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1 Introduction

Impulse response functions (IRFs) are a common tool in macroeconomics to study the dynam-

ics of variables in response to shocks. A recent development is to estimate IRFs using local

projections, developed by Jordà (2005) (e.g., see Tenreyro and Thwaites, 2016; Ramey and

Zubairy, 2018; Swanson, 2020). Local projections are single-equation methods, and can be

thought of as the direct forecast counterpart of traditional multiple equation systems, such as

vector autoregression (VAR), which rely on iterating on a system of equations.

A parallel development in the macroeconometrics literature has been the use of large data

sets. The cost of putting together a large data set for empirical analysis, at least for U.S.

macroeconomic data, is now becoming exceedingly trivial, especially with data sets such as

FRED-MD and FRED-QD (McCracken and Ng, 2020). Like any regression model, the choice

of control variables to use in a local projection forms part of the model speci�cation. With the

availability of large data sets, the dimension of this control set has become potentially large.

The contribution of our paper is to introduce random subspace methods for the estimation

of IRFs using local projections. The method is simple to implement by three steps: First, we

include a random subset of controls in the local projection and estimate the IRF. Second, we

repeat the �rst step many times. Finally, we take the average IRF. Through averaging over

random subsets of controls, where the subsets are generated independently of the data, the

variance of the IRF estimate is reduced while maintaining most of the signal of the controls.

A practical implication of our approach is that it frees up the researcher to focus on the

IRFs, which is the key object of interest, and leaves the issue of appropriately including controls

to the random subspace method. This is an appealing practical feature because the coe�cients

on the controls are almost never the object of interest, as long as the appropriate controls are

included in order to obtain appropriate estimates of the IRFs.

We highlight that random subspace methods apply more naturally within the local projec-

tion setting despite the now-known result that local projection and VAR estimate the same IRF

in population (see Plagborg-Møller and Wolf, 2021). In a VAR setting, an additional control

variable implies an extra equation. In the local projection setting, extra variables imply just

more controls within the single equation. With the potential control variables numbering into

the tens or hundreds, appropriately dealing with extra, possible extraneous, controls is arguably

more manageable than estimating tens or hundreds of extra, possibly irrelevant, equations.

Our key results are as follows. First, we show that random subspace methods can recover the
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true IRFs under plausible factor structures and usual identi�cation techniques for the structural

shock of interest. We base this conclusion of Monte Carlo experiments using a real business

cycle model with �scal foresight introduced by Leeper et al. (2013). In this setting, the proposed

method is implemented with both SVAR identi�cation (Plagborg-Møller and Wolf, 2021), and

instrumental variable (IV) identi�cation (Stock and Watson, 2018). Random subspace methods

help accurately estimating responses to a simulated tax shock, using a large set of controls that

exhibits di�erent factor structures resembling empirical macroeconomic data sets.

Second, while we demonstrate that we are able to recover the true IRF in di�erent factor

structures, our Monte Carlo exercise shows that random subspace methods might be more

appropriate than the factor-augmented VAR (FAVAR) when the factor structure resembles

that of U.S. macroeconomic data sets such as FRED-MD. The intuition is as follows: It is

known that when the large macroeconomic data set is characterized by moderate �but not

extremely strong� comovement, random subspace methods can better process the signals of

relevant comovement from the data than factor models (see Boot and Nibbering, 2019).

Third, we document in two widely studied empirical applications (i.e. the e�ect of the

macroeconomy to an identi�ed monetary policy and technology shock) that random subspace

local projections produce meaningful di�erences in the estimated IRFs relative to common

empirical strategies. Our results are encouraging as it suggests that the random subspace local

projection is a simple procedure or robustness check for practitioners using local projections

who may be concerned that they may have omitted relevant controls.

We link our work to two strands of the broader literature. First, although random subspace

methods have their roots in the machine learning literature, researchers have recently applied

them to improve forecast accuracy for economic indicators based on a large number of possible

predictors (Koop et al., 2019; Kotchoni et al., 2019; Boot and Nibbering, 2020; Pick and Carpay,

2022). In general, they �nd strong performance of random subspace methods across di�erent

macroeconomic forecasting exercises. Since the data sets used in macroeconomic structural

analysis are similar, exploring random subspace methods to estimating IRFs seems natural.

Second, Barnichon and Brownlees (2019); Ferreira et al. (2023); Ho et al. (2023) propose

approaches that may improve the e�ciency of the local projection estimator, which has a

lower bias but higher variance than VARs (Li et al., 2022). One can view our approach in

a similar vein. Given that proliferation of controls leads to ine�ciency, researchers naturally

economize on the number of controls. Random subspace methods are a form of regularization, in

which averaging across subsets of controls targets the bias-variance trade-o� between omitting

2



potentially relevant information and including all available data as controls.

The remainder of the paper is organised as follows: Section 2 provides a detailed discussion

of our framework. Section 3 uses a Monte Carlo exercise to understand how random subspace

methods help in appropriately estimating IRFs. Section 4 applies our proposed approach to

two widely studied empirical applications. Section 5 provides some concluding remarks.

2 Method

Consider the standard local projection regressions one speci�es to estimate the IRF to the

variable y from an exogenous one unit impulse on xt:

yt+h = µh + βhxt + Φ′
hWt + ξt+h, h = 0, 1, . . . , H, (1)

where µh, βh, and Φh are projection coe�cients, ξt+h is the projection error, and Wt is a vector

of controls. We are interested in the response of yt+h with respect to an exogenous one unit

impulse to xt, which equals βh. The problem we investigate in this paper is how one deals with

the control set Wt. While one is almost never interested in the coe�cients Φh, the speci�cation

of the control set can matter to obtaining accurate estimates of βh.

We brie�y highlight two roles the controls play in the estimation of βh. First, the set of

control variables accounts for relevant determinants which are correlated with xt. In this setting,

failure to include the relevant controls results in omitted variable bias, and so biased estimates of

the IRF. Second, even if xt is strictly exogenous, or we possess a strictly exogenous instrument,

including additional controls in the projection may reduce the variation in forecasting yt+h,

which may result in a more precise estimate for βh. However, in this setting, the e�ect is

less obvious. If the included set of controls is too large, the increase in parameter uncertainty

reverses possible e�ciency gains, and may then increase the variance of the estimate for βh.

With large macroeconomic data sets like FRED-MD, empirical work in macroeconomics

now has access to over a hundred variables that may serve as potential controls. This leads

to the familiar trade-o� for practitioners where omitting relevant controls results in bias, but

including extraneous and irrelevant variables leads to an increase in variance. This is the setting

that we propose solving through random subspace local projections (RSLP): we alleviate the

issue of specifying Wt, mindful that a practitioner is often only interested in βh.
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2.1 Random Subspace Local Projections (RSLP)

Instead of a generic set of controls Wt, we make a distinction between the pV × 1 vector Vt of

variables which are considered essential controls, and the pG × 1 vector Gt of possibly relevant

controls.1 Rewriting (1) in terms of these essential and possible controls:

yt+h = µh + βhxt +ΘhVt +ΨhGt + ξt+h, (2)

where Θh and Ψh are the projection coe�cients of Vt and Gt, respectively.

The number of possibly relevant controls in Gt is potentially large as previously motivated.

Instead of estimating βh conditional on all these controls, a form of dimension reduction is

usually applied to Gt. Consider the linear projection from (2) with a k × pG compression

matrix R(j) indexed by j, where k ≤ pG:

yt+h = µ
(j)
h + β

(j)
h xt +Θ

(j)
h Vt + Γ

(j)
h R(j)Gt + ξ

(j)
t+h, (3)

where Γ
(j)
h is a k-dimensional vector of projection coe�cients, instead of the pG-dimensional

vector of projection coe�cients Ψh in (2). The construction of the compression matrix can be

data-driven. For instance, testing procedures (e.g. Chudik et al., 2018) or variable selection

with information criteria use data to estimate a selection matrix for R(j). Factor-augmented

models take R(j) as the matrix of the principal component loadings corresponding to the k

largest eigenvalues from the sample covariance matrix of Gt. In these approaches, the selection

of the controls in Gt, or the derived factors, may be subject to substantial uncertainty.

The random subspace approach to dimension reduction is to generate the elements of R(j)

from a probability distribution that is independent of the data. More precisely, let R(j) be

a random subset selection matrix which randomly selects a subset of k predictors out of pG

available predictors. For instance, if there are 5 possible predictors and we wanted to choose 3,

pG = 5 and k = 3, and one possible draw j could be the following:

R(j) =


0 1 0 0 0

0 0 1 0 0

0 0 0 0 1

 .

1While nothing precludes specifying Vt as an empty set, most macroeconomic applications would a priori

treat some variables as essential. For example, a monetary policy application naturally suggests that one would

need a real activity, in�ation, and interest rate variable as being essential if taking guidance from a standard

three equation New Keynesian model.

4



Conditional on a draw R(j), β(j)
h in (3) can be estimated using least squares. The random

subspace estimate for β
(j)
h is constructed by averaging over the least squares estimates β̂

(j)
h

corresponding to di�erent draws R(j), with j = 1, . . . , nR:

β̂h =
1

nR

nR∑
j=1

β̂
(j)
h . (4)

Through averaging, random subspace methods reduce the variance of the local projection esti-

mate, while it maintains most of the signal of the controls.

Random subspace methods have shown to improve forecast accuracy for economic indicators

based on a large number of possible predictors (Koop et al., 2019; Kotchoni et al., 2019; Boot

and Nibbering, 2019; Pick and Carpay, 2022). We argue that the random subspace approach

also neatly �ts into the local projection framework. The IRFs βh can be seen as the di�erences

in forecasts with and without an exogenous impulse to xt. Where forecasting exercises focus

on accurate estimates for yt+h, our proposed method focuses on βh. Both exercises are only

interested in Vt and Gt to the extent that they matter for the estimation of yt+h or βh.

2.2 Structural identi�cation within RSLP

The exposition so far discusses how one can use random subspace methods to estimate IRFs

in a local projection setting. Since macroeconomists often estimate IRFs to study the e�ect of

exogenously identi�ed shocks on various macroeconomic variables, we connect our approach to

structural models.

De�ne wt as an n × 1 vector of macroeconomic variables. Both the variable of interest yt

and the variable xt to which we are introducing an exogenous impulse in (1) are included in

wt. The variables in wt are driven by a m× 1 vector of uncorrelated shocks ϵt:

wt = Θ(L)ϵt, ϵt ∼ iid(0, Im), (5)

with lag polynomial Θ(L) ≡
∑∞

j=0ΘjL
j, and n×m coe�cient matrices Θj.

Suppose, without loss of generality, that we are interested in the e�ect of the �rst shock

ϵ1t, and yt and xt are respectively the ith and jth variable in the vector wt. Therefore, the IRF

of yt+h to a one unit increase in ϵ1t is θi1h , where θklh is the (k, l) element of Θh. Since a local

projection is cast by normalizing the e�ect of the shock on a one unit exogenous increase in xt,

the IRF of yt+h with respect to an impulse to xt due to ϵ1t is θi1h /θ
j1
h . Connecting back to (1),

θi1h /θ
j1
h is the object of interest that βh in the local projection should identify.
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If one possesses the series of ϵ1t, one can consistently estimate βh as a direct regression of

the shock ϵ1t on yt+h without any controls.2 In this setting, the inclusion of controls are to the

extent that they may lead to e�ciency in �nite samples. Therefore, our proposed RSLP can

only be used to exploit possible e�ciency gains in this setting. Since possessing an observed

shock series is less common, we consider the role of controls in settings encountered in most

applied work: Local projections implementing �SVAR identi�cation� or the use of an IV.

2.2.1 Implementing SVAR identi�cation

Application of SVAR identi�cation schemes (i.e. short-run restrictions, long-run restrictions,

sign restrictions etc.) in local projections relies on satisfying SVAR invertibility. Invertibility

implies one can map a VAR in wt to the form in (5) by inverting the VAR lag polynomials.

The literature has also long recognized the link between invertibility and the inclusion of all

relevant information (see, e.g. Hansen and Sargent, 1991; Fernández-Villaverde et al., 2007;

Stock and Watson, 2018). The equivalent SVAR representation of the local projection would

be one where the control set of the local projection, Wt, includes all lags of wt and hence the

information from all past shocks. Therefore, under invertibility, the control set for the local

projection satis�es:

Proj (yt+h | xt,Wt) = Proj
(
yt+h | xt,Wt, {ϵτ}−∞≤τ≤t

)
. (6)

Suppose a researcher aims to estimate (2) using SVAR identi�cation. To ful�l the condition

implied by (6), short of magically correctly choosing all the lags of wt as implied by the unknown

DGP as a trivial special case, both Vt and Gt have to span the information implied by all past

shocks. If not all relevant information is included, identi�cation fails due to not satisfying

invertibility. The application of random subspace methods to deal with the control set may

therefore aid with satisfying invertibility. For context, factor models such as those by Bernanke

et al. (2005) and Forni and Gambetti (2014), while in a VAR setting, were designed to include

all the relevant information in order to ful�ll the invertibility condition. While we propose to

use random subspace methods within local projections, our motivation is the same.

2Note that one may also need to regress ϵ1t on xt to scale βh if one did not treat xt as ϵ1t.
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2.2.2 Implementing IV identi�cation

Consider again ϵ1t in (5) as the unobserved shock of interest, for which we aim to estimate

the IRF. For simplicity, we normalize ϵ1t to imply a unit increase in xt.3 Recall that xt is an

element of the vector wt, and xt can thus be written as a linear combination of shocks:

xt = ϵ1t + f(ϵ2:nϵ,t, ϵt−1, ϵt−2, ...), (7)

where ϵ2:nϵ,t ≡ (ϵ2t, ..., ϵnϵt)
′ and f(.) is a linear combination of its argument. Leading the ith

equation of (5), which describes the dynamics of yt, by h periods, and subsequently rearranging

(7) to substitute out for ϵ1t, we obtain

yt+h = θi1h xt + f(ϵt+h..., ϵt+1, ϵ2:nϵ,t, ϵt−1, ϵt−2, ...), (8)

where the argument in f(·) now subsumes yt+h being a linear function of past and future shocks

and f(ϵ2:nϵ,t, ϵt−1, ϵt−2, ...) from (7).

If one were able to reliably estimate θi1h , one would obtain the correct IRF since θi1h in (8)

would be analogous to βh in (1). Due to endogeneity, (8) cannot be consistently estimated since

both xt and yt+h are a function of all past and current shocks. More precisely, in our context,

xt is not only correlated with ϵ1t but also with other shocks that a�ect yt+h.

The IRF can be estimated using two-stage least squares and an instrument zt that satis�es

the following conditions (Stock and Watson, 2018):

1. E [ϵ1tzt] ̸= 0 (relevance),

2. E [ϵ2:nϵ,tzt] = 0 (contemporaneous exogeneity),

3. E [ϵt+jzt] = 0, j ̸= 0 (lead-lag exogeneity).

Most instruments used in a macro setting are constructed to isolate the shock in question

contemporaneously.4 We therefore see it as less empirically relevant how controls are used to

ful�ll the �rst two conditions and focus on lead-lag exogeneity. The third condition demands

the instrument to be uncorrelated with past and future shocks, which can be seen from (8) as

3This normalization is without any loss of generality since shocks are unobserved, so the variance and sign

of shocks are ultimately normalized. Our choice of normalization simpli�es the exposition from needing to

introduce a parameter to link ϵ1t to xt.
4For example, Kilian (2008) proposes an instrument for oil supply shocks based on foreign oil production

shortfalls during events such as wars or civil disturbance. Gertler and Karadi (2015) propose an instrument for

monetary policy shocks constructed from high frequency surprises around policy announcements.
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both xt and yt+h are a function of all past and future shocks. This is a strong assumption but

can be relaxed by including controls:

E
[
ϵ⊥t+jz

⊥
t

]
= 0, j ̸= 0 (conditional lead-lag exogeneity), (9)

where u⊥
t = ut − Proj(ut | Wt) for some variable u.

We elaborate on the role controls may play in the conditional lead-lag exogeneity. The

instruments proposed by Romer and Romer (2004) and Gertler and Karadi (2015) have been

shown to be possibly forecastable by other macro variables (see Ramey, 2016). By the logic of

(5), this implies that the instruments are correlated with past shocks and lead-lag exogeneity

is violated. However, the instrument may still be valid if the conditional lead-lag exogeneity is

ful�lled if controls account for the information contained in all past shocks.

We thus modify random subspace methods to the two-stage least squares settings where the

�rst and second stage regressions are

xt = α(j) + ρ(j)zt + Λ(j)Vt +Υ(j)R(j)Gt + η
(j)
t , (10)

yt+h = µ
(j)
h + β

(j)
h x̂

(j)
t +Θ

(j)
h Vt +Ψ

(j)
h R(j)Gt + ξ

(j)
t+h, (11)

where Λ(j) and Υ(j) are the projection coe�cients from the �rst stage regression, x̂t is the �tted

value from (10), and (11) is now analogous to our original RSLP from (4) in which we similarly

average over β(j)
h 's corresponding to random draws for selection matrices.

Depending on whether the instrument satis�es (conditional) lead-lag exogeneity, Vt and

Gt can be empty sets. Recall that in addition to identi�cation, controls may also help with

reducing the variance in the estimated IRF. Hence, the practitioner facing a large set of controls

who is unsure what to include, can also resort to RSLP with IV identi�cation.

3 Monte Carlo Experiments

To understand our RSLP procedure, we consider Monte Carlo experiments based on a Real

Business Cycle (RBC) model with �scal foresight, as discussed in Leeper et al. (2013). Fiscal

foresight is a setting in where economic agents know of a future tax shock, but this is not

re�ected in the information set used by the econometrician to estimate IRFs which then leads

to erroneous estimation of the IRFs.
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3.1 Data generating process

The model includes income taxes, inelastic labor supply, and full capital depreciation. The

log-linearized equilibrium condition for capital is given by5

kt = αkt−1 + uat − (1− θ)
τ

1− τ

∞∑
k=0

θkEtτ̂t+k+1, (12)

where kt and τ̂t are the percentage deviations from the steady state capital and tax rate re-

spectively, τ is the steady state value of the tax rate, θ and α are the discount factor and

capital share in a Cobb-Douglas production function satisfying the inequalities 0 < θ < 1 and

0 < α < 1, and uat is an independent identically distributed (i.i.d) technology shock. The tax

rule is τ̂t+h = uτt, where uτt is an i.i.d tax shock. The phenomenon of �scal foresight occurs

when at time t agents know the tax rate they will face at time t+ h.

Allowing h = 2 (a two-period foresight), (12) becomes

kt = αkt−1 + uat − κ(θuτt + uτt−1), (13)

where κ = τ(1− θ)/(1− τ). The structural moving average representation equalsτ̂t
kt

 =

 L2 0

−κ(L+θ)
1−αL

1
1−αL

uτt

uat

 . (14)

To parametrize the above, we set θ = 0.2637, τ = 0.25, α = 0.36, and uτt and uat have

independent standard Normal distributions.

Due to �scal foresight, there is insu�cient information to recover the IRFs by just observing

both capital and the tax rate at time t. More precisely, the missing piece of information is

the tax rate at t + 2 (or the current tax shock). The Monte Carlo experiments assume that

the econometrician observes a vector of 100 informational variables which mimic an empirically

relevant setting where the econometrician has access to a data set such as FRED-MD or FRED-

QD. The individual information series, y∗it, are generated as:

y∗it = biuτt + (1− bi)uat + ξit, ξit ∼ N(0, σ2
i ), i = 1, . . . , 100, (15)

where we draw bi as a Bernoulli random variable assuming value 1 with probability 0.1 and

value 0 with probability 0.9.

To examine the role of the strength of the factor structure of the data in accurately recovering

the IRFs, we consider two settings that di�erentiate the factor structure of the informational

5See Leeper et al. (2013), page 1118, Equation (4).
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variables:

Strong Case: σi ∼ U(0, 1), Weak Case: σi ∼ U(0, 4). (16)

In expectation, lower values of σi are associated with less variation in the idiosyncratic compo-

nent ξit, and so the informational variable provides a stronger signal of the relevant information.

We have parameterized the strong and weak cases in order to provide some guidance in situ-

ations an applied macroeconomist may encounter. In the strong case, the two factors explain

about 80% of the variation in expectation, while this falls to slightly over 20% in the weak case.

The strong case mimics a structure that one would probably encounter in a panel where

these individual series have a high level of comovement, such as cross country asset prices and

interest rates (e.g. Miranda-Agrippino and Rey, 2020), or commodity prices (e.g. West and

Wong, 2014; Alquist et al., 2020). On the other hand, the weak case is akin to the sort one

would expect to encounter when using U.S. macroeconomic data, such as the FRED-MD data

set. Therefore, we stress that we view the weak factor not as an implausible case, but only

to the extent that it is weaker than the strong case. Instead, the weak case is a relevant and

plausible case, which we show in Appendix A: The �rst two factors of both the FRED-MD and

FRED-QD data set explain a similar amount of variation as in the weak case.

3.2 Structural identi�cation on the simulated data

While there is insu�cient information to recover the true IRFs, the econometrician will use the

informational variables as controls in order to estimate the IRFs. We revisit the two settings

discussed in Section 2.2: implementing SVAR and IV identi�cation.

Setting 1: Implementing SVAR identi�cation

The missing piece of information is the tax rate two periods ahead, which is contained in uτt.

Therefore, restoration of the information contained in uτt will render the model informational

su�cient. As seen from (14), the technology shock has no cumulative impact on the tax rate.

Hence, conditional on being able to recover the reduced form forecast errors, one can implement

SVAR identi�cation.6 This is the case considered by Forni and Gambetti (2014), except that

we consider a local projection rather than an SVAR. If the random subspace methods can

6We implement SVAR identi�cation by using the procedure presented by Plagborg-Møller and Wolf (2021).

We leave the implementation details to Appendix B.
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adequately control for the missing information, the SVAR identi�cation can be implemented,

and one should be able to recover the IRFs.

Setting 2: Implementing IV identi�cation

In the second setting, the researcher possesses an instrument generated as follows:

Zt = 0.7uτt + uat−1 + uτt−1 + ϵZt, ϵZt ∼ N(0, 0.01), (17)

which is meant to instrument for the tax shock uτt, but the presence of lagged shocks uat−1 and

uτt−1 render the instrument invalid as it violates lead-lag exogeneity. If random subspace meth-

ods can adequately control for the information contained in the lagged shocks, the instrument

is conditional exogenous, and one should be able to recover the IRF.

3.3 Simulation settings

Each Monte Carlo replication simulates an arti�cial data set of 200 observations for capital

and the tax rate according to (14), together with 100 informational series in either the strong

or weak case according to (15) and (16). For the IV setting, we also generate the instrument

according to (17). The number of Monte Carlo replications is 2000.

The subspace dimension for RSLP is set equal to 50. Appendix C elaborates on this choice

of subspace dimension. For each arti�cial data set, we then use the procedure in Section 2.1

with 1000 draws of the selection matrix R(j) and we set Gt equal to the �rst lag of y∗t . We also

estimate local projections (LPs) without Gt, which we label LP with a base set of controls, to

investigate whether RSLP is a valid approach to accounting for the omitted information. Both

speci�cations include the two lags of tax rate and capital in Vt, together with two lags of the

instrument when using IV identi�cation. Appendix B elaborates on the speci�cation of the

local projections when using SVAR identi�cation.

3.4 RSLP can recover the true impulse response functions

To understand if random subspace methods are able to recover the true IRFs, we study the

expectation of the estimated IRFs. Figure 1 presents the IRFs of both capital and tax rate to

a tax shock from both the SVAR and IV identi�cation, under both the strong and weak case.

To make the role of the informational variables explicit, we compare relative to IRFs estimated
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Figure 1: Impulse response functions in the Monte Carlo experiments
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Note: This �gure shows impulse response functions estimated by LP with a base set of controls (orange, dot-

dashed), RSLP using controls with a strong factor structure (blue, solid), RSLP using controls with a weak

factor structure (blue, dotted), and the true responses (black, dashed). The upper and lower panels use SVAR

and IV identi�cation respectively. The shock is normalized to a 100 basis point increase in the tax rate. The

results are the average impulse response functions across all 2000 Monte Carlo replications.

via local projection without the additional controls from the generated informational series.

We also plot the true IRFs. The plotted estimated IRFs are taken as the average across all the

Monte Carlo simulations, so deviations from the true IRF represent bias.
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Since the tax shock occurs in period 2, the true IRF of the tax rate sees a one o� spike in

period t+ 2. Capital falls for two periods, then adjusts back in a monotonic fashion. Suppose

we estimated the IRF with only information on the time series of the tax rate and capital. The

dot-dashed orange line shows that we will miss the timing of the tax rate, and as a result, also

miss the response of capital. This is an illustration of a �scal foresight issue, where information

on only the tax rate and capital is insu�cient information to recover the true IRF which has

been previously documented (e.g. Leeper et al., 2013; Forni and Gambetti, 2014). With IV

identi�cation, LP with a base set of controls is also biased given the instrument is invalid due

to not being exogenous to the lagged shocks.

Our proposed approach is able to largely recover the true IRF. In particular, RSLP is able

to estimate the tax rate spiking in period 2, and recover the dynamics of the response to capital.

While our proposed method is unbiased in the strong case, the bias is still minimal under the

weak case with either SVAR or IV identi�cation. Appendix C explores the size of the subspace

dimension in our Monte Carlo experiments, and �nds an optimal subspace dimension within

the 40-60 range in weak cases, and often even smaller in the strong cases.

3.5 Understanding di�erences of RSLP relative to FAVAR

FAVAR models are a common alternative to control for a large information set within the

applied macroeconomics literature (e.g., see Bernanke et al., 2005; Stock and Watson, 2005;

Forni et al., 2009; Forni and Gambetti, 2014). To understand how our approach fares relative

to FAVAR, we compare these methods in the Monte Carlo experiments. The FAVAR augments

a bivariate VAR system containing taxes and capital with the �rst two principal components

of the informational variables. The SVAR identi�cation case identi�es the shock by assuming

there is no cumulative e�ect of the technology shock on the tax shock. The IV identi�cation

case uses the instrument as per the proxy-VAR approach by Mertens and Ravn (2013) and

Gertler and Karadi (2015).

Before we present our results, we �rst caveat that one should practice some caution in

comparing RSLPs to FAVARs. IRFs from FAVARs are based on iterated forecasts, whereras

local projections produce direct forecasts. We already know that iterative forecasts are more

e�cient, albeit more biased than direct forecast under misspeci�cation.

Table 1 reports the root mean squared error (RMSE) of the FAVAR relative to our RSLP

13



Table 1: RMSE and absolute bias of FAVAR relative to RSLP in the Monte Carlo experiments

SVAR identi�cation IV identi�cation

Strong Weak Strong Weak

Tax Rate Capital Tax Rate Capital Tax Rate Capital Tax Rate Capital

RMSE 0.896 0.989 2.350 1.256 0.868 0.780 2.496 1.454

Absolute bias 0.872 0.375 1.795 3.485 0.709 0.873 1.256 2.301

Note: This table reports the root mean squared error (RMSE) and the absolute bias of FAVAR relative to RSLP

for the SVAR and IV identi�cation under both the strong and weak factor structure settings. Appendix D shows

the average impulse response functions across all 2000 Monte Carlo replications for both RSLP and FAVAR.

approach.7 That is, we compare the FAVAR relative to the RSLP in an identical setting where

they both use the same identi�cation strategy and observe the same informational variables.

Values above one favour RSLP. In the strong factor case, the FAVAR models have a lower RMSE

relative to our RSLP approach. However, the conclusions �ip when we consider the weak case,

where the RSLP approach outperforms the FAVAR, at times by substantial margins.

In order to contextualize why RSLP performs better with a weakened factor structure,

Table 1 also reports the absolute bias of FAVAR relative to RSLP.8 When the factor structure

is strong, FAVAR and RSLP have a similar bias.9 Therefore, it is no surprise that FAVAR

does better from an RMSE perspective when the factor structure is strong: Both methods are

close to being unbiased and the relative e�ciency gains from the iterated forecast dominates.

However, when we weaken the factor structure, the bias in FAVARs increases substantially to

the extent that the less biased RSLP dominates.

We conclude that in situations where the factor structure is strong, such as cross-country

data on asset prices and interest rates, factor models such as FAVARs do well. With a weak fac-

tor structure, resembling that of a typical macroeconomic data set such as U.S. macroeconomic

data like FRED-MD, RSLP can be a valuable tool in the econometrician's toolkit.

7Note that there are seven horizons (h = 0, . . . , 6) in the IRFs, across which we average to calculate the

RMSE:
√

1
7

∑6
h=0

1
2000

∑2000
i=1 (β̂hi − βh,true)2, where β̂hi is the estimated IRF at horizon h in the i-th replication

and βh,true is the true IRF at horizon h.

8We calculate the absolute bias across seven horizons: 1
7

∑6
h=0 |

¯̂
βh − βh,true|, where ¯̂

βh = 1
2000

∑2000
i=1 β̂hi is

the average IRF at horizon h across 2000 replications.
9Note that Figure 1 shows that the RSLP approach is close to being unbiased in all the considered cases.

Hence, a relative bias of 10% to even 30% is not a meaningful di�erence in a practical sense.
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3.6 Take-aways

We summarize two key take-aways from our Monte Carlo exercise. First, the results indicate

that RSLP is capable of recovering the true IRF and provides at least prima facie evidence that

it is a viable approach for applied work. In particular, RSLP is close to being unbiased both

under weak or strong factor structures. Second, relative to a common alternative, namely the

FAVAR model, RSLP may be an appropriate addition to the standard toolkit given its smaller

bias can overcome its relative ine�ciency, especially when the factor structure mimics that of

U.S. macroeconomic data.

4 Empirical applications

We use RSLP to estimate the dynamic responses to technology and monetary policy shocks.

Both applications can be traced to a broad empirical literature, and some of this literature

suggests that baseline speci�cations with minimal controls are insu�cient. Hence, these ap-

plications are natural settings to understand whether random subspace methods are a useful

method to incorporate information from a large set of controls.

4.1 Technology shock application

Since Gali (1999), a strand of the SVAR literature has investigated the impact of technology

shocks on a variety of macroeconomic variables, with a focus on labor market variables (e.g.,

Francis and Ramey, 2005; Forni and Gambetti, 2014; Barnichon, 2010). Keeping in the spirit

of Gali (1999), the technology shock is identi�ed as being the only shock that has a long-run

impact on labor productivity. Since we work with local projections instead of SVARs, like the

aforementioned papers, we implement the long-run identi�cation restrictions as suggested by

Plagborg-Møller and Wolf (2021).10

In the spirit of SVAR work which estimates the e�ect of technology shocks, our baseline local

projection for this application will only consider the lags of two variables; labor productivity

and unemployment. Owing to the model being speci�ed at the quarterly frequency, we include

four lags of both the growth rate of labor productivity and unemployment in Vt.

The set of possible controls in Gt includes 127 macroeconomic time series speci�ed at the

10Implementation requires one to nominate a horizon at which all short-run e�ects of the shock are expected

to dissipate. We set this horizon to 3 years. Appendix B discusses further implementation details.
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quarterly frequency, which includes 117 series from the FRED-QD database (see McCracken

and Ng, 2020), 6 total factor productivity series from Fernald's website11, and 4 consumer

con�dence indicators from the Michigan Survey. We consider the �rst lags for these variables,

which gives us a set of 127 possible control variables. Our sample is from 1960Q1 to 2019Q4.

4.2 Monetary policy shock application

This application features a baseline set of controls that echoes the Proxy VAR of Gertler and

Karadi (2015). As the model is monthly, our baseline set of controls includes 12 lags of the log

di�erence of CPI (or approximately quarter-on-quarter in�ation), log di�erence of industrial

production (IP), the Excess Bond Premium (see Gilchrist and Zakraj²ek, 2012), and the 1-year

government bond rate in Vt in (11).

Our possible control set Gt includes 111 FRED-MD series, and we consider the �rst lag of

these variables. The sample spans January 1990 to June 2012 to match up with the time-span

of the instrument. We use the three-month ahead funds rate surprise by Gertler and Karadi

(2015) as an instrument for monetary policy shocks.

4.3 Results

Figure 2 presents the estimated IRFs from our two applications.12 The RSLPs are based on

1000 draws of the selection matrix, a subspace dimension equal to 50, and accompanied by

a one standard deviation interval constructed as in Appendix E. Appendix C investigates the

robustness of the results with respect to the subspace dimension. In order to appreciate the

e�ect of the additional controls in RSLP, we compare with a local projection with only the base

set of controls (i.e. omitting Gt in (2)). We also compare relative to the FAVAR since this is a

common alternative within the broader literature.

For the technology shock application, we present the response of labor productivity and the

unemployment rate to a technology shock which raises labour productivity by 0.25%, which

is equivalent to a one standard deviation shock in the FAVAR model. Using RSLP, labor

productivity increases and the unemployment rate decreases in response to an expansionary

11John Fernald's website: https://www.johnfernald.net/TFP
12Note that the IRFs are on the level of labor productivity, CPI and industrial production index. Hence, we

follow the usual practice to specify the left-hand side variable in the local projection as yt+h − yt−1 (see Stock

and Watson, 2018, Section 1.5).
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Figure 2: Impulse response functions in the empirical applications

(a) Response to a technology shock

(b) Response to a monetary policy shock

Note: This �gure shows the estimated local projections with only a base set of controls (orange, dot-dashed),

FAVAR (green, dashed), and RSLP (blue, solid). The upper panel shows the impulse responses of labor produc-

tivity and unemployment rate to a technology shock that increases labor productivity by 0.25%. The lower panel

shows the impulse responses of CPI and IP to a monetary policy shock that increases GS1 by a 100 basis points.

The blue-shaded areas indicate the one standard deviation intervals of RSLP.

technology shock. These results are consistent with the predictions of the real business cycle

model and those shown by, for example, Christiano et al. (2003).

For the monetary policy shock application, we present the response of CPI and industrial

production to a contractionary monetary policy shock which increases the 1-year government

bond rate by a 100 basis points. Using RSLP, both CPI and industrial production fall in

response to a contractionary monetary policy shock, consistent with what one expects from a
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standard monetary policy shock (Bernanke et al., 2005; Gertler and Karadi, 2015).

Estimating local projections with just a baseline set of controls and the FAVAR produce IRFs

that imply the same qualitative impact as RSLP, but there are large quantitative di�erences.

For example, allowing for a set of additional controls using RSLP implies an unemployment

response whose trough is twice that of not allowing for the additional controls. At the same

time, CPI in�ation and industrial production fall by more in response to a monetary policy

shock if only a base set of controls is included. There are also marked di�erences relative

to FAVAR, especially in the labor productivity responses to a technology shock, and in the

dynamics of a monetary policy shock to industrial production.

The one standard deviation intervals suggest that at least some of the di�erences between

RSLP and LP with a only a base set of controls are meaningful, implying that the controls

do matter. Using our Monte Carlo experiments in Section 3 as a guide to interpreting our

results, the empirical �ndings suggest that failure to allow for a larger set of controls can

result in estimated IRFs that are statistically di�erent, and potentially misleading. Some of

the di�erences relative to the FAVAR may also be statistically signi�cant. This is in line with

the discussion in Section 3.5, which suggests that these di�erences may stem from how random

subspace and factor methods control for missing information, with the possibility that random

subspace methods are more suitable given the type of macroeconomic data.

In sum, we list two key take-aways from our empirical applications. First, RSLP can be

a useful approach to estimating IRFs, given we are able to obtain reasonable estimates from

both empirical exercises. Second, the issue of controls in local projections may require more

scrutiny, as the baseline local projections that we estimate are quite representative of what a

typical macroeconomist would use as a base speci�cation. If the additional controls in the RSLP

do not contain any useful information, one would not expect any di�erences between RSLP and

local projections with a baseline set of controls. The fact we do �nd these di�erences, a �nding

consistent with our Monte Carlo exercise, suggests that the baseline local projections in our

empirical exercise omit relevant information.

5 Conclusion

We show how one can apply a dimension reduction technique traditionally used in machine

learning to local projections in order to estimate IRFs with many controls. This random

subspace method is simple to implement and it basically contains 3 steps: Step 1: take a
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random draw; Step 2: do it many times; and Step 3: take averaging. We have shown that

our approach is a plausible addition to the toolkit as it can recover the true IRFs in settings

encountered in macroeconomics. In addition, we present suggestive evidence that in factor

structures of U.S. macroeconomics data, such as FRED-MD, our method is perhaps more

appropriate than the commonly used FAVAR.

It is worth stressing that while our proposed approach is a plausible empirical strategy,

it does not compete to supplant any of the recent innovations in the broader development of

local projection estimation. To highlight two important developments in the local projection

literature, Barnichon and Brownlees (2019) consider smoothing local projection, and Ferreira

et al. (2023) combine local projections with additional prior information. Both approaches can

be applied to random subspace local projections instead of standard local projections with a

base set of controls, so providing a more appropriate starting point for their procedures.

We also note that while we show that our method can outperform FAVAR in some empirical

plausible settings, we do not argue that one has to choose between either factor or random

subspace methods. For instance, there is nothing to stop one from using factors in conjunction

with subspace methods. One possibility is the application of subspace methods to a set of

estimated factors instead of the original set of controls. Therefore, one should not necessarily

view our work as a replacement for existing methods. Instead, we are keen to stress the potential

for future work to combine our insights with existing developments in the local projection

literature in attempts to further improve the properties of these local projection estimators.
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ONLINE APPENDIX

A FRED data structure

Figure A1 shows the factor structure of the FRED-QD and FRED-MD data sets, together

with the factor structure of the simulated data in the weak case in Section 3. More precisely,

we present the cumulative variance being accounted for as we sequentially add an additional

principal component. This is a standard metric for understanding the strength of the factor

structure. The �gure shows that the �rst two factors of FRED-QD and FRED-MD account for

25% and 20% of the variation, respectively. Similarly, our simulation data under the weak case

also requires two factors to account for 20% of the variation in the controls.

Note that in Figure A1, we calculate the factor structure of the simulated data in population.

Let ny∗ = 100 be the number of informational series, which have mean zero and unit variance.

Given the setting in Section 3.1, the expected number of informational series containing the tax

shock equals 10, and the expected number of informational series containing the capital shock

equals 90. The population covariance matrix of the informational series is therefore equal to

Σy∗ = H + σ2Iny∗ , where H is a 100× 100 blockmatrix with a 10× 10 and 90× 90 blockmatrix

with all elements equal to 1 on its diagonal, σ2 = 0.25 in the strong case and σ2 = 4 in the

weak case, and Iny∗ is a 100× 100 identity matrix.

Then the factor structure of the data set can be calculated by solving the eigenvalue-

Figure A1: Factor structure
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Note: This �gure shows the factor structure of FRED-QD, FRED-MD, and our simulated data in the weak case.
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eigenvector decomposition of the correlation matrix ρy∗ of the covariance matrix Σy∗ : ρy∗ν =

Λν, where ν is a matrix whose columns are the eigenvectors and Λ is a diagonal matrix with

the eigenvalues λj on its diagonal. The cumulative variance explained by the �rst i principal

components can be calculated as 1
100

∑i
j=1 λj, where λj is the jth largest eigenvalue of λ.

B Implementing SVAR identi�cation in RSLP

B.1 Monte Carlo experiments

Equation (14) shows that all the variation in the tax rate is from the tax shock (and not the

technology shock). Hence, the tax shock can be identi�ed by assuming that the cumulative

impact of the tax rate on a technology shock is zero. In practice, this approach identi�es the

shocks using the long-run restrictions by Blanchard and Quah (1988).

However, there is an important di�erence between the SVAR identi�cation we implement

here and how long-run restrictions are usually implemented. In long-run restrictions, one has

an I(1) variable in which all the variation is driven by the permanent shock. Since the I(1)

variable enters the VAR or the local projection in di�erenced form, this implies a restriction

where the cumulative impact on the changes from the transitory shocks to the I(1) variable

is equivalent to zero, and thus has zero long-run impact on the level. In contrast, there is no

long-run in our setting since neither the tax rate nor capital is I(1), but we can still identify the

technology shock since the long-run cumulative impact of this shock on the tax rate (whether

di�erenced or in levels) is zero.

The estimation of the cumulative identi�cation in a local projection setting is shown by

Plagborg-Møller and Wolf (2021). This method requires an I(1) tax rate variable which can be

constructed by accumulating our I(0) tax rate variable in Equation (14):

τ̂
I(1)
1 = τ̂1, τ̂

I(1)
t = τ̂t + τ̂

I(1)
t−1 , for t = 2, 3, ...T. (A1)

De�ne υt = τ̂
I(1)
t+2 − τ̂

I(1)
t−1 . The impulse response functions can now be estimated by two-stage

least squares in the �rst and second stage regressions

υt = α(j) + Λ(j)V 1
t +Υ(j)R(j)G1

t + η
(j)
t , (A2)

yt+h = µ
(j)
h + β

(j)
h υ̂

(j)
t +Θ

(j)
h V 2

t +Ψ
(j)
h R(j)G2

t + ξ
(j)
t+h, (A3)

where V 1
t contains the contemporaneous values of the tax rate and capital, G1

t contains con-

temporaneous values of the informational series, V 2
t consists of the two lags of tax rate and
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capital, and G2
t consists of the �rst lag of the informational series. The �rst stage uncovers

the linear combinations of the data that explain the two-period ahead movement of the tax

rate. Therefore the �tted values of the �rst stage recover the tax shock. Once the tax shock is

recovered, one can estimate the impulse responses from the second stage.

B.2 Empirical application with a technology shock

The procedure outlined above also applies to our empirical application to a technology shock,

with minor adjustments. First, υt now equals the long-run movement of labor productivity in

level: υt = laborlevelt+12−laborlevelt−1 . Second, the controls in both stages are now as follows: The �rst

stage controls in V 1
t are the �rst-di�erences of contemporaneous values of labor productivity and

the unemployment rate, and G1
t contains contemporaneous values of 127 FRED-QD series. The

second stage controls in V 2
t are the �rst four lags of the �rst-di�erences of labor productivity

and the unemployment rate, and G2
t consists of the �rst lag of the 127 FRED-QD series.

C Subspace dimension

C.1 Subspace dimension in the Monte Carlo experiments

We explore the size of the subspace dimension in our Monte Carlo experiments. For both

variables and both identi�cation methods, we calculate the root mean squared error (RMSE) of

the RSLP across horizons 0-6 in all generated data sets for each subspace dimension. Figure A2

reports these RMSEs relative to the RMSE of the local projection with the base set of controls.

While we do not �nd a unique subspace dimension that minimizes the RMSEs in each setting

under consideration, we highlight two �ndings from this exercise. First, varying the subspace

dimension reveals a �U-shaped� pattern, suggesting that when there are a few controls in each

subspace regression, additional controls improve the estimates. This is, however, a trade-o�

where for some subspace dimension the variance in the estimates exceeds the reduction in bias.

Second, we �nd that the minimum is often achieved with a subspace dimension within the 40-60

range, and the subspace dimension that minimizes the RMSEs is smaller in the strong cases.

Intuitively, one needs fewer variables in the subspace regressions to �lter out the relevant signal

with stronger signals from the informational variables.

Although this is a simulated data example, we stress that the Monte Carlo experiments are
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Figure A2: Subspace dimension RSLP in the Monte Carlo experiments

(a) SVAR identi�cation
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(b) IV identi�cation
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Note: This �gure shows the root mean squared error of RSLP relative to LP with a base set of controls for

various subspace dimensions, in the strong factor structure case (blue, solid) and the weak factor structure case

(blue, dotted). The upper and lower panels correspond to the SVAR and IV identi�cation, respectively.

useful in designing empirical strategies on how to set the subspace dimension for applied work.

First, the suggestion from the Monte Carlo is that for a data set with a factor structure like the

FRED-MD, a subspace dimension in the range of 40 to 60 is probably a good starting point.

Moreover, Boot and Nibbering (2020) also �nd an optimal subspace dimension of 40-60 with

the FRED-MD, albeit in a forecasting context. Second, given data sets are di�erent, exploring

some form of robustness of the subspace dimension is probably warranted for applied work.
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Hence, we proceed with an empirical strategy that uses a subspace dimension in the 40-60

range, and subsequently check for the robustness of the results.

C.2 Subspace dimension in the empirical applications

In the two empirical applications, we set the subspace dimension equal to 50 as follows from

the discussion above. However, it remains an open question whether this choice of subspace

dimension is appropriate in our applications. To investigate this choice, Figure A3 presents

the estimated impulse response functions by RSLP for our applications, but now with varying

subspace dimensions. The blue solid-line corresponds to a subspace dimension of 50, which is

displayed alongside the estimates corresponding to the subspace dimensions of 40 and 60. We

�nd that these estimated impulse response functions are very similar to that considered in our

baseline. Moreover, they are within the one standard deviation interval of the baseline choice

of 50. This indicates that our choice of subspace dimension is appropriate.

D FAVAR in the Monte Carlo experiments

Figure A4 shows the average impulse response functions across 2000 replications for both SVAR

identi�cation (upper panel) and IV identi�cation (lower panel) in the weak case. The black-

dashed line represents the true impulse responses, and the green-dashed and blue-solid lines

FAVAR and RSLP, respectively. When the factor structure is similar to the FRED data, the

bias of FAVAR rises substantially. In contrast, RSLP is still tracking the true impulse response

functions. The smaller bias in RSLP even dominates the e�ciency in FAVAR, leading to a

�nding that RSLP outperforms FAVAR in terms of RMSE as shown in Table 1.
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Figure A3: Subspace dimension RSLP in the empirical applications

(a) Response to a technology shock

(b) Response to a monetary policy shock

Note: This �gure shows the estimated impulse response functions of labor productivity and unemployment rate

to a technology shock (upper panel), and of CPI and IP to a monetary policy shock (lower panel). The lines

correspond to di�erent subspace dimensions, and the blue-shaded areas indicate the one standard deviation

intervals of RSLP with a subspace dimension of 50.
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Figure A4: FAVAR impulse responses functions in the Monte Carlo experiments

(a) SVAR identi�cation
Tax Rate

0 1 2 3 4 5 6
horizon

-1

-0.5

0

0.5

1

1.5

%
 p

o
in

ts

FAVAR

RSLP

True IRFs

Capital

0 1 2 3 4 5 6
horizon

-0.6

-0.4

-0.2

0

0.2

%
 p

o
in

ts

(b) IV identi�cation
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Note: This �gure shows impulse response functions estimated by FAVAR (green, dashed), RSLP (blue, solid),

and the true responses (black, dashed). FAVAR and RSLP use controls with a weak factor structure. The upper

and lower panels use SVAR and IV identi�cation, respectively. The shock is normalized to a 100 basis point

increase in the tax rate. The results are the average impulse response functions across all 2000 Monte Carlo

replications.
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E Standard deviation of impulse response functions

Recall that our impulse response estimates are constructed as

β̂h =
1

nR

nR∑
j=1

β̂
(j)
h . (A4)

Buckland et al. (1997) derive an expression for the variance of β̂h under two assumptions.

First, assume that the expectation across all possible draws R(j) of the misspeci�cation bias in

estimating β
(j)
h in the model corresponding to R(j) is zero. That is, E[β(j)

h ] = βh. This holds

per de�nition in case the shock xt is exogenous. Second, assume that β(j)
h and β

(l)
h are perfectly

correlated, for all l ̸= j. Although this is a strong assumption, each β
(j)
h is estimated on the

same underlying data set and these correlations are therefore indeed expected to be high.

It now follows that

SD[β̂h] =
1

nR

nR∑
j=1

√
var(β̂(j)

h |model (j) is correct) + (β
(j)
h − β̄h)2, (A5)

which may be estimated by replacing (β(j)
h −β̄h) by (β̂

(j)
h −β̂h), and var(β̂

(j)
h |model (j) is correct)

by the squared Newey-West standard error for the ordinary least squares estimate β̂(j)
h in model

(j) to account for the serial correlation in the error terms (see Jordà, 2005).
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