in 

 

21
 Papageorgiou et al. (2017) use bootstrapped errors and discard generated data which lead to estimates of 𝜓 greater 

than 1. While this approach ensures consistency with the isoelastic functional form in the generated data, it does not seem to 

be a conservative method to derive the standard error. Consider an estimate for 𝜓 just under 1. Rejecting generated data 

which lead to an estimate of 𝜓 greater than 1 means the derived standard error is likely very small by construction. 
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the other, W&S inputs increase with a substitution elasticity of 2. The price 

approach finds an elasticity estimate of about 1 (between 0 and 2), but the supply 

approach finds an elasticity estimate of 2 as the region which experiences no W&S 

adoption has only one data point and so has no effect on the estimated elasticity. 

Thus, the supply approach puts a higher weight on regions that have undergone a 

greater change in W&S inputs, which probably have a higher elasticity.  

The second reason relates to the long-lived nature of generation assets: reductions 

in dirty capital to long-run levels (due to the uptake of W&S) may take many years, 

as power plants may continue to operate until their end-of-life or until 

refurbishment costs are required. In the price approach, this adjustment delay likely 

biases the elasticity downwards, as the change in input shares is lower than the 

long-run change. But in the supply approach, the direction of bias is likely upwards, 

as shown in the results. To illustrate, consider constant output as W&S inputs 

increase from 1 to 2 and then to 3, and long-run dirty inputs change from 10 to 9 to 

9. The fact that 9 dirty inputs are still needed despite the increase in W&S input 

from 2 to 3 leads to convexity of the isoquant and a finite long-run elasticity. But if 

dirty inputs change from 10 to 9.5 to 9 due to adjustment delays, there is no 

convexity in the isoquant and the supply method will find perfect substitutability 

between W&S and dirty inputs. 

6. Conclusion 

A rapid clean transition in electricity will depend on how well wind and solar 

substitute for dirty electricity generation. This paper finds empirical support for 

using a high elasticity in economic models, at least for wind and solar shares up to 

50% or so, exceeding previous empirical estimates but consistent with dispatch 

models of electricity. Dispatch models find that W&S introduces an integration cost 



18 
 

on the system due to reduced utilisation of other generators: the empirical 

specification in the current paper can capture this effect but has limitations. 

Estimating a long-run elasticity from a transition still in its early stages is 

difficult. The supply-side estimation approach in this paper probably overestimates 

the elasticity, as more weight applies to regions with a wide range of input shares 

and due to delays in capital adjustment. Future work could investigate variation in 

substitutability at different clean shares, strongly indicated by dispatch models, as 

the clean transition progresses and more data becomes available. Other possible 

extensions include substitutability in sub-national markets, consideration of the 

different emissions intensities of dirty technologies, and accounting for electricity 

storage and network integration.  

 

APPENDIX A – FURTHER EMPIRICAL DISCUSSION 

Levels versus difference regressions 

The levels method is more efficient when the errors are serially uncorrelated, 

while the difference method is more efficient when the residuals follow a random 

walk (Wooldridge, 2010). The lumpy nature of capital investment and slow 

dynamics due to long-lived capital would lead to dependence of the error on 

historical values of independent variables. Indeed, there is a strong serial correlation 

in the residuals in the levels (as well as evidence of unit roots) but not in the 

difference method.22  

 

STATA code for difference regressions 

The following lines of code were run in STATA 18. 

 

22
 Wooldridge test (null of no first-order correlation) rejects for levels residuals (p=0.0001) but not difference (p=0.5). 

Fisher-type tests for unit roots based on both Dickey-Fuller and Phillips-Perron do not reject null hypothesis (all panels 

contain unit roots), whether a lag is included or not.  
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Restricted CES (𝜓 < 1)23: qui nl ( dLHS`z' = 1/invlogit({psi})*ln( ( {omega}*C`x'^invlogit({psi})+(1-

{omega})*D`y'^invlogit({psi}) ) / ( {omega}*L.C`x'^invlogit({psi})+ (1-{omega})*L.D`y'^invlogit({psi}) ) ) +${TIME} ) 

if !missing(dLHS`z',C`x',D`y',L.C`x',L.D`y'), initial( psi 1 omega 0.5) vce(cluster country) iterate(200) 

Unrestricted CES (𝜓 < ∞) and for Nuclear and CapDelay (𝜓̂ ≪ 1): qui nl ( dLHS`z' 

= 1/{psi}*ln( ( {omega}*C`x'^{psi}+(1-{omega})*D`y'^{psi}) / ( {omega}*L.C`x'^{psi}+ (1-{omega})*L.D`y'^{psi}) ) 

+${TIME} ) if !missing(dLHS`z',C`x',D`y',L.C`x',L.D`y'), initial( psi 0.5 omega 0.5) vce(cluster country) iterate(200) 

VES: qui nl ( dLHS`z' = invlogit({a})*ln(D`y'/L.D`y') + (1-invlogit({a}))*ln( (C`x'+ {b}* D`y')/(L.C`x'+ {b}*L.D`y') 

) + ${TIME}) if !missing(dLHS`z',C`x',D`y',L.C`x',L.D`y'), initial(a 0.01 b 1) vce(cluster country) iterate(200) 

VES for Nuclear and CapDelay (𝛼̂ ≫ 0) : qui nl ( dLHS`z' = {a}*ln(D`y'/L.D`y') + (1-{a})*ln( 

(C`x'+ {b}* D`y')/(L.C`x'+ {b}*L.D`y') ) + ${TIME}) if !missing(dLHS`z',C`x',D`y',L.C`x',L.D`y'), initial(a 0.1 b 1) 

vce(cluster country) iterate(200) 

 

Results for CES regressions with unrestricted substitution parameter 𝜓 

TABLE 5 —NONLINEAR CES ESTIMATIONS FOR UNRESTRICTED SUBSTITUTION PARAMETER 𝜓 

 Main W&Scap DirtyCost MinW&S Nuclear CapDelay Lenient Strict 

𝝍 1.591 2.099 2.043 1.387 0.826 0.574 2.264 2.570 

 (0.777) (0.653) (0.463) (0.665) (0.270) (0.220) (1.169) (0.945) 

𝝎 0.565 0.838 0.750 0.530 0.287 0.275 0.819 0.929 

 (0.320) (0.135) (0.0850) (0.284) (0.159) (0.113) (0.234) (0.0749) 

         

Regressors 23 23 23 23 23 23 23 23 

Obs 226 226 226 171 226 226 351 91 

Regions 14 14 14 14 14 14 22 7 

Standard errors are in parentheses. 

 

Robustness checks for outlier regions and changes in start/end years 

The robustness of the main CES specification is tested in two ways, shown in 

Figure 4. First, each region is excluded from the panel, making 14 central estimates 

(“exclude 1 region”). Second, six estimates show results when the starting year 

changes from 2000 to 1997, 1998 or 1999 or the ending year is changed from 2020 

to 2017, 2018 or 2019. Unsurprisingly, results are more sensitive to final years than 

initial years, as W&S uptake is recent. The only results outside one standard 

deviation of the main estimate are when the final year is 2017 or 2018. Note that 

 

23
 Note the use of invlogit which restricts 0 < 𝜓 < 1 rather than 𝜓 < 1, however negative values of 𝜓̂ are never estimated 

when 𝜓 is unrestricted. 
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standard errors for 𝜓̂ in these two regressions are large (0.97 and 1.45), and the 

estimates 𝜔̂ are very low (0.03 and 0.06), indicating potential difficulty in 

estimating 𝜓 due to indeterminacy as 𝜔 approaches zero.  

 

 

FIGURE 4: ROBUSTNESS CHECKS FOR THE MAIN CES SPECIFICATION 

The primary y-axis shows estimates for the substitution parameter 𝜓 and the secondary y-axis shows corresponding estimates 

for the elasticity of substitution 𝜎. “main” shows the central estimates for the main CES regression and standard error. 

“exclude 1 region” shows  𝜓 estimates when one region is excluded. “change start/end years” shows when the first year is 

1997, 1998 or 1999, or the last year is 2017, 2018 or 2019. 
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