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1 Introduction

A wide variety of modeling strategies are now used in macroeconometrics. Generally all

models intended for policy analysis involve structural aspects but differ in their scale, the

extent to which they impose strong theoretical ideas upon the data, and the particular

purpose for which they are constructed. Examples include: large-scale Dynamic Stochastic

General Equilibrium (DSGE) models - e.g. the Federal Reserve’s EDO model (Chung et

al. 2010) and the Multi-Sector Model of Rees et al. (2016); macroeconometric models, such

as FRB/US and MARTIN of the Reserve Bank of Australia, that try to strike a balance

between the data and theory; components models, e.g. Fleischman and Roberts (2011) from

the Federal Reserve, which aim to capture a critical quantity for policy, such as the output

gap; and Structural Vector AutoRegression (SVAR) models, which are oriented more towards

the data than the theory.1

SVARs are often used to see if the structure being employed in the more theoretical models

is consistent with the data. An example is Brayton, Laubach and Reifschneider (2014, p.4),

who say, in the context of the Federal Reserve’s FRB/US model, that: “The responses of

the output gap and inflation to a permanent increase in multi-factor productivity are also

in general accordance with estimates from the VAR literature of the effects of technology

shocks.” Whether SVARs can be used effectively for such comparisons depends on whether

they can closely match the impulse responses of a model that is taken to represent the actual

economy, which we term the Representative Model (RM).

The use of partial information in the SVAR is a potentially important factor influencing

the ability to make such a match. The loss of information can arise from a number of

sources. One of these is due to scale - there may be more variables in the RM than in

the SVAR, as SVARs typically only include measured variables. In Section 2, using data

simulated from several different well-known RMs taken from the literature, we demonstrate

1There have always been a large range of models used for forecasting but we are concerned here with
models constructed to enable the examination of policy options.
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what approximation difficulties this source of partial observability causes, and when it may

be minor. The omission of stocks of capital, foreign debt in open economies, and the use

of concepts such as flexible-price equilibria emerge as instances where it is quantitatively

important. We discuss what can be done to improve the match of the impulse responses in

those contexts.

The analysis of Section 2 initially assumes that all variables in the model are I(0). We

subsequently consider models which also include variables that are I(1), that is, they contain

a mixture of permanent and temporary shocks. This can introduce partial observability into

the growth rates of some I(1) variables, as the available data on their growth does not exactly

measure them. Allowing for this gap means that there are latent variables in the SVAR and

we show how these can be accommodated. Our findings suggest that an important factor

contributing to the divergent findings which exist in the literature about the ability of SVARs

to make a match with the impulse responses from DSGE models is whether or not the DSGEs

being analyzed include permanent shocks.

The presence of unobserved variables is not the sole source of partial information. SVARs

often do not fully use the restrictions that are embedded in the RM, which may affect the

identification of the SVAR. One such restriction is that structural shocks in DSGE models are

typically assumed to be univariate autoregressive processes. This turns out to be a strong

identifying assumption. Hence we explore what happens if the SVAR format is retained

but the assumption about the statistical nature of shocks in RMs is exploited. This is

not a restriction that comes from economic theory. It produces a common factor in the

parameters that a SVAR would normally lack. We find that this can be very important in

the identification of the SVAR. Section 3 utilizes a small scale New-Keynesian model as the

RM to illustrate the importance of these common-factor restrictions.

Section 4 examines the last potential source of partial information and its effects. In

Section 2 when variables were I(1) there was a potential gap between the growth rates of

model variables and the observed data and this mismatch was accounted for by model shocks.
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However, there has been an increasing tendency to allow for any mismatch between data and

model variables (I(0) as well as I(1)) to be reconciled by the use of “measurement errors”.

Unlike the use of model shocks this is researcher initiated and does not flow from the model.

We describe the problems that can occur when measurement errors are used, particularly in

models including I(1) variables, and how they can be mitigated. Section 5 concludes.

2 Implications of Partial Observability for SVAR Ap-

proximations

We start by making a distinction between the endogenous and exogenous variables in the

modern structural models used in macroeconometrics. The latter are taken to be shocks

and are strongly exogenous, i.e. they depend only on their own history. The solution to

many RMs will be a VAR(p) process, typically a low-order (e.g. p = 2), expressing all the

endogenous variables as a function of innovations into these shocks. Simplification may be

possible, as often some of the endogenous variables may be substituted out of the system

by using identities, leaving a core set of endogenous variables and shocks. However, when

a SVAR is applied to data simulated from such a RM, not all of the core variables may

be directly observed. This could either reflect the fact that the model variables have no

counterpart in the actual data or a decision by the researcher. A consequence of this partial

observability is that the estimated SVAR may need to be of much higher order (possibly

infinite) for its impulse responses to match those of the RM.

The question is whether we would expect a very high-order SVAR to be needed and

what factors would make that so. The existing literature is inconclusive on this issue. For

example, Chari, Kehoe and McGrattan (2005) argued that SVARs could not capture the

impulse responses of the RM, whereas Christiano, Eichenbaum and Vigfusson (2007) were

more optimistic. Kapetanios, Pagan and Scott (2007), using as the RM an economy-wide

model that was a miniature version of the Bank of England’s model in the 2000s, found a
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very high-order SVAR to be necessary.

In practice applied researchers typically use a low-order SVAR; two or four lags is com-

mon. Hence we look at whether such orders would suffice when several DSGE models from

the literature are taken as the RMs. If they fail to match we describe this as a truncation

error, in that the dynamics are not of high enough order. In doing this we note that the

impulse responses of the SVAR depend upon the initial response CSV AR
0 and the VAR coef-

ficients BSV AR
1 , ..., BSV AR

p , while the corresponding RM quantities are CRM
0 and the implied

VAR coefficients from its solution are BRM
1 , ..., BRM

p . To focus upon the approximation of

the dynamics we set CSV AR
0 = CRM

0 , as done by Ravenna (2007) and Kapetanios, Pagan and

Scott (2007), so that any discrepancy between responses is due to differences between the

VAR coefficients. Hence it reflects a problem in capturing the dynamics and we will refer to

this as an issue in estimating a VAR, rather than a SVAR.

We find that a reasonable match can often be obtained with the low lag lengths typically

used in applied work, particularly if care is taken with respect to the selection of the variables

that are included in the VAR. Section 2.2 discusses the role of stock variables in determining

the extent of truncation error. An important example which arises is the stock of net foreign

assets in small-open economy models. These serve as part of a stabilizing mechanism which

will be absent if it is omitted from a VAR. Including such stock variables is not typical in

VAR models. It emerges that, when there are no omitted stocks and the observed variables

are stationary, truncation error is typically not a major issue. This is true when using a

VAR(4) as an approximation, but is even the case when a VAR(2) is adopted.

Today RMs often include permanent shocks - typically the log of technology - together

with transitory disturbances, such as monetary policy shocks. These permanent shocks

result in some variables having a common permanent component and that produces co-

integration between core I(1) endogenous variables and an exogenous I(1) latent variable,

such as technology. This is handled in RMs such as DSGE models by working with I(1)

variables that have been transformed to stationarity by using a permanent I(1) component,
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while the stationary variables are left in their levels. At least one of the transformed I(1)

variables will be latent, while the others can be formulated as observable error-correction

(EC) terms. A Vector Error-Correction Model (VECM) formulation in observed variables

will omit the latent EC term. Hence there is a specification error in using such a VECM.

In Section 2.3 we find that when the RM features permanent shocks the truncation error

may be significant. We describe an alternative approach that involves estimating a latent-

variable VECM. Using an example from Poskitt and Yao (2017) we show that this approach

can considerably lessen the truncation error. In the literature to date, for example Del Negro,

Schorfheide, Smets and Wouters (2007), only observed EC terms have been included in the

observed-variable VECM, and the latent EC term has been omitted.

Our analysis shows that the magnitude of truncation error which occurs with a SVAR is

likely to depend on the nature of the shocks included in the RM. This is an explanation of the

divergent findings in the literature - for example, Chari et al. (2005) included a permanent

shock, whereas Christiano et al. (2007), who were more optimistic, only included transitory

disturbances.

2.1 Analysis: Truncation Bias with I(0) Variables

This sub-section presents a simple framework to illustrate the issues that may arise in VAR

analysis due to information being only partially observed. A common approach to studying

the relationship between the modeling approaches of VARs and RMs is to write the RM

in state-space form, so as to separate the latent and observed variables - the ABCD repre-

sentation - before finding the conditions for a finite-order VAR representation (Fernández-

Villaverde, Rubio-Ramı́rez, Sargent and Watson 2007). This approach was adopted by

Ravenna (2007), Franchi and Vidotto (2013) and Morris (2016); Giacomini (2013) surveys

that literature.2

Our focus is different. Rather than deriving the conditions necessary for the existence

2Canova and Ferroni (2018) use the ABCD representation to examine some of the issues we address in
Section 2 of the paper.
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of a finite-order VAR representation, we instead investigate how well a low-order VAR, akin

to those used by applied researchers, can match the impulse responses of the RM. The

framework emphasizes that what is crucial is the ability of the observed variables to explain

the unobserved variables. This demonstrates the issues that may arise when there is only

partially observability.

Historically, all variables in RM models were taken to be I(0), and their solution was a

VAR(p). For convenience we set p = 2, giving the solution3

zt = B1zt−1 +B2zt−2 +Hεt, (1)

where zt are the core endogenous variables of the RM, and εt the structural shocks with

unitary standard deviation. zt can be divided into those upon which there are data, zot , and

those that are unobserved, zut . As is common in RMs it will be assumed that there are the

same number of shocks εt as observed variables, and that the rank of H is no = dim(zot ).

From the singular value decomposition of H there exists an n× n (n = dim(zt)) orthogonal

matrix S such that SH =

⎡
⎢⎣ G

0

⎤
⎥⎦ , where G is of rank no. Then

Szt = SB1zt−1 + SB2zt−2 +

⎡
⎢⎣ G

0

⎤
⎥⎦ εt.

Partioning S as

⎡
⎢⎣ Soo Sou

Suo Suu

⎤
⎥⎦ =

⎡
⎢⎣ S1

S2

⎤
⎥⎦ gives the second set of equations as an identity

Suuz
u
t = −Suoz

0
t + S2B1zt−1 + S2B2zt−2. (2)

3See Binder and Pesaran (1995). The conditions for the solution are two-fold: a rank condition and the
Blanchard-Kahn stability conditions must be satisfied (Blanchard and Kahn 1980).
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Since Suu is non-singular we could write Equation (2) as

Ψ(L)zut = H(L)zot

where Ψ(L) = I − Ψ1L − Ψ2L
2, H(L) = H0 + H1L + H2L

2 and this will mean that zut =∑∞
j=0 Fjz

o
t−j, i.e. the unobserved variables can be expressed as a combination of the current

and lagged observables. This demonstrates that it is possible to recover the unobserved

variables from the observed variables using their contemporaneous values and enough lags.

After substituting for zut in the first block we get that the observable variables follow a

process

D(L)zot = Gεt, (3)

where D(L) may be an infinite polynomial in L.

Suppose we had assumed that the VAR in zot was a first-order VAR. Hence, if one just

regressed zot on zot−1 there would be a misspecification due to the omission of the term

ψt =
∑∞

j=2Djz
o
t−j. When zot−1 and ψt are uncorrelated there will be no bias in the estimated

coefficients of zot−1. Nevertheless, the impulse responses to the shocks εt would be incorrect

because of the omission of the higher-order lags in zot from the system when impulse responses

are computed. If the variables are correlated there is also a bias in the estimates of the

coefficients of zot−1. Hence the misspecification has two effects and these will depend upon

the magnitude of Dj (j = 2, ...) and the correlation of zt−1 with ψt =
∑∞

j=2Djz
o
t−j. Of course

if we used a VAR(M), rather than the first order, the same effects will be observed, except

that ψt =
∑∞

j=M+1Djz
o
t−j.

To summarize, this analysis has demonstrated that information being only partially ob-

served has implications for a VAR in that, while it is possible to recover the unobserved

variables from the observed variables, this may require more lags than is typically used (or

is feasible in finite samples). Consequently, if these higher-order terms are correlated with

those that are included, there may be an omitted-variable bias. Even in the absence of any
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such bias the omission will result in the computed impulse responses being incorrect. The

fundamental question revolves around the size of this truncation bias.

2.2 Sources of Truncation Bias: Transitory Shocks

We now turn to discussing specific aspects of RMs that are likely to contribute to the extent

of truncation error in the observed-variables VAR.

2.2.1 Absence of Stock Variables in a VAR

VAR models are frequently estimated using only flow variables, such as the level of economic

activity. RMs alternatively have both flow and stock variables, such as investment and the

stock of capital. Akin to the VAR, the observed variables used to estimate DSGE models

typically only include the flow variables, but the model incorporates an identity linking the

stocks and flows. In some cases this identity can be used to expressed the stock in terms of

flow variables and the shocks, e.g. if the production function is Cobb-Douglas then the log

of capital can be expressed in terms of the logs of output, labor and the technology shock.

Hence the capital stock can be eliminated, leaving output and labor as the core endogenous

variables.

In cases where it is not possible to eliminate stock variables, their absence from the

observed-variables SVAR does not necessarily mean that truncation bias will be sizable. As

an example, the solution to a simple RBC model, such as Uhlig (1999), with only the log

of output being observable, can be well approximated by even a simple AR(1) model in

yt. This is also true for some more complex variants of RBC models; for example, if one

introduces a preference shock and matches this with a second observed variable. If hours

worked is chosen as the latter then the latent capital stock can be eliminated, highlighting

that careful choice of the observed variables can eliminate potentially important unobserved

stock variables, thereby diminishing truncation error.
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2.2.2 Small-Open Economy Models

Small-open economy models are a case where unobserved stock variables may have a consid-

erable influence on the ability to make a match between the impulse responses. Consider, for

example, the small-open economy model of Justiniano and Preston (2010); this has thirty-

four endogenous variables and twelve shocks. Many of the endogenous variables in the model

can be substituted out using identities. Such a process leaves thirteen core variables, of which

one is unobserved, namely the level of net foreign assets. This is the only stock variable in the

RM since capital is not included. Using their parameter values, the Justiniano and Preston

(2010) system has the following equation for output

yt = 1.49yt−1 − .52yt−2 − .026y∗t−1 + .017y∗t−2 − .032i∗t−1 + .036π∗
t−1

−.0004π∗
t−2 + .004w∗

t−1 − .001w∗
t−2 + .003h∗t−1

+.241it−1 − .06qt−1 + .06qt−2 − .22πt−1 + .004πt−2 − .04wt−1

+.018wt−2 − .024ht−1 − .04st−1 + .036st−2 − .0001Bt−1 + eyt, (4)

where domestic output, interest rate and inflation are yt, it and πt respectively, and a ∗
denotes their foreign counterparts. Other variables include the nominal and real exchange

rates (st and qt), real wages (wt and w
∗
t ), hours (ht and h

∗
t ), and the level of net foreign assets

Bt. The VAR error eyt is a function of the structural shocks. Equation (4) is an identity.4

Even though it is not a structural equation, it contains information about the impact of

structural shocks; the contemporaneous impulse response matrix C0 can be computed from

4Throughout this paper the identities governing the evolution of variables were found by simulating data
from the TM and then fitting regressions, where the innovations to the structural shocks are included with
the core variables as explanatory variables. Because these are identities they have perfect fit. They are
distinct from the decision rules, such as those produced by Dynare, as they are expressed only in terms of
the core variables and the shock innovations.
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the coefficients of εt in

eyt = −.034εat − .011εa
∗

t + .17εgt + .042εg
∗

t − 1.495εit + .094εi
∗
t

+.09εcp
∗

t − .386εcpht − .022εcpft + .0002εnt + .00005εn
∗

t + .65εrpt , (5)

where the structural shocks are for preferences (εgt , ε
g∗
t ), technology (εa

∗
t , ε

a
t ), monetary policy

(εit and ε
i∗
t ), cost push shocks in the foreign economy and to the foreign and domestic goods

in the domestic economy (εcp
∗

t , εcpht , εcpft respectively), labor supply (εnt and εn
∗

t ) and the risk

premium (εrpt ). As an example, from Equation (5) the contemporaneous response of output

to a domestic monetary policy shock is -1.495. Consequently, we will refer to the solution in

this form as a Semi-Structural VAR (SSVAR).

The left-hand panel of Figure 1 presents the impact of a domestic monetary policy shock

upon output using a SSVAR(2) with all variables from the RM, as well as one with just the

observed variables with 2 and 4 lags. All the impulse responses presented in this paper are

for a one unit shock. There is very little difference between them; the response of inflation

to a monetary shock is approximated with only two lags, as is the case for the real exchange

rate.

(a) Output to a Domestic Monetary Shock (b) Output to a Domestic Technology Shock

Figure 1: Impulse Responses for VARs Fitted to the Justiniano and Preston (2010) Model Output
with (i) All Variables; (ii) the Observed Variables with Two Lags, and (iii) the Observed Variables
with Four Lags.
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In contrast, the right-hand panel of Figure 1 shows the response of output to the domestic

technology shocks; in this case there is a difference, especially as the horizon lengthens. In

particular, it takes far longer for the observed-variables SSVAR estimates of the responses

to die away. This pattern can be seen in a number of other impulse responses, such as

the response of the real exchange rate to technology shocks. Essentially, in relation to real

shocks, such as technology, the complete system returns to the steady-state position much

faster than a SSVAR which omits foreign asset balances.

The logic underlying the failure to make a match is that the inclusion of a debt-elastic

premium is a common way of closing small-open economy DSGE models; see Schmitt-Grohe

and Uribe (2003). Without such a stabilizing mechanism - and it will be absent in a SVAR

that does not include debt - we would expect that convergence to any steady state will be

far slower, and might not even occur. Indeed, the estimated dynamics of the VAR equation

for the real exchange rate change markedly when debt is included.5

This result sheds light on the findings of Kapetanios et al. (2007), who studied a small-

open model of the type used by Justiniano and Preston (2010) as their RM. They concluded

that one needed a VAR of order 50 and 30,000 observations to capture the responses. They

also found that it took much longer to return to the steady state. Foreign assets were treated

as unobserved and so omitted from the VAR, and our results suggest that this will have been

an important factor contributing to the difficulties they encountered in making a match.

In all, it appears that treating the level of foreign debt or assets as unobserved in VARs

of small-open economies is very likely to be an issue in obtaining a correct measure of the

dynamics of real shocks. For this reason every effort should be made to measure such a

variable in small-open economy SVARs. If it is difficult to measure the debt variable one

possibility might be to include both absorption and domestic output as observed variables

in the VAR. The difference between absorption and domestic output captures the trade

5This suggests that debt is highly correlated with the included variables and this is the case - regressing
debt on the observed variables produces an R2 of .99. Consequently, omitting debt from the system will
produce biased estimates of the dynamics.
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account balance and hence may approximate the evolution of debt. Imposing an identity on

the SVAR related to this balance and the interest on debt is also an option - see Ouliaris et

al. (2018).

2.2.3 Flexible-Price Output Gaps

Sizable truncation bias can arise in closed-economy VARs for other reasons. An example

is the inclusion in the RM of a parallel system that describes an economy with flexible

prices. In that case, the monetary policy reaction function responds to a measure of the

output gap defined as the difference between the actual and the flexible-price (flex-price)

level of output. This introduces the flex-price level of the capital stock as an unobserved

core variable. Whether this is important for the VAR approximation depends on how well

it can be approximated by lags of the observed variables and the bias in the parameter

estimates occurring due to its omission.

To gauge the magnitudes of these effects, we take the Smets and Wouters (2007) New-

Keynesian model of the United States economy as the RM.6 It has a large number of en-

dogenous variables (twenty-four), but only ten core ones. There are seven shocks and,

consequently, seven observed variables. The SSVAR therefore includes three unobserved

variables.

Stock variables are two of the three unobserved core variables, namely capital, kt, and the

flex-price level of capital, kft, together with the price of capital, pkt.
7 To assess the ability

to proxy these latent variables with the observed data we regress kt, kft and pkt against

two lags of the observed variables and obtain R2 values of .96, .53 and .08, respectively,

indicating that it varies considerably. Offsetting this, however, is the fact noted previously

6In its original form the mark-up shocks in the Phillips curves are ARMA processes and consequently
the solution will not be a finite-order VAR. However, in this section we replace those ARMA terms with
standard AR processes.

7The production function in Smets and Wouters (2007) has capital services in it, which can be found
from output, hours and technology. However, these are allowed to vary with utilization of the lagged capital
stock. Consequently, either the capital stock or the utilization rate are not observable and will be a latent
core variable.
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that a low R2 would mean less of a bias in the parameter estimates when the latent variables

are omitted. when

Akin to the small-open economy model, the effects of monetary policy shocks on inflation

are little affected by the use of a VAR(2) in the observed variables alone. Alternatively, the

real shocks, such as technology, do have differing response functions, but by far less than was

apparent in the small-open economy model (left-hand side of Figure 2). It is notable that the

observed-variables VAR now has impulse responses which converge to zero much faster than

the RM. The reason for this is that much of the persistence comes from the omitted stock

variables. However, unlike the case of foreign debt, capital stocks do not act as a stabilizing

device, but make the adjustment longer.

(a) Output to a Technology Shock
(b) Output to a Technology Shock - No Flex-Price
Terms

Figure 2: Impulse Responses for VARs Fitted to the Smets and Wouters (2007) Model Output with
(i) All Variables; (ii) the Observed Variables with Two Lags, and (iii) the Observed Variables with
Four Lags.

The importance of the flex-price level of the capital stock can be assessed by modifying

the monetary policy reaction function, which is the sole place where the flex-price variables

enter the sticky-price economy. While a flex-price output gap often appears in theoretical

models, in many applied models the interest rate is instead directly related to yt, the log

deviation of output from its steady state. Modifying the monetary rule in this way eliminates

kft from the model. The right-hand panel of Figure 2 shows the same impulse response,
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but with the modified monetary rule. The observed-variables SSVAR(2) responses are now

a much better match. One might have expected this change to have significantly altered the

impulse responses for monetary policy shocks, but these are similar for either variant of the

RM. In summary, the inclusion of the flex-price output gap in the monetary rule plays an

important role in limiting the ability of a VAR to make a match.

2.3 Sources of Truncation Bias: Permanent Shocks

2.3.1 Analysis

It has become common for DSGE models to include permanent shocks. An example is if

the log-level of technology, at, is assumed to follow a unit root. As the economy in this case

will have a long-run growth path, a normalization has to be used prior to log-linearization

of the model for estimation. For example, consider the consumption Euler equation with log

utility, namely C−1
t = βEtC

−1
t+1Rt+1, where Ct is the level of consumption, β the discount

factor and Rt is a real interest rate. The appropriate normalization would be At ≡ exp(at),

and the Euler equation would become (Ct

At
)−1 = βR∗Et(

Ct+1

At+1
)−1(At+1

At
)−1Rt+1

R∗ , with R∗ the

steady-state interest rate. Then, after log-linearization, we have

ct − at = Et[ct+1 − at+1 +Δat+1]− Etrt+1 + r∗, (6)

where the lower case letters represent the logs of the upper case ones.

It is apparent that the inclusion of a permanent technology shock results in some variables

in these models being I(1) and co-integrated. An example of such co-integration is that

between ct and at, since ct − at is I(0) in Equation (6). All the model variables which are

I(1) are expressed as deviations from at, a process often referred to as “stationizing”. These

variables are I(0) and represent the error-correction (EC) terms.

As before, the solution to the RM will be a VAR in the core variables, zt. However, some

of these will be the stationized variables, such as ct−at (denoted with a superscript S, i.e. cst).
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Now cst is not directly observed, but may be related to the observed data. As an example, let

Δct be observed data on consumption growth. Then Δct = Δ(ct − at) + Δat = ΔcSt +Δat.

A way to handle such a variable is to add a statistical specification for the latent exogenous

process at.
8 Doing so yields a latent-variable VECM. As we will show, estimating such a

model can mitigate truncation error relative to alternative specifications.

2.3.2 Extent of Truncation Bias

Poskitt and Yao (2017) and Ravenna (2007) studied the extent of truncation bias in a simple

RBC RM when there was non-stationary technology. They have two core observed variables

- output, yt, and hours, ht. As the latent capital stock can be substituted out from their

RM, the only core endogenous latent variable is stationized output, ySt .

The RM is a SSVAR(1) in ySt and ht. As ySt = yt − at, this can be differenced to

obtain Δyt = ΔySt +Δat, and the SSVAR(1) of their RM expressed in terms of the observed

variables, Δyt and ht will be

Δyt = −.01ht−1 − .18ySt−1 − 1.56εht + .96εat (7)

ht = .93ht−1 − .24ySt−1 − 2.4εht + .48εat . (8)

Note that lagged stationized output ySt−1 remains in the system. It cannot be eliminated.

The system is a latent variable Semi-Structural Vector Error-Correction Model, where ySt−1 is

the lagged error-correction term between observed output and the latent technology process.

Any SSVAR in the observed variables alone, that is omitting ySt−1, would be misspecified.

How important would the specification error be from ignoring the EC term? The mag-

nitude of the resulting bias in Equation (7) will depend on the relative variances of -.18ySt−1

and (−1.56εht + .96εat ). The ratio is 0.33, which suggests that the bias may be sizable.9 A

8In contrast, there can be stationized variables that do not relate directly to data and which require an
economic model for their construction, such as the capital stock when there is a variable utilization rate.

9Omitting ySt−1 from Equation (7) yields an estimate of the coefficient of ht−1 of -.097 (compared with
-0.01), while for Equation (8) it produces .83, rather than .93. Consequently, the impact of shocks on Δyt
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reasonable rule of thumb is that when the EC term’s coefficient is small we can work with a

VAR in differences for the I(1) variables.

Figure 3 shows the divergence between the impulse response of hours to a technology

shock obtained from a VAR using the observed and all variables. This difference is much

the same as reported in Poskitt and Yao (2017). The divergence is due to bias in the ht−1

coefficient estimate.

Figure 3: Impulse Response of Hours to a Technology Shock Using: (i) the RM of Poskitt and Yao
(2017) (DSGE); (ii) a VAR(2) in the Observed Variables; (iii) a Latent-variable VECM and (iv) a
VAR(4) in the Observed Variables

To examine whether the biases could be mitigated by using a higher number of lags we

regress ySt upon {ht−j,Δyt−j}Mj=1. When M = 2 we obtain an R2 of .7 ; it is necessary to use

M =50 to reconstruct the latent variable from the observed variables. Since there is a high

correlation between ht−1 and ySt−1, there will be a bias in the estimates of the coefficient on

ht−1, as already seen in the comparison of the impulse responses.

As adding lags to the VAR is unlikely to deliver a good match without using an impracti-

cally high lag length, what other strategies are available? One is to recognize that the system

is a latent-variable VECM, and to augment the system with an assumption about the latent

exogenous technology process (as is done in DSGE models). Then the latent VECM can

be estimated as a state-space model using the Kalman filter. We assume that technology

will die out very quickly, even though there is a bias in the estimates. In contrast, the difference in the
parameter values in Equation (8) for ht−1 (.93 and .83) results in very different decay rates for the impulse
responses of ht.
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follows an I(1) process, consistent with the RM that Poskitt and Yao (2017) use, and the

implied state-space model is provided in the Appendix.

Figure 3 shows the impulse response of hours worked to a technology innovation from

this latent variable VECM, which closely matches the impulse response from the RM. So

estimating a latent-variable VECM is a potentially useful strategy when the RM is believed

to have non-stationary technology. It may not be necessary to do this as any bias that

emerges will depend on the relative variances of the omitted EC term and the structural

shocks in the equation that has the change in an I(1) variable as the dependent variable. An

example is the model of An and Schorfheide (2007). There the variance of the shock in the

structural equation for output growth is ten times larger than that of the omitted EC term.

Consequently the bias is slight.10

Often one sees a VECM being used that incorporates only observed EC terms. An exam-

ple is Del Negro, Schorfheide, Smets and Wouters (2007), who introduce an I(1) technology

shock, at, into the Smets and Wouters (2007) model. As before, the normalized variables

include the EC terms (yt − at), (ct − at) and (it − at). These can be written equivalently as

(yt−at), (ct−yt), and (it−yt), with the last two being observed. There will be one unobserved

EC term missing from any observed-variables VECM.11 In Del Negro et al. (2007) it would

be (yt − at), as output cannot be normalized by itself.12

To assess the impact of the exclusion of a latent error-correction term we return to the

Poskitt and Yao (2017) and Ravenna (2007) model, adding an extra shock and observed

variable. These are a preference shock to the period utility function, bt, and an assumption

that investment growth is observed. These choices mean that there is now an observed EC

term, (it−yt), as well as a latent one, (yt−at). We assume that the preference shock follows

10The finding that a sticky-price model with a permanent technology shock can be well approximated by
a short VAR is in contrast to the conclusion of Erceg, Guerrieri and Gust (2005). The difference is due to
the fact that in the An and Schorfheide model the interest rate is an observed variable, whereas it is not in
the rigid price model of Erceg et al. (2005).

11The presence of an unobserved EC term was also discussed in Liu, Pagan and Robinson (2018) in the
context of the Rees, Hall and Smith (2016) model.

12It is not possible to eliminate this term using the resource constraint.
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a first-order autoregressive process and parameterize to match the same data moments as

used by Ravenna (2007), producing ρb = 0.9 and the standard deviation of its innovation as

0.006.

In some instances, such as the responses of all variables to a labor supply shock, the

omission of the latent error-correction term is of little consequence. Alternatively, Figure

4 compares the approximation of the observed and latent-variable VECMs to the impulse

response of hours to a technology shock (left-hand side) and a preference shock (right-hand

side). The latent-variable VECM provides a superior match, particularly for the response

to a preference shock. This result reinforces our contention that latent-variable VECMs are

a class of models which are likely to be useful to applied researchers when working with

systems that contain a mixture of I(1) and stationary variables.

(a) Hours to a Technology Shock (b) Hours to a Preference Shock

Figure 4: Impulse Responses of Hours to a Technology or Preference Shock Using: (i) the RM of
Poskitt and Yao (2017) (DSGE); (ii) a VECM(2) in the Observed Variables; (iii) a VECM(4) in
the Observed Variables and (iv) a Latent-variable VECM

2.4 Implications for Applied SVAR Research

Sections 2.1 to 2.3 analyzed the magnitude of one of the main consequences of partial ob-

servability, namely truncation error, and discussed features of DSGE models in which it may

occur. The extent of truncation error with even a VAR(2) was reasonably small, particularly

for monetary-policy shocks. Typically in applied research the lag length is selected using

an information criteria. However, different information criteria often suggest different lag
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lengths. Our results should give confidence to an applied researcher to use a relatively low

lag length.

The second aspect emphasized was that truncation error often reflects the omission of

stock variables from a VAR. In some cases this could be handled by careful choice of the

other variables in the VAR. The level of net foreign assets or debt in a small-open economy

VAR was a case where the omission of stock variables was of particular importance.

Finally, we argued that latent-variable VECMs are a useful approach to modeling macroe-

conomic systems containing a mixture of I(1) and I(0) variables.

3 Partial Information and Identification: Estimating

Contemporaneous Impulse Responses

There are two dimensions to making a match of the RM and SVAR impulse responses.

Impulse responses from any linear model will be a function of both the contemporaneous

responses C0 and the dynamics of the model through its implied VAR coefficients.13 In

Section 2 we looked at the latter, as is true of most of the literature. Here we investigate what

can be learnt about C0 from information used in the RM. Put another way, it is a SVAR that

has to be estimated now rather than a VAR. In the previous section we set CSV AR
0 = CRM

0 ,

but now our concern is with the estimation of CSV AR
0 , which requires structural identification

information.

Some of the assumptions in the structural equations of RMs - e.g. exclusion restrictions

- come from an economic model. Alternatively, others are purely statistical, e.g. that

structural shocks are uncorrelated and the shocks are univariate ARs. Researchers estimating

a SVAR in the observed variables often seek to have a great deal of flexibility in the dynamics,

which can create issues when trying to estimate the contemporaneous responses consistent

13The k′th period ahead impulse responses of zt to εt from a SVAR(p) in zt, denoted by Ck, can be found
recursively using Ck = B1Ck−1 + ...+BpCk−p, where Bj are the VAR coefficients.
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with the RM, as they are not exploiting some of the statistical assumptions of those models.

As we will see such restrictions could be used in the identification of the SVAR, although

this has rarely been done in practice.

A typical structural equation in a RM, say for the variable yt, has the form

yt = α1Et(zt+1) + α2xt + α3yt−1 + uyt, (9)

where xt are other variables and uyt the shock. The issue is how to handle Et(zt+1). The

solution of the RM, Equation (1), implies Et(zt+1) = B1zt+B2zt−1. Letting yt = Szt, where

S is a selection matrix, Equation (9) can be expressed as

yt = α1SB1zt + α1SB2zt−1 + α2xt + α3yt−1 + uyt. (10)

and this constitutes a SVAR equation. The question then becomes whether we have enough

instruments to estimate the parameters of this equation. That there may be enough comes

from the assumption often used in RMs that uyt is a univariate AR(1), since this introduces

non-linear restrictions between the parameters of the equation to be estimated.

To illustrate this we take as the RM a simple small New-Keynesian (NK) model of the

form

yt = Et(yt+1)− (rt − Et(πt+1)) + uyt (11)

πt = βEt(πt+1) + κyt + uπt (12)

rt = ρrrt−1 + (1− ρr)(γyyt + γππt) + δΔyt + εrt, (13)

where uyt and uπt follow AR(1) processes with parameters ρy and ρπ and innovations εyt

and επt. All the innovations are assumed to be white noise processes and uncorrelated with

each other. This is the external sector of the Reserve Bank of Australia’s Multi-Sector Model

(MSM), set out in Rees et al. (2016). We assume that πt and rt are observed. yt in the MSM
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actually is a stationized variable, However, we will initially abstract from that complication

and think of yt as being an I(0) observable output gap, in order to focus on the problems of

matching the estimated CSV AR
0 with CRM

0 . Later we return to the case where ySt = yt − at,

and at is the log of technology, which follows an I(1) process with innovation εat .

Consider the New-Keynesian Phillips Curve in Equation (12). Now because the MSM

solution is a VAR(1) in all variables expected inflation will be

Et(πt+1) = b121yt + b122πt + b123rt (14)

where b1ij (i = 1, ., 3; j = 1, .., 3) denotes the elements in B1. Using the estimated parameter

values in Rees et al. (2016) this would be

Etπt+1 = .108yt + .269πt + .123rt. (15)

Once we replace Et(πt+1) in Equation (12) with Equation (14) and re-arrange, the equa-

tion will have the form

πt = a021yt + a023rt + vπt, (16)

where a021 =
βb121+κ

1−βb122
, a023 =

βb123
1−βb122

, vπt = ρπvκt−1 + ε′πt and ε
′
πt =

επt

1−βb122
. Equation (16) then

becomes

(1− ρπL)πt = (1− ρπL)a
0
21yt + (1− ρπL)a

0
23rt + ε′πt. (17)

It is evident that the coefficients on πt−1, yt−1 and rt−1 all involve the same parameter ρπ.

Consequently, there is a common factor (1−ρπL) in the three separate lag polynomials arising

from a statistical assumption about the autoregressive nature of shocks. This common factor

(COMFAC) structure was investigated by Hendry and Mizon (1978).
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3.1 Using COMFAC Restrictions from the RM in SVAR Analysis

A standard equation for inflation in a SVAR(1) containing yt, πt and rt would be

πt = a021yt + a023rt + a122πt−1 + a121yt−1 + a123rt−1 + επt. (18)

There are five parameters to be estimated in the conditional mean of this but only three

instruments, namely yt−1, rt−1 and πt−1. When COMFAC restrictions are applied, Equa-

tion (18) becomes Equation (19) (which is equivalent to Equation 17), and there are only

three parameters in that conditional mean, i.e. it is exactly identified.

πt = a021yt + a023rt + ρπuπt−1 + επt, (19)

To demonstrate how important the COMFAC restrictions may be to estimation, note

that the parameters from Rees et al. (2016) imply the SVAR would have coefficient values

of a021 = 0.197, a023 = .169 and ρπ = .31. Estimating Equation (19) using simulated data

from the MSM (10,000 observations) and the instruments πt−1, yt−1, and rt−1, we obtain the

estimates â021 = 0.197, â023 = .165 and ρ̂π = 0.31, which are an excellent match to the true

values, enabling the recovery of the MSM shock επt.

In contrast, if one was to instead identify the SVAR by assuming that it is recursive,

this would require assuming that the interest rate does not appear in the inflation equation

(i.e. a023 = 0). While it is true that rt is absent from the MSM’s Phillips curve, it should

appear in the SVAR equation for inflation because of expectations (the implied a023 = .169).

So, for the inflation equation, the COMFAC restriction appears preferable to assuming it is

recursive. It should be noted, however, that the COMFAC restriction does not necessarily

produce strong instruments.
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3.2 Identification Issues with Permanent and Transitory Shocks

When there are I(1) variables in the RM there must be permanent, as well as transitory,

shocks. This mixture of shocks poses more substantial difficulties in making a match of

CSV AR
0 to that from the RM. In particular, the permanent shock identified in a SVAR may

differ from that in the RM. To demonstrate this, we adopt the method for dealing with a

mixture of shocks due to Shapiro and Watson (1988).14 They showed that one could separate

permanent and transitory shocks by working with some modified equations in the SVAR.

As an example, consider the MSM’s structural output equation which has the form (after

solving for the expectations)

ySt = απt + δrt + vy,t

vy,t = ρyvy,t + ε′y,t,

where α = .77, δ = −29.3, and ρy = .95. Once again there is a common factor restriction.

Now, if ΔyDt is the data then ΔyDt = ΔySt + εat , and we have

ΔyDt = αΔπt + δΔrt − (1− ρy)vyt−1 + ε′y,t + εat . (20)

This is the form of the equation that Shapiro and Watson would have estimated using

πt−1 and rt−1 as instruments for Δπt and Δrt. Notice, however, there are two shocks in

Equation (20). Consequently, while the estimated equation does have a permanent shock, it

will not be equal to the permanent shock of the RM, εat , unless εyt = 0. This is an example

of a more general problem that arises when there are more shocks than observed variables

in the RM.

14Pagan and Pesaran (2008) extended this to handle co-integrated variables.
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3.3 Implications for Applied SVAR Research

The analysis and illustration shows the difficulties that a SVAR can experience in capturing

the C0 from a DSGE model often stem from the fact that the traditional estimation of

SVAR models seeks to avoid imposing statistical restrictions (such as COMFAC), exclusion

restrictions (in the interest rate equation πt−1 does not appear in the MSM), and other

constraints where coefficients are prescribed (for example that on Et(yt+1) in the MSM

output equation).

In many ways SVARs are about assembling information concerning the dynamics and

contemporaneous interactions between variables in the macroeconomy in a way which, while

identified, imposes less structure than is included in RMs. Traditionally this flexibility has

been achieved by using exactly-identified SVARs, rather than the over-identified structural

equations of the DSGE approach. There are, of course, common restrictions between the

two approaches, such as the assumption that the structural shocks are uncorrelated. The

COMFAC restrictions, being statistical in nature, could be implemented in a SVAR.15

4 Researcher Initiated Partial Observability

Partial observability can also occur by design. This happens in the literature when a re-

searcher makes the assumption that the data and model variables are not the same. In

Section 3 such a difference arose from the model structure, but now we consider when it

involves including auxiliary equations which are assumed to connect the model variables and

data. This is often referred to as “adding measurement error”, although that term seems

to imply that the “theory is ahead of data”, and that the model is correct and the data is

wrong. A more neutral description of the shock is that it provides a reconciliation between

15Suppose one imposes COMFAC restrictions on the SVAR model A0yt = A1yt−1 + ut, ut = Φut−1 + εt,
where Φ is diagonal and var(εt) = I. When there are no other restrictions on Aj there are 2n

2+n parameters

to estimate. Since the model implies a VAR(2) there are 2n2+ n(n+1)
2 parameters in it. Hence the COMFAC

restrictions result in an over-identified SVAR as n < n(n+1)
2 . The system would be exactly identified if Φ

was triangular.
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the model variables and the data, just as “wedges” are often devised to close the gap be-

tween the first order conditions of the RM and the data. The key issue is the appropriate

specification of these reconciliation shocks, which we show will depend on the nature of the

model variables, in particular whether they are I(1) or I(0).

4.1 Model Variables are I(0)

Denote the model variables as zMt and the data zDt . Then one reconciles the two with zDt =

zMt + ηt, where ηt is an error. Assuming the the RM has a SVAR of the form A0z
M
t =

A1z
M
t−1 + εt, then an issue that immediately arises relates to whether the number of shocks

now exceeds the number of observed variables. If they do then the shocks cannot all be

recovered. At most we can recover the same number of shocks as dim(zDt ) (or that many

linear combinations of them). This is because the matrix connecting the vector of observed

variables and the vector of shocks is not square and there is no unique inverse.

A class of models where such difficulties often arise are the components models that have

been advanced to compute unobserved variables, such as the output gap. One can certainly

make estimates of the shocks but these do not converge to what the model would define

them to be as the sample size expands. To see this in a very simple context suppose that

zt = εt + ηt, the variance of ηt is known, and εt and ηt are uncorrelated and n.i.d.(0,1).

Then the minimum mean square error estimate of either εt or ηt will be some multiple of

zt, namely ε̂t = .5zt = .5(εt + ηt), but will never actually equal εt. This outcome does not

change if there is serial correlation in the shocks. Notice that the one unit contemporaneous

impulse response of zt to εt is correctly estimated to be unity because zt = ε̂t + η̂t. Indeed,

this is generally true, as the ability to estimate impulse responses, rather than shocks, simply

resides in whether one can estimate the model parameters, and so is an issue of identification.

There are many examples of this type of model. Fleischman and Roberts (2011) present

a state-space model to extract an output gap that involves 8 observed variables and 9 shocks,

meaning that the shocks cannot be exactly extracted and raising questions over whether the
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output gap might involve supply-side shocks.

4.2 Model Variables are I(1)

A common approach to introducing measurement error in the case where variables are I(1)

is to write ΔzDt = ΔzMt + ηt, where ηt is I(0). A recent application in this vein is Aruoba

et al. (2016). They considered that different measures of GDP growth could be regarded

as deviating from true GDP growth, and that these deviations would be described as mea-

surement errors. Many factor models make a similar assumption. In terms of models with a

greater economic emphasis, DSGE models often proceed in this way, e.g. Guerron-Quintana

(2010), including those used at policy institutions, e.g. Chung et al. (2010) and Rees et al.

(2016). This wide usage motivates our analysis of the implications of this partial observability

specification.

We start with a simple situation which parallels that in Aruoba et al. (2016). Let Δzt

be the true growth rate in GDP and Δzjt (j = 1, 2) be two noisy measures of it. Then we

have Δzjt = Δzt + ηjt, where ηjt are said to be the measurement errors, which Aruoba et

al. (2016) assume to be white noise. Now consider what this means for the relation between

the level of GDP and its measures. Selecting the first data series we have

z1t − zt =
t∑

k=1

(Δz1k −Δzk)

=
t∑

k=1

η1k.

Consequently, under the assumption that measurement errors are white noise it is clear that

the data, z1t, and model variable, zt, do not co-integrate. Moreover, the difference

z1t − z2t =
t∑

k=1

(Δz1k −Δz2k)

=
t∑

k=1

(η1k − η2k),
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would also be I(1). Therefore, unless η1k and η2k are perfectly correlated, there would be no

co-integration between either of the data variables z1t and z2t.
16,17

Now it may be that the observed and model variables are not co-integrated, but it would

seem more satisfactory if at least one of the measured quantities did co-integrate with the

true level of GDP. Therefore it doesn’t seem sensible to rule this out when choosing the

specification of the measurement error. One can, of course, test if the data z1t and z2t

are co-integrated, which provides a check on whether the assumptions being made about the

measurement error are reasonable. Aruoba et al. (2016) take z1t to be the expenditure-based

measure of GDP, while z2t is the income-based series. We therefore test if they co-integrate;

using a VAR(2), Johansen’s trace and eigenvalue tests are equal and of value 3.22. As the

5% critical value is 3.84 there does seem to be co-integration between the observed series,

and a useful re-specification of their model would be to include error-correction terms.18 It

is interesting that the cointegrating vector seems to be (1 -.9978).

How can measurement error be introduced into a model in a way that maintains the

cointegrating relationships? One could instead write zDjt − zMjt = ηjt for all j elements of

zDt , and assume that ηjt are I(0). Then ΔzDjt = ΔzMjt + Δηjt, which clearly results in co-

integration between model and data variables being maintained. The only remaining issues

is to determine an appropriate specification for ηt. One possibility is to assume it is i.i.d.

To see another possible definition, note that if we assume that the data and model variables

co-integrate with the same cointegrating vectors, we would have equations for the model of

the form

ΔzMt = δγ′zMt−1 + CeMt , (21)

where δ and C are parameters, eMt the model shocks, and γ are the common cointe-

16If they were perfectly correlated then basically z1t and z2t would be the same series.
17This is also true if the I(1) data is filtered to produce I(0) processes that are used in models e.g. as an

output gap. In those cases the filtered data will be weighted averages of growth rates in variables so it is an
average of growth rates in the data that would be held to deviate from model growth. Thus, the issues we
describe in this section also apply when filtered data are used, although the analysis is more complex.

18We thank Dongho Song for providing the data.
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grating vectors.19 Then, using the relationship between the observed data and the model

counterparts, ΔzDt = ΔzMt +Δηt, we obtain

(ΔzDt −Δηt) = δγ′(zDt−1 − ηt−1) + CeMt ,

and therefore

ΔzDt = δγ′zDt−1 + ηt − (1 + δγ′)ηt−1 + CeMt .

Now we would want the shocks in this VECM, eηt , to be i.i.d., and so

ηt = (1 + δγ′)ηt−1 + eηt − CeMt . (22)

Hence in this second definition the measurement-error shocks ηt follows a VAR process with

innovations constructed from eηt and the model shocks eMt .
20 Often one sees measurement-

error shocks specified as univariate AR(1) processes but this leads to complicated VECM

processes. A better specification is to utilize the form in Equation (22), which exploits model

cointegrating information and the model shocks as well as the measurement error innovation

eηt .
21

4.2.1 Implications for Applied Research

To implement either definition of ηt, in the state-space model the measurement equations

would be ΔzDt = ΔzMt +Δηt, as is normally done, but now ηt is a state variable, rather than

Δηt being assumed to be n.i.d. The state equations include those for the model variables,

namely Equation (21), and those governing the evolution of ηt, e.g. Equation (22).

19The model shocks will be assumed to be white noise processes, i.e. they are innovations, although they
only need to be I(0) processes for our analysis.

20Introducing lags of ΔzMt into Equation (21) increases the order of the VAR in ηt.
21This can be generalized to the case where the cointegrating vectors among the observables are not the

same as the model. In this case ηt has to compensate for that difference as well.
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5 Conclusion

What influences the ability of a SVAR to make a match with the impulse responses of

representative models such as DSGEs? Since DSGE models typically include variables that

are not observed in estimation, we have looked at when these unobserved variables can be

expressed as a function of the observed variables. If the weights on the higher-order lags of

the observed variables are low it may be possible to approximate the responses well with a

finite-order VAR. Stock variables, which are typically included as latent variables in DSGE

models but are not included in SVAR models, emerged as a potentially important factor

influencing the extent of truncation bias. A small-open economy model showed that the

omission of the stock of foreign debt from a VAR could result in truncation biases for real

shocks, although this was an issue mainly at longer horizons.

Analysis of the well-known Smets and Wouters (2007) model found that the major source

of the truncation problem with it was the assumption that the interest rate rule depended on

the flex-price output gap and related terms. While theoretically appealing, applied work fre-

quently involves a monetary rule with an observed output term or output growth. Changing

the rule to this greatly reduced the truncation bias.

DSGE models today often include permanent shocks, such as technology. It was found

that in this case an important source of truncation bias was a misspecification of the VECM,

as the actual generating process is a latent-variable one and not just in observed variables.

Using the Poskitt and Yao (2017) model it was demonstrated that the quality of the match

to the DSGE impulse responses can be considerably improved by estimating a latent-variable

VECM.

Our findings suggest that an important factor contributing to the divergent findings which

exist in the literature about the ability of SVARs to make a match with the impulse responses

from DSGE models is whether or not the DSGEs being analyzed include permanent shocks.

In all, it appears that while the extent of truncation bias is model dependent, it is often

not substantial, and can be lessened by strategies such as a careful choice of the observed
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variables and working with a latent-variable VECM.

The second dimension to making a match is how well the SVAR can capture the initial

impulse responses rather than the dynamics. It was shown that some of the identification

coming from DSGE models arises from assumptions made about the shock processes. These

are statistical, rather than economic, restrictions. They imply that there are common factors

in the SVAR. Using these restrictions in the identification of the SVAR can considerably

improve the match.

Finally, we examined another case of partial observability of variables. This involved

the common practice of treating model variables as deviating from observed data due to

measurement error. It was shown that this strategy has to treated carefully. It can result

in more shocks than observed variables and hence an inability to extract the model shocks.

Other difficulties arise when data is I(1), where the inclusion of measurement error may

imply a lack of co-integration between the data variables. It was demonstrated how to

specify measurement-error processes that would preserve any cointegrating information.
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Appendix A State-space Representation of the VECM

The model is given by Equations (7) and (8), coupled with the measurement equation given by

Poskitt and Yao (2017) and their assumption that technology growth is uncorrelated. Denoting

the observed variables with a superscript obs, the state-space form of the latent-variable VECM

includes the measurement equations:

⎡
⎢⎣Δyobst

hobst

⎤
⎥⎦ =

⎡
⎢⎣1 0 −1

0 1 0

⎤
⎥⎦

⎡
⎢⎢⎢⎢⎣
yst

ht

ys1t

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎣ε

a
t

0

⎤
⎥⎦ ,

where ys1t is the lag of yst .

The transition equations are:

⎡
⎢⎢⎢⎢⎣
yst

ht

ys1t

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
(1 + a11) a12 0

a21 a22 0

1 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
yst−1

ht−1
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⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣
c11 (c12 − 1)

c21 c22

0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎣ε

h
t

εat

⎤
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where aij denotes the j′th coefficient in the i′th transition equation to be estimated (i, j = 1 and

2), and the standard deviations of εht and εat . cij are the contemporaneous impulse responses, which

are fixed to those from the RM, as in Section 2.
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