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1 Introduction

The isolation of shocks, and the analysis of economic outcomes using them, is a major fo-

cus of macroeconomics. This approach is also prevalent in many other parts of economics.

Dynamic Stochastic General Equilibrium (DSGE) and Structural Vector AutoRegression

(SVAR) models are two of the workhorse approaches of modern macroeconomics and both

focus on shocks. A crucial assumption in such analyses is a lack of contemporaneous cor-

relation between shocks. If this does not hold one cannot say which shock is providing

the explanation. Suppose, for example, that the monetary and fiscal policy shocks were

correlated. In this circumstance we cannot isolate the impact of a monetary policy shock;

instead we have to vary a package of shocks, since one shock cannot be changed without

moving the other. These “packages” might be described as “mongrel shocks” - Canova and

Ferroni (2019) - as they have no clear interpretation. The contribution of this paper is to

demonstrate instances when these mongrel shocks must occur.

Estimated DSGE and SVAR models initially had the number of model shocks equaling

the number of observed variables; a noteworthy example being Smets and Wouters (2007).

It was recognized that having too few shocks was an issue, as that would imply a singularity

in the covariance matrix of observable variables. Such a restriction enabled estimation via

maximum likelihood. The likelihood was constructed using the one-step prediction errors of

the observed variables, namely ηt = yt − Et−1(yt), where Et−1 is the expectation of a vector

of observables yt conditioned on their past history. These predictions errors could be readily

obtained from the Kalman filter once the model was placed in a state-space form.

More recently, there have been an increasing number of DSGE models where the number

of model shocks exceeds the number of observable variables, a situation we will refer to as

excess shocks. The model shocks are often taken to be autoregressive processes. Consequently

it is the innovations to these shocks that need to be uncorrelated for there to be a clear

interpretation. They must also have no serial correlation; otherwise they are not innovations.

Moreover, in addition to model shocks that have an economic interpretation other shocks
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are often included so as to improve the model’s fit to the data. Three examples show this:

1. Measurement errors. The model is yt = y∗t + ε1t where y
∗
t is a latent variable driven

by a shock ε2t which might be called (say) technology. Here ε1t may be a measurement error

and there are two shocks εjt, j = 1, 2, for a single observable yt.

2. Indeterminancy. Here there are a certain number of model shocks when the solution

is determinate and these could equal the number of observable variables, but when there is

indeterminancy sunspot shocks could enter the solution, and so the total number of shocks

could exceed the observables.

3. News shocks. In these cases one generally ends up with more shocks than observables,

e.g. in Christiano et al. (2014) there are 12 observed variables but 20 model shocks, the

difference being due to the presence of eight news shocks. The news shocks are correlated

with each other but they have a non-singular covariance matrix, i.e. do not have perfect

correlation.

Beyond DSGE models, there are many other examples:

1. Markov Switching. Here the model is yt = a+ bzt + ε1t and the zt is a latent Markov

process driven by a binary shock. Often this is applied to a single observed series yt while

in this case there are two shocks.

2. Unobserved-Components (UC) models. These decompose a single series into two

components by using a model for the components. Often these components are called trend

and cycle, or permanent and transitory. A classic example is the derivation of the Hodrick-

Prescott (HP) filter (Hodrick and Prescott 1997). Placed in state-space form and estimated

the shocks produced are the estimated trend and cyclical components. Again there are more

shocks than observed variables.

3. Time-varying parameters. The simplest of these would be yt = βt + ε1t where βt is

stochastically varying and driven by an extra shock ε2t.

4. Stochastic-volatility models. For example, let yt = ε1tσt with Δlogσ2
t = ε2t. Then

Δ(log y2t ) = Δ log ε21t + ε2t and there are two shocks but one observable.
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Now in the estimation of these models the assumptions made about the innovations into

the shocks are held to be correct. If the model is incorrect then the assumptions above

may be false for the measured shock innovations emerging after estimation. To avoid such

specification issues in this paper we will frequently assume that the assumptions made about

the model shocks are actually correct, i.e. the Data Generating Process (DGP) used to

describe the shocks is the correct one. We might then expect that in large samples, and no

excess shocks, the shock innovations estimated from the data would have the properties of

no contemporaneous and serial correlation, provided the model is identified. The concern of

this paper is whether this remains true when there are more shocks than observable variables

used in estimation.

We show that when there are more shocks than observed variables, the measured shock

innovations - those obtained using the data - do not have the same properties as the model

shock innovations. In the event that the shocks are constructed using contemporaneous data,

i.e. are filtered, then their innovations have a singular multivariate spectrum - unlike the

spectrum of the innovations in the DGP - and this shows up as bivariate contemporaneous

correlations. Additionally, the innovations may be serially correlated. These results hold

regardless of whether the shocks are filtered or smoothed, although the correlations can

differ quantitatively. Essentially, when excess shocks exist mongrel shocks will occur.

It should be said from the outset that this is not an issue with the estimation methodology

or identification. It may be that the model is unidentified, even when there are no excess

shocks. Nor is it a consequence of sample size. It is an issue of partial information. Indeed, to

avoid complexities such as weak identification we will frequently assume that the innovations

to the model shocks are uncorrelated and all parameters of the model are known. The issues

that arise are those of shock separation. If all one wants to do is to estimate a model and

test various restrictions then this can be done with excess shocks (ignoring any identification

problems). However, excess shocks end up causing the measured shock innovations to have

properties that the model shock innovations do not have. This is particularly problematic
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for models whose properties are interpreted using these shocks by examining items such as

impulse responses. An example is the use of impulse responses to understand the dynamics

of DSGE models.

In Section 2 we demonstrate that it is simple to show that the excess shocks will imply

a singular covariance matrix between the estimated shocks when the underlying dynamic

structure is a VAR and all variables are observed. However, many of the models mentioned

above that produce an excess of shocks have unobserved variables and therefore need to

be formulated in a state-space form or its equivalent. Consequently, we show in Section 3

that the measured innovations to shocks found with either the Kalman filter or smoother

also have different properties to those of the model shock innovations. Specifically, the

filtered innovations have a singular spectral density and the smoothed shock innovations are

contemporaneously and, almost certainly, serially correlated.

The presence of correlation in the measured shocks is true not only of models estimated

using the Kalman filter, but also of other filters that produce Et−1(yt). It is important to

recognize this as there appears to be a perception that filters can separate the shocks even

when an excess exists; certainly graphs are often presented of the contribution of individual

shocks to data and techniques such as impulse responses or variance decompositions are used.

These require contemporaneously and serially uncorrelated innovations, properties which the

data-based shocks do not have, unlike the model shocks of the DGP.

The fundamental problem is that while the Kalman filter, for example, enables the com-

putation of an estimate of ηt, this is a combination of the data and all the shocks (and their

lags). Consequently, knowledge of ηt alone cannot be used to separate the shocks when there

are more shocks than observables. It may be possible to separate some of the shocks, but

not all of them. Unfortunately this is case-dependent and always needs to be checked.

Section 4 presents several examples, initially allowing the model variables to be I(0), and

subsequently having a mixture of I(1) and I(0) variables. We find that many unobserved

component models where shock innovations are assumed to be uncorrelated (and are that in
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the DGP) result in measured innovations that are correlated both contemporaneously and

serially. For example, this is the case for both the one-sided and two-sided HP filter. It has

often been noted that the UC model that can deliver the HP filter assumes contemporane-

ously and serially uncorrelated innovations into the permanent and transitory components,

and yet the estimated transitory component shock has a large amount of serial correlation.

We show that even when the DGP has uncorrelated innovations excess shocks will result

in the estimated innovations having serial correlation, and that the filtered trend and cycle

innovations are perfectly correlated.

We present an empirical example of a small-scale DSGE model from the literature, Ireland

(2011), to demonstrate the magnitudes of the correlations among the empirical innovations

which may result from having excess shocks. These correlations can be sizable, making

interpretation of the shocks difficult.

Finally, in Section 5 we address several potential issues that may be raised about excess

shocks. In particular, we show that excess shocks are often a consequence of introducing

measurement error; that the associated correlations will occur regardless of whether maxi-

mum likelihood or Bayesian methods are used; and this holds regardless of whether there is

a small or large sample of data. Section 6 concludes.

2 Partial Information and Structural Shock Estima-

tion for SVAR-Type Structures

Excess shocks arise due to partial information, i.e. there are not enough observables to

separate the shocks. Consider a n × 1 vector of observable variables yt that relate to a

m × 1 vector of shocks εt as yt = Aεt. Here εt are the model shocks. We assume that an

excess of shocks exists, i.e. m > n, A is known and εt is an innovation with the properties

εt ∼ N(0, Im), and E(εtε
′
t−j) = 0, j > 0.

The measured shock innovations need to be found from the data. Generally we want
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to compute these with some information set F as E(εt|F ). If we use information up to t

then we would have filtered estimates Etεt = E(εt|y1...yt), while smoothed estimates are

ET εt = E(εt|y1...yT ), where the latter use all the data. In this case, with only observed

variables, E(εt|F ) is the same for F = t or T, and so we will designate the measured shock

innovations as Etεt, while εt will be the model shock innovations.

There is no unique solution for Etεt in this instance. One solution is to use the generalized

inverse to produce Etεt = A+yt, where A
+ is a g-inverse (that is, A+ is m× n and satisfies

AA+A = A) whose rank must be the smaller of m or n.1 In practice of course we would

have to estimate A, and then Etεt = Â+yt, where the ˆ denotes it is an estimate, but we

have assumed that A is known. It follows that the var(Etεt) must be singular since it is

A+ΩA+, Ω = cov(yt) only has rank n, and the rank of the product of two matrices is the

minimum of the rank of each, so n is the maximum possible rank and it is less than m. Such

a circumstance is probably what led Ravenna (2007), in the context of understanding the

relationship between DSGE and SVAR models, to state “..it will not be possible to map yt

into a higher-dimension vector of orthogonal shocks” (p. 2051).

This situation produces mongrel shocks. The Etεt must be correlated, so as to reduce

the rank of the covariance matrix of it down to that of the covariance matrix of yt. Accord-

ingly, variance decompositions which assume that the shocks are uncorrelated have no direct

connection with the data as the empirical shocks are correlated due to a singularity in their

covariance matrix. In a similar vein, in practice researchers often assume that Etεt have the

same properties as εt when presenting impulse responses, and so vary an element of Etεt

separately from the other shocks to examine its impact on the system. However, this is a

hypothetical experiment relevant to the DGP model shocks, not those coming from the data,

as one cannot vary elements of Etεt without changing others.

1The Moore-Penrose g-inverse additionally requires that A+ satisfies A+AA+ = A+, (AA+)H = AA+,
and (A+A)H = A+A, where H denotes the conjugate transpose; see Campbell and Meyer (1991). When
m > n the Moore-Penrose g-inverse minimizes the Euclidean norm of the error yt − Aεt, but other norms
would be possible.
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Note that the same result applies if yt instead follows a VAR(1):

yt = B1yt−1 + Aεt,

where B1 are coefficients. In this case the smoothed and filtered shocks are again the same so

that Etεt = A+ηt; recall ηt are the one-step prediction errors. Again the covariance matrix

of Etεt is singular even if that of ηt is not. Allowing some of the εt to be correlated during

estimation does not solve the problem; in order to match the singularity of the covariance

matrix of Etεt it would be necessary for the covariance matrix of εt would also need to be

singular, and this would mean that one of the model shocks should be deleted. The only

way to avoid the singularity is to increase the dimension of yt without changing the number

of shocks.

3 Partial Information and Shock Estimation for State-

Space Forms

Many estimated models do not have the structure of a finite-order VAR. Generally this

occurs as a result of unobservable variables, which are effectively replaced by combinations

of the lags of all the observables, and this is done by using a State-Space Form (SSF). We

now consider this case, using the following SSF:

zt = D1ψt +D2ψt−1 +Rεt (1)

ψt = Mψt−1 + Cεt. (2)

Here Equations (1) and (2) are the observation and state equations respectively, zt are the

n× 1 observed variables, ψt the p× 1 core model variables, and εt the m× 1 vector of shock

innovations which are assumed to be N(0, Im). By “core” model variables we mean those
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that cannot be substituted out. DSGE models, for example, often have variables that can be

substituted out using identities included in the model. It must be that p ≥ n and with excess

shocks m > n. Also, to reiterate, in DSGE models the shocks frequently are autocorrelated;

we are focussing on their innovations. In most cases p > m. Nimark (2015) shows that the

filtered estimate of ψt, Etψt, given the data to time t, and the system in Equations (1) and

(2), evolves as

Etψt = ΦtEt−1ψt−1 +Ktzt (3)

Kt = [MPt−1|t−1Ψ
′ + CC ′D′

1 + CR′][ΨPt−1|t−1Ψ
′ + ΛΛ′]−1 (4)

Pt|t = Pt|t−1 −Kt[ΨPt−1|t−1Ψ
′ + ΛΛ′]K ′

t (5)

Pt+1|t = MPt|tM ′ + CC ′ (6)

Ψ = D1M +D2,Λ = D1C +R,Φt =M −KtΨ, (7)

where Kt is the gain of the Kalman filter, Pt|t the filtered variance of Etψt − ψt and Pt+1|t

provides the one-step-ahead predictor of the latter.2 Again we see from Equation (3) that

the estimated states are combinations of zt, and so the matrix Kt does not have rank equal

to dim(ψt).

When all model variables are observables D1 = I,D2 = 0 and R = 0, meaning that

Equations (1) and (2) become

zt =Mzt−1 + CEtεt,

and var(Etεt) is singular if dim(Etεt) > dim(zt). Recall Etεt = E(εt|y1...yt) and denotes the

filtered innovations.

Moving to the general case where there are unobservable variables we will assume, for

simplicity, that either there is an infinite sample of data available or the parameters known,

2The variant of the Kalman filter used above, developed by Nimark (2015), allows for a lag of the state
in the measurement equations. This is useful for the models which include permanent shocks, such as we
study in Sub-section 4.2. Alternatively, one could expand the state to include a lag and use the standard
Kalman filter recursions.
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so that we can use the steady-state Kalman filter. Then Equation (3) tells us that

Etψt =
∑
j=0

ΦjKzt−j.

Denoting Et(ψt) as ψt|t, from Equation (2) we obtain an expression for the filtered estimates

of the shock innovations, namely

ψt|t =Mψt−1|t + CEtεt.

Following Kurz (2018, Section 4)

ψt−1|t = ψt−1|t−1 + Pt−1|t−1Ψ
′F−1

t (zt −Ψψt−1|t−1)

Ft = [ΨPt−1|t−1Ψ
′ + ΛΛ′].

Hence

ψt|t =M(ψt−1|t−1 + Pt−1|t−1Ψ
′F−1

t (zt −Ψψt−1|t−1)) + CEtεt.

In steady state

ψt|t = Mψt−1|t−1 +MPΨ′F−1(zt −Ψψt−1|t−1)) + CEtεt

= M(I − PΨ′F−1Ψ)ψt−1|t−1 +MPΨ′F−1zt + CEtεt

= Aψt−1|t−1 +Bzt + CEtεt,

with A and B implicitly defined. As Etψt = ψt|t, using Equation (3) this gives an expression

for the filtered innovations Etεt as the solution to

∑
j=0

ΦjKzt−j = A
∑
j=1

Φj−1Kzt−j +Bzt + CEtεt,
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that is,

Etεt =
∑
j=0

Γjzt−j (8)

Γ0 = C+(K +B),Γ1 = C+(Φ− A)K,Γ2 = C+(Φ− A)ΦK...

The spectral density of Etεt is then |Γ(λ)2|fyy(λ) and has rank equal to fyy(λ). When

there are more shocks than variables it is rank deficient. Equation (8) also suggests that the

filtered innovations may have serial correlation.

The central issue can be seen from looking at the one-step prediction error for zt, ηt.

From Kurz (2018, Equation 4.7), this is

ηt = zt − Et−1(zt)

= Ψφt−1 + (D1C +R)εt,

where φt = ψt − Etψt. His Equation (4.8) gives an expression for φt

φt = (M −KtΨ)φt−1 + (C −Kt(D1C +R))εt (9)

= J1tφt−1 + J2tεt. (10)

Hence ηt is a linear combination of all the shocks εt−j. If one used a steady-state Kalman

filter then J1t and J2t will be constant. Now the log likelihood depends directly on ηt so

that, once we know η1, ..., ηT , we know the likelihood. Because ηt depends in a linear form on

{εk}tk=1, when there is an excess of model shocks, i.e. more εt than observables yt, we would

need to recover Etεt with a g-inverse, as in the VAR case. This means that the covariance

matrix of Etεt is singular and it leads to correlation between the empirical shocks.

Kurz (2018, equation 4.11) shows that the smoothed states are obtained from the recur-
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sion

ETψt = ψt|T = ψt|t + Pt|tτ t, (11)

τ t = G1ηt+1 +G2τ t+1, (12)

where G1 and G2 are functions of the SSF parameters in Equations (1) and (2). This means

that the smoothed shocks will also have contemporaneous correlation. As the expression for

τ t solves to be a weighted average of ηt beyond t, and the ηt are uncorrelated, τ t is serially

correlated, and hence the smoothed shocks will be as well. Their covariance matrix may, or

may not, be singular.

4 Some Examples

4.1 A Basic Unobserved-Components Model

To illustrate the consequences of an excess of shocks in a stationary SSF, we first consider

a simple example where the DGP for zt, the observed variable, is zt = yt, with yt = ut + vt,

that is, the states are not autocorrelated. Let each of the uncorrelated model shocks have a

known variance of unity so there are no parameters to estimate and therefore no identification

issues.

The SSF of this DGP is εt =

⎡
⎢⎣ ut

vt

⎤
⎥⎦ , ψt =

⎡
⎢⎣ ut

vt

⎤
⎥⎦ ,M = 0, D1 =

[
1 1

]
, C = I,

and R =

⎡
⎢⎣ 0

0

⎤
⎥⎦. The filtered shocks can be obtained using Equations (3)-(7), yielding

Kt =

⎡
⎢⎣ .5

.5

⎤
⎥⎦, and hence v̂t = ût = .5yt as zt = yt. Accordingly, the estimated filtered

shocks must be perfectly correlated even though the model shocks (i.e. those in the DGP) are
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uncorrelated.3

Turning to the impulse responses, the response of yt to a one standard deviation shock in

ut in the model is unity. Now the standard deviation of the estimated shock is ût =
1√
.5
, as

the perfect correlation of the empirical shocks implies yt = 2ût. Consequently, the response

of yt to a one standard deviation shock in ût is
√
2, which is 40% higher than that to ut. The

problem is that the correlation of the filtered shocks means that one will no longer get the

same impulse responses as to the model shocks.

Now consider a model

yt = y1t + y2t

y1t = ρy1t−1 + ε1t

y2t = σε2t,

where the innovations ε1t and ε2t are assumed to be n.i.d.(0, I2), i.e. this is the DGP. This

is an unobserved components model. Since we assume that all parameters of the DGP are

known, we can write the model as

zt = (1− ρL)yt = ε1t + σε2t − ρσε2t−1.

To estimate the two innovations ε1t and ε2t from the one observed variable zt we put the

model into its SSF. So ψt equals

⎡
⎢⎣ ε1t

ε2t

⎤
⎥⎦ and the matrices are M = 0, D1 =

[
1 σ

]
, D2 =

[
0 −ρσ

]
, C = I, and R = 0.

Using Equation (3), the estimated filtered shocks evolve as

Etψt = −KtD2Et−1ψt−1 +Ktzt.

3If the variances of the shocks were not unity K would have different elements, but that does not change
the outcome that each measured shock is proportional to zt.

13



Equation (4) gives the Kalman filter gain as

Kt = D′
1[D2Pt−1|t−1D

′
2 +D1D

′
1]

−1,

and

(D2Pt−1|t−1D
′
2 +D1D

′
1)

−1 = (ρ2σ2P22,t−1|t−1 + 1 + σ2)−1.

So this is a scalar, ct, and it means that Kt =

⎛
⎜⎝ ct

σct

⎞
⎟⎠. Consequently, Φ = −KtD2 =

⎡
⎢⎣ 0 ctσρ

0 ctσ
2ρ

⎤
⎥⎦ and Etψt evolves as

Etψ1t = ctσρEt−1ψ2t−1 + ctzt

Etψ2t = ctσ
2ρEt−1ψ2t−1 + ctσzt,

giving Etψ1t = σEtψ2t. This implies that the estimated filtered innovations Etε1t and Etε2t

are perfectly correlated, something that is not true of the DGP innovations ε1t and ε2t. Later

we will see that the same result emerges in many UC models with a single observed variable

but more shocks, and the proof is the same as above.

It is also the case that there is serial correlation in the filtered innovations. Recall ψt

equals

⎡
⎢⎣ ε1t

ε2t

⎤
⎥⎦ and in the steady-state of the expression for their filtered estimates, Equa-

tion (3), the coefficient on the first lag is Φ = −KD2, where K is the steady-state gain of

the Kalman filter.4 When σ = 1 and ρ = .9 then this gives Φ =

⎡
⎢⎣ 0 .36

0 .36

⎤
⎥⎦ . Again the inno-

vations of the DGP have no serial correlation. It is the inability to separate the innovations

ε1t|t and ε2t|t when there is only one observed variable which results in serial correlation in

the filtered shock innovations.

4This was also noted by Harvey (1992) for this type of model.
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4.2 A Permanent/Transitory Components Model

We now consider the case where there are possibly I(1) variables. In this instance it is

useful to adopt the modified SSF described in the previous section. The modification is

to the traditional observation equation and involves adding a term D2ψt−1. This is useful

because the observed non-stationary variables will be expressed as growth rates while the

model variables will have been normalized by another I(1) variable to make them I(0), i.e.

they have been stationized.

To give a concrete example of a variable being stationized, in a DSGE model if the

production function is Xt = AtNt, where Xt is output, At a permanent technology shock

and Nt labour (hours), then the model will be expressed in terms of I(0) variables by using

stationized output, Xt

At
. It is the log of this variable that will appear in the model as ψt,

i.e. ψt = xt − at (lowercase denoting logs). These stationized model variables need to be

related to observables, which are growth rates for the I(1) variables, i.e. zt = Δxt. Hence

Δxt = Δψt +at, and this adds a lagged state ψt−1 to the observation equation.

To illustrate the consequences of excess shocks in models with I(1) variables we use a

simple UC model that has been used to measure output gaps; see, for example, Orphanides

and van Norden (2002). Such models decompose a series yt as yt = ypt + yct , where y
p
t is a

permanent or “trend” component of yt and y
c
t a transitory component, often called the cycle

(or output gap). Assumptions have to be made about how these evolve, and we look at the

simplest set:

ψ1t = Δypt = ε1t

ψ2t = yct = ε2t

zt = Δyt = ε1t +Δε2t,

where ε1t and ε2t are n.i.d.(0, 1) and independent of one another. This model implies that

Δyt is a MA(1), Δyt = (1 + αL)ut, and so there are two parameters that can be estimated
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from the data − α and σ2
u − to give estimates of the variances of ε1t and ε2t. However, we

will assume that all of the variance parameters are known so that no issues of identification

arise.

To see the consequences of excess shocks, notice that this is the same model as analyzed

in the previous sub-section, but now with ρ = 1, so the conclusions about singularity of the

covariance matrix of the filtered shock innovations and serial correlation in the smoothed

shock innovations still hold.

The perfect correlation between the estimated filtered shocks has economic implications.

Note that in the simple UC model above the cyclical component - the output gap - is

ε2t. Consequently the estimated output gap and innovations to trend growth are perfectly

correlated, making distinctions between aggregate demand and supply in the data difficult,

even if they do actually exist in the DGP.

Morley et al. (2003) compared the Beveridge-Nelson (BN) definition of the cycle with

that which one would obtain from an UC model. Drawing on Watson (1986), and using an

UC model with uncorrelated innovations as th DGP, nesting the model above, they showed

perfect correlation of the filtered shocks. They did this by noting that the BN decomposition

led to a filtered estimate of the cycle, Ety
c
t , identical to that from the Kalman filter, and it

was already known that the BN trend and cycle innovations were perfectly correlated. They

also show that although a BN decomposition based on an ARIMA model of the observed data

implies a different UC model (and trend estimates), the estimated innovations to the trend

and cycle components of this latter model are also perfectly correlated.5 Our contribution

is to point out that the perfect correlation arises from excess shocks, and so it is a wider

problem than just filtering.

The DGP for the shocks can be changed so that ε1t and ε2t are correlated, e.g. as in the

5Anderson et al. (2006) demonstrate how the BN decomposition can be obtained from a “single source
of error” state-space model (i.e. where the measurement and state equations are driven by a common
innovation; see Snyder 1985). This utilizes the perfect correlation between the innovations. Morley (2002)
provides an alternative state-space approach to computing the BN decomposition, which was adopted in
Morley et al. (2003).
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ARIMA model of zt in Morley et al. (2003). It is then

yt = y1t + y2t

Δy1t = ε1t

y2t = ε2t,

and the correlation between the DGP innovations can be captured with ε1t = ρε2t + v1t,

where v1t and ε2t are uncorrelated and have unit variances. This means

zt = Δyt = ε1t + ε2t − ε2t−1

= ρε2t + v1t + ε2t − ε2t−1.

Setting ψt =

⎡
⎢⎣ v1t

ε2t

⎤
⎥⎦ produces the matrices of the SSF

M = 0, D1 =

[
1 1 + ρ

]
,

R = 0, D2 =

[
0 −1

]
, C = I.

Solving as in the simple UC case of the previous sub-section we find that

Etψ2t = (1 + ρ)Etψ1t,

so the perfect correlation between filtered innovations holds regardless of the correlation

between the DGP innovation processes.6 Morley et al. (2003) note that Wallis (1995)

made the point that the correlations between the DGP innovations and those evident in the

estimated innovations can differ because of estimation. This agrees with our conclusion, as

filtering is estimation of the states.

6The UC model of Clark (1987) has the same feature.
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4.3 The Hodrick-Prescott Filter

The HP filter can be cast as an UC model (see, for example, Harvey and Jaeger 1993). Doing

so enables the analysis of Section 3 to be readily applied to the HP filter. The corresponding

UC model, which we use as the DGP, is

(1− L)2ypt = ε1t

yct = φε2t

yt = ypt + yct .

Note the cyclical component is a multiple (φ) of the innovation ε2t. The parameter φ equals
√
λ and λ =1,600 is common when the HP filter is applied to quarterly data.

The system can be expressed as

zt = (1− L)2yt = ε1t + φ(ε2t − 2ε2t−1 + ε2t−2).

Defining ψt =

⎡
⎢⎢⎢⎢⎣

ε1t

ε2t

ε2t−1

⎤
⎥⎥⎥⎥⎦ the SSF has the matrices

M =

⎡
⎢⎢⎢⎢⎣

0 0 0

0 0 0

0 1 0

⎤
⎥⎥⎥⎥⎦ , C =

⎡
⎢⎢⎢⎢⎣

1 0

0 1

0 0

⎤
⎥⎥⎥⎥⎦ ,

D1 =

[
1 φ 0

]
, D2 =

[
0 −2φ φ

]
.

This leads to filtered innovations Etε2t = φEtε1t, so the filtered trend and cycle innovations

are perfectly correlated. Of course these are shocks in the one-sided HP filter.

The original HP filter was two sided and therefore generated by smoothed, rather than
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filtered, shocks. In Section 3 it was shown that they will have serial correlation even if the

filtered shocks do not. That is, even if the components model used to generate the HP filter

above is the DGP there will still be serial correlation in the smoothed cycle innovations. This

feature has often been observed in the literature for estimates of the cycle implied by the

HP filter but has been interpreted as implying that the assumed UC model is mis-specified.

However, here the serial correlation arises even if the components model used to compute the

HP filter is the DGP and it has innovations with no serial correlation. The serial correlation

in the cyclical component obtained from the HP filter originates from excess shocks and the

problems of extracting them in that case.

As an experiment we simulated data using the model above as the DGP with φ = 40,

i.e. λ =1,600. Consequently the HP filter with a choice of λ =1,600 is the optimal filter. As

predicted, applying it we find that innovations are perfectly correlated with Etε2t = 40Etε1t.

There is little serial correlation in the filtered cycle innovation but large amounts in the

smoothed one. As mentioned above, when this has been seen in data (where ET ε2t is the

extracted cyclical gap), it has often been said it shows that the trend has not been correctly

estimated, and so the cyclical component has to be purged of its serial correlation. But

here the model being used is the DGP and yet there is a large amount of persistence in the

smoothed innovations.

More generally, the class of “structural trend/cycle” models set out by Harvey and Jaeger

(1993) takes the form

yt = μt + yct (13)

Δμt = βt−1 + σ1ε1t (14)

Δβt = σ2ε2t (15)

yct = ρ cosλyct−1 + sinλψ∗
t−1 + σ3ε3t (16)

ψ∗
t = −ρ sinλyct−1 + cosλψ∗

t−1 + σ3ε4t, (17)
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where the εt are N(0, I4). This gives

Δ2yt = ε2t−1 +Δε1t +Δ2yCt . (18)

Harvey (1995) showed that the DGP of yct implies

B(L)yct = (1− ρ cosλL ) σ3ε3t + (ρ sin λL)σ3ε4t, (19)

where B(L) = 1− 2ρ cosλL+ ρ2L2. Hence the DGP for Δ2yt can be written as

B(L)Δ2yt = B(L)ε2t−1 +B(L)Δε1t +

Δ2[(1− ρ cosλL ) σ3ε3t + (ρ sin λL)σ3ε4t].

In general the covariance matrix of the filtered shocks will be singular when yt is scalar. In

Harvey and Jaeger’s application of the model to US GDP σ1 = 0, so that ψt =

⎡
⎢⎢⎢⎢⎣
ε2t

ε3t

ε4t

⎤
⎥⎥⎥⎥⎦ and,

repeating the derivations above, Etε2t and Eε3t are perfectly correlated.

4.4 An Estimated New-Keynesian Model with Excess Shocks

In this section we use an estimated New-Keynesian model from the literature, namely Ireland

(2011), to examine the magnitudes of the correlations among the innovations that excess

shocks can generate in a DSGE model.

Ireland (2011) uses a small-scale New-Keynesian (NK) model to compare the shocks

driving the Great Recession to those of the previous two recessions, and to understand the

slow recovery and the role of the zero lower bound on nominal interest rates. His model has

more shocks than observables. A central aspect of his analysis is using the estimated shocks

to track the recovery, so one needs them to be uncorrelated in order to say which shock
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is responsible. As we have said in previous sections this will not be possible. Ireland also

presents variance decompositions assuming that the estimated shocks are uncorrelated, so

that exercise is not using the properties of the data-based shocks, but simply the hypothetical

ones in his model.

The model consists of three key equations: an IS equation, a NK Phillips Curve, and a

Taylor rule. There are four shocks: preference at, technology Zt, cost push êt and monetary

policy εrt. The technology shock is permanent, while the remainder are transitory. For

completeness, the model equations are:

ât = ρaât−1 + εat, (20)

(z− βγ)(z− γ)λ̂t = γzŷt−1 − (z2 + βγ2)ŷt + βγzEt(ŷt+1) + (z− βγρa)(z− γ)ât − γzẑt, (21)

λ̂t = r̂t + Et(λ̂t+1)− Et(π̂t+1), (22)

êt = ρeêt−1 + εet, (23)

ẑt = εzt, (24)

(1 + βα)π̂t = απ̂t−1 + βEt(π̂t+1)− ψλ̂t + ψât + êt, (25)

r̂t − r̂t−1 = ρππ̂t + ρgĝt + εrt, (26)

ĝt = ŷt − ŷt−1 + ẑt, (27)

0 = γzq̂t−1 − (z2 + βγ2)q̂t + βγzEt(q̂t+1) + βγ(z − γ)(1− ρa)ât − γzẑt, (28)

and

x̂t = ŷt − q̂t. (29)

The variables in the model are a Lagrange multiplier coming from the consumer’s budget

constraint λt ; output yt; the growth rate of technology zt; inflation πt; interest rate rt; output

growth gt; the efficient level of output qt and the output gap xt. Some of these variables
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have been normalized by the non-stationary technology Zt so as to have a well-defined path

to log-linearize about. ˆdenotes a log deviation from steady-state.

The parameters are the autocorrelation coefficients for the respective shock processes (ρa

ρe); the steady-state growth rate of technology z; a discount factor β; an internal habits

intensity γ; the degree of forward-looking behavior in price setting α; and interest rate rule

parameters on inflation and growth (ρπ and ρg).

Equations (20), (23) and (24) represent three of the model shock processes and the

fourth shock εrt is that for monetary policy. The innovations εrt, εzt etc., are all assumed to

be uncorrelated and to have no serial correlation. Equations (21) and (22) together produce

the NK IS curve. Equation (25) is a NK Phillips Curve. Equation (26) is the interest rate

rule. Finally, Equation (29) is the output gap, with the natural rate of output defined by

Equation (28).

Ireland estimated the model using maximum likelihood with three observed variables:

output growth, inflation and the interest rate, using the sample 1983:1 to 2009:4. As there

are four model shocks, the model has more shocks than observed variables.

We begin by replicating Ireland’s parameter estimates exactly; the Maximum Likelihood

Estimates (MLE) are presented in the left-hand side of Table 1.7 As he found, the estimates

of the two parameters - the degree of backward-looking behavior in price setting, α, and the

degree of autocorrelation in the cost-push shock, ρe, - are at the boundary, and consequently

we impose those values. In later variants, however, we will relax the restriction on the

autocorrelation of the cost-push shock.

Table 2 reports the correlations among the estimated shock innovations, both filtered and

smoothed. As predicted the filtered shocks have a singular covariance matrix, but this is not

the case for smoothed shocks. It is apparent that there are some sizable bivariate correlations

- for example, focusing on the filtered shocks, the correlation between the cost-push and

technology shock is −0.64; for the cost-push and preference shock it is 0.46. The former

7The standard errors, however, are slightly different as Ireland bootstraps the model, whereas we do not.
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Table 1: Parameter Estimates: Maximum Likelihood

Replication Excluding Preference Shock Adding Hours Worked
Parameter Estimate Estimate Estimate

γ 0.390 0.942 0.647
(0.077) (0.042) (0.054)

ρπ 0.415 0.419 0.439
(0.046) (0.044) 0.050

ρg 0.127 0.015 0.043
(0.025) (0.013) (0.022)

ρa 0.980 0.000 0.861
(0.025) — 0.043

ρe 0.000 0.927 0.861
— (0.030) (0.043)

Standard deviations of the shocks
σa 0.087 0.000 0.033

(0.102) — 0.005
σe 0.002 0.004 0.009

(0.0002) (0.001) 0.001
σẑ 0.010 0.110 0.005

(0.002) (0.077) (0.0004)
σr 0.001 0.001 0.001

(0.0001) (0.0001) (0.0001)
Standard errors are shown in parentheses.

correlation persists into the smoothed shocks, becoming -.56. So the shocks that Ireland

estimates are mongrel shocks and, in particular, the contribution of empirical technology and

cost push shocks cannot be separated. Consequently, an impulse response of an observed

variable to a technology shock obtained from this model is a hypothetical experiment; in the

estimated shocks it would have to be accompanied by an impulse to the cost-push shock.

In order to make the number of shocks equal to the number of observed variables either

a shock could be omitted or an observed variable added. We do both. In the first case, we

omit the preference shock. To be clear, this does not reflect a belief that it is unimportant,

but is a way to examine the implications of eliminating the excess of shocks. In the second

case, we add hours worked.8 These result in several changes to the parameter estimates, in

particular that the intensity of internal habits increases (γ), and the autocorrelation of the

8Adding hours worked was done by Pagan and Wickens (2019) for a related model, Ireland (2004). Hours
worked can be substituted out of the model equations since the production function is linear in observed
hours and so these can be mapped to stationized output.
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Table 2: Properties of the Estimated Shock Innovations

Replication Excluding Preference Shock Adding Hours Worked
Shock innovation correlations

Filtered
εa εe εẑ εr εa εe εẑ εr εa εe εẑ εr

εa 1 0.46 0.38 0.09 — — — — 1 -0.27 0.29 0.14
εe 0.46 1 -0.64 0.22 — 1 0.09 0.12 -0.27 1 -0.09 -0.40
εẑ 0.38 -0.64 1 -0.15 — 0.09 1 0.15 0.29 -0.09 1 0.05
εr 0.09 0.22 -0.15 1 — 0.12 0.15 1 0.14 -0.40 0.05 1

Smoothed
εa 1 0.15 0.36 0.13 — — — — 1 -0.27 0.29 0.14
εe 0.15 1 -0.56 0.00 — 1 0.09 0.12 -0.27 1 -0.09 -0.40
εẑ 0.36 -0.56 1 -0.20 — 0.09 1 0.15 0.29 -0.09 1 0.05
εr 0.13 0.00 -0.20 1 — 0.12 0.15 1 0.14 -0.40 0.05 1

Shock innovation first-order autocorrelations
Filtered Smoothed Filtered Smoothed Filtered Smoothed

εa 0.32 0.39 — — 0.02 0.02
εe -0.14 -0.53 -0.09 -0.09 0.81 0.81
εẑ -0.15 -0.05 -0.46 -0.46 -0.03 -0.03
εr 0.55 0.55 0.59 0.59 0.58 0.58

cost-push shock increases (ρe) (see Table 1).

Turning to the correlation implications for the estimated innovations to the shocks when

there are no excess shocks, they are generally considerably lower when the preference shock

is excluded (Table 2). Focusing on this variant of the model, a particularly interesting case is

the correlation between the cost-push and technology shocks, which drops down in absolute

value from −0.64 to 0.09. The drop in the correlations is less pronounced when hours worked

are added as an observed variable. It is noteworthy that in both variants even when there are

no excess shocks there are non-zero estimated correlations. One explanation as to why this

can occur is presented by Liu et al. (2018), namely the fact that DSGE models typically are

over-identified. Another explanation, of course, is possible mis-specification of the model.

In the replication of Ireland’s estimates both the filtered and smoothed shocks display

considerable autocorrelation (bottom panel of Table 2). For example, the smoothed cost-

push and monetary policy innovations have first-order autocorrelation coefficients of -0.53

and 0.55. When we omit the preference shock or add hours worked it is still present (e.g. in

the monetary policy shock), suggesting the model may be mis-specified.
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Consequently, it is useful to abstract from model mis-specification so as to isolate the

implications of excess shocks. To do this a Monte Carlo experiment is conducted. More

precisely, we generate samples of 108 observations (as in Ireland 2011) by simulating the

model with independent uncorrelated shock innovations, and then estimate the model using

maximum likelihood and the simulated data. This is done repeatedly until we obtain 1, 000

estimates where the second-derivative matrix of the log likelihood at the optimum was neg-

ative definite. The model used for simulation is the DGP - there is no mis-specification. We

produce two sets of estimates - one when Ireland (2011) is the DGP and therefore there are

excess shocks, and the other when the DGP omits the preference shock.

Table 3: Shock Innovation Correlations: Monte Carlo Analysis With and Without Excess
Shocks

With Excess Shocks Without Excess Shocks
Filtered

εa εe εẑ εr εa εe εẑ εr
εa 1 0.54 0.32 -0.01 — — — —

[0.39,0.67] [0.16,0.47] [-.07,0.06]
εe 0.54 1 -0.62 0 — 1 0 -0.01

[0.39,0.67] [-0.74,-0.48] [-0.08,0.08] [-0.07,0.08] [-0.09,0.07]
εẑ 0.32 -0.62 1 0 — 0 1 0.01

[0.16,0.47] [-.74,-0.48] [-.09,0.08] [-0.07,0.08] [-0.14,0.16]
εr -0.01 0 0 1 — -0.01 0.01 1

[-0.07,0.06] [-0.08,0.08] [-0.09,0.08] [-0.09,0.07] [-0.14,0.16]
Smoothed

εa 1 0.33 0.28 -0.01 — — — —
[0.20,0.47] [0.13,0.44] [-0.07,0.06]

εe 0.33 1 -0.39 0 — 1 0 -0.01
[0.20,0.47] [-0.51,-0.26] [-0.11,12] [-0.07,0.08] [-0.09,0.07]

εẑ 0.28 -0.38 1 0 — 0 1 0.01
[0.13,0.44] [-0.51,-0.26] [-0.10,0.09] [-0.07,0.08] [-0.14,0.16]

εr -0.01 0 0 1 — -0.01 0.01 1
[-0.07,0.06] [-0.11,0.12] [-0.01,0.09] [-0.09,0.07] [-0.14,0.16]

Notes: The table presents the mean estimate, together with the 5th and 95th percentiles (in brackets).
“Without Excess Shocks” refers to the model excluding the preference shock. Sample size is 108
observations. 1,000 successful replications used.

The results are stark (Table 3). When there are excess shocks but no model mis-

specification, so that the shock innovations are uncorrelated, the estimated shocks display

sizable bivariate correlations. For example the mean estimate of the correlation between the
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cost-push and technology shocks is -0.62. Alternatively, in the absence of excess shocks it is

zero. Such a dramatic drop is evident across many of the correlations.

The means of the first-order autocorrelations in the shock innovations from the Monte

Carlo analysis are reported in Table 4. These autocorrelations are generally considerably

smaller than those for shocks estimated from the actual data, which are reported in Table 2.

This is true when there are no excess shocks and excess shocks. These results suggests

that: firstly, in the instance of the Ireland (2011) model, most of the autocorrelation in the

estimated shocks stems from model mis-specfication; and secondly that the main consequence

of having excess shocks in this instance is the generation of sizable bivariate correlations

among them.

Table 4: Shock Innovation First-order Autocorrelations: Monte Carlo Analysis With and
Without Excess Shocks

With Excess Shocks Without Excess Shocks
Filtered Smoothed Filtered Smoothed

εa 0 0.087 — —
[-0.137,0.139] [-0.058,0.226] — —

εe -0.003 -0.347 -0.006 -0.006
[-0.123,0.115] [-0.477,-0.210] [-0.159,143] [-0.159,143]

εẑ -0.008 0.110 -0.008 -0.008
[-0.120,0.110] [-0.021,0.236] [-0.156,0.146] [-0.156,0.146]

εr -0.016 -0.016 -0.020 -0.020
[-0.174,0.132] [-0.174,0.132] [-0.183,0.138] [-0.183,0.138]

Notes: The table presents the mean estimate, together with the
5th and 95th percentiles (in brackets). Sample size is 108
observations. 1,000 successful replications used. “Without
Excess Shocks” refers to the model excluding the preference shock.

5 Some Questions That Might be Asked

5.1 Is This Just a Parameter Identification Problem?

No. It is a consequence of partial information. To emphasize this we consider here a very

simple model, which is a particular case of the more general analysis presented in Section 2.
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Suppose we have one observed variable, y1t, which is a linear function with known parameters

a11 and a12 of two shocks ε1t and ε2t. These are taken to be normally distributed, with known

standard deviations σ1 and σ2. The specification then is

y1t = a11ε1t + a12ε2t. (30)

All parameters are known. There is no parameter identification problem. However, with only

yt observed, excess shocks exist and we do not have enough information to uniquely estimate

ε1t and ε2t separately.

Suppose, instead we have a second observed variable, y2t. This also is a linear function

of the same shocks, with known parameters a21 and a22:

y2t = a21ε1t + a22ε2t. (31)

Equations (30) and (31) can be summarized as a system of equations

yt = Aεt, (32)

where yt ≡ (y1t, y2t)
′, εt ≡ (ε1t, ε2t)

′ and A ≡

⎡
⎢⎣a11 a12

a21 a22

⎤
⎥⎦ . A is known. As long as A is

non-singular, because yt is comprised of two observed variables, y1t and y2t, we now have

enough information to uniquely estimate ε1t and ε2t separately.

5.2 Does Bayesian Estimation of the Parameters Provide a Solu-

tion?

No. Consider Bayesian estimation of the unobserved components model where some priors

could be placed on the variances of the components or on ρ. This will result in some parameter

estimates that will likely be different to the MLE in small samples (and also possibly the
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true values of the parameters in the DGP). However, as seen in our derivation, for any given

value of these parameters there is a singularity of the spectrum of filtered shocks when there

are excess shocks. This is also the case if the parameters are calibrated. If the Bayesian

estimates differ from the MLE estimates there may be different bivariate correlations and

serial correlations in the estimated innovations, but the correlations will still exist. As the

sample size grows of course these differences will disappear as the priors get dominated.

So what differences there are will be specific to the context but they will always feature

correlated innovations when there are excess shocks regardless of which parameter estimates

are used.

To examine the possible consequences in a DSGE context, we re-estimate Ireland’s model

(2011) using Bayesian methods. We assign priors to the estimated parameters using stan-

dard distributions - such as Beta distributions for the autocorrelation coefficients, and In-

verse Gamma distributions for the standard deviations of the shock. We use random-walk

Metropolis Hastings to simulate the posterior with two chains of 300,000 observations, drop-

ping the first 75 per cent as burn-in.9 The resulting parameter estimates, shown in Table 5,

are qualitatively similar to those obtained with maximum likelihood that are reported in

Table 1. Table 5 also presents estimates for the variants without excess shocks.

Again, the smoothed shock innovations are substantially correlated (Table 6). The strong

negative correlation between the innovations to the technology and cost push shock remains,

as does the first-order autocorrelation in many of the innovations. Making the number of

shocks equal to the number of observed variables by eliminating the preference shock, or

adding hours worked as an observed variable, once again generally reduces the bivariate

correlations. Some substantial correlations, however, still exist, as does first-order autocor-

relation, for example, in the monetary policy shock. That these correlations exist even in

the absence of excess shocks suggests the model may be mis-specified.

Once again, in order to abstract from mis-specification we conduct Monte Carlo analysis,

9The acceptance rates for Ireland’s specification are 35.9 and 35.3 per cent. We assess the chains conver-
gence using methods based on Brooks and Gelman (1998).
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Table 5: Parameter Estimates: Bayesian

Prior Replication Excluding Preference Shock Adding Hours Worked
Parameter Posterior Mean & Posterior Mean & Posterior Mean &

90% H. P. D. 90% H. P. D. 90% H. P. D.
γ B(0.5,0.2) 0.418 0.880 0.556

(0.294-0.543) (0.826-0.937) (0.481-0.634)
ρπ G(0.5,0.2) 0.418 0.450 0.396

(0.344-0.490) (0.376-0.521) (0.328-0.461)
ρg G(0.1,0.05) 0.122 0.025 0.108

(0.086-0.158) (0.011-0.039) (0.075-0.141)
ρa B(0.5,0.2) 0.948 0.000 0.938

(0.921-0.982) — (0.906-0.971)
ρe B(0.5,0.2) 0.000 0.870 0.916

— (0.828-0.914) (0.876-0.956)
Standard deviations of the shocks

σa IG(0.001,0.5) 0.045 0.000 0.042
(0.023-0.066) — (0.025-0.060)

σe IG(0.001,0.5) 0.002 0.003 0.002
(0.001-0.002) (0.003-0.004) (0.001-0.002)

σẑ IG(0.001,0.5) 0.010 0.06 0.005
(0.007-0.013) (0.032-0.085) (0.005-0.006)

σr IG(0.001,0.005) 0.001 0.001 0.001
(0.001-0.002) (0.001-0.002) (0.001-0.002)

Notes: Distributions: B - Beta; G - Gamma; IG - Inverse Gamma. B(μ, σ) : μ is the mean and
σ the standard deviation. H. P. D. is Highest Posterior Density interval.

using the posterior mean of Ireland’s model with excess shocks as the DGP (Table 7).10 The

results are similar to those obtained with maximum likelihood presented in Table 3. It is

apparent that sizable correlations persist and autocorrelation is also evident in the estimated

cost-push shock innovations, even though the simulated innovations were independent. This

reflects the presence of excess shocks, and so Bayesian estimation is not a solution, unless

the priors effectively exclude a shock.

5.3 Do Measurement Errors Produce Excess Shocks?

Yes. To isolate the impact of including measurement error we focus on the variant of Ireland’s

model that has only three shocks, that is our baseline model has the same number of shocks

10We use a single chain of 200,000 observations for each sample.
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Table 6: Properties of the Estimated Smoothed Shock Innovations: Bayesian

Replication Excluding Preference Shock Adding Hours Worked
Shock innovation correlations

εa εe εẑ εr εa εe εẑ εr εa εe εẑ εr
εa 1 0.16 0.31 0.08 — — — — 1 -0.01 0.09 0.06
εe 0.16 1 -0.60 -0.01 — 1 0.18 -0.01 0.16 1 -0.27 0.08
εẑ 0.31 -0.60 1 -0.20 — 0.18 1 0.31 0.09 -0.27 1 -0.13
εr 0.08 -0.01 -0.20 1 — -0.01 0.15 1 0.06 0.08 -0.13 1

Shock innovation first-order autocorrelations
εa 0.38 — 0.17
εe -0.56 -0.01 -0.47
εẑ -0.08 -0.41 -0.05
εr 0.55 0.59 0.55
Estimates are at the mean of the posterior.

as observed variables. We then assume that observed output growth is measured with error,

thereby producing a standard form of the corresponding measurement equation:

Δyobst = ĝt + εΔyt . (33)

Here Δyobst is the observed output growth and εΔyt is the measurement error. This formula-

tion, while common, does not maintain co-integration between the model’s output variable

and the observed data - see Pagan and Robinson (2019). Nevertheless using this with the

model which excludes the preference shock yields the parameter estimates reported in Ta-

ble 8. The most noteworthy difference is that the aggressiveness of the monetary policy

response to output growth (ρg), increases.

The consequences of including measurement error for the measured shock innovation

correlations are shown in Table 9. Comparing the left-hand column (without measurement

error) and the right-hand (with) it is apparent that its inclusion results in much more sizable

correlations. These are not only between the measurement error and the model (structural)

shocks - for example, the correlation with the filtered monetary policy shock is 0.43 - but also

between model shocks themselves. The correlation of the innovation of technology growth

and the monetary policy shock is particularly strong (-0.71).
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Table 7: Shock Innovation Properties: Monte Carlo Analysis With Bayesian Estimation

Smoothed
Shock innovation correlations

εa εe εẑ εr
εa 1 0.33 0.20 -0.01

[0.20,0.48] [0.05,0.37] [-0.06,0.03]
εe 0.33 1 -0.47 0

[0.20,0.48] [-0.57,-0.38] [-0.10,0.09]
εẑ 0.20 -0.47 1 0

[0.05,0.37] [-0.57,-0.38] [-0.08,0.06]
εr -0.01 0 0 1

[-0.06,0.03] [-0.10,0.09] [-0.07,0.06]
Shock innovation first-order autocorrelations

εa 0.08
[-0.02,0.19]

εe -0.37
[-0.48,-0.25]

εẑ 0.10
[-0.02,0.21]

εr -0.01
[-0.14,0.11]

Notes: The table presents the mean estimate, together with
the 5th and 95th percentiles (in brackets). Sample size is
108 observations. 100 successful replications used.

In contrast, the estimated shocks in the model including measurement error tend to have

less first-order autocorrelation than when measurement error is excluded. This suggests that

these autocorrelations are being driven by a mis-specified model, consistent with the findings

in Sub-section 4.4.

To isolate the impact of including measurement error we abstract from model mis-

specification by again using a Monte Carlo experiment (Table 10). Excess shocks stemming

from measurement error result in substantial bivariate correlations in the estimated filtered

model shocks. An example of this is that the cost-push and technology shock innovations

have a mean correlation of −0.75. This occurs despite measurement error actually being

present in the DGP.

It is possible to include measurement error and not have excess shocks if the model has less

structural shocks than observed variables. This, however, means that whenever data without

measurement error were to become available, then the model would be stochastically singular
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Table 8: Parameter Estimates: Maximum Likelihood with Measurement Error

Excluding Preference Shock Excluding Preference Shock and
Including Measurement Error

Parameter Estimate Estimate
γ 0.942 0.996

(0.042) (0.003)
ρπ 0.419 0.673

(0.046) 0.108
ρg 0.015 1.26

(0.013) (0.772)
ρe 0.927 0.933

(0.030) (0.029)
Standard deviations of the shocks

σe 0.004 0.004
(0.001) 0.001

σẑ 0.110 0.072
(0.077) (0.046)

σr 0.001 0.001
(0.0001) (0.0001)

σΔy — 0.007
(0.0004)

Standard errors are shown in parentheses.

and therefore could not be estimated with standard likelihood-based methods, although other

methods always exist (e.g. Canova et al. 2014).

In summary, while measurement error is widely used in estimated DSGE models and may

be intuitively appealing, it can result in sizable bivariate correlations between the estimated

shock innovations, impeding their interpretation.

5.4 Are the Results Due to a Small Sample Size?

No. Ireland (2011) is estimated over a short sample, namely 1983:1 to 2009:4 (108 observa-

tions). One concern might be that the sizable correlations among the estimated shocks reflect

this short sample, and would become unimportant with longer-run data. To examine this we

once again use Monte Carlo analysis. We produce one set of estimates with 108 observations

- the same as Ireland (2011) - and another with considerably more (1,000 observations).

We expect that the filtered shocks will have a singular covariance matrix independent of

the sample size, and this is confirmed. The results in Table 11 confirm that the sizable cor-
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Table 9: Properties of the Estimated Shock Innovations: Maximum Likelihood with Mea-
surement Error

Excluding Measurement Error Including Measurement Error
Shock innovation correlations

Filtered
εe εẑ εr εΔy εe εẑ εr εΔy

εe 1 0.09 0.12 — 1 0.25 -0.03 0.14
εẑ 0.09 1 0.15 — 0.25 1 -0.71 0.32
εr 0.12 0.15 1 — -0.03 -0.71 1 0.43
εΔy — — — — 0.14 0.32 0.43 1

Smoothed
εe 1 0.09 0.12 — 1 0.22 -0.05 0.15
εẑ 0.09 1 0.15 — 0.22 1 -0.56 0.14
εr 0.12 0.15 1 — -0.05 -0.56 1 0.29
εΔy — — — — 0.15 0.14 0.29 1

Shock innovation first-order autocorrelations
Filtered Smoothed Filtered Smoothed

εe -0.09 -0.09 0 0
εẑ -0.46 -0.46 0.01 0.02
εr 0.59 0.59 0 0
εΔy — — 0.02 0.02
Note: Excludes preference shock.

relations persist even when longer time-series of data are used in estimation than is typically

available in macroeconomics. For example, with 1,000 observations the mean estimate of

the correlations between the smoothed innovations to the filtered technology and cost-push

shocks is −0.62, even though the DGP innovations are uncorrelated.
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Table 10: Shock Innovation Correlations: Monte Carlo Analysis With Measurement Error

Estimated Model and DGP Includes Measurement Error
Filtered

εe εẑ εr εΔy

εe 1 -0.75 0.32 0.04
[-0.87,-0.61] [0.12,0.53] [-0.12,0.20]

εẑ -0.75 1 0.37 0.04
[-0.87,0.61] [0.25,0.48] [-.13,0.21]

εr 0.32 0.37 1 -0.04
[0.12,0.53] [0.25,0.48] [-0.19,0.12]

εΔy 0.04 0.04 -0.04 1
[-0.12,0.20] [-0.13,0.21] [-0.19,0.12]

Smoothed
εe 1 -0.61 0.18 0.02

[-0.74,-0.46] [0.05,0.34] [-0.13,0.18]
εẑ -0.61 1 0.22 0.02

[-0.74,-0.46] [0.13,0.31] [-0.13,0.19]
εr 0.18 0.22 1 -0.02

[0.05,0.34] [0.13,0.31] [-0.18,0.14]
εΔy 0.02 0.02 -0.02 1

[-0.13,0.18] [-0.13,0.19] [-0.18,0.14]
Notes: the table presents the mean estimate, together with the 5th
and 95th percentiles (in brackets). Excludes the preference shock.
Sample size is 108 observations. 1,000 successful replications used.

5.5 Why Can we Have Excess Shocks with Factor Models?

A factor model is one case where there can be more shocks than observable variables and

the empirical shocks may be uncorrelated. To see why, consider a factor model such as

yit = y∗t + εit,

where yit is an observed variable, y∗t the latent factor and εit an idiosyncratic shock. Now

there are excess shocks. We could estimate the factor and the idiosyncratic shocks as ŷ∗t =

1
n

∑n
j=1 yit and ε̂it = yit − ŷ∗t . The covariance between the estimated factor and the ith
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Table 11: Shock Innovation Correlations: Monte Carlo Analysis Varying the Sample Size

108 Observations 1,000 Observations
Filtered

εa εe εẑ εr εa εe εẑ εr
εa 1 0.54 0.32 -0.01 1 0.54 0.33 0

[0.39,0.67] [0.16,0.47] [-.07,0.06] [0.49, 0.59] [-.27,0.38] [-0.02,0.2]
εe 0.54 1 -0.62 0 0.54 1 -0.62 0

[0.39,0.67] [-0.74,-0.48] [-0.08,0.08] [0.49,0.59] [-0.66,-0.57] [-0.03,0.03]
εẑ 0.32 -0.62 1 0 0.33 -0.62 1 0

[0.16,0.47] [-.74,-0.48] [-.09,0.08] [0.27,0.38] [-0.66,-0.57] [-0.03,0.03]
εr -0.01 0 0 1 0 0 0 1

[-0.07,0.06] [-0.08,0.08] [-0.09,0.08] [-0.02,0.02] [-0.03,0.03] [-0.03,0.03]
Smoothed

εa 1 0.33 0.28 -0.01 1 0.59 0.38 0.02
[0.20,0.47] [0.13,0.44] [-0.07,0.06] [0.29,0.38] [0.24,0.34] [-0.02,0.02]

εe 0.33 1 -0.39 0 0.59 1 -0.57 0.03
[0.20,0.47] [-0.51,-0.26] [-0.11,12] [0.29,0.38] [-0.42,-0.34] [-0.04,0.04]

εẑ 0.28 -0.38 1 0 0.38 -0.58 1 0.03
[0.13,0.44] [-0.51,-0.26] [-0.10,0.09] [0.24,0.34] [-0.42,-0.34] [-0.03,0.03]

εr -0.01 0 0 1 0.02 0.03 0.03 1
[-0.07,0.06] [-0.11,0.12] [-0.01,0.09] [-0.02,0.02] [-0.04,0.04] [-0.03,0.03]

Notes: The table presents the mean estimate, together with the 5th and 95th percentiles (in brackets).
1,000 successful replications used. Estimated with maximum likelihood.

idiosyncratic shock is

cov(ŷ∗t ε̂it) = E[(
1

n

n∑
j=1

yjt)(yit − 1

n

n∑
j=1

yjt)]

= E[(y∗t +
1

n

n∑
j=1

εjt)(εit − 1

n

n∑
j=1

εjt)]

= E[
1

n

n∑
j=1

εjt)(εit − 1

n

n∑
j=1

εjt)]

=
σ2
i

n
− σ2

i

n2

which tends to zero as n→ ∞, i.e. when the number of observables tends to infinity we can

have more shocks than observables. Such is the way with infinity.
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6 Conclusion

Estimating structural shocks is a key aspect of applied macroeconomics, and the conse-

quences of not having enough information to do so were examined. It was shown that when

there are excess shocks - the number of shocks exceeds the number of observed variables -

the estimated structural shocks will be correlated, even when the true (DGP) shocks are

not.

This is a problem of not having enough information, and can occur in models where

all parameters are known and therefore identified. Excess shocks were demonstrated to

occur in a wide variety of models used in macroeconomics. It is particularly important for

models where estimated shocks are used for interpretation, for example, by analyzing impulse

responses. DSGE models are a noteworthy case. Interpretations based on the assumed

properties of the shocks, rather than those of the estimated shocks, can be misleading. When

excess shocks exist an impulse to one shock is an experiment that may not be representative

of the estimated shocks.

The quantitative importance of the consequences of excess shocks was examined with an

estimated New-Keynesian DSGE model from the literature, Ireland (2011). The resulting

correlations among the estimated shocks were shown to be sizable. This occurred regardless

of whether either maximum likelihood or Bayesian estimation methods are used, and whether

there are small or large samples. It was demonstrated that allowing for measurement error

will frequently result in excess shocks and sizable correlations, casting doubt on the usefulness

of that methodology.

The major implication of our analysis is that excess shocks should be avoided. Using

more observed data in estimation or redesigning the model to have less shocks would do

this. Remaining correlations between shocks may then reflect mis-specification and not be a

consequence of trying to extract more information than is possible. At the very least when

there are excess shocks the correlations between the estimated shock innovations should be

reported. It may be the case that one of the shocks is uncorrelated with the others, even if
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they cannot all be. Otherwise, too many shocks spoil the interpretation.
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