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1 Introduction

A liberalization of the European gas markets under the Directive 2003/55/EC (EC 2003)

led to a fragmentation of natural gas supply chain. One of many consequences of this

“unbundling” process (Stern & Rogers 2017) is a current move towards the situation

when company supplying the retail customers is not able to purchase natural gas directly

from its parent company, but it has to purchase gas on the open market. However the

granularity of monthly baseloads available on the open market does not allow for perfect

hedging of daily deliveries of natural gas to final consumers. This introduces a new source

of commodity risk into natural gas markets. In this paper we therefore conceptualize

this new subclass of commodity risk, which we call residual shape risk (RSR), and we

empirically evaluate it on a real portfolio of a leading natural gas retail supplier in the

Czech Republic.

Our RSR concept naturally fits into the risk management literature (Senior 1999)

which standardly distinguishes three main categories; a credit risk, an operational risk,

and a market risk. The market risk category is usually further divided into subcategories

like interest rate risk, currency risk, commodity risk, etc. In this article we are concerned

with commodity risk which arises with price movements of commodity on wholesale

market. Hence the RSR belongs into commodity risk category.

The evaluation of RSR requires modelling of prices of evaluated commodity, in our

application natural gas. The literature (Baum et al. 2018; Benth et al. 2008; Borovkova

& Mahakena 2015; Brix et al. 2018; Cao et al. 2018; Gomez-Valle et al. 2017a;b; Hsu

et al. 2017; Mason & Wilmot 2014; Mishra & Smyth 2016; Safarov & Atkinson 2017)

shows that the gas prices and energy commodities in general have quite complex price

distribution as compared to financial assets. Gas prices commonly depart from normality

by exhibiting heavy tails and a leptokurtic shape (Benth et al. 2008). They also exhibit

jumps (Cao et al. 2018; Ficura & Witzany 2016; Mason & Wilmot 2014), a time-varying

volatility (Baum et al. 2018; Brix et al. 2018), and a mean reversion (Brix et al. 2018;

Hsu et al. 2017). Moreover, they are affected by many other factors like storage, weather,
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seasonality and political events and decisions (Gomez-Valle et al. 2018).

As our financial risk metrics we use Value-at-Risk (VaR) and Expected Shortfall

(ES). VaR is the financial loss that is not exceeded with probability 1 − α, where α is

the confidence level. For discussion of VaR in the energy markets risk management see

Andriosopoulos & Nomikos (2015). While VaR is a standard financial measure used by

Basel II and Basel III financial regulatory framework, its limitation is that it does not

provide any indication of how much may be lost if extreme tail events happen. Therefore

it is usually complemented by a computation of Expected Shortfall, which is also alterna-

tively known as Conditional Value at Risk (CVaR). ES (CVaR) measures the average of

worst losses. The ES at level α is the expected return of a portfolio in α percent of worst

cases (Baum et al. 2018). Obviously, for the computation of VaR and ES the selection of

appropriate distribution is crucial (Baran & Witzany 2012; Hung et al. 2008; Khindanova

& Atakhanova 2002).

In the rest of this paper we firstly define RSR and explain its calculation in the

section 2. Then we continue with description of data and empirical evaluation of RSR

on Czech natural gas market in the section 3. In the section 4 we summarize our results

and conclude.

2 Conceptualization of Residual Shape Risk

2.1 Definition of Residual Shape Risk

As already mentioned before, the residual shape risk stems from insufficient liquidity of

wholesale products for hedging shaped sales. Thus, it can be represented for natural gas

markets as a weighted difference between forward and spot price of natural gas where

the weight is the deviation of the daily volume around the volume hedged at the forward

market. In the empirical section of this paper, we use volumetric hedging. It means

that the volume purchased at forward market is an average volume in the period which

corresponds to a length of standard future product. In the Czech market, which we use

in the empirical section, the shortest standard product, which can be traded on forward
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market, is one month. Thus, we evaluate the RSR against a deviation of daily volumes

from average volumes in particular months. Hence, we define the RSR as

RSRp =

N∑
t=1

(Vt − V
m

t )(St − Ft)

N∑
t=1

Vt

, (1)

where index p denotes particular profile with a length of N . Vt is forecasted consump-

tion volume in a day t. V
m

t is the average volume bought on monthly forward product

market in month m, i.e monthly baseload. The second part of the product in the nu-

merator is a difference of spot price at delivery St and forward price Ft. Unit of prices is

EUR/MWh. We divide the numerator by the total volume of the profile in order to obtain

profit or loss per MWh of an energy commodity. The forward price Ft is a weighted price

of standard products consequently purchased and sold on forward market when shaping

the profile. We shape the profile successively as individual products become liquid.

For better understanding now we look at one month separately. We sketch how Ft is

obtained for days in August in the equation below, denoted as F 8
t . When customer uses

natural gas for heating, August is usually month with the lowest consumption within the

year. Such profile would be similar to the one in the Figure 1. Thus, this month would

have to be hedged by a purchase of the yearly baseload firstly. Say at time t1. Again

V
Y

represents average volume in the year. Then when summer product becomes liquid

in time t2, summer months would be rehedged by sell of difference between average year

volume and average summer volume. The volume would be sold for F S
t2

. Subsequently,

retailer would rehedge again when third quarter becomes liquid in time t3 by the differ-

ence between average volume in summer and third quarter (Q3). Last rehedge would be

done in order to end up with average consumption in August. Hence, Ft forward price is

price weighted by volumes traded during hedging the profile.
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F 8
t =

F Y
t1
V
Y − F S

t2
(V

Y − V S
)− FQ3

t3 (V
S − V Q3

)− F 8
t4

(V
Q3 − V 8

)

V
Y − (V

Y − V S
)− (V

S − V Q3
)− (V

Q3 − V 8
)

=
V
Y

(F Y
t1
− F S

t2
) + V

S
(F S

t2
− FQ3

t3 ) + V
Q3

(FQ3
t3 − F 8

t4
) + V

8
F 8
t4

V
8

(2)

Note that every contract becomes liquid in different point in time, thus once yearly

contract is purchased forward price fluctuates until the next shorter contract becomes

liquid. Hence, the Ft price for day t is affected by every forward contract, which contains

that day. We can see the sketch of hedging the profile in the Figure 1. Since we are

dealing with a retail supply of an energy commodity, we always want to have an average

volume in the corresponding period, i.e. we hedge the profile volume neutral. The sum

of residual positions is zero. We repeat this algorithm as individual blocks become liquid

until we hedge profile by monthly baseloads. Hence, we obtain a forward price for every

day t which is a weighted price of these successive purchases and sales at the forward

market.

Figure 1: Two years consumption profile with baseload products.

We determine the RSR as a profit and loss distribution. This means that positive

value of the RSR is actually loss. Whenever additional volume has to be purchased on
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the spot market and the spot price is higher then the forward price was, loss occurs. This

means that in formula (1) Vt > Vt
m

and St > Ft. Similarly, when both inequalities are

opposite, i.e. when there is a long position in the particular gas day and the weighted

forward price is higher than the spot price, the loss occurs again. Loosely speaking, given

the higher realized spot price, higher volume was purchased on the forward market than

it should have been. Contrary, whenever these two differences have opposite sign a gain

is obtained. For example, the residual position was purchased for the spot price that was

lower than the forward price. For better understanding, observe the Figure 2. It shows

shape of a consumption in March along with purchased monthly baseload product. The

y-axis shows daily consumption as a percentage of a yearly consumption. A supplier has

a short position in the first half of the month and if spot price exceeds the forward price,

he incurs loss. On the contrary, at the end of the month there is a long position and if

the spot price is higher than forward one, a supplier incurs gain.

Figure 2: Consumption in March hedged by monthly baseload.

We derive forward prices as expected spot prices at delivery. Hence, we expect the

difference between them to be zero. Nevertheless, the RSR will not be zero in general.

One would have to hedge the profile value neutral against expected spot prices. As we
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will use volumetric hedge, we do not expect the loss distribution to have exactly zero

mean. Lastly, to determine the size of this risk we use Monte Carlo simulation of spot

prices. In this way the hedge strategy described above is realized on simulated price paths

to obtain the RSR loss distribution. We employ conventional five percent Value at Risk

measure along with the Expected Shortfall measure, which captures the tail distribution

better.

2.2 Calculation of Residual Shape Risk

First step of the RSR estimation is to model spot prices of an evaluated commodity, in

our case natural gas. We follow approach suggested in Benth et al. (2008). We model the

spot price dynamics with Ornstein-Uhlenbeck (OU) process using a sum of Gaussian and

two compound Poisson processes to create a more complex jump mixed diffusion process.

This induces desired leptokurtic shape for price innovations. As a second step, forward

prices are then derived as expected spot prices at delivery using characteristics of spot

price processes. In the third step we choose an appropriate risk evaluation metrics and

apply it to a particular consumer profile.

2.3 Spot Model

Benth et al. (2008) presents a general form of geometric stochastic process for energy

commodity spot price. However, we choose rather simple model specification for the

purpose of our analysis. We include into our model one normal and one jump Ornstein-

Uhlenbeck process. The model is described by the following equations.

lnS(t) = ln Λ(t) +X(t) + Y (t), (3)

with OU processes X(t) and Y (t) following dynamics

dX(t) = −αX(t)dt+ σdB(t), (4)
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and

dY (t) = −αY (t)dt+ dI(t). (5)

The term Λ(t) in the first equation represents continuously differentiable deterministic

seasonal function. Equations (4) and (5) represent normal and jump part of the price

process, respectively. Such model is mean reverting process. We assume to have constant

speeds of mean reversion common for the diffusion B(t) and the jump I(t) part. The

coefficient α is the mean reverting parameter. Such parameter determines how fast the

spot price reverts towards its seasonal mean Λ(t). σ represents standard deviation of the

normal innovations B(t). The model further assumes that B(t) and I(t) are independent.

This model specification is an extension of the Schwartz one-factor model (Schwartz 1997)

obtained by including jumps.

The process of logarithmic price (3) has dynamics

d lnS(t) = d ln Λ(t)− (lnS(t)− ln Λ(t))dt+ σdB(t) + dI(t). (6)

2.4 Forward Model

The fundamental pricing formula for forward contracts, which leads to arbitrage free

relation between the spot and forward is presented in the equation (7). It says that

under some probability measure Q, the forward price at a time t with a delivery at a time

τ is an expected spot price at delivery given the information we have at the time t.

f(t, τ) = EQ[S(τ) | Ft]. (7)

We will not go into theoretical details here as they are thoroughly described in Benth

et al. (2008). However, similar relation can be derived for a price of gas future contract,

which delivers energy between time τ1 and τ2. The relation to spot price is similar. The

price of a contract settled at the end of the delivery period is an average of expected spot

prices within that period.
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F (t, τ1, τ2) = EQ[

∫ τ2

τ1

1

τ2 − τ1
S(u)du | Ft]. (8)

Moreover, Benth et al. (2008) shows that under certain condition the future price

can be derived from prices of forwards which deliver on particular days in the delivery

period. It means that future price is an average price of these forward prices it our daily

granularity market. The relation is show in the formula (9).

F (t, τ1, τ2) =

∫ τ2

τ1

1

τ2 − τ1
f(t, u)du. (9)

When we take our specification of the spot price process in equation (3), the expec-

tation in (7) becomes (Benth et al. (2008))

f(t, τ) = Λ(τ)Θ(t, τ, 0) exp(e−α(τ−t)X(t) + e−α(τ−t)Y (t)), (10)

where Θ(t, τ, 0) is given as

ln Θ(t, τ, 0) = ψ(t, τ,−ie−α(τ−t)) +
1

2
σ2

∫ τ

t

(e−α(τ−u))2du. (11)

with ψ(−ic) being the logarithm of the moment generating function of increment

processes Y (t), also called a cumulant function. The integral in the second part of the

expression (11) represents cumulant function for Brownian motion. The zero in the

function Θ(t, τ, 0) means that we are deriving expectation with market price of risk equal

to zero, thus under equivalent measure P. The expression in (10) can be rewritten then

as

f(t, τ) = Λ(τ)Θ(t, τ, 0)

(
S(t)

Λ(t)

)e−α(τ−t)
. (12)
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3 Empirical Evaluation

3.1 Data

For the purpose of our empirical analysis we choose the Czech OTE price index. “OTE,

a.s.” is the Czech electricity and gas market operator, which organizes day-ahead market.

The OTE price index is a daily index, which represents country-wide price of natural gas

at a particular gas day and we treat it as a spot price index as the gas day is the lowest

granularity of the Czech natural gas market. The OTE index is derived as a weighted

average of trades executed on the Intra-Day Gas market, where weights are volumes of

particular trades.

The time series of our leading example ranges between 1.1.2016 and 31.12.2017. It

consists of 731 daily observations. The data were downloaded from the web page of the

market operator, the OTE. These data are published every day and they are publicly

available1. Summary statistics of observed natural gas prices are presented in the Table

1.

Further, we employ data about consumers portfolio of a leading Czech gas retail sup-

plier for a period between 1.1.2016 and 31.12.2017. It is used as a consumption profile

for the purpose of our analysis. The profile consists of initial forecasts of consumption

for households and small entrepreneurs. These forecasts are made using so-called stan-

dardized load profiles (SLP). SLP represents typical shape of annual consumption for

particular group of customers. It predicts customers consumption based on expected

temperatures and days in a week. These diagrams are thoroughly described in Novak

et al. (2017). Our profile consists of mixture of different types of SLPs.

Table 1: Data Summary - OTE spot price index

Statistic N Mean St. Dev. Min Max

S 731 15.930 2.580 11.180 23.030

In order not to disclose a size of the portfolio we scale the volume to unity according

1Data available at OTE web page http://www.ote-cr.cz/statistika/rocni-zprava.
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to (13):

cd =
Vd
N∑
d=1

Vd

. (13)

We do this for both years. Thus, for each day we obtain a value that represents percentage

of total year consumption on that day. An example of a consumption profile is presented

in the Figure 3. We can see characteristic profile shape with higher consumption in winter

along with a weekly pattern.

Figure 3: Yearly consumption profile.

3.2 Model Estimation

This section describes consecutive steps we take in order to appropriately estimate our

model. We start with an analysis of an observed gas spot prices, where we obtain their

distributional properties. Based on the analysis we fit a jump mixed diffusion process,

which we use for the Monte Carlo (MC) simulation of spot and forward prices afterwards.

Lastly, we use these simulations for an evaluation of the RSR over customer portfolio of

a real company.
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3.2.1 Spot Price Analysis

First, we look at a development of logarithmic spot prices. As there are no negative or

zero prices in our sample, we can take logarithm of every price. Logarithmic prices are

chosen deliberately in order to impose geometric nature of the model, which restricts

simulation to generate non-negative prices. The development of logarithmic spot prices

is presented in the Figure 4. From the visual inspection of the plot, we expect the price

to follow some kind of seasonality and trend. It is a common feature of energy prices to

exhibit some periodicity, natural gas in particular. Natural gas is widely used for heating.

Thus, it tends to be more expensive in the winter when a demand increases.

Figure 4: Time series of logarithmic spot price.

We also check for outliers as they would affect fitted cyclical and mean function. To

detect possible outliers we look at the differenced time series. In our case such series

becomes series of log returns. In order to determine whether the observation is an outlier

we adopt approach described by Benth et al. (2008). An observation is deemed to be

outlying when it is lower than Q1−3×IQR, or greater than Q3+3×IQR, where Q1 and

Q3 are lower and upper quartile, respectively. The IQR is interquartile range, defined as

difference between the upper and the lower quartile. Following this rule six observation
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were found to be outlying. Hence, we replaced them with an average of preceding and

following observation. The mean function is then estimated on this new trimmed time

series.

There are few evident cycles to search for in the energy sector. As mentioned above we

expect to find some form of yearly cycle, which represents an inclination of gas wholesale

prices to grow in the winter and stay lower in the summer. However, we make use of the

Fourier transform to precisely determine all possible cycles in the data. Following this

approach, two signals were found. Firstly, the most important cycle was determined to

be yearly as expected. Secondly, we found cycle with half year periodicity. The second

cycle could be attributed to injecting of natural gas into underground storages during

summer. Storage companies incur some additional costs when they have to reverse the

flow in storage, i.e. to switch between injecting and withdrawing. Such situation can

happen during high temperature days when there is a high demand for electricity to

power air-conditions and gas fired power plants have to be switched on. Hence, it can

cause temporal increase in spot prices. We use relationship defined in the equation (14)

for modelling trend and seasonal components of spot prices.

lnΛ(t) = a0 + a1t+ a2cos(2πt/365)) + a3cos(2πt/182.5) (14)

Table 2: Estimated coefficients of the mean level function

Estimate Std. Error t value Pr(>|t|)
â0 2.566 0.006 412.289 0
â1 0.001 0.00001 35.167 0
â2 0.105 0.004 23.928 0
â3 0.056 0.004 12.666 0

The linear time trend is often added to energy price series as a measure of inflation in

price level. The cosines of year and half year component coincide in winter making the

yearly cycle approximately 3 times stronger than the other one. The results are presented

in the Table 2. We also estimated the effect of quarterly and weekly cycles, however they
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appeared to be insignificant. The fit of mean level function on logarithmic spot price is

shown in the Figure 5.

Figure 5: Fitted mean level function on logarithmic prices.

By subtracting the mean level function from the original time series of logarithmic

spot prices we obtain detrended and deseasonalized prices, which are ready for subsequent

analysis. Further, when we look at the histogram of returns of this “detrended” series

in the Figure 6, we see that it departs from normality. The histogram shows leptokurtic

shape, i.e. higher probability of observation close to mean and heavier tails than normal

distribution. This is a common feature of energy prices (Dukhanina et al. 2018; Hsu et al.

2017).

The Shapiro-Wilk normality test rejects the null hypothesis of normal distribution

at one percent significance level. If we assume that the spot prices follow the geometric

Brownian motion, then any test should reject null hypothesis of stationarity as the discrete

time approximation of the Brownian motion is the AR(1) process with coefficient equal

to unity, i.e. a random walk. Hence, we apply the Dickey-Fuller test to deseasonalized

log prices which tests null hypothesis of unit root. The test yields statistic of −3.898.

It corresponds to rejection of the null at roughly one percent confidence level. Also,
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Figure 6: Histogram of log returns from detrended spot prices.

the result of the test suggests that the autoregression coefficient is less then one. This

behaviour is expected from the mean-reverting process. Therefore, we continue with an

analysis of the autocorrelation function (ACF) and the partial autocorrelation function

(PACF).

The ACF of deseasonalized logarithmic spot prices suggests that the underlying pro-

cess has long memory. Explanation of the departures from normality (observed in the

typical financial distribution, also in the Figure 6 ) using memory mechanisms is generally

treated in Stadnik (2014). The ACF is plotted in the Figure 7. Further, the PACF indi-

cates that the prices follow AR(1) process as one can see in the Figure 8. Even though,

AR(1) does not allow for long memory, we continue with model defined in (15) as it

implies an analytically tractable formula for forward price. In order to evaluate RSR, we

do not need very complex model. Hence,

zt = ρzt−1 + et (15)

where the et is assumed to be an i.i.d. process.
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Figure 7: The ACF of deseasonalized logarithmic spot prices with 95
% confidence bounds.

The data have daily granularity, thus we shift from a continuous to a discrete time.

Then we let Z(t) = X(t) + Y (t). Therefore Z(t) = lnS(t)− ln Λ(t). From the dynamics

of OU processes X(t) and Y (t) defined in equations (4) and (5) we have

dZ(t) = −αZ(t)dt+ σdB(t) + dI(t). (16)

To achieve discrete approximation we add Z(t) to both side of the equation and we

get daily increments as

Z(t) ≈ (1− α)Z(t− 1) + σ∆B(t) + ∆I(t). (17)

Note that ∆B(t) is a daily increment of Brownian motion i.e. B(t) − B(t − 1).

Similarly, ∆I(t) in an increment of the jump process I(t)− I(t− 1). Both increments of

Brownian motion and general Lévy process are i.i.d. sequences of random variable. Hence,

their sum σ∆B(t) + ∆I(t) is also an i.i.d. Then we see that our discrete approximation

corresponds to the AR process in (15) with ρ = 1− α and et = σ∆B(t) + ∆I(t).

16



Figure 8: The PACF of deseasonalized logarithmic spot prices with
95 % confidence bounds.

Hence, we continue by fitting AR(1) model on deseasonalized logarithmic spot prices

Z(t), defined in the equation (17), to determine speed of mean reversion. Thus, the

estimated speed of mean reversion is α̂ = 1− ρ̂ = 1− 0.955 = 0.045.

Hence, the spot prices revert rather slowly towards the seasonal level. The fitted AR(1)

model is presented in the Table 3. Finally we look at the distribution of obtained residuals.

Their histogram is depicted in the Figure 9 along with fitted normal distribution density

curve. We see that the increment process indeed reveals leptokurtic shape. Therefore, we

try to account for non-normal features of residuals by decomposing them into a mixed

diffusion process.

17



Table 3: Fitted AR(1) model.

Dependent variable:

ρ̂ 0.955∗∗∗

(0.011)

Log Likelihood 1,647.015
σ2 0.001
Akaike Inf. Crit. −3,290.029

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Figure 9: The histogram of obtained residuals from AR(1) model fit
with normal density curve.

3.2.2 Residuals as a Jump Mixed Diffusion Process

Now we decompose residuals into two separate processes: a Gaussian process and a jump

process. We choose the window size of 16 days for deriving a bipower variation, an

estimator of instantaneous volatility as recommended by Lee & Mykland (2007). The

test indicates six jumps at five percent significance level. The comparison of jumps with
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series of residuals is presented in the Figure 10. Indeed we estimated jumps at places

where one would expect them. However, when we look at the series of residuals, there are

observations which look more like jumps than like normal innovations. For instance, the

second estimated jump is followed by a return of approximately the same negative size.

It is not determined to be jump at any choice of K not even at ten percent significance

level, though.

Figure 10: Residuals (top) and estimated jumps (bottom) following
Lee & Mykland (2007).

Therefore we apply different jump detection approach suggested by Clewlow & Strick-

land (2000). Under this alternative approach 20 jumps are detected. The recursive fil-

tering algorithm determines observation to be a jump when it deviates more than three

standard deviations from the mean and replaces it with a median of the sample then. The

procedure is repeated until no new jumps are found. In our case the algorithm converges
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after five iterations. The estimated jumps are presented in the Figure 11. Using this

approach (Clewlow & Strickland 2000) we are able to eliminate large jumps that follow

one after another. It is primarily appreciable in the beginning of the series.

Figure 11: Residuals (top) and estimated jumps (bottom) following
Clewlow & Strickland (2000).

We estimate standard deviation of filtered residuals after every iteration. The esti-

mates are presented in the Table 4 along with number of detected jumps. After last

iteration the estimated standard deviation becomes estimate of the σ from the normal

part of the stochastic process. The σ̂ is 0.0204. Our estimate is approximately five times

lower than estimated value of 0.1 for the National Balancing Point (NBP) day ahead

prices in Steele (2010).

Hence, the Czech market appears to be calmer. It may be due to the fact that the UK

has relatively limited gas storage capacity compared to the Czech Republic. The Czech
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storage capacity ranks among the highest in Europe. A total storage capacity represents

approximately 40 percent of total annual gas consumption in the Czech Republic. More-

over, withdrawal capacity of Czech gas storages should cover higher demand during days

with low temperatures (Zaplatilek 2015). Therefore the lack of extreme price movements

at the Czech market may be caused by this high gas storage capacity.

Table 4: Summary of the jump filtering algorithm.

Iteration Detected jumps Std. deviation

1 11 0.0218
2 17 0.0208
3 19 0.0205
4 20 0.0204
5 20 0.0204

The arrival of a new information which causes price to jump is usually modelled as a

compound Poisson process. Before we define such process, it is convenient to look at the

distribution of jump sizes. In a literature they are often assumed to come from the normal

distribution. However, when we look at the histogram of estimated jump sizes depicted

in the Figure 12, it looks that the normal distribution might not be a good choice in

our case. Benth et al. (2008) propose to look at positive and negative jumps separately.

Their histograms are presented in the Figure 13. Indeed, the histograms suggest that the

exponential distribution may fit the data better. Therefore, we define Lévy process I(t)

rather as a sum of two jump process as

I(t) = I+(t) + I−(t). (18)

Hence, we have two compound Poisson processes defined as

I±(t) =

N±(t)∑
k=1

J±
k , (19)

where N±(t) are Possion processes with intensities λ±. The sequences J±
k are assumed

to be exponentially distributed i.i.d. random variables which represent jump sizes with
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average size m±
J . Thus, J±

k ∼ Exp( 1
m±
J

).

A possible reasonable alternative specification would be to assume that residuals come

from the NIG distribution, which is a family of flexible distributions that includes skewed

and fat-tailed distributions. The normal distribution is a special case of the NIG distri-

bution.

Table 5: Estimated jump sizes and intensities.

Estimate Positive jumps Negative jumps

λ̂ 0.0151 0.0123
m̂J 0.0870 0.0865

The estimated parameters of the Lévy process defined in the equation 19 are summa-

rized in the Table 5. Out of 20 jumps, 11 turned out to be positive, thus the estimated

intensity of the positive jump arrival is slightly higher than the negative one. Still, the

intensities are almost the same and imply that approximately five negative and posi-

tive jumps arrive during the year. An estimated average jump size is slightly higher for

positive jumps.

Figure 12: Histogram of estimated jump sizes.
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Figure 13: Histogram of estimated jump sizes.
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The compound Poisson process is convenient for pricing forwards as it has simple

cumulant function. A derivation of the function is shown in Benth et al. (2008). It is

defined as

ψI±(−iz) = λ±(e− ln(1−m±
J z) − 1) = λ±

(
1

1−m±
J z
− 1

)
, (20)

where λ± is an intensity of new information arrival. When we input this expression

into the equation (11) we get

ln Θ(t, τ, 0) =

∫ τ

t

1

2
σ2z2 + λ+

(
1

1−m+
J z
− 1

)
+ λ−

(
1

1−m−
J z
− 1

)
du (21)

where z = e−α(τ−u). Hence, having estimated all desired coefficients of the spot dy-

namics, we are able to price yearly, quarterly, and monthly gas futures contracts now.

3.2.3 Consumption Profiles

Finally, as we constructed a model for forward and spot prices, we are able to evaluate the

RSR. Obviously, we need some consumption profile from which the residual position can

be derived because the RSR depends on the shape of the profile. Hence, the real shape

of Czech leading natural gas selling firm portfolio is used here. The portfolio consists of

forecasted households consumption between years 2016 and 2017. We scale the shape of

the portfolio to unity in order not to reveal its size as this information is confidential. It

is not a problem because we evaluate the RSR per MWh, so just the shape is crucial for

our calculations. We will refer to this portfolio as a profile from now on.

We hedge the profile with standard baseload products. Prices of these products were

referred to as futures prices in the previous sections. The Table 6 presents all relevant

gas futures contracts available at the Power Exchange Central Europe (PXE) throughout

years 2016 and 2017. It provides the start and the end of the delivery, a length, and

a liquidity for every product. We also present the first day when the product can be

traded, i.e. becomes liquid. The time ranges between 0 and 731. When a product is
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liquid in time 0 it means it became liquid before the beginning point of our time horizon

(January 1, 2016). We relate the time notation with respect to a start of the hedging

strategy. Thus, we start to hedge one day before the first delivery day. We do this for

simplicity of the algorithm. However, one can start earlier. For instance, when the yearly

baseloads become liquid as these products are traded longest time before the delivery.

Our strategy is to re-hedge in the first day when shorter product becomes liquid. These

days correspond to days in the column adj first day. The residual position derived from

the consumption profile is depicted in the Figure 14.

Figure 14: The residual position derived from consumption profile.
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Table 6: Summary of liquid wholesale standard products - futures.

Product Type Length Start End liquid Ahead adj first day

M1-16 M 31 1 31 92 0
M2-16 M 29 32 60 92 0
M3-16 M 31 61 91 90 0
M4-16 M 30 92 121 91 1
M5-16 M 31 122 152 90 32
M6-16 M 30 153 182 92 61
M7-16 M 31 183 213 91 92
M8-16 M 31 214 244 92 122
M9-16 M 30 245 274 92 153
M10-16 M 31 275 305 92 183
M11-16 M 30 306 335 92 214
M12-16 M 31 336 366 91 245
M1-17 M 31 367 397 92 275
M2-17 M 28 398 425 92 306
M3-17 M 31 426 456 90 336
M4-17 M 30 457 486 90 367
M5-17 M 31 487 517 89 398
M6-17 M 30 518 547 92 426
M7-17 M 31 548 578 91 457
M8-17 M 31 579 609 92 487
M9-17 M 30 610 639 92 518
M10-17 M 31 640 670 92 548
M11-17 M 30 671 700 92 579
M12-17 M 31 701 731 91 610
Q1-16 Q 91 1 91 365 0
Q2-16 Q 91 92 182 366 0
Q3-16 Q 92 183 274 366 0
Q4-16 Q 92 275 366 366 0
Q1-17 Q 90 367 456 366 1
Q2-17 Q 91 457 547 365 92
Q3-17 Q 92 548 639 365 183
Q4-17 Q 92 640 731 365 275

Sum-16 S 183 91 273 548 0
Win-16 S 182 274 455 548 0
Sum-17 S 183 456 638 548 0
Cal-16 Y 366 1 366 730 0
Cal-17 Y 365 367 731 731 0

26



3.2.4 RSR Results

As a final step, we evaluate the RSR by Monte Carlo simulation. We derive 25,000

simulations of spot price paths defined by discrete version of formula (3):

S(t) = Λ(t) exp(Z(t)) (22)

where

Z(t) = (1− α)Z(t− 1) + σ∆B(t) + ∆I+(t) + ∆I−(t) (23)

and Λ(t) is exponential of function defined in equation (14).

The calculations were made in the R Studio with seed 1. Once realizations of spot

prices are derived, the algorithm “walks” through the hedge strategy path 25,000 times

while storing a result of the RSR costs after every path calculated by expression (1). The

calculation takes about one hour of computer processing unit time. The simulated RSR

profit and loss per MWh distribution is presented in Figure 15. Moreover, we present

one series of simulated RSR in the Figure 16.

Figure 15: The simulated RSR profit and loss per MWh with jump
mix-diffusion errors.
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Figure 16: Simulated series of RSR.

The Table 7 shows descriptive statistics of simulated RSR profit and loss distribu-

tions. The VaR and the ES are 0.013 and 0.016 EUR/MWh respectively for our leading

illustrative year 2016/2017. The ES for mixed-diffusion process is approximately 0.1

percent of average spot prices in our sample, which is 15.93 EUR/MWh. However the

important benchmark for retail energy supplier is not a price but his profit margin. Un-

der an assumption of 10 percent profit margin, we obtain the RSR for ES on the level of

approximately 1 percent of profit margin.

Table 7: Comparison of RSR distribution statistics.

Statistic 2014/2015 2016/2017 2017/2018

mean 0.000 0.000 0.000
st. dev. 0.012 0.007 0.013
V aR0.05 0.020 0.013 0.021
ES0.05 0.027 0.016 0.029

Since spot prices were relatively calm in 2016/2017 period, our results for this leading

illustrative year provide a conservative estimation of RSR . In order to show RSR for

28



a more volatile periods we also estimated parameters of spot price model on data from

2014/2015 and 2017/2018. Estimates are presented in the Table 8. In both periods

we detected more than 30 jumps. In period 2014/2015 the jump intensities increased

approximately by 35 and 78 percent for positive and negative jumps respectively. Average

jump sizes increased by 20 percent. Estimates for period 2017/2018 are higher by 45 and

90 percent for positive and negative jumps respectively. The mean reversion parameter

stayed approximately the same for period 2014/2015, but increased by 16 percent in

period 2017/2018. Development of spot prices in 2018 was more dramatic and especially

a few days in the end of February, when price jumped by tens of percent up and down,

influenced the parameters significantly. One can see in the Table 7 that simulated RSR

increased by almost 1 euro cent. It is what we expect as the RSR greatly depends on the

underlying spot price process.

Table 8: Comparison estimated spot price parameters.

Estimate 2014/2015 2016/2017 2017/2018

λ̂+ 0.0205 0.0151 0.0219

λ̂− 0.0219 0.0123 0.0233

m̂J
+ 0.1088 0.0870 0.1310

m̂J
− 0.0973 0.0865 0.1195

α̂ 0.0440 0.0450 0.0522
σ̂ 0.0197 0.0204 0.0181

We should take into account that an energy supply is very competitive business ev-

erywhere, including Czech Republic. Almost every half a year some Czech gas supply

company is going bankrupt. The Czech market operator “OTE, a.s.” registered 69 natu-

ral gas suppliers by the end of May 2018 2. It appears that margins are low and probably

a lot of companies operate close to zero economic profit. In such environment the supplier

should be aware about even relatively low risk like the RSR, as we estimated. Neverthe-

less, a trading activity on energy markets grows every year and energy markets become

more linked up. For instance, during hot summer when people switch on air conditioners

2Suppliers with more then 100 points of delivery - http://www.ote-cr.cz/statistika/mesicni-zprava-
plyn/pocty-opm-dodavatelu
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and there is low water levels in hydro power pumped plants additional capacity has to

be added into the system. This capacity is usually covered by gas fired power plants,

which can be dispatched quickly. Hence, higher demand for electricity may cause higher

demand for natural gas and affect prices accordingly. Moreover, the power sector shifts

towards more volatile, decentralized, renewable power sources. Naturally, it affects elec-

tricity prices, but it may also affect natural gas prices. Usually extreme energy prices are

positively correlated with extreme weather conditions. With the climate change, natural

gas spot prices may become more volatile. Hence, the RSR may become more relevant

in the near future.

3.3 Hedging by Storage

Our set up of RSR concept assumes that retail suppliers do not have access to suffi-

ciently flexible costless storage technology and hence need to balance the demand short-

age/surplus at the spot market every day. If a portfolio manager of retail supplier com-

pany has available storage facility which would be costless (or sufficiently cheap) and

sufficiently technologically flexible, he could use short-term storage to shift volumes from

days when he is long to days with short position which immediately follows and vice

versa. Also, the long-term storage may be reasonable for some period of time with such

a technology.

Firstly, consider the issue of the storage cost in comparison with RSR implied cost.

If retail manager wanted to use a storage to mitigate the risk, the price he would pay

for such service would be at most the value of such risk. For a comparison with RSR

empirically estimated on Czech data in our article we use the relevant storage opportunity

costs of “innogy Gas Storage, s.r.o.” that operates six out of eight underground natural

gas storages present in the Czech Republic. These six storages are united into one virtual

storage. Hence, innogy’s price list for injection and withdrawal capacity is decisive.

Its official web page states that minimum price for its service would be at least 0.5

EUR/MWh3. Our results in the previous section show that the magnitude of RSR on

3https://www.innogy-gasstorage.cz/en/media/Price_list.pdf
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the relevant market is at the magnitude of about 1 or 2 Euro cents per MWh. Therefore

the price (or opportunity cost) of gas storage is approximately 25 times higher than our

highest estimate of RSR of 0.02 EUR/MWh.

Secondly, even if the storage would be financially viable, retailer would need to con-

sider technical capabilities of the storage facility. The relevant capabilities for every

underground gas reservoir are its injection and withdrawal curves. These curves repre-

sent amount of gas which can be injected or taken out of the storage during a day. Such

curve depends on the actual amount of gas present in the storage. A realistic example of

these curves is presented in the Appendix. Thus, the portfolio manager of retail supplier

would need to compare these curves with his residual position to verify, whether the fa-

cility is flexible enough to cover the position. Moreover, there is usually some extra time

needed to switch between injecting and withdrawing regimes, which brings additional

restriction on the shape of the profile. In case the injection and withdrawal curves would

match with the customer’s (or portfolio) profile the RSR would be mitigated completely.

In terms of RSR such situation would be equivalent to a flexible contract with producer,

when retailer has a possibility to differ from contracted volume.

4 Conclusions

As a result of European energy sector liberalization activities at the energy supplier

business, the last unit in energy supply chain, became close to activities of portfolio

managers and traders on the financial markets. Moreover, as the market introduces

more standard products including financial futures, wholesale energy markets become

attractive for speculative traders. In a such environment, the energy managers had to

adopt risk measuring metrics usually used in the financial sector. With a growing use

of flat baseload products used for hedging of prices of short sales to final consumers the

difference of forward and spot prices weighted by volume the residual position, which

we term residual shape risk (RSR), appeared as a new concept which was missing in

the previous more integrated gas markets. While we introduce, motivate and illustrate
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the RSR on the natural gas market, this concept may be applied for similar energy

commodities too.

In order to evaluate RSR, first the dynamics of natural gas spot prices is estimated

and subsequently forward prices are derived as expected spot prices at delivery using

characteristics of the underlying spot pricess process. The RSR is then evaluated on an

appropriate shape (profile) of retail energy supplier portfolio. Using volumetric hedge by

hedging the profile with standard products that are liquid in a given time, the profit and

loss distribution caused by the RSR is obtained. This distribution is derived by Monte

Carlo simulation of spot price paths and by applying the volumetric hedging strategy on

them. As a last step five percent VaR and ES financial risk metrics for these distributions

are obtained.

In our illustrative conservative (for a 2016/2017 period of low volalitity) example of

RSR for leading Czech natural gas retail supplier we obtained VaR and ES values of

0.013 and 0.016 EUR/ MWh, respectively. This means that even when looking at the

tail of the distribution, we do not predict loss higher than 2 Euro cents per MWh in

extreme cases. However, for the periods 2014/2015 and 2017/2018 when prices become

more volatile estimates almost double. The RSR approximately corresponds to 1 percent

of profit margin of natural gas retail supplier. This means that while it is not negligible

risk, it is definitely not of a first order of importance for natural gas supplier and it does

not call for a need to change current business policies and practices.

Since the Czech natural gas spot prices have lower volatility than British National

Balancing Point (NBP) prices our empirical results are conservative in the sense of leading

to a low value of RSR. In the environment with more volatile energy spot prices RSR

would be higher and therefore more important for business decision making, possibly

leading to changes in hedging practices. In particular with the increased RSR, the value

neutral hedging, leading to zero expected value of RSR, could be more attractive to

energy suppliers than currently used volumetric hedging.
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Appendix

Figure 17: Seasonal utilization of natural gas storage.

Source: innogy Gas Storage s.r.o.

Source: innogy Gas Storage s.r.o.
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Source: innogy Gas Storage s.r.o.
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