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ing average (ARMA) innovations. The conditional mean process has a flexible
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dynamic regression. The ARMA component introduces serial dependence which

renders standard Kalman filter techniques not directly applicable. To overcome

this hurdle we develop an efficient posterior simulator that builds on recently devel-
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1 Introduction

Following the seminal work of Box and Jenkins (1970), autoregressive moving average

(ARMA) models have become the standard tool for modeling and forecasting univariate

time series. More recently, coefficient instability in macroeconomic time series models has

been widely acknowledged (see, e.g., Stock and Watson, 1996; Ludbergh et al., 2003; Mar-

cellino, 2004; Stock and Watson, 2007; Cross and Poon, 2016). For example, Stock and

Watson (2007) show that US CPI inflation is best modeled by an unobserved components

model in which both the transitory and trend equations allow for time-varying volatility.

It is therefore necessary to extend the ARMA framework to allow for the possibility of

heteroscedasticity.

There are two popular approaches to achieve this objective: autoregressive conditional

heteroscedasticity models of Engle (1982)—or their generalized counterparts introduced in

Bollerslev (1986) called GARCH models—and stochastic volatility (SV) models (Taylor,

1994). In a recent paper, Clark and Ravazzolo (2015) put these two classes of models

head-to-head in a forecasting exercise involving a few key US macroeconomic time series.

They find that stochastic volatility models generally provide superior point and density

forecasts across all variables. Thus, SV seems to be a more appropriate specification, at

least for macroeconomic forecasting. In addition, given the historical success of ARMA

models and their more recent time-varying extensions, one might expect a more flexible

class of dynamic models with ARMA and SV errors could further improve the forecast

performance. This idea is partially investigated by Chan (2013), who shows that MA-SV

errors are useful in forecasting US inflation. Nonetheless, it remains to be seen whether

more general ARMA-SV errors can further enhance forecast accuracy.1

With this idea in mind, our objective in this paper is to investigate the forecast perfor-

mance of a new class of ARMA-SV models. By allowing the conditional mean process to

have a flexible state space representation, our general framework is able to accommodate

numerous popular specifications, such as unobserved components and time varying pa-

rameter models, as special cases. Thus, from a methodological perspective, our models

can be viewed as an extension of the unobserved components model in Stock and Watson

(2007) to follow for ARMA errors. In addition, we also extend the recent work of Chan

(2013) to allow for a more flexible error structure.

1Nakatsuma (2000) develops a posterior simulator for estimating ARMA-GARCH models. Thus,
our paper can also be viewed as filling an important gap in completing the econometricians toolbox of
possible ARMA error models.
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A second contribution of our paper is to develop an efficient posterior simulator to es-

timate this new class of models. A major computational hurdle is that the ARMA

component introduces serial dependence into the measurement equation, which makes

standard Kalman filter techniques not directly applicable. To overcome this issue, one

may seek a suitable transformation of the data to make the errors serially independent

(Chib and Greenberg, 1994). Here we take a different route and build upon recent ad-

vances in precision-based algorithms for state space models, which have been shown to be

computationally more efficient than Kalman filter based methods (Chan and Jeliazkov,

2009; McCausland et al., 2011). The key to our efficiency gain is that despite having a

full covariance matrix implied by the ARMA structure, we can work with only sparse

matrices, which substantially speed up the computations. In this way, we are able to

overcome the compuational challenge of having a full covariance matrix and maintain the

same type of advantages obtained by Chan (2013).

A third contribution of our paper is that we provide a substantive forecasting exercise

involving two commonly used inflation measures: CPI and the GDP Deflator, across the

G7 economies. Since inflation plays a key role in modern monetary policy, any forecast

improvement over the standard set of benchmark models will have substantive practical

significance. Our primary result is that the proposed ARMA-SV models generally provide

superior out-of-sample point and density forecasts, and are especially useful for Canada,

France, Italy and the US. From an empirical perspective, given that our study includes

state-of-the-art models such as UC-SV and UC-MA-SV, our analysis can be viewed as

an extension of the results presented in Stock and Watson (2007) and Chan (2013).

The rest of the paper is structured as follows. In Section 2 we present the general ARMA-

SV framework, discuss how this embeds a variety of popular model specifications, and

develop an efficient posterior simulator to estimate this new class of models. In Section 3,

we discuss our application of forecasting CPI and GDP Deflator inflation measures in each

of the G7 countries. We then present the results in Section 4 and conclude in Section 5.
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2 Stochastic Volatility Models with ARMA Errors

Let yt denote a variable of interest at date t, where t = 1, . . . , T . Then, the general state

space representation of the ARMA(p, q)-SV framework is given by:

yt = µt + εyt , (1)

εyt = ϕ1ε
y
t−1 + · · ·+ ϕpε

y
t−p + ut + ψ1ut−1 + · · ·+ ψqut−q, ut ∼ N (0, eht), (2)

ht = ht−1 + εht , εht ∼ N (0, σ2
h), (3)

where the error terms ετt and ut are independent across all leads and lags. Note that

setting ϕi = ψj = 0 for all i = 1, . . . , p and j = 1, . . . , q returns the standard stochastic

volatility framework. Similarly, setting h1 = · · · = hT = c, where c is some constant,

returns the standard ARMA framework.

Equation (1) is referred to as either the measurement or observation equation. It is

composed of a time-varying conditional mean µt and an error terms εy. By choosing a

suitable equation for the conditional mean, it is easily seen that this framework embeds

a variety of popular model specifications. Two such examples are:

1. The autoregressive model:

µt = ρ0 +
m∑
i=1

ρiyt−i (4)

2. The unobserved components model:

τt = τt−1 + ετt , ετt ∼ N (0, σ2
τ ), (5)

Of course, many other frameworks could be considered, such as the standard linear re-

gression model with constant or time-varying coefficients.

Equations (2) and (3) then denote the state equations for the ARMA(p, q) error structure

in which the variance follows a SV process. Notice that, in contrast to GARCH models,

the SV parameter ht enters this specification as an instantaneous volatility of the model.

Moreover, (2) can be rewritten in terms of a polynomial:

ϕ(L)εt = ψ(L)ut,
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where L is the lag operator, ϕ(L) = 1−ϕ1L−· · ·−ϕpLp, and ψ(L) = 1+ψ1L+ · · ·+ψqLq.
As is standard in the ARMA literature, herein we assume that all roots of ϕ(L) stay

outside the unit circle for stationarity, and that all roots of ψ(L) fall outside the unit

circle for invertibility (Chib and Greenberg, 1994).

2.1 Estimation

We estimate the model with Bayesian methods and simulate the joint distributions of

interest through an efficient Metropolis-within-Gibbs sampler that builds upon recent

developments in precision-based algorithms. The main challenge is that due to the ARMA

error structure, the covariance matrix of the joint distribution for y = (y1, . . . , yT )
′ is a

full matrix. Thus, in order to use the conventional Kalman filter, the original data need to

be transformed so that the transformed errors are independent. Here, however, we build

on results in Chan (2013) and employ a direct approach using precision-based algorithms.

The efficiency of our algorithm stems from the fact that despite the covariance matrix

being full, we can work with only banded matrices—i.e., matrices that are sparse and

the few non-zero elements are arranged along the main diagonal. We will discuss this in

more detail in the following subsections.

2.1.1 Likelihood Evaluation

We first investigate the likelihood function of our model and present a fast and simple way

to evaluate it for both Bayesian and maximum likelihood estimation. Since the likelihood

function is the joint distribution of the data, we seek so stack the system of equations in

(1)–(3) over t = 1, . . . , T . To this end, note that (2) can be written as:

Hϕε
y = Hψu, u ∼ N (0,Ωu), (6)

where εy = (εy1, . . . , ε
y
T )

′, u = (u1, . . . , uT )
′, Ωu = diag(eh1 , . . . , ehT ), Hϕ is a T × T

difference matrix and Hψ is a T × T lower triangular matrix with ones along the main

diagonal and ψj on the j-th lower diagonal, j = 1, . . . , q. For example, if we have an
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ARMA(2,2) error structure then Hϕ and Hψ are defined to be:

Hϕ =



1 0 0 0 · · · 0

−ϕ1 1 0 0 · · · 0

−ϕ2 −ϕ1 1 0 · · · 0

0 −ϕ2 −ϕ1 1 · · · 0
...

...
. . . . . . . . .

...

0 0 · · · −ϕ2 −ϕ1 1


, Hψ =



1 0 0 0 · · · 0

ψ1 1 0 0 · · · 0

ψ2 ψ1 1 0 · · · 0

0 ψ2 ψ1 1 · · · 0
...

...
. . . . . . . . .

...

0 0 · · · ψ2 ψ1 1


.

Since Hϕ is a lower triangular matrix with ones along the main diagonal, |Hϕ| = 1 for

any ϕ = (ϕ1, . . . , ϕp)
′. Thus, Hϕ is invertible and (6) can be written as:

εy = H−1
ϕ Hψu. (7)

Finally, stacking (1) over all dates and substituting (7) gives:

y = µ+H−1
ϕ Hψu, (8)

where µ = (µ1, . . . , µT )
′. By a change of variable, it follows that:

(y |ϕ,ψ,µ,h) ∼ N (µ,Ωy),

where ψ = (ψ1, . . . , ψp)
′, h = (h1, . . . , hT )

′ and Ωy = H−1
ϕ HψΩu (H

−1
ϕ Hψ)

′. Thus, the

log-likelihood function is given by:

log p(y |ϕ,ψ,µ,h) = −T
2
log(2π)− 1

2

T∑
t=1

ht −
1

2
(y − µ)′Ω−1

y (y − µ). (9)

Evaluation of the log-likelihood function requires the computation of the T × T inverse

matrix Ωy. In general, this is an intensive procedure, requiring O(T 3) operations. The

key to overcoming this computational hurdle is to notice that H−1
ϕ Hψ = HψH

−1
ϕ , a claim

that is proven in Appendix. Given this fact, (8) can be written as:

ỹ = µ̃+H−1
ϕ u, (10)

where ỹ = H−1
ψ y and µ̃ = H−1

ψ µ. Thus, by a change of variable:

(ỹ |ϕ,ψ,µ,h) ∼ N (µ,Sỹ) ,
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where S−1
ỹ = H′

ϕΩ
−1
u Hϕ and the log-likelihood for ỹ is:

log p(ỹ | µ̃,h,ϕ,ψ) ∝ −1

2

T∑
t=1

ht −
1

2
(ỹ − µ̃)′S−1

ỹ (ỹ − µ̃). (11)

The fact that Sỹ is invertible stems from noting that |Hϕ| = 1 for any vector ϕ and

that |Ωu| = e
∑T

t=1 ht > 0 for any h1, . . . , hT . Moreover, since Ωu is a diagonal matrix,

its inverse is simply given by taking the reciprocal of the diagonal elements, i.e., Ω−1
u =

diag
(
e−h1 , . . . , e−hT

)
. Thus, compared with (9), (11) can be calculated much faster. More

precisely, the Cholesky decomposition of a T × T band matrix takes O(T ) operations,

which is substantially less than the O(T 3) operations required for the same operation on

a full matrix of the same size.2

Given these facts, we can employ a simple 3-step procedure to evaluate (11) (see also the

dicussion in Chan and Jeliazkov, 2009). First, we obtain the Cholesky decomposition Cỹ

of the band matrix Sỹ, which involves O(T ) operations. Second, we implement forward

substitution and backward substitution to get:

A = C′
y\(Cy\(y − µ)),

which, by definition, is equivalent to A = C−1′
y (C−1

y (y − µ)) = S−1
ỹ (y − µ). Finally, we

compute:

B = −1

2
(y − µ)′A = −1

2
(y − µ)′S−1

ỹ (y − µ)

Thus, conditional on µ,ϕ,ψ and h, the log-likelihood function (11) can be efficiently

evaluated without implementing the Kalman filter.

2.1.2 Posterior Analysis and Simulation

After discussing an efficient way to evaluate the likelihood function, we now outline an

efficient posterior sampler for estimating the ARMA-SV model presented in (1)–(3). In

our empirical application we will consider the forecast performance of various nested

specifications of both the UC-ARMA-SV and AR-ARMA-SV models. In this section we

will therefore restrict our focus to the UC-ARMA-SV model, noting that the estimation

for all alternative models considered in this paper can be obtained in a similar manner.

The UC-ARMA-SV model is given by using (5) in place of (1). The transition equa-

2For a textbook treatment see Chapter 4 in Golub and Van Loan (2013).
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tions for the time-varying trend and log-volatilities are respectively initialized with τ1 ∼
N (τ0, σ

2
0τ ) and h1 ∼ N (h0, σ

2
0h) where τ0, σ

2
0τ , h0, and σ

2
0h are known constants.

Let τ = (τ1, . . . , τT ). The priors for τ ,ϕ,ψ, σ2
τ and σ2

h are assumed to be independent.

In particular, we set:

σ2
τ ∼ IG(ντ , Sτ ), σ2

h ∼ IG(νh, Sh),

ϕ ∼ N (ϕ0,Vϕ)1l(ϕ ∈ Aϕ), ψ ∼ N (ψ0,Vψ)1l(ψ ∈ Aψ),

where IG denotes the inverse-gamma distribution, while 1l(ϕ ∈ Aϕ) and 1l(ψ ∈ Aψ) are

indicator functions in which Aϕ and Aψ are sets that satisfy the stationarity restriction

to the roots of the respective autoregressive polynomials.

Posterior draws are then obtained by sequentially sampling from:

1. p(τ |y,h,ϕ,ψ, σ2
τ , σ

2
h);

2. p(h |y, τ ,ϕ,ψ, σ2
τ , σ

2
h);

3. p(σ2
τ , σ

2
h |y,h, τ ,ϕ,ψ, ) = p(σ2

h |y,h)p(σ2
τ | τ );

4. p(ψ,ϕ |y, τ ,h, σ2
h, σ

2
τ ) = p(ψ |y, τ ,h)p(ϕ |y, τ ,h,ψ)

In what follows we discuss an efficient way to sample from each of these conditional

distributions.

Step 1: Sampling τ

To efficiently sample from p(τ |y,h,ϕ,ψ, σ2
τ ), first note that the log posterior density for

τ̃ is:

log p(τ̃ | ỹ,h,ϕ,ψ, σ2
τ ) ∝ log p(τ̃ |σ2

τ ) + log p(ỹ | τ̃ ,h,ϕ,ψ), (12)

where p(τ̃ |σ2
τ ) is the prior for τ̃ and p(ỹ | τ̃ ,h,ϕ,ψ) is the likelihood for ỹ which is

obtained by setting τ = µ in (10).

The prior density is obtained by noting that (5) can be stacked over all dates t = 1, . . . , T

to give:

Hτ = ετ , ετ ∼ N (0,Ωετ ), (13)

where Ωετ = diag(σ2
0τ , σ

2
τ , . . . , σ

2
τ ) and H is a first-difference matrix of size T . Since

|H| = 1, (13) can be written as:

τ = H−1ετ . (14)
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Thus τ ∼ N (0,Ωτ ), where Ω−1
τ = H′Ω−1

ετ H. Pre-multiplying both sides of (14) by H−1
ψ

gives

τ̃ = H−1
ψ H−1ετ . (15)

so that τ̃ ∼ N (0,Ωτ̃ ) and Ω−1
τ̃ = H′

ψΩ
−1
τ Hψ. The log prior density for τ̃ is therefore

given by:

log p(τ̃ |σ2
τ ) ∝ −T − 1

2
log σ2

τ −
1

2
τ̃ ′H′

ψΩ
−1
τ Hψτ̃ , (16)

Finally, substituting (11) and (16) into (12), gives:

log p(τ̃ | ỹ,h,ϕ,ψ, σ2
τ ) ∝ −1

2
τ̃ ′H′

ψΩ
−1
τ Hψτ̃ − 1

2
(ỹ − τ̃ )′H′

ϕΩ
−1
u Hϕ(ỹ − τ̃ )

∝ −1

2
(τ̃ ′(H′

ψΩ
−1
τ Hψ +H′

ϕΩ
−1
u Hϕ)τ̃ − 2τ̃ ′H′

ϕΩ
−1
u Hϕỹ)

∝ −1

2
(τ̃ − τ̂ )′D−1

τ̃ (τ̃ − τ̂ ),

where Dτ̃ = (H′
ψΩ

−1
τ Hψ + H′

ϕΩ
−1
u Hϕ)

−1 and τ̂ = Dτ̃H
′
ϕΩ

−1
u Hϕỹ. The conditional

posterior distribution is therefore:

(τ̃ | ỹ,h,ϕ,ψ, σ2
τ ) ∼ N (τ̂ ,Dτ̃ ).

Sampling from this distribution can be efficiently conducted via the precision-based al-

gorithm discussed in the previous section. In particular, since Dτ̃ is a band matrix, we

first use the Cholesky decomposition Cτ̃ of the precision matrix D−1
τ̃ and then compute

τ̂ . Next, forward and backward substitution give:

τ̂ = C′
τ̃\(Cτ̃\(H′

ϕΩ
−1
u Hϕỹ)),

so that the draws of τ̃ can be obtained by:

τ̃ = τ̂ +C′
τ̃\R, R ∼ N (0, I).

Finally, we obtain the draw of τ by the transformation τ = Hψτ̃ .

Step 2: Sampling h

To sample from p(h |y, τ ,ϕ,ψ, σ2
τ , σ

2
h), note that (8) can be written as:

y∗ = u, (17)

where y∗ = H−1
ψ Hϕ(y − τ ). Thus, y∗ ∼ N (0,Ωu). With this transformation the aux-
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iliary mixture sampler proposed by Kim et al. (1998) can be directly applied. The only

difference here is that we replace their forward-backward smoothing algorithm with the

precision-based sampler discussed in the previous section.

Step 3: Sampling σ2
h and σ2

τ

Since the inverse-gamma distribution is a conjugate prior for the multivariate normal,

draws from the conditional distribution for σ2
h and σ

2
τ can be obtained by directly sampling

from the known distribution. For instance, the key to sampling σ2
τ is to note that, by a

change of variable in (5), τt ∼ N (τt−1, σ
2
τ ). Thus, given the inverse-gamma prior for σ2

τ ,

we have:

p(σ2
τ | τ) ∝ p(τ | σ2

τ ) + p(σ2
τ ),

= (σ2
τ )

−T
2 exp

(
− 1

2σ2
τ

T∑
t=2

(τt − τt−1)
2

)
· (σ2

τ )
−(ν0−1)exp(−Sτ

σ2
τ

),

∝ (σ2
τ )

−((T
2
+ν0)−1)exp

(
− 1

σ2
τ

(
T∑
t=2

(τt − τt−1)
2/2 + Sτ )

)
.

Hence:

(σ2
τ | τ ) ∼ IG

(
T/2 + ντ ,

T∑
t=2

(τ t − τ t−1)
2/2 + Sτ

)
.

Similarly, given that (3) implies that ht ∼ N (ht−1, σ
2
h), the posterior density of σ2

h is

given by:

(σ2
h |h) ∼ IG

(
T/2 + νh,

T∑
t=2

(ht − ht−1)
2/2 + Sh

)
.

Step 4: Sampling ψ and ϕ

Unlike y, τ , σ2
h and σ2

τ , which all possess conditional posterior distributions from the

exponential family, the distributions of ψ and ϕ are unknown. We therefore seek suitable

candidate densities to implement and independence-chain Metropolis-Hastings algorithm

Kroese et al. (2011). Since these densities turn out to be different, we now consider each

in turn.

First, to sample the moving average term ψ, we note that stacking (1) and (2) over all

dates gives:

y∗∗ = Hψu, (18)
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where y∗∗ = Hϕ(y − τ ). By a change of variable, (y∗∗ |ψ, τ ,h) ∼ N
(
0,HψΩuH

′
ψ

)
.

Thus, given the normal prior, the log-likelihood of the conditional posterior is:

log p(ψ |y, τ ,h) ∝ log p(y∗∗ |ψ, τ ,h) + log p(ψ),

∝ log p (ψ)− 1

2
y∗∗′ (H′

ψΩuHψ

)−1
y∗∗.

Since the dimension of ψ is typically low, it’s feasible to use numerical optimization to

obtain the mode and negative Hessian of log p(ψ |y, τ ,h) evaluated at the mode, denoted

ψ̂ and Hψ respectively. These values can then be used as the mean and variance in the

multivariate normal density q (ψ). Given this density, we obtain candidate draws ψc and

update in accordance with the acceptance probability:

min{1, p(ψc |y, τ ,h)
p(ψ |y, τ ,h)

· q(ψ)
q(ψc)

}.

Second, to sample ϕ, first note that (18) can be written as:

Hϕz = Hψu, (19)

where z = y − τ . Since Hψ is invertible, this equation can be expressed as:

z = Xzϕ+Hψu, (20)

where Xz = (z1, · · · , zT−1)
′. So ϕ is equivalent to the coefficient of a standard linear

regression model. Thus, given the truncated normal prior, the posterior density of ϕ is:

(ϕ |y, τ ,h) ∼ N (ϕ̂,Dϕ)1l(ϕ ∈ Aϕ),

where D−1
ϕ = V−1

ϕ + X′
z(HψΩuH

′
ψ)

−1Xz and ϕ̂ = Dϕ · (V−1
ϕ ϕ0 + Xz(HψΩuH

′
ψ)

−1z).

Sampling from this distribution can then be conducted with a standard acceptance-

rejection algorithm (see, e.g. Koop (2003) or Kroese et al. (2011)).

3 Application to Inflation Forecasting

In this section we assess the proposed ARMA-SV frameworks ability to forecast two com-

monly used inflation measures: CPI and the GDP Deflator, in each of the G7 countries.
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More specifically, we present both out-of-sample point and density forecast performance to

various benchmarks. Given the quarterly index, denoted zt, we use yt = 100 log(zt/zt−1)

as the associated inflation measure. The resulting series are plotted in Figures 1 and 2.
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Figure 1: CPI inflation across G7 countries.
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Figure 2: GDP Deflator inflation across G7 countries.

While each series ends in 2016Q4, due to different starting dates, there are some differ-
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ences in sample size. For instance, while most CPI series start in 1960Q2, Canada’s is

only available from 1961Q1 and Germany’s from 1970Q2.

3.1 Competing Models

The primary benchmark model is taken to be a stationary AR(m) model—as in (4)—with

homoscedatic variance. The reason for using this benchmark is two-fold. First, it is still

a competitive model among both univariate and multivariate models. Second, given the

parsimonious structure of the model, any finding that it provides competitive forecasts

has practical significance.

In addition to the homoscedastic AR(m) model, we also consider a more general class

of heteroscedastic autoregressive (AR) and unobserved components (UC) models. These

include specifications with and without SV, MA-SV and ARMA-SV errors. In each

country, the lag length is selected via the Bayesian information criteria (BIC). The results

from these tests are summarized in Table 1.

Table 1: Lag length selection for AR(m) models using BIC.

Country CPI Inflation GDP Deflator Inflation

Canada 4 5
France 5 6
Germany 4 4
Italy 4 1
Japan 8 1
UK 5 3
US 3 2

In each case we limit the ARMA-SV component to the observation equation. While

the extension to ARMA-SV errors in the state equation is conceptually straight forward

to implement, this specification allows for a more direct comparison with the broader

literature (e.g., Stock and Watson (2007), Chan (2013) and Chan et al. (2013)). In total,

this constitutes 10 models, each of which is summarized in Table 2.
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Table 2: A list of competing models.

Model Description

AR(m) Autoregressive model with homoscedastic errors
AR(m)-SV Autoregressive model with SV errors
AR(m)-MA-SV Autoregressive model with MA-SV errors
AR(m)-ARMA-SV Autoregressive model with ARMA-SV errors
AR(m)-ARMA Autoregressive model with ARMA errors
UC Unobserved components model with homoscedastic errors
UC-SV Unobserved components model with SV errors
UC-MA-SV Unobserved components model with MA-SV errors
UC-ARMA-SV Unobserved components model with ARMA-SV errors
UC-ARMA Unobserved components model with ARMA errors

3.2 Priors and Initial Conditions

In each of the UC models we set the initial value of τt as τ1 ∼ N (τ0, σ
2
0τ ), where τ0, h0, σ

2
0τ .

In particular, we set τ0 = 0 and σ2
0τ = 5. Similarly, we initialize UC models with SV with

h1 ∼ N (h0, σ
2
0h), where h0 = 0 and σ2

0h = 5.

For the AR models, we set an independent truncated prior for the conditional mean

coefficients. In particular, the prior mean is the zero vector and the variance is Vρ =

5 × In, where In denotes the identity matrix of size n. The posterior distribution of

this model is then obtained by following the procedure in Section 2.1.2, where Step 1 is

replaced with draws from p(ρ |y,h,ϕ,ψ, σ2
τ , σ

2
h), with ρ = (ρ1, · · · , ρm)′. To this end,

note that by following similar steps in Section 2.1.2, the conditional posterior distribution

is:

(ρ |y,h,ϕ,ψ, σ2
τ , σ

2
h) ∼ N (ρ̂,Dρ)1l(ρ ∈ Aρ), (21)

where Dρ = (Vρ + H′
ϕΩ

−1
u Hϕ)

−1, ρ̂ = DρH
′
ϕΩ

−1
u Hϕỹ, and the truncated region en-

sures all roots lay outside of the unit circle. Samples from this truncated density are

then obtained using the acceptance-rejection method discussed in Section 2.1.2 using the

proposal density N (ρ̂,Dρ).

Finally, following Chan (2013) we set the moving average order in the MA-SV model

variants to be one. For consistency, we also set each of the specifications with ARMA(p, q)

errors to be ARMA(1,1).
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3.3 Forecasting

We conduct a pseudo out-of-sample forecasting exercise in which we consider both point

and density forecasts. In each exercise, we divide the data into three sub-samples. The

first part contains the first m observations used to initialize the AR(m) models. This

guarantees that all AR and UC model variants have the same initial observation. The

second part is the estimation period, which consists of the next 40 observations. The

third part is the hold-out period, which contains the remaining observations that are used

to assess the forecast performance of the model.

To see how the forecasts are conducted, let y1:t denote the data from the estimation period

and ŷt+k represent the vector of k-steps-ahead forecasts with k=1,4,8,12 and 16. Density

forecasts are obtained by the predictive density: f (yt+k|y1:t), and point forecasts are

taken to be the mean of this density: ŷt+k = E [yt+k|y1:t]. These forecasts are conducted

with predictive simulation. For concreteness, suppose we want to produce a 4-step ahead

forecast of US CPI inflation from 1975Q1 to 1976Q1. Then, given the MCMC draws up

to 1975Q1 along with the relevant transition equations, we simulate the future states up

to time 1975Q4. The conditional expectation of this equation is then taken to be the

point forecast and the observed data is used to evaluate implied density to produce a

density forecast. The exercise is then repeated using data from 1975Q2 up to the end of

the hold-out period, i.e. 2012Q4.

In each period, the parameter estimates are based on 45,000 draws from the posterior

simulator discussed in 2.1, after discarding the first 5,000 draws as a burn-in period.

3.3.1 Forecast Metrics

The accuracy of the point and density forecasts are respectively assessed with the mean

square forecast error (MSFE) and log-predictive-likelihood (LPL).

To compute the MSFE, we first evaluate the forecast ŷT0+t+k−1 by averaging all the

posterior means E(yT0+t+k−1 |y1:T0+t) when it is time T0 + t. Given that the forecasting

error is e2T0+t+k−1 = y0
T0+t+k−1 − E(yT0+t+k−1 |y1:T0+t), where k denotes a k-step-ahead

forecast, the MSFE is defined as:

MSFE =
1

T − T0 − k + 1

T−T0−k+1∑
t=1

e2T0+t+k−1
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Since a smaller forecast error corresponds to a smaller MSFE, a relatively smaller MSFE

indicates better forecast performance. As mentioned in the previous section, we use a

stationary AR(m) model as the benchmark. To facilitate our discussion when presenting

the results we therefore standardize the MSFE of each model to the MSFE of the AR(m)

model. Hence the relative MSFE (RMSFE) for the AR(m) model is 1.00. Moreover,

if a given model produces a RMSFE less than one then this indicates superior forecast

performance to the AR(m), and vice-versa.

To compute the predictive likelihood we simply sum the evaluated likelihood function

implied by the forecasts. That is:

LPL =

T−T0−k+1∑
t=1

log p(ŷT0+t+k−1 = yT0+t+k−1 |y1:T0+t)

Since a larger likelihood implies better fit, for interpretation purposes, a larger predictive

likelihood value implies a better density forecast performance. To facilitate our discussion

we also standardize the LPL to the AR(m) benchmark. Since it is in logs, the relative

LPL (RLPL) for the AR(m) model is 0.00. Moreover, if a given model produces a positive

LPL then this indicates superior forecast performance to the AR(m), and vice-versa.

4 Forecast Results

To facilitate the discussion, we separately present the point and density forecast results

and defer the tables containing the results to Appendix B.

4.1 Point Forecast Results

The point forecast results for CPI are presented in Tables 3–9. While there is no single

best model across all countries, there are some general results. For instance, in line with

previous studies (e.g., Stock and Watson, 2007; Chan, 2013; Clark and Ravazzolo, 2015),

the AR-SV and UC-SV models tend to dominate their constant volatility counterparts

in CPI forecasts. Interestingly, this results does not extend to the GDP Deflator. In that

case, the simple AR model often provides better forecasts than its SV counterpart. One

exception is the US, in which the SV variants dominate their homoscedastic counterparts.
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Table 3: MSFEs relative to AR benchmark: Canada CPI Inflation
k = 1 k = 4 k = 8 k = 12 k = 16

AR 1.00 1.00 1.00 1.00 1.00
AR-SV 0.99 0.97 0.95 0.93 0.90
AR-ARMA 0.99 0.96 0.85 0.77 0.70
AR-MA-SV 0.99 0.97 0.95 0.93 0.89
AR-ARMA-SV 0.97 0.95 0.82 0.73 0.67
UC 1.01 0.99 0.95 0.91 0.88
UC-SV 1.05 1.03 0.96 0.89 0.88
UC-ARMA 1.02 0.96 0.88 0.80 0.74
UC-MA-SV 1.01 1.04 0.96 0.88 0.87
UC-ARMA-SV 1.02 1.03 0.90 0.80 0.74

Table 4: MSFEs relative to AR benchmark: France CPI Inflation
k = 1 k = 4 k = 8 k = 12 k = 16

AR 1.00 1.00 1.00 1.00 1.00
AR-SV 0.95 0.91 0.86 0.83 0.83
AR-ARMA 0.82 0.87 0.89 0.93 0.95
AR-MA-SV 0.83 0.89 0.85 0.82 0.83
AR-ARMA-SV 0.81 0.88 0.90 0.94 0.95
UC 0.84 0.82 0.79 0.81 0.82
UC-SV 0.91 0.93 0.88 0.87 0.85
UC-ARMA 0.85 0.77 0.66 0.63 0.59
UC-MA-SV 0.93 1.02 0.91 0.87 0.84
UC-ARMA-SV 0.84 0.73 0.57 0.52 0.46

Table 5: MSFEs relative to AR benchmark: Germany CPI Inflation

k = 1 k = 4 k = 8 k = 12 k = 16
AR 1.00 1.00 1.00 1.00 1.00
AR-SV 1.01 0.98 0.96 0.92 0.88
AR-ARMA 1.01 1.01 1.00 0.97 0.88
AR-MA-SV 1.01 0.99 0.96 0.92 0.88
AR-ARMA-SV 1.01 1.01 0.98 0.95 0.89
UC 1.08 1.10 1.01 0.95 0.89
UC-SV 1.13 1.14 1.00 0.93 0.85
UC-ARMA 1.14 1.16 1.00 0.92 0.83
UC-MA-SV 1.14 1.15 0.99 0.91 0.83
UC-ARMA-SV 1.14 1.15 0.99 0.91 0.83
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Table 6: MSFEs relative to AR benchmark: Italy CPI Inflation

k = 1 k = 4 k = 8 k = 12 k = 16
AR 1.00 1.00 1.00 1.00 1.00
AR-SV 0.89 0.67 0.63 0.60 0.57
AR-ARMA 0.93 0.65 0.59 0.55 0.49
AR-MA-SV 0.89 0.67 0.63 0.61 0.58
AR-ARMA-SV 0.89 0.63 0.56 0.50 0.43
UC 1.00 0.77 0.79 0.83 0.86
UC-SV 1.11 0.89 0.87 0.86 0.84
UC-ARMA 1.04 0.67 0.70 0.75 0.81
UC-MA-SV 1.08 0.95 0.86 0.81 0.75
UC-ARMA-SV 0.99 0.60 0.51 0.47 0.41

Table 7: MSFEs relative to AR benchmark: Japan CPI Inflation

k = 1 k = 4 k = 8 k = 12 k = 16
AR 1.00 1.00 1.00 1.00 1.00
AR-SV 1.04 0.83 0.72 0.76 0.73
AR-ARMA 0.70 0.79 0.94 0.95 0.99
AR-MA-SV 1.06 0.82 0.72 0.75 0.73
AR-ARMA-SV 0.70 0.79 0.94 0.95 0.99
UC 0.78 0.76 0.78 0.74 0.75
UC-SV 0.80 0.81 0.83 0.77 0.76
UC-ARMA 0.83 0.79 0.87 0.83 0.84
UC-MA-SV 0.80 0.81 0.82 0.77 0.75
UC-ARMA-SV 0.73 0.80 0.84 0.76 0.74

Table 8: MSFEs relative to AR benchmark: UK CPI Inflation
k = 1 k = 4 k = 8 k = 12 k = 16

AR 1.00 1.00 1.00 1.00 1.00
AR-SV 0.97 0.95 0.77 0.77 0.76
AR-ARMA 0.75 0.65 0.85 0.89 0.94
AR-MA-SV 0.86 0.91 0.78 0.77 0.76
AR-ARMA-SV 0.75 0.65 0.85 0.89 0.94
UC 0.96 0.74 0.80 0.79 0.81
UC-SV 0.99 0.81 0.81 0.75 0.73
UC-ARMA 0.99 0.68 0.70 0.64 0.63
UC-MA-SV 1.02 0.79 0.78 0.72 0.69
UC-ARMA-SV 0.98 0.63 0.68 0.64 0.64
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Table 9: MSFEs relative to AR benchmark: US CPI inflation
k = 1 k = 4 k = 8 k = 12 k = 16

AR 1.00 1.00 1.00 1.00 1.00
AR-SV 0.99 0.97 0.86 0.84 0.82
AR-ARMA 1.03 1.01 0.88 0.83 0.75
AR-MA-SV 0.99 0.97 0.86 0.84 0.80
AR-ARMA-SV 1.00 0.97 0.82 0.73 0.63
UC 0.99 0.97 0.88 0.91 0.91
UC-SV 0.96 0.93 0.92 0.97 0.88
UC-ARMA 1.00 0.97 0.83 0.79 0.70
UC-MA-SV 0.94 0.94 0.90 0.92 0.81
UC-ARMA-SV 1.00 1.07 0.86 0.79 0.70

Table 10: MSFEs relative to AR benchmark: Canada GDP Deflator Inflation
k = 1 k = 4 k = 8 k = 12 k = 16

AR 1.00 1.00 1.00 1.00 1.00
AR-SV 1.01 0.97 0.93 0.92 0.91
AR-ARMA 0.95 0.96 0.93 0.83 0.78
AR-MA-SV 0.96 0.97 0.93 0.92 0.91
AR-ARMA-SV 0.96 0.95 0.90 0.78 0.73
UC 0.94 0.98 0.96 0.91 0.89
UC-SV 0.95 0.94 0.93 0.89 0.86
UC-ARMA 0.92 0.97 0.91 0.82 0.78
UC-MA-SV 0.89 0.95 0.93 0.89 0.86
UC-ARMA-SV 0.92 1.15 0.98 0.84 0.81

Table 11: MSFEs relative to AR benchmark: France GDP Deflator Inflation
k = 1 k = 4 k = 8 k = 12 k = 16

AR 1.00 1.00 1.00 1.00 1.00
AR-SV 1.00 0.91 0.89 0.88 0.87
AR-ARMA 0.71 0.94 0.96 0.98 0.99
AR-MA-SV 1.18 0.91 0.88 0.88 0.87
AR-ARMA-SV 0.66 0.82 0.80 0.81 0.83
UC 1.18 0.98 0.92 0.89 0.87
UC-SV 1.18 1.02 0.95 0.90 0.88
UC-ARMA 0.70 0.78 0.71 0.67 0.64
UC-MA-SV 0.70 1.04 0.96 0.91 0.89
UC-ARMA-SV 0.67 0.77 0.66 0.61 0.55
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Table 12: MSFEs relative to AR benchmark: Germany GDP Deflator Inflation

k = 1 k = 4 k = 8 k = 12 k = 16
AR 1.00 1.00 1.00 1.00 1.00
AR-SV 1.00 0.98 0.95 0.95 0.94
AR-ARMA 0.98 1.06 1.18 1.30 1.42
AR-MA-SV 0.98 0.99 0.96 0.95 0.95
AR-ARMA-SV 0.96 1.01 1.06 1.13 1.15
UC 0.96 1.02 0.97 0.96 0.95
UC-SV 0.96 1.02 0.97 0.96 0.95
UC-ARMA 1.01 1.04 0.99 0.98 0.96
UC-MA-SV 1.01 1.01 0.95 0.95 0.94
UC-ARMA-SV 1.00 1.01 0.95 0.95 0.93

Table 13: MSFEs relative to AR benchmark: Italy GDP Deflator Inflation

k = 1 k = 4 k = 8 k = 12 k = 16
AR 1.00 1.00 1.00 1.00 1.00
AR-SV 1.00 1.01 1.01 1.01 1.01
AR-ARMA 1.13 0.92 0.97 1.00 1.00
AR-MA-SV 1.13 1.01 1.01 1.01 1.01
AR-ARMA-SV 1.23 0.98 1.00 1.01 1.01
UC 1.23 0.75 0.76 0.75 0.74
UC-SV 1.23 0.78 0.79 0.81 0.81
UC-ARMA 0.96 0.75 0.76 0.76 0.75
UC-MA-SV 1.23 0.76 0.77 0.77 0.78
UC-ARMA-SV 0.97 0.73 0.75 0.76 0.77

Table 14: MSFEs relative to AR benchmark: Japan GDP Deflator Inflation

k = 1 k = 4 k = 8 k = 12 k = 16
AR 1.00 1.00 1.00 1.00 1.00
AR-SV 1.00 1.01 1.00 1.00 1.00
AR-ARMA 0.93 0.92 0.93 0.93 1.01
AR-MA-SV 0.93 1.01 1.00 1.00 1.00
AR-ARMA-SV 1.04 1.00 1.00 1.00 1.00
UC 1.00 0.98 1.03 1.06 1.06
UC-SV 1.00 0.98 1.02 1.04 1.04
UC-ARMA 1.00 0.99 1.04 1.08 1.08
UC-MA-SV 1.00 0.98 1.02 1.05 1.04
UC-ARMA-SV 1.00 0.98 1.02 1.05 1.04
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Table 15: MSFEs relative to AR benchmark: UK GDP Deflator Inflation
k = 1 k = 4 k = 8 k = 12 k = 16

AR 1.00 1.00 1.00 1.00 1.00
AR-SV 1.00 0.96 0.91 0.87 0.83
AR-ARMA 1.04 1.03 1.00 0.97 0.93
AR-MA-SV 1.04 0.95 0.90 0.86 0.82
AR-ARMA-SV 1.02 1.03 1.01 0.98 0.94
UC 1.00 0.92 0.89 0.91 0.87
UC-SV 1.00 0.98 0.89 0.84 0.78
UC-ARMA 1.02 0.90 0.81 0.75 0.68
UC-MA-SV 1.02 0.98 0.88 0.83 0.77
UC-ARMA-SV 1.00 1.09 0.95 0.83 0.72

Table 16: MSFEs relative to AR benchmark: US GDP Deflator inflation
k = 1 k = 4 k = 8 k = 12 k = 16

AR 1.00 1.00 1.00 1.00 1.00
AR-SV 0.97 0.87 0.81 0.80 0.78
AR-ARMA 0.97 0.86 0.73 0.64 0.60
AR-MA-SV 0.96 0.87 0.82 0.82 0.82
AR-ARMA-SV 0.95 0.84 0.67 0.54 0.49
UC 0.93 0.89 0.87 0.92 0.93
UC-SV 0.99 0.98 0.98 0.98 0.96
UC-ARMA 0.96 0.88 0.83 0.80 0.77
UC-MA-SV 1.05 1.07 1.02 0.97 0.94
UC-ARMA-SV 0.96 0.88 0.82 0.77 0.75

Since our major innovation is the estimation of ARMA-SV error models, it is useful to

compare the relative forecast performance of these models to those made by their nested

variants: ARMA, SV, and MA-SV models. In the case of CPI forecasts, models with

ARMA-SV errors provide the best point forecasts across all horizons in both Canada,

France and Italy. They also do quite well in the UK, and at longer horizons in the US

(i.e. k = 8, 12, 16). Finally, we highlight the fact that Japan’s CPI inflation is quite

difficult to forecast.

A slightly weaker result exists when forecasting GDP Deflator inflation. In that case,

ARMA-SV models still provide the best forecasts in France, and are only bested by

the simple UC model at the one-step-ahead horizon in the US. They also provide good

medium term forecasts in Italy and longer term forecasts in both Canada and Germany.

Finally, despite having no clearly dominant model in the CPI forecasts, the AR-ARMA
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model does quite well in forecasting Japan’s GDP Deflator inflation.

Taken together, our main conclusion from this exercise is that ARMA-SV error models

provide good point forecasts of CPI and GDP deflator inflation measures. In particular,

with few exceptions they are able to improve on the point forecast performance gained

by the simpler SV model in Stock and Watson (2007) and the MA-SV model in Chan

(2013).

4.2 Density Forecast Results

In this subsection we report the results corresponding to the density forecasts. In partic-

ular, the forecast performance of the models are presented in Tables 17–30.

Table 17: Sum of log predictive likelihoods relative to AR benchmark: Canada CPI
Inflation

k = 1 k = 4 k = 8 k = 12 k = 16
AR 0.0 0.0 0.0 0.0 0.0
AR-SV 5.5 9.6 5.7 9.6 3.4
AR-ARMA 8.6 17.1 30.7 46.0 49.3
AR-MA-SV 5.4 9.5 5.9 9.6 3.6
AR-ARMA-SV 4.4 7.2 18.2 29.7 30.2
UC -2.5 1.7 5.9 8.6 9.9
UC-SV -1.5 7.4 9.4 15.5 8.4
UC-ARMA -3.3 4.3 13.8 21.7 26.4
UC-MA-SV 0.6 5.1 9.6 17.0 10.2
UC-ARMA-SV -0.8 -11.9 -4.4 6.5 4.9

Table 18: Sum of log predictive likelihoods relative to AR benchmark: France CPI Infla-
tion

k = 1 k = 4 k = 8 k = 12 k = 16
AR 0.0 0.0 0.0 0.0 0.0
AR-SV 5.0 15.9 25.0 27.5 31.2
AR-ARMA 15.2 24.1 9.5 -13.8 -33.6
AR-MA-SV 22.9 15.5 23.4 25.9 29.6
AR-ARMA-SV 24.0 17.8 7.5 -6.1 -13.5
UC 18.4 22.0 30.4 28.3 26.5
UC-SV 17.3 27.9 38.6 37.6 40.1
UC-ARMA 18.6 21.3 34.7 40.9 47.7
UC-MA-SV 14.1 21.6 36.0 39.8 43.7
UC-ARMA-SV 21.1 30.1 55.2 65.4 77.6
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Table 19: Sum of log predictive likelihoods relative to AR benchmark: Germany CPI
Inflation

k = 1 k = 4 k = 8 k = 12 k = 16
AR 0.0 0.0 0.0 0.0 0.0
AR-SV 2.0 -2.4 -1.4 4.8 11.4
AR-ARMA 3.8 0.3 -1.2 -0.8 0.5
AR-MA-SV 1.6 -3.1 -2.8 3.3 9.7
AR-ARMA-SV -0.1 -11.4 -12.1 -8.9 -1.7
UC -12.0 -13.2 -2.4 2.3 6.6
UC-SV -11.7 -14.0 0.4 12.3 24.1
UC-ARMA -17.1 -18.4 -3.1 5.0 12.9
UC-MA-SV -12.9 -17.3 -1.9 9.2 22.3
UC-ARMA-SV -12.8 -16.8 -2.1 9.2 22.0

Table 20: Sum of log predictive likelihoods relative to AR benchmark: Italy CPI Inflation

k = 1 k = 4 k = 8 k = 12 k = 16
AR 0.0 0.0 0.0 0.0 0.0
AR-SV 63.9 84.7 90.1 88.0 88.5
AR-ARMA 25.0 57.2 69.9 79.0 87.3
AR-MA-SV 65.2 84.7 89.9 86.8 86.3
AR-ARMA-SV 59.9 80.1 88.8 92.8 100.3
UC 0.5 27.0 29.7 25.6 20.0
UC-SV 38.2 66.9 63.6 56.1 49.5
UC-ARMA 0.4 4.4 0.4 -4.5 -9.9
UC-MA-SV 48.7 70.1 77.8 78.4 78.6
UC-ARMA-SV 46.9 87.5 102.0 105.9 110.9

Table 21: Sum of log predictive likelihoods relative to AR benchmark: Japan CPI Infla-
tion

k = 1 k = 4 k = 8 k = 12 k = 16
AR 0.0 0.0 0.0 0.0 0.0
AR-SV -26.4 50.1 68.7 60.6 63.2
AR-ARMA 47.1 53.1 39.1 33.3 24.2
AR-MA-SV -27.5 51.4 67.1 60.6 62.0
AR-ARMA-SV 47.8 50.1 32.3 19.0 5.1
UC 11.5 29.8 31.5 35.9 35.6
UC-SV 33.4 55.8 57.7 66.2 68.9
UC-ARMA 11.3 25.4 22.3 25.9 26.1
UC-MA-SV 32.9 56.5 57.0 64.5 66.8
UC-ARMA-SV 46.8 52.2 41.2 40.7 37.4
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Table 22: Sum of log predictive likelihoods relative to AR benchmark: UK CPI Inflation

k = 1 k = 4 k = 8 k = 12 k = 16
AR 0.0 0.0 0.0 0.0 0.0
AR-SV 21.1 17.3 60.8 51.7 51.9
AR-ARMA 45.3 69.7 48.3 37.9 26.2
AR-MA-SV 41.8 21.1 59.2 50.9 51.3
AR-ARMA-SV 57.7 72.3 34.4 15.0 -0.9
UC -7.6 29.3 34.2 34.8 31.3
UC-SV 20.9 63.0 68.7 71.2 70.7
UC-ARMA -4.7 31.6 36.0 39.8 40.4
UC-MA-SV 17.4 62.6 68.3 70.3 69.3
UC-ARMA-SV 31.2 59.7 53.5 50.5 46.3

Table 23: Sum of log predictive likelihoods relative to AR benchmark: US CPI Inflation

k = 1 k = 4 k = 8 k = 12 k = 16
AR 0.0 0.0 0.0 0.0 0.0
AR-SV 30.8 18.5 19.4 22.5 35.4
AR-ARMA 11.1 5.1 27.3 39.0 55.0
AR-MA-SV 30.6 17.0 17.8 20.0 34.4
AR-ARMA-SV 28.6 22.6 30.6 40.9 61.2
UC -0.6 -0.3 11.5 2.9 9.3
UC-SV 32.3 25.9 26.2 25.2 36.9
UC-ARMA -0.2 2.8 17.5 18.7 37.8
UC-MA-SV 30.5 27.4 31.7 34.6 50.8
UC-ARMA-SV 26.3 13.6 26.8 37.4 55.7

Table 24: Sum of log predictive likelihoods relative to AR benchmark: Canada GDP
Deflator Inflation

k = 1 k = 4 k = 8 k = 12 k = 16
AR 0.0 0.0 0.0 0.0 0.0
AR-SV 28.5 6.8 1.3 3.7 4.0
AR-ARMA 11.9 3.4 -2.6 25.8 33.0
AR-MA-SV 33.7 6.1 0.8 2.9 3.1
AR-ARMA-SV 35.5 15.1 13.9 28.7 35.4
UC -67.2 -68.4 -60.3 -57.1 -46.1
UC-SV 33.0 14.4 6.9 9.8 11.1
UC-ARMA 14.0 -0.3 13.8 26.6 31.7
UC-MA-SV 35.5 12.1 6.5 11.4 11.2
UC-ARMA-SV 37.2 0.1 2.3 10.7 15.1
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Table 25: Sum of log predictive likelihoods relative to AR benchmark: France GDP
Deflator Inflation

k = 1 k = 4 k = 8 k = 12 k = 16
AR 0.0 0.0 0.0 0.0 0.0
AR-SV 66.7 60.0 65.1 57.7 58.2
AR-ARMA 19.7 -2.8 2.3 8.2 14.3
AR-MA-SV 68.3 59.8 64.6 57.4 58.4
AR-ARMA-SV 74.0 57.6 66.2 69.4 72.3
UC -3.8 4.6 17.4 23.1 25.5
UC-SV 69.7 59.9 64.3 59.9 56.5
UC-ARMA 3.1 9.6 23.5 31.9 37.8
UC-MA-SV 70.6 58.0 62.4 58.8 56.1
UC-ARMA-SV 3.1 9.6 23.5 31.9 37.8

Table 26: Sum of log predictive likelihoods relative to AR benchmark: Germany GDP
Deflator Inflation

k = 1 k = 4 k = 8 k = 12 k = 16
AR 0.0 0.0 0.0 0.0 0.0
AR-SV 15.5 15.0 19.5 17.3 16.8
AR-ARMA 4.3 -12.1 -20.9 -29.4 -36.0
AR-MA-SV 15.4 14.2 18.0 15.6 15.3
AR-ARMA-SV 11.2 2.3 1.8 -2.8 -3.7
UC -5.2 -3.0 4.3 4.2 4.5
UC-SV 13.4 13.7 21.6 20.3 21.4
UC-ARMA -3.1 -3.2 4.5 6.1 7.9
UC-MA-SV 13.4 14.0 20.9 19.3 20.3
UC-ARMA-SV 13.9 13.9 19.8 18.0 19.1

Table 27: Sum of log predictive likelihoods relative to AR benchmark: Italy GDP Deflator
Inflation

k = 1 k = 4 k = 8 k = 12 k = 16
AR 0.0 0.0 0.0 0.0 0.0
AR-SV -1.8 -1.6 -2.0 -3.6 -3.8
AR-ARMA 6.6 1.4 0.3 -0.8 -1.1
AR-MA-SV -0.5 -1.6 -2.1 -3.8 -3.8
AR-ARMA-SV 3.5 -0.4 -1.6 -3.4 -3.6
UC 7.6 4.1 3.8 3.7 3.4
UC-SV 11.8 7.5 5.8 3.5 2.3
UC-ARMA 10.2 6.9 6.5 6.5 6.3
UC-MA-SV 13.0 9.5 7.9 5.2 4.1
UC-ARMA-SV 11.9 10.3 8.7 6.1 4.9
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Table 28: Sum of log predictive likelihoods relative to AR benchmark: Japan GDP
Deflator Inflation

k = 1 k = 4 k = 8 k = 12 k = 16
AR 0.0 0.0 0.0 0.0 0.0
AR-SV 7.9 5.7 7.5 10.6 8.3
AR-ARMA -9.1 -1.7 -6.0 -2.7 -18.4
AR-MA-SV 8.0 5.9 7.5 10.8 8.4
AR-ARMA-SV 8.4 7.0 8.8 12.3 9.0
UC 8.1 9.1 7.4 6.3 3.6
UC-SV 7.7 7.3 9.3 11.1 9.1
UC-ARMA -4.9 -3.9 -6.0 -9.5 -5.9
UC-MA-SV 9.0 7.3 9.1 10.8 8.7
UC-ARMA-SV 8.6 7.4 9.5 11.0 8.8

Table 29: Sum of log predictive likelihoods relative to AR benchmark: UK GDP Deflator
Inflation

k = 1 k = 4 k = 8 k = 12 k = 16
AR 0.0 0.0 0.0 0.0 0.0
AR-SV 21.1 17.3 60.8 51.7 51.9
AR-ARMA 45.3 69.7 48.3 37.9 26.2
AR-MA-SV 41.8 21.1 59.2 50.9 51.3
AR-ARMA-SV 57.7 72.3 34.4 15.0 -0.9
UC -10.2 23.8 27.5 25.9 23.9
UC-SV 8.0 42.6 48.8 52.3 55.3
UC-ARMA -7.5 23.8 27.0 29.3 29.9
UC-MA-SV 6.8 42.0 48.1 52.6 55.0
UC-ARMA-SV 8.1 10.1 9.7 12.2 16.3

Table 30: Sum of log predictive likelihoods relative to AR benchmark: US GDP Deflator
Inflation

k = 1 k = 4 k = 8 k = 12 k = 16
AR 0.0 0.0 0.0 0.0 0.0
AR-SV 15.5 34.6 38.3 38.9 42.0
AR-ARMA 13.2 35.4 48.6 60.9 68.8
AR-MA-SV 17.2 28.1 29.9 29.6 31.6
AR-ARMA-SV 18.8 40.7 59.7 71.6 80.8
UC -4.8 13.8 17.3 10.5 6.3
UC-SV 17.5 35.3 35.0 28.3 25.2
UC-ARMA 4.9 13.5 17.3 19.2 20.6
UC-MA-SV 14.1 31.6 33.3 31.5 32.2
UC-ARMA-SV 18.1 40.7 49.6 54.6 58.6
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In line with the point forecast results, the AR-SV and UC-SV models tend to dominate

their constant volatility counterparts in CPI forecasts. However, the result here is stronger

in the sense that it also extends to the GDP deflator. More generally, models with ARMA-

SV errors tend to provide better forecasts than those with SV, ARMA or homoscedastic

errors. This is especially true in forecasting the GDP deflator in the US, or CPI in France.

One notable exception is that the AR-ARMA model provides the best forecast of CPI in

Canada across all horizons. Another is the one-step-ahead forecast of US CPI, in which

the simpler UC-SV model provides the best density forecast. This result is important

because it is in contrast with those in Chan (2013). In that paper, the UC-MA-SV model

is found to provide better forecasts of the same variable on an earlier sample. More

precisely, Chan (2013) uses CPI inflation from 1947Q1 to 2011Q3, while we extend this

up to 2017Q4. Thus, our result suggests that, in the case of US inflation forecasts, the

relative performance of the UC-MA-SV model has declined since the end of 2011. That

being said, the UC-MA-SV model still provides good forecasts of US CPI inflation at the

one- and two-year-ahead forecast horizons.

Thus, our main conclusion from this exercise is that ARMA-SV error models again provide

competitive forecasts across the sample of countries considered in this study. This is

especially true in France, Canada and the US, where they provide the best forecasts of

CPI for France and the GDP Deflator for Canada and the US across all forecast horizons.

5 Concluding Remarks

We have introduced a new class of dynamic models with ARMA-SV errors, provided

details on how to estimate them, and shown that they can be useful in forecasting in-

flation. The main difficulty in estimating such models is that the ARMA component

induces serial dependence in the measurement errors, making the standard Kalman filter

not directly applicable. We showed that this could be overcome by carefully designing

the order of matrix operations. Moreover, by exploiting the model structure, we were

able to develop an efficient algorithm that avoids the forward and backward recursions in

the Kalman filter. To illustrate the usefulness of the models, we assessed their forecast

performance of two commonly used inflation measures: CPI and the GDP Deflator, in

each of the G7 countries. More specifically, we presented both out-of-sample point and

density forecast performance to various nested AR and UC models.

While there was no clearly dominant model across each of the countries, the AR-ARMA-
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SV model provided highly competitive forecasts of both inflation measures. In particular,

they provided the best one-step-ahead point forecasts of CPI in all countries except

Germany and the US. The model also dominated the CPI point forecasts at all other

horizons in Canada, while the UC-ARMA-SV variant dominated in both France and

Italy. This latter result extended to the density forecasts. In the former case, however,

the simpler AR-ARMA model produced the best density forecasts across all forecast

horizons. Finally, ARMA-SV models dominated the GDP Deflator density forecasts in

Canada the US, provided good short-term forecasts in Italy and the UK, and good long-

term forecasts in France.
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Appendix: Proof of H−1
ψ Hϕ = HϕH

−1
ψ

Proposition: Suppose Hϕ and Hψ are the following matrices of size T :

Hϕ =



1 0 0 0 · · · 0

−ϕ1 1 0 0 · · · 0
...

. . . . . . . . .
...

−ϕp · · · −ϕ1 1 · · · 0
...

. . . . . . . . .
...

0 · · · −ϕp · · · −ϕ1 1


, Hψ =



1 0 0 0 · · · 0

ψ1 1 0 0 · · · 0
...

. . . . . . . . .
...

ψq · · · ψ1 1 · · · 0
...

. . . . . . . . .
...

0 · · · ψq · · · ψ1 1


.

Then: H−1
ϕ and Hψ commute, i.e., H−1

ψ Hϕ = HϕH
−1
ψ .

Proof : Let Li be a T × T matrix which only has the nonzero elements 1 on the i-th

lower diagonal for i = 0, . . . , T − 1, i.e.,

Li =



0 0 0 0 · · · 0
... 0 0 0 · · · 0

0
. . . . . . . . .

...

1
. . . . . . 0 · · · 0

0
. . . 0

. . . . . .
...

...
. . . . . . . . . . . . . . .

...

0 · · · 0 1 0 · · · 0


.

In particular, L0 = IT (identity matrix). It is easy to check that LiLj = Li+j = LjLi,

when i, j > 0 and i+ j 6 T − 1. Then we can write Hϕ and Hψ as:

Hϕ = IT −
p∑
i=1

ϕiLi, Hψ = IT +

q∑
j=1

ψjLj.
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So that:

HϕHψ =

(
IT −

p∑
i=1

ϕiLi

)(
IT +

q∑
j=1

ψjLj

)

= IT −
p∑
i=1

ϕiLi +

q∑
j=1

ψjLj −
p∑
i=1

q∑
j=1

ϕiψjLiLj

= IT +

q∑
j=1

ψjLj −
p∑
i=1

ϕiLi −
q∑
j=1

p∑
i=1

ψjϕiLjLi

=

(
IT +

q∑
j=1

ψjLj

)(
IT −

p∑
i=1

ϕiLi

)
= HψHϕ.

Hence:

H−1
ψ (HϕHψ)H

−1
ψ = H−1

ψ (HψHϕ)H
−1
ψ

H−1
ψ Hϕ = HϕH

−1
ψ .
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