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Abstract

We construct a Financial Conditions Index (FCI) for the United States using a dataset

that features many missing observations. The novel combination of probabilistic prin-

cipal component techniques and a Bayesian factor-augmented VAR model resolves the

challenges posed by data points being unavailable within a high-frequency dataset. Even

with up to 62% of the data missing, the new approach yields a less noisy FCI that tracks

the movement of 22 underlying financial variables more accurately both in-sample and

out-of-sample.
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1 Introduction

Assessing financial conditions, particularly risks potentially posed by disruptions to credit

markets for the business cycle, has become a priority for central banks since the Global Fi-

nancial Crisis (Bordo 2017). While quantifying risks to financial stability remains a challenge

for the profession, a key step in this direction has been the development of financial condi-

tions indices; a financial conditions index (FCI) provides a quantitative summary of common

movements in an array of financial variables that describe financial conditions in an econ-

omy. Since current financial conditions may reflect relevant information about future risks to

the real economy (Adrian et al. 2019 and Giglio et al. 2016), a timely high-frequency FCI is of

considerable appeal to the policy-maker. A significant challenge that confronts the econo-

metrician when she sets about the task of constructing a timely FCI is the incompleteness

*The views expressed herein are those of the authors, and do not necessarily represent the official views of the
Reserve Bank of New Zealand. We are grateful for the advice and guidance of Dimitris Korobilis and Gary Koop
who commented on an early draft.
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of the dataset of interest. High-frequency financial datasets are often hampered by missing

values while macroeconomic time series are usually only reported at low frequencies. This

paper offers solutions to problems related to data incompleteness, paving the way for the

construction of FCIs that are reliable and timely.

We approach the problem of building a FCI with data featuring many missing observa-

tions, by setting up a Factor-Augmented VAR, which we estimate by adapting the algorithm of

Koop and Korobilis (2014) to incorporate the strategy of Giannone et al. (2008) that deals with

missing data. Following the authors, we employ the two-step estimator of the state-space

representation of dynamic factor models proposed by Doz et al. (2011). The estimator is able

to deal with missing observations, exploiting the dynamics of the common factors while ac-

counting for common and idiosyncratic heteroskedasticity. In the first step, the parameters

of the state-space representation are estimated using probabilistic principal components es-

timators. This is the key difference between our approach and the one originally proposed

by Giannone et al. (2008) who instead take principal components of a ’balanced’ version of

the data, that only include series without missing values. On the contrary, we initialize the

factors on the full incomplete ’unbalanced’ panel of data. In the second step, factors are

re-estimated with a Kalman Smoother using the entire ’unbalanced’ panel of data.

The main purpose of our exercise is to construct an index that tracks the development of

financial conditions when many data points are missing. We find that probabilistic solutions

to principal component estimation yield better in-sample fit, particularly when working at

a weekly frequency. In contrast, Least Squares solutions to principal component estimation

deliver very noisy indices, compromising interpretability.

Another key contribution of this paper is to study the sensitivity of the two-step estimator

of approximate dynamic factor models proposed by Doz et al. (2011) which is widely used in

the literature. We explore several unbalanced panel techniques based on probabilistic prin-

cipal components as alternatives to deal with noisy and missing data at higher frequencies.

We rely on the probabilistic view of a Principal Component Regression (PPCA) proposed by

Tipping and Bishop (1999a) which admits missing values and various levels of regularization.

This approach addresses the problem that conventional principal component techniques

(PCA) overfit the data at higher frequencies. We then integrate PPCA into the two-step esti-

mation procedure of Doz et al. (2011). Although the issue of sensitivity to factor initialization

is also relevant in the context of other estimation frameworks1, in this paper we focus on sen-

sitivity of the two-step Kalman Filter and Smoother (KFS) estimates to factor initialization

when working with unbalanced panels of data. Understanding this sensitivity is important

because in the first step, the parameters of the model are estimated by treating the principal

components as if they were the true common factors. While Doz et al. (2011) prove the con-

sistency of the two-step estimator of approximate DFMs, this result relies on the consistency

of principal components as estimators of the span of the common factors. However, in an in-

complete data environment, principal components are not available without pre-treatment

1For instance Bernanke et al. (2005) conduct inference in a Factor-Augmented VAR, estimating the model with
Markov-Chain Monte Carlo where the unobserved factors are pre-estimated with principal components.
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or modelling of missing values. One of the key results of our exercise is that inference using

a two-step KFS is sensitive to factor initialization.

Our paper relates to a large body of literature on now-casting, coincident index construc-

tion and mixed-frequency model estimation.2 Similar to Giannone et al. (2008), our frame-

work can be interpreted as a large bridge model, which uses a large number of variables

to bridge higher frequency data releases with the forecast of the relatively lower frequency

variables. In line with Koop and Korobilis (2014), our FCI is built employing a very flexi-

ble framework which allows for stochastic volatility and time-varying parameters. Recently,

Eraslan and Schröder (2022) extend this framework to account for mixed-frequency data by

defining the relationship that links quarterly variables to their latent high-frequency coun-

terpart, following Mariano and Murasawa (2003). Similarly, Bańbura and Rünstler (2011) and

Bańbura et al. (2013) also extend Giannone et al. (2008) to a mixed-frequency environment

by integrating a forecasting equation for quarterly variables which constrain the state-space

representation of a dynamic factor model. On the contrary, we follow the original approach

by Giannone et al. (2008) and focus instead on the sensitivity of inference to different meth-

ods to initialize factors which are relevant if many data points are missing.

While the methodology adopted in this paper inherits all the advantages of the approaches

introduced by Koop and Korobilis (2014), it also offers a more flexible way to measure finan-

cial conditions that allows for: i) time-varying weights, which define the way each financial

variable load into the FCI; ii) structural instability of the relationship between the FCI com-

bining time-series data available at different frequencies. Most FCI models avoid the prob-

lem of having to deal with incomplete datasets by restricting the sample size and aggregating

higher frequency variables to a lower base frequency. Neglecting the ’unbalanced’ nature of

the data leads to less informative indicators which may fail to capture potentially relevant

movements in financial variables at high frequencies. An exception is the approach of Brave

and Butters (2011) that employs the EM algorithm of Stock and Watson (2002) to estimate a

Principal Component in a mixed-frequency setting. The EM algorithm allows them to esti-

mate a FCI for the US economy dating back to the early 1970s.

Most FCIs are estimated under the assumption that the underlying parameters and volatil-

ities are time-invariant. However, there are good reasons to believe that, neither the impor-

tance of a financial variable in determining broad financial conditions, nor the relation be-

tween financial conditions and the macroeconomy, are constant over time, particularly over

longer periods. Financial intermediation was subject to important institutional changes in

recent decades, characterized by deregulation, financial innovation and globalization. These

long-run trends have resulted in a larger size of the financial sector in the economy which, in

principle, could increase the relevance of shocks to financial conditions for macroeconomic

fluctuations. Indeed, after the Great Financial Crisis of 2007/09, a large literature has es-

tablished the importance of modelling time-varying parameters, especially when modelling

financial time-series (see for instance Stock and Watson 2007 and Koop and Korobilis 2012b).

The remainder of the paper proceeds as follows. Section 2 outlines the econometric prob-

lem faced when constructing FCIs with incomplete data, Section 3 explains the data used,

2See Stock and Watson (2016) and Foroni and Marcellino (2013) who provide reviews of the literature.
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Section 4 defines the model and the estimation methods. Section 5 discusses the results and

Section 6 concludes.

4



2 Measuring financial conditions with incomplete data

Missing data arise for several reasons. For instance, the data might have different sampling

frequencies. The time series of GDP growth is only available at a quarterly frequency, and will

feature many missing observervations if used for the construction of a weekly FCI. Moreover,

even when data series are available at compatible frequencies, some series begin later than

others, and the timing of the final observations may also not be aligned because data-releases

may not be synchronous. In our empirical exercise, macroeconomic variables are available

for the full sample period from 1971 to 2020. On the contrary, many financial variables start

later. When measuring financial conditions in real time, it is often that many variables have

missing observations for the most recent periods. Missing observations can also arise in

the middle of the sample, for some time-series, due to data provider issues. The details of

how missing data are handled in the literature differ across signal extraction and state-space

applications, but it is common to assume that data are missing at random. According to Stock

and Watson (2016), the missing-at-random assumption, which rules out any dependency

between the missing observation and the latent variables in the model is reasonable in the

context of DFMs for macroeconomic applications.

When encountering these problems, many researchers often choose to aggregate the

data, or disregard series with missing observations. Missing observations are also often re-

placed with the historical mean of the corresponding time-series. However, such procedures

may lead to relevant information loss that can lead to ’aggregation bias’ due to the neglect of

high-frequency dynamics.

3 Data

Next, we describe the data used to construct our FCI. FCIs should capture movements in a

wide range of variables that contain relevant information about the current state of financial

conditions. With this in mind, we select a broad range of variables that extend the data con-

sidered by Koop and Korobilis (2014) (see Table 2 for further details). We include variables

covering the following categories:

1. We consider variables that measure credit volumes and leverage. These include house-

hold debt as a percentage of GDP and households’debt service ratio, the total amount

outstanding of asset-backed securities issuance, as a percentage of GDP and total con-

sumer credit owned and securitized as a percentage of GDP. Credit supply, a common

determinant of financial distress, is considered by including a survey indicator of credit

standards (DRTSCILM).

2. We include one variable that captures exchange rate movements of several important

currencies towards the dollar (JPMNEER) and a commodity index which tracks the

movements of the price of a number of important commodities (CRY Index).

3. A number of indicators which generally describe the market price of risk are consid-

ered. These include, for instance, the TED spread, the spread on 2 year and 10 year
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Treasury Bills. We include a number of risk indicators targeting in particular credit mar-

kets. These include a Loan Performance index, commercial paper spread, high yield

spreads, mortgage spreads, the spread between the bank prime loan rate and the Libor,

the finance rate on commercial bank loans. We also include the loan-to-deposit ratio

of commercial banks, which measures liquidity risk.

4. Variables measure equity valuations in the economy include the S&P500 price index

and the Wilshire 5000 Full Cap Price index.

5. We include variables related to beliefs, expectations and uncertainty. We consider the

VIX, which is commonly related to risk-aversion and uncertainty, a survey index of ex-

pected changes in financial conditions and a yield curve weighted index of the implied

volatility of short-term treasury options.

6. Finally, we also use macroeconomic data to construct the FCI but do not include them

in the index. These include real GDP growth, the unemployment rate and inflation

measured as the percentage changes in the Consumer Price Index The interest rate

used in the observable sector of the model is the effective federal funds rate. The macroe-

conomic sector of the model allows us to make sure that the FCI is uncontaminated by

macroeconomic innovations. Figure 1 gives a visual description of the data used to

construct the FCI.
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Figure 1: Incomplete data used to build the FCI
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Notes: The frequency of the data is weekly. The white squares indicate missing values; red/blue squares indicate the availability of macroeco-

nomic/financial variables considered. Macroeconomic variables include 4 time series, while the financial variables include the 22 financial variables

used. The y-axis labelled #Series refers to the numbering of the time-series according to Table 2.



The rows in red describe the observations in our dataset that relate to macroeconomic

variables. With the exception of interest rates, all macroeconomic variables in our model

are only available at quarterly and monthly frequency, in contrast to several of the financial

variables that are available at the weekly frequency. These are examples of the first reason

why some data is missing in large datasets that are used to estimate FCIs - some variables are

observed at a lower frequency than others. The rows in blue describe the pattern of sparsity

in financial variables. Here observations are missing for three main reasons. First, most

financial variables are missing for many periods at the beginning of the sample. Second,

there are some missing values in the middle of the sample due to data limitations of the data

provider. Lastly, it is possible to observe few variables which are not available for the very

recent periods. This is often caused by lags in data availability. In total, the FCI is based on 22

financial variables and 4 macroeconomic series which are explained in detail in Table 2. All

variables are transformed so that they are stationary and standardized prior to the estimation

of the model.

4 Econometric Approach

We briefly describe our model and estimation procedure which is an extension of the time-

varying parameter Factor-Augmented VAR (TVP-FAVAR) methodology of Koop and Korobilis

(2014), such that factors are initialized with a number of different principal components es-

timators particularly suited to incomplete data environments.

4.1 The TVP-FAVAR

Consider a TVP-FAVAR, written as follows

Xt = λFt Ft + λyt Yt + ut, (1)[
Yt

Ft

]
= βt,1

[
Yt−1

Ft−1

]
+ ...+ βt,p

[
Yt−p

Ft−p

]
+ εt, (2)

where Xt is an (N × T ) matrix, defining an unbalanced panel of N financial variables that

load onto the FCI denoted in this setting by Ft. λFt are time-dependent loading parameters

that define which financial variables xit load onto Ft at each point in time t. λYt denotes

the coefficients of a set of observable macroeconomic variables organized in Yt, in the mea-

surement equation (1) which are also time-dependent and may contain missing values. This

term is key in ensuring that the variation in the financial variables that are attributable to

changes in real economic conditions are purged from Ft. The state equation (2) describes

the relationship between macroeconomic variables and the FCI. The set of parameters that

determine this relationship {βt,1, ..., βt,p} are also allowed to vary over time. Lastly, the inno-

vations to the measurement equation ut ∼ N(0, Vt) and to the state equation εt ∼ N(0, Qt)

are Gaussian and their volatilities are allowed to vary with time.

The main objective of the exercise is to estimate a FCI at quarterly, monthly and weekly

frequencies. Note that at higher frequencies, the data is very sparse (i.e. there are many
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missing values). Our strategy to tackle the issue consists of writing the model for the highest

available frequency, in which lower frequency variables feature in the model and are bridged

with factors calculated at higher frequencies as in Giannone et al. (2008). Following the au-

thors, we apply the two-step estimation procedure of Doz et al. (2011), except that we do

not rely solely on standard principal components to initialize the factors. In particular, we

use the full unbalanced panel of data Xt to estimate the principal axis, taking into account

the missing data. Our preliminary factor estimates are then used as an input to estimate the

parameters (β, λ) with a Kalman Filter and the factors Ft with a Kalman Smoother, taking

into consideration the full unbalanced data (Xt, Yt). The algorithm is a modified version of

that proposed by Koop and Korobilis (2014) where the parameter set is only updated when

data is available. If a particular data point is missing, the Kalman Gain in the corresponding

updating equation is simply set to zero. The full details of the algorithm are summarized in

Appendix A.1.

This methodology combines principal components with the Kalman Filter & Smoother,

as proposed by Giannone et al. (2008) and Doz et al. (2011) and is known as "bridging with

factors". It should be noted that it is not possible to construct the FCI at higher frequencies

by using the standard estimation procedure of Koop and Korobilis (2014).

The model is completed by the last two state equations below,

βt = βt−1 + ηt, ηt ∼ N(0, Rt), (3)

λt = λt−1 + vt, vt ∼ N(0, Wt), (4)

which allow the parameters to smoothly change over time. A final remark regarding all variance-

covariance matrices {Vt, Qt, Rt, Wt} is in order. While time-variation in Vt and Qt describes

the dynamics of stochastic volatility, Rt and Wt determine the amount of time-variation in

the parameters βt and λt. For Vt and Qt, Exponential Weighted Moving Average (EWMA) es-

timators are used which involves the use of recursive simulation-free variance discounting

methods and depend on decay factors κ1 and κ2
3. EWMA estimators accurately approxi-

mate integrated GARCH processes whereas Rt and Wt are estimated through forgetting fac-

tor methods described in Koop and Korobilis (2012a, 2013)and are driven by κ3 and κ4
4.

Variance discounting and forgetting factors are commonly used since they offer a compu-

tationally feasible way of modelling stochastic volatility and time-variation in the parame-

ters by recursively updating all variance-covariance matrices which are assumed to evolve

smoothly over time.

The model defined by equations (1)-(4) differs from that proposed by Koop and Koro-

bilis (2014) in two important dimensions. Firstly, the time series that are included in Yt and

Xt feature many missing values. Koop and Korobilis (2014) estimate their model using data

that are available at a quarterly frequency , and set missing values to zero . In contrast, our

model is estimated at higher frequencies, where Xt include many missing data points and

(Yt) includes variables such as inflation or GDP growth which are only available at a quarterly

frequency. This feature of our model is very useful for policymakers who often need indica-

3See Appendix A.1, equations 27-28.
4See Appendix A.1, equations 17-18.
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tors of financial conditions at higher frequencies. Secondly, we treat the missing values in

Xt as latent variables. While Koop and Korobilis (2014) set any missing values in Xt to zero

(which is the unconditional mean of all the standardized financial time-series), we estimate

any missing values in Xt with probabilistic principal component methods. We will discuss

the latter methodology in the next section. The model is estimated at weekly, monthly and

quarterly frequencies. While monitoring financial conditions at higher frequencies is indeed

appealing, the noise in financial data at higher frequencies may challenge the relevance of

higher frequency FCIs. We will later see the value of PPCA in dealing with this problem.

4.2 Estimation

The model defined by equations (1)-(4) can be cast in state-space form and is estimated

through a Bayesian Kalman filtering and smoothing routine which is based on Koop and

Korobilis (2014). The algorithm extends the original framework to an incomplete data envi-

ronment and involves the following steps:

• Step 1: EstimateFt using principal components methods which accommodate missing

values.

• Step 2: Conditional on the initial values of the factors, F̃t, estimate the parameters in

the TVP-FAVAR by applying Kalman filtering and smoothing.

• Step 3: Conditional on the parameters estimated in Step 2, estimate F̂t, which is used

as our FCI, by applying Kalman filtering and smoothing.

The incomplete nature of the data gives rise to a sparse dataset; ’sparsity’ implies that at

some points across the time dimension, there are very few observations. This is particularly

relevant for early periods in the sample for which only a small subset of all variables con-

sidered are observed. One of the great advantages of Kalman filtering techniques is that it

is straightforward to deal with missing values. The algorithm of Koop and Korobilis (2014)

(Steps 2 and 3) is modified in accordance with Giannone et al. (2008) and Koopman and

Commandeur (2008) by simply setting the Kalman Gain term to zero in each updating equa-

tion, whenever an observation is missing. This guarantees that in the absence of any new

information regarding a variable (i.e. when it is missing), our best guess for the current state

of the respective parameter remains unchanged. In Step 1, prior to the TVP-FAVAR stage, we

estimate the factor Ft and reconstruct the data matrix of financial variables. The challenge is

to reconstruct the unbalanced panel of dataXt which contains missing observations. The re-

constructed matrix is then used as an input to Step 2. In Step 3, a Kalman Filter and Smoother

is passed through the pre-estimated factor yielding our final estimate of the FCI. Steps 2 and

3 are similar to the method proposed by Doz et al. (2011).
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4.2.1 Principal Component Analysis in the presence of missing values

One of the most popular approaches to PCA is based on singular value decomposition (SVD)

of the covariance matrix of the data,

C = N−1XTX = UDUT , (5)

where D contains the eigenvalues and U the eigenvectors of the covariance matrix C, nor-

malized to have unit-length. This approach is only valid when the panel is balanced, i.e.

when no observations are missing. In the presence of missing values, Least-Square tech-

niques need to be modified. We explore the following four alternative solutions to finding

principal components in incomplete datasets.

i) Standard PCA with missing values set to zero (PCA)

ii) Least Squares Expectation-Maximization PCA (EM-PCA)

iii) Probabilistic PCA (PPCA)

iv) Variational Bayesian PCA (VBPCA)

These methods vary in several important ways.5 The standard PCA removes missing values

by setting them to zero. Since the variables inX are standardized, this is equivalent to setting

each missing value to the respective variable’s unconditional mean. Next, the Expectation-

Maximization PCA (EM-PCA) as proposed by Stock and Watson (2002), results in an imputed

matrixX where the missing values are reconstructed such that the Least-Squares Likelihood

is maximized. In each iteration, any missing points are replaced with their conditional mean.

The PCA and EM-PCA belong to the family of Least-Squares methods since they work by

minimizing the squared residuals of the PC regression. In contrast, the probabilistic PCA

and the Variational Bayes PCA approach the PC regression from a probabilistic point of view.

A probabilistic formulation of PCA offers a number of benefits, including a well-founded

treatment of missing values, extendability and regularization. The PPCA is based on the work

of Tipping and Bishop (1999b). Estimation in an incomplete data setting is discussed in Ilin

and Raiko (2010) who use an EM algorithm treating the latent factors as hidden variables.

Although the PPCA performs some regularization (i.e. the Gaussian priors set on the factors

penalize large values in F ), this might be insufficient if the data is very sparse. An extension

that allows for more strict penalization is proposed by Oba et al. (2003). This approach which

is called Variational Bayesian PCA (VBPCA) involves imposing priors over the remaining pa-

rameters in the model that penalize more complex explanations of the data.

In a nutshell, estimation of the proposed FCI is based on the TVP-FAVAR which is esti-

mated in three steps. In the first step, a large number of financial data series X are com-

pressed into a common factor by using one of the four methods suggested above. Secondly,

taking this factor as given, a Kalman filter and smoother is applied to estimate time-varying

parameters and stochastic volatilities. Third, conditional on the parameters obtained, the

Kalman Filter and Smoother is applied to the factors resulting in the FCI.

5We discuss the main idea and intuition for each method. More details are provided in Appendix A
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5 Results

5.1 Measuring financial conditions with incomplete data

The main purpose of our exercise is to construct an index that tracks the development of

financial conditions when many data points are missing. Figure 2 presents the Financial

Conditions Index (FCI) estimated at a weekly, monthly and quarterly frequencies, based on

the Variational Bayes approach to PCA, which is the model that yields the best in-sample fit

across frequencies. This result is evident in Figure 6 which presents in-sample Mean Squared

Errors obtained when estimating a Principal Component (PC) Regression with each of the

four alternative methods we employ.Probabilistic solutions to PC estimation yield better in-

sample fit. This finding is particularly evident when moving from the quarterly frequency to

weekly frequency. With weekly data, the probabilistic PCA noticeably outperforms PCA and

EM-PCA.

Figure 5 presents the FCI calculated by running our model where factors are initialized

differently, for each of the frequency considered. The key result is that inference in the model

is very sensitive to Ff initialization. When data is missing, FCI estimates are very sensitive to

the specific method employed to pre-estimate the factor which is then used in the two-step

KFS approach. Moreover, Figure 5 also highlights that at higher frequencies, Least Squares

solutions to PC estimation (i.e. PCA and EM-PCA) deliver very noisy indices compromising

interpretability. On the other hand, the probabilistic measures, PPCA and VBPCA deliver

interpretable indices.

The indices presented in Figure 2 summarize the movement in the underlying 22 financial

variables relevant for real economic developments in the US (see Table 2 in the Appendix for

details). By construction, the FCI fluctuates around zero. Times of tight financial conditions

such as the period marked by the Global Financial Crisis in 2009, drive the index upwards.

In contrast, periods of accommodative financial conditions lead to negative values of the

FCI. The figure reveals the size of the ’bias’ that results from neglecting information at higher

frequencies. For instance, the FCI built at quarterly frequency tends to underestimate the

size of financial distress in 2009, during the Great Recession.
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Figure 2: Financial Conditions Indices at different data frequencies
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and quarterly frequencies. Positive values of the FCI indicate that financial conditions are tighter than average, while negative values indicate financial conditions that are
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5.2 Individual contributions to the dynamics of the FCI

We now examine the driving forces and macroeconomic relevance of financial conditions as

measured by the best-fitting FCI, the VBPCA. Figure 3 shows the average importance of the

underlying financial variables which contribute the most in driving the FCI, throughout the

period from 1990-2020.

Figure 3: Average weights of individual financial variables loading into the Financial Condi-
tions Index

-0.02 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
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18. US High Yield Effective Yield

19. Yield curve normalized implied volatility (1m)

21. VIX

Notes: The weights represent the average time-varying loadings of each financial indicator into the FCI for the full

sample period 1971-2020.

The indicators with the highest positive contribution for the movement in the FCI include

the VIX which measures the markets’ expectation of near-term volatility and the volatility

implied in Treasury options. Credit supply, as measured by the change in credit standards

by commercial banks, also features in the most influential variables driving the FCI. Other

relevant indicators include two important measures of leverage and liquidity - such as the

Household Debt Service Ratio and the Bank Loans to Deposit Ratio; most of the remain-

ing influential variables driving financial conditions relate to credit spreads. These include

mortgage spreads, the TED spread and spreads on US government debt.

In addition, the financial variables which contribute negatively to the developments of fi-

nancial conditions are mainly quantity variables (in dollars) which relate to equity valuations

and mortgage lending. This result is intuitive, since in times of tight financial conditions, the
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performance of outstanding loans tends to deteriorate and stock markets tend lose value.

Some interest rates and spreads also have a countercyclical contribution to the index. These

include the commercial finance rate on consumer loans. This may reflect the fact that the

yield curve tends to invert in recessions, when financial conditions also tend to tighten.

5.3 Comparison with alternative econometric approaches

The key novelty of the econometric approach used throughout this paper is its treatment

of missing data and regularization of noise. The model of Koop and Korobilis (2014) only

allows the construction of the FCI at a quarterly frequency. The high-frequency FCI of Brave

and Butters (2011) is a Dynamic Factor Model with no time-varying dynamics. Our mixed-

frequency model allows us to construct the FCI at a weekly and monthly frequencies and

retain all modelling flexibility offered by Koop and Korobilis (2014).

Figure 4 below allows for a comparison between our approach and Koop and Korobilis

(2014) estimated on the same dataset at a quarterly frequency. The FCI is naturally more

informative than the analogous model estimated at a quarterly frequency. This is because it

captures more movements in the underlying data that occur at higher frequencies, but also

because it estimates missing data points in financial time series. Overall, the FCI seems to

provide more timely signals of financial distress. This is particularly noticeable during the

Great Recession.

Figure 4: Comparison between the FCI and alternative methods.
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Notes: The FCI is estimated with the methods described in section 2, with the Variational Bayes variant of the PCA

algorithm presented, at a weekly frequency for the sample period between 1971-2020. The FCI by Koop and Korobilis

(2014) is estimated on the same dataset at a quarterly frequency.

5.4 The macroeconomic relevance of financial conditions

We now focus on the macroeconomic relevance of financial conditions by studying the out-

of-sample performance of our FCI in forecasting GDP growth, inflation, unemployment and

interest rates.
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We calculate the FCI at a weekly, monthly and quarterly frequencies and compare Mean

Square Forecast Error (MSFE) statistics calculated for a given frequency f and forecast hori-

zon h as follows:

MSFEf
h =

∑
j∈Oj

(Yj − Ŷj)
2

T − h
,

where Oj denotes the set of indices j for which Yj is observed at frequency f and T is the

total number of time-series observations. To be clear, Ŷj is our forecast, h-steps ahead, for

all macroeconomic time series at a given frequency f . When the data is available at higher

frequencies , say monthly, we only observe GDP once every three months. In this case, we

calculate MSFE statistics based on the difference (Yj − Ŷj)
2 series for j = {1, 3, 6, 9, ...}.

Our goal is to compare the forecasting performance of FCIs where factors are initialized

with different signal extraction methods (i.e. PCA, PPCA, EM-PCA and VBPCA) . Although it is

tempting to explore how the forecasting performance varies across the data-frequencies con-

sidered, this analysis would be spurious because weekly, monthly and quarterly models are

estimated with a different number of parameters. We estimate the weekly, monthly and quar-

terly models with 12, 6 and 4 lags, respectively. The choice of the number of lags to include in

the model is a compromise between computational cost, the risks of over-parameterization

and neglecting persistence. Moreover, the FCIs estimated for different frequencies also dif-

fer, making this comparison even harder. For these reasons, a comparison of forecast per-

formance across frequencies is out of the scope of our current work and is left for future

research.

Our out-of-sample forecasting exercise is based on the latest 2020 vintage of data and

therefore not performed in real time. The baseline specification is obtained by estimating

our model (described in section 4.1) without any latent factor included and therefore boils

down to a VAR. The model is ran recursively, on an expanding window of data. We divide our

sample into training (from 1971-1981) and testing (from 1981-2020). The first line of Table 5.4

for each macroeconomic variable reports MSFE for the baseline case, without the inclusion

of any FCI (i.e. VAR (no FCI)). The lines below report the ratio of the MSFEs obtained from the

baseline case and the exact same model augmented with the FCI, computed via one of the

four methods discussion thus far (i.e. PCA, EM-PCA, PPCA and VBPCA). A ratio lower than

1 signals that the FCI measured with one of the aforementioned signal extraction methods

outperforms the benchmark model. Forecast gains vis-Ã -vis the benchmark are tested with

Diebold-Mariano Statistics with automatic lag selection.

The main message of the out-of-sample exercise is that the value added by the econo-

metric methods proposed throughout this paper becomes more obvious when working at

higher frequencies with noisy data. Importantly, the value of using FCIs to forecast macroe-

conomic variables is higher in the very short run, at weekly and monthly frequencies. At a

weekly frequency, the FCI computed via VBPCA and PPCA improves forecasting most sig-

nificantly for unemployment and interest rates. What is particularly striking is the relatively

superior performance of the VBPCA and PPCA methods over the EM-PCA used by Brave and

Butters (2011) and in many other economic applications. This result emphasizes the impor-

16



tance of regularization in econometric models, in particular when the data is observed at

high-frequency and is noisy. At lower frequencies, it is possible to observe some forecasting

gains, in particular when forecasting unemployment and inflation, one-month ahead. How-

ever, these gains are statistically insignificant at a quarterly frequency. Although the models

with the FCI have lower MSFE, this difference does not appear to be statistically significant.

On the other hand, there is little evidence that the alternative signal extraction methods

outperform PCA at a quarterly frequency. This finding is consistent with the previously re-

ported result that these methods add value when the data is very noisy (which tends to be

the case at higher frequencies).
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Quarters ahead 1q 4q 8q 12q 20q Months ahead 1m 4m 6m 12m 24m Weeks ahead 1w 4w 8w 9w 12w

GDP growth GDP growth GDP growth
MF-VAR (no FCI) 0.68 0.78 0.73 0.57 0.54 MF-VAR (no FCI) 0.77 1.09 1.03 1.15 0.89 MF-VAR (no FCI) 0.67 0.68 0.72 0.72 0.73
EM-PCA 1 1.02 1.11 1.08 1.03 EM-PCA 1.31 1.56 1.46 1.16 1.13 EM-PCA 0.97 0.95** 0.96* 0.99 1.01
PCA 0.98 1 0.99 1 1.01 PCA 1.14 1.24 1.17 1.08 1.15 PCA 0.97 0.99 0.94 0.96 0.98
PPCA 0.98 1.02 1 0.99 1.02 PPCA 1.14 0.94 0.88* 0.74*** 0.70*** PPCA 0.99 1 1 1.01 1
VBPCA 0.95 1.01 1 0.99 1.01 VBPCA 1.2 1.10 1 0.95*** 0.99 VBPCA 0.96 1.01 1.05 1.08 1.04

CPI inflation CPI inflation CPI inflation
MF-VAR (no FCI) 0.59 0.61 0.71 0.68 0.66 MF-VAR (no FCI) 0.56 0.71 0.69 0.69 0.69 MF-VAR (no FCI) 0.55 0.56 0.61 0.63 0.73
EM-PCA 0.95** 0.96* 0.90 0.84 0.90 EM-PCA 0.94*** 0.98 1.04 1.17 1.04 EM-PCA 0.99 1.05 1 0.97 0.86*
PCA 1.04 1.07 1.12 1.03 0.95 PCA 0.91* 1.03 1.05 1.11 1.23 PCA 1.03 1.12 1.24 1.19 1.23
PPCA 1.06 1.12 1.21 1.13 1.01 PPCA 0.93*** 0.94*** 0.96** 0.96*** 0.95*** PPCA 0.96 0.99 1 0.98 0.92
VBPCA 1 1.06 1.12 1.06 1 VBPCA 0.92** 0.95** 0.98 1.02 0.96* VBPCA 0.94 1 1.04 1 0.86*

Unemployment Unemployment Unemployment
MF-VAR (no FCI) 0.80 0.97 0.93 0.87 0.87 MF-VAR (no FCI) 0.81 0.88 0.95 1.19 1.13 MF-VAR (no FCI) 0.85 0.86 0.89 0.89 0.94
EM-PCA 1 1 1.02 1.04 1.01 EM-PCA 0.93*** 0.96* 0.98 0.95* 0.97 EM-PCA 0.97** 0.98 1.01 1.02 1
PCA 0.92 1 1 1.01 1 PCA 1.03 1.06 1.08 1.13 1.07 PCA 0.93** 0.95 0.94 0.94 0.92
PPCA 0.94 1.01 0.99 1.01 1.01 PPCA 0.97** 0.96** 0.95* 0.89* 0.84** PPCA 0.92*** 0.93* 1.02 1.03 1
VBPCA 0.98 1 1.01 1.02 1 VBPCA 0.96** 0.95*** 0.92** 0.90* 0.96 VBPCA 0.94** 0.94 1.03 1.05 1.01

Interest rates Interest rates Interest rates
MF-VAR (no FCI) 0.04 0.16 0.35 0.48 0.61 MF-VAR (no FCI) 0.02 0.21 0.32 0.71 0.89 MF-VAR (no FCI) 0.08 0.42 1.20 1.38 1.78
EM-PCA 0.95 1.04 1.03 0.95 0.89 EM-PCA 1.09 0.90 0.90 0.95 0.86 EM-PCA 0.73*** 0.53*** 0.57*** 0.61*** 0.77***
PCA 0.97* 1.16 1.24 1.22 1.07 PCA 0.79*** 0.87** 0.96 1.36 1.62 PCA 0.83*** 0.81*** 0.94* 0.98 1.10
PPCA 1 1.12 1.17 1.15 1.04 PPCA 1.28 1.03 0.96 0.86** 0.70*** PPCA 0.67*** 0.58*** 0.67*** 0.70*** 0.85***
VBPCA 0.90* 1.09 1.15 1.13 1.04 VBPCA 0.97 0.81*** 0.78*** 0.89*** 1.04 VBPCA 0.58*** 0.55*** 0.65*** 0.68*** 0.84***

Table 1: Out-of-Sample MSFE for different signal extraction methods, data frequencies (i.e. quarterly, monthly and weekly) and horizons for predictions
with a Mixed-Frequency VAR (MF-VAR) for GDP growth, inflation, unemployment and interest rates on a training sample 1971-1981 and testing 1981-2020.
The methods are (i) standard Principal Component Analysis with missing values set to 0 (PCA) (ii) Least Squares Expectation-Maximization (EM-PCA) (iii)
Probabilistic Principal Component Analysis (PPCA) and (iv) Variational Bayesian Probabilistic Principal Component Analysis (VBPCA). The MSFE statistics
for the MF-VAR (first line in each table) are obtained by running the model without the inclusion of any FCI. The lines below show the ratio between the MSFE
of the model in concern augmented with an FCI and the baseline MF-VAR model without any FCI. Values below 1 in each table for the PCA, EM-PCA, PPCA
and VBPCA imply that the relevant model outperforms the baseline model for a given horizon, frequency and macro variable. ***,** and * refer to p-values
lower than 0.01, 0.05 and 0.1, respectively, associated to the Diebold-Mariano Statistic with automatic lag-selection.



6 Conclusion

We constructed a Financial Conditions Index for the United States with data reported at dif-

ferent frequencies, starting dates and many missing observations. In doing so, we address

a challenging aspect of estimating such indices with traditional macroeconometric tech-

niques; the incompleteness of the underlying dataset.

The novel factor-augmented VAR we estimated through a combination of probabilistic

PCA methods and Kalman filtering and smoothing routines offers a solution to cope with

datasets featuring missing values. In-sample fit as well as out-of-sample forecasting results

suggest that the alternative signal-extraction methods that we employ are useful particularly

when the data is noisy, which usually tends to be the case at higher frequencies. Our key

finding that the two-step Kalman Filter and Smoother approach to estimating approximate

Dynamic Factor Models is sensitive to factor initialization when the datasets are incomplete,

is also relevant in the context of other estimation frameworks such as Markov-Chain Monte

Carlo simulations. However, this related issue is beyond the scope of this paper, and we leave

it for future research.
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A Econometric Methods

A.1 Bayesian Kalman Filter with Incomplete Data

The model defined in (1)-(4) configures a MF-TVP-FAVAR and can be written compactly, in

state space form as follows

Xt = ZtΛt + ut, ut ∼ N(0, Vt), (6)

Zt = Zt−1βt + εt, εt ∼ N(0, Qt), (7)

βt = βt−1 + ηt ηt ∼ N(0, Rt), (8)

Λt = Λt−1 + vt vt ∼ N(0,Wt). (9)

Where Λt = [λyt , λ
f
t ]

′, Zt =

[
Yt

Ft

]
. Note that Zt depends on the latent factor Ft that is taken as

data 6. Let θt = {Λt, βt} denote the parameter set andDt = {Xt, Zt} the data for t = {1, ..., T}.

Assuming that we know the posterior of θ at time t−1, Bayesian filtering/smoothing is based

on the equations below

p(θt, θt−1|Dt−1) = p(θt|θt−1, Dt−1)p(θt−1|Dt−1), (10)

p(θt|Dt−1) =

∫
Ω
p(θt|θt−1, Dt−1)p(θt−1|Dt−1)dθt−1, (11)

where Ω is the support of θt−1. The prediction step is given by the Chapman-Kolmogorov

equation A6.

Next, at each iteration t, the prior p(θt|Dt−1) gets updated according to equation A6 and

the measurement likelihood p(Dt|θt) is augmented by an additional observation ofDt. Hence

the posterior distribution is updated according to the Bayes rule

p(θt|Dt) =
1

Ht
p(Dt|θt, Dt−1)p(θt|Dt−1). (12)

WhereHt =
∫
p(Dt|θt)p(θt|Dt−1)) is the normalizing constant. Equation A7 is refered to as the

updating step. To summarize, the algorithm extends the one derived in Koop and Korobilis

(2014) to an incomplete data environment where Dt is allowed to contain missing values. It

consists in 2 stFCI, iterating through prediction (A6) and updating (A7) after the system is

initialized. These two main stFCI are repeated for t = {1, ..., T}.

1. Kalman Filter

1.1 Initialization (Priors) All quantities are initialized according to their priors which

are chosen following the diffuse choices of Koop and Korobilis (2014): f0 ∼ N(0, 10), Λ0 ∼
N(0, I), β0 ∼ N(0, I). The variances of the innovations in (A1)-(A4) can be seen as hyperpa-

rameters and are set to V̂0 = 0.1 ∗ I, Q̂0 = 0.1 ∗ I, R̂0 = 10−5 ∗ I and Ŵ0 = 10−5 ∗ I. However,

6This quantity is the first principal component calculated in Step 1 by employing one of the four algorithms
discussed in the body of the paper and detailed in section A2 to reconstruct the incomplete data matrix Xt
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in this setting the hyperparameter are allowed to smoothly change over time following a Ex-

ponentially Weighted Moving Average (EWMA).

1.2 Prediction

Λt ∼ N(Λt|t−1,Σ
Λ
t|t−1), (13)

βt ∼ N(βt|t−1,Σ
β
t|t−1). (14)

Where Λt|t−1 = Λt−1|t−1, βt|t−1 = βt−1|t−1 and

Σβ
t|t−1 = Σβ

t−1|t−1 + R̂t|t−1, (15)

ΣΛ
t|t−1 = ΣΛ

t−1|t−1 + Ŵt|t−1. (16)

The state covariances in the equations above are estimated by

R̂t|t−1 =
1

κ3
R̂t−1|t−1, (17)

Ŵt|t−1 =
1

κ4
Ŵt−1|t−1. (18)

where κ3 and κ4 are forgetting factors that define the law of motion of the parameters. We set

these quantities to κ3 = κ4 = 0.99.7 The prediction step allows us to compute measurement

equation prediction errors that are necessary inputs for the updating step and computed as

ût = xt − x̂t|t−1, (19)

ε̂t = zt − ẑt|t−1. (20)

Where x̂t|t−1 = ztΛt|t−1 and ẑt|t−1 = zt−1βt|t−1. With missing data, we simple set to zero the

error corresponding to variables missing at a given point in time t.

1.3 Update

Update each Λit for i = 1, ..., n and βt

Λit ∼ N(Λit|t,Σ
Λ
ii,t|t), (21)

βt ∼ N(βt|t,Σ
β
t|t). (22)

The terms in (A16) are calculated as

Λit|t = Λit|t−1 +ΣΛ
ii,t|t−1z

′
t(V̂t + ztΣ

Λ
ii,t|t−1F

′
t)

−1ε̂t, (23)

ΣΛ
ii,t|t = ΣΛ

ii,t|t−1 − ΣΛ
ii,t|t−1z

′
t(V̂t + ztΣ

Λ
ii,t|t−1z

′
t)
−1ztΣ

Λ
ii,t|t−1. (24)

Where the term ΣΛ
ii,t|t−1z

′
t(V̂t + ztΣ

Λ
ii,t|t−1F

′
t)

−1 is the Kalman Gain for each time period t and

is set to zero for the variables missing at each step.

7In practice these two equations are approximations of R̂t|t−1 = R̂t−1|t−1 + η̂t−1η̂
′
t−1

and Ŵt|t−1 = Ŵt−1|t−1 + v̂t−1v̂
′
t−1in the standard Kalman Filter (see Koop and Korobilis (2013) and Raftery et al.

(2010))
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The terms in (A17) are calculated as

βt|t = βt|t−1 +Σβ
t|t−1z

′
t(Q̂t + zt−1Σ

β
t|t−1z

′
t−1)

−1(zt − zt−1β̂t−1) (25)

Σβ
t|t = Σβ

t|t−1 − Σβ
t|t−1z

′
t(Q̂t + ztΣ

β
t|t−1z

′
t)
−1ztΣ

β
t|t−1 (26)

Where the term Σβ
t|t−1z

′
t(Q̂t + zt−1Σ

β
t|t−1z

′
t−1)

−1 is the Kalman Gain for each time period t and

is set to zero for the variables missing at each step.

The only outstanding terms that need defining are the measurement equation error co-

variance matrices that can be obtained using EWMA as follows

V̂t = κ1V̂t−1 + (1− κ1)ûtû
′
t, (27)

Q̂t = κ2Q̂t−1 + (1− κ2)ε̂tε̂
′
t. (28)

where κ1 and κ2 are forgetting factors that define the law of motion of the idiosyncratic

volatilities in the measurement equation and the volatilities of the observable variables and

the factors in the state equation. We set these quantities to κ1 = κ2 = 0.99.

2. Kalman Smoother

The kalman filter algorithm described in (1.1)-(1.3) above works by forward recursion and

outputs estimates of E(θ|Dt) for all parameters θ = [V̂t, Q̂t, R̂t, Ŵt, β̂t, Λ̂t] in the model using

the data available Dt for t = 1, ..., t. However, we are ultimately interested in an estimate

of E(θ|DT ) which yields the parameter states conditional on the entire sample t = 1, ..., T .

Therefore, the kalman smoother is applied to the output of the kalman filter working by back-

ward recursion. Given that the Kalman filter takes into account missing data, no alteration is

necessary to the Kalman smoother.

3. Kalman Smoother/filter for Factors

The full three step procedure described in section 4.2 is complete by applying the Kalman

filter and smoother algorithm to the factors, which are initialized with a PCA estimate. The

algorithm and mixed frequency extensions are analogous to that previously described.

A.2 PCA algorithms for Incomplete Data

A.2.1 Least-Squares PCA in the presense of missing data

Several simple ways to deal with missing values in a classical LS PCA framework consist in

setting missing values to zero or using an Expectation Maximization PCA (EM PCA). The later

technique is used by Stock and Watson (2002) and consists of an iterative procedure that

alternates between imputing missing values in X (E-step) and applying standard PCA to the

pseudo-balanced panel of data (M-step) until convergence is reached. To summarize the

algorithm proceeds as follows:
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• E-step: Reconstruct Xt by filling in its missing values:

X∗
t =

{
Xt for observed values

Λ̂kF̂ k
t for missing values.

(29)

• M-step: Perform standard PCA by SVD on the infilled matrixX∗
t and obtain new values

for {Λ̂k, F̂ k
t }.

The algorithm alternates between the E-M stFCI until convergence is reached in which case

new estimates for the parameters in iteration k − 1 do not improve the Least-squares mini-

mization problem solved in iteration k.

A.2.2 Variation view of the Expectation Maximization (EM) algorithm for incomplete

data environments

Consider the standard PC regression

Xt = ΛFt + ξt, ξt ∼ N(0, vxI). (30)

Where θ = {Λ, Ft, vy} are model parameters and a subset Xmis of the data matrix is missing

and treated as hidden variables. The variational view of the EM algorithm (see Neal and

Hinton (1999) and Attias (2000)) consists in minimizing the objective function

V (θ, p(Xmis)) =

∫
p(Xmis)log

p(Xmis)

p(X|θ)
dXmis = (31)∫

p(Xmis)log
p(Xmis)

p(p(Xmis|θ)
dXmis − logp(Xobs|θ), (32)

wrt the model parameters θ and the density over the missing data p(Xmis). Xobs denotes the

observed data such that X = Xmis
⊕
Xobs.

E-step. Equation A26 is the Kullback-Leibler divergence between the pdfs over observ-

able and unobservable data. The minimization of this expression wrt p(Xmis), given θ is

shown to yield

p(Xmis|θ) =
∏
ij∈O

N(x̂(θ)ij , vx). (33)

where O is the set of indices for which observation xij is observed, x̂(θ)ij result from the

reconstruction of the incomplete data matrix X from expression A24, for a given θ. This

procedure is refered to as the E-step of the algorithm.

M-step. Next, the proceedings from the E-step are substituted back into expression (A26).

The terms in the resulting expression which depend on θ are given by

−
∫
p(Xmis)logp(X|θ)dXmis. (34)

It can be shown that minimization of (A28) wrt. θ is equivalent to minimizing the LS objec-

tive function in case of no missing data (Neal and Hinton, 1999). Thus, the M-step of the

25



algorithm consists in performing SVD decomposition to the imputed data matrix X. The

algorithm alternatives between the E-M stFCI until convergence is reached (ie, when the re-

construction error stabilizes).

A.2.3 Probabilistic PCA (PPCA)

A probabilistic PCA specification has been found to provide a good foundation to handle

missing data Ilin and Raiko (2010). The probabilistic PCA set forth by Tipping and Bishop

(1999b) can be written as follows

Xt = m+ ΛFt + ξt, (35)

where both the principal component and the noise term are assumed normaly distributed

as follows

p(Ft) ∼ N(0, IK), (36)

p(ξt) ∼ N(0, τ−1IN ), (37)

where θ = {m,Λ, τ} are model parameters, IN and IT denote identity matrices and τ is the

scalar inverse variance of ξ. It can be shown that the Maximum Likelihood (ML) estimation

of the PPCA is identical to PCA in the case of non-missing data. The great advantage of the

PPCA is that, in case of incomplete data, it allows for regularization that arises naturally from

the choice of Gaussian priors. The model can then be estimation with a standard EM al-

gorithm. The necessary extensions to handle missing data are discussed in Ilin and Raiko

(2010). Below I summarize their procedure.

E-step. Estimate the conditional distribution of the hidden variables F given the data X

and model parameters θ,

p(F |X, θ) =
K∏
j=1

N(F̄j ,ΣFj ), (38)

based on the following updating rules

ΣFj = τ−1(τ−1I +
∑
i∈Oj

λiλ
T
i )

−1, (39)

F̄j = τΣFj

∑
i∈Oj

λi(xij −mi), j = 1, ...,K, (40)

mi =
1

|Oi|
∑
j∈Oi

(xij − λTi F̄j). (41)
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M-step. re-estimate the model parameters as

λi =
( ∑
j∈Oi

F̄jF̄
T
j +ΣFj

)−1
∑
j∈Oi

F̄j(xij −mi), i = 1, ..., N, (42)

τ =
[ 1

N

∑
ij∈O

[
xij − λTi x̄j −mi

]2
+ λTi ΣFjλi

]−1
. (43)

where Oi, Oj and O denote the set of indices i, j for which xij is observed.
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A.2.4 Variational Bayesian PCA (VBPCA)

Some studies suggest that the standard PPCA is still vulnerable to over-fitting (see for exam-

ple Ilin and Raiko (2010)). One possible reason that might lead to overfitted solution might be

the nontrivial choice of the number of principal components to include in (A30). Including

a large number of common components Ft might cause the model to over-learn the data.

One possible solution to this problem consists in penalizing large values in the matrices

Λ and Ft. The probabilistic pca model is flexible enough to allow for an automatic, data-

driven selection of relevant common components by shrinking to zero the solutions λj that

are small relative to the noise variance. This can be achieved through a variational bayesian

PCA algorithm as explained below. We follow Oba et al. (2003) in imposing additional reg-

ularization to penalize parameter values that yield more complex explanations of the data.

Hence, in addition to (A31)-(A32) one can further impose

p(m|τ) ∼ N(0, (γm0τ)
−1IT ), (44)

p(λj |τ, αj) ∼ N(0, (αjτ)
−1IT ), (45)

p(τ) ∼ G(τ |τ̄0, γτ0), (46)

where ψ = {γm0, γτ0 , τ̄0, αj} are hyperparameters and λj are the parameters in column

j of the loadings matrix Λ that define the importance of each principal component Fj , j =

{1, 2, ...,K}. The prior p(Λ|α, τ), which has a hierarchical structure, is called an automatic

relevance determination (ARD) prior. This structure plays a key role in guaranteeing parsi-

mony of the model. Its variance (αjτ)
−1 is determined by a hyperparameter αj that becomes

large when the euclidean distance ||λj || is small relative to the noise variance τ−1.

Estimation of the model now requires a variational EM algorithm as proposed by At-

tias (2000) to cope with the unknown analytical form of the posterior of the parameters

p(Λ, Ft,m|X,ψ), which invalidates the E-step of the standard EM algorithm. To overcome this

difficulty, the author proposes an approximation to this this quantity by a simpler q(Λ, Ft,m).

Using a variational approach, the E-step is modified such that the objective function approx-

imates p(θ|X) with a simpler pdf p(θ), written as follows

V (p(θ), ψ)) =

∫
p(θ)log

p(θ)

p(X, θ|ψ)
dθ = (47)∫

p(θ)log
p(θ)

p(X, θ|ψ)
dθ − logp(X|ψ), (48)

E-step. Equation (A33) is the Kullback-Leibler divergence between the true posterior and

its approximation. In this step the approximation p(θ) is updated. This corresponds to mini-

mizing this distance wrt p(θ).

M-step. Next, the approximation p(θ) is used as if it was the actual posterior p(θ|X,ψ) in

order to increase p(X|ψ). This consists in deriving the expression (A33) wrt ψ.

The algorithm alternatives between the E-M stFCI until convergence is reached (i.e. when

the reconstruction error stabilizes).
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B Additional Tables and Figures

# mnemonic description frequency Sample Start t-code Source

1 GDPC1 Real Gross Domestic Product SA. Annual Rate Q 1971-01-01 5 St. Louis FRED
2 CPIAUCSL Consumer Price Index for All Urban Consumers M 1971-01-01 5 St. Louis FRED
3 UNRATE Unemployment Rate, Percent, SA. M 1971-01-01 5 St. Louis FRED
4 DFF Effective Federal Funds Rate D 1971-01-01 1 St. Louis FRED
5 CMDEBT Households and Nonprofit Organizations Debt % GDP Q 1971-01-01 5 St. Louis FRED
6 ABSITCMAHDFS Issuers of Asset-Backed Securities % GDP Q 1983-07-01 5 St. Louis FRED
7 DRTSCILM Net Percentage of Domestic Banks Tightening Standards for Commercial and Industrial Loans Q 1990-04-01 1 St. Louis FRED
8 TERMCBAUTO48NS Finance Rate on Consumer Installment Loans at Commercial Banks, New Autos 48 Month Loan, Percent Q 1972-01-01 5 St. Louis FRED
9 TDSP Household Debt Service Payments as a Percent of Disposable Personal Income Q 1980-01-01 1 St. Louis FRED
10 TOTALSL Total Consumer Credit Owned and Securitized % GDP M 1971-01-01 1 St. Louis FRED
11 LOANHPI Loan Performance Index U.S. M 1976-03-01 5 Bloomberg
12 CONSEXFI UMich Expected Change in Financial conditions M 1978-02-01 1 Uni Michigan
13 BPLR Bank Prime Loan Rate / Libor spread M 1971-01-01 1 St. Louis FRED
14 JPMNEER JPMorgan Broad Nominal Effective Exchange Rate (2010=100) M 1971-01-01 5 Bloomberg
15 LDR All Commercial Banks Loan to Deposit Ratio M 1973-01-01 1 Haver Analytics
16 2/3TBS 2yr/3m Treasury bill spread M 1976-06-01 1 St. Louis FRED
17 MORTGAGE30US Mortgage rate / 10yr Treasury Bill spread W 1971-04-02 1 St. Louis FRED
18 T10Y2Y 10-Year Minus 2-Year Treasury Constant Maturity yield, Percent D 1976-06-01 1 St. Louis FRED
19 BAMLH0A0HYM2EY ICE BofAML US High Yield Master II Effective Yield, Percent D 1996-12-31 1 Bloomberg
20 MOVE Index Yield curve weighted index of the normalized implied volatility on 1-month Treasury options. D 1988-04-04 1 Bloomberg
21 CRY Index Thomson Reuters/CoreCommodity CRB Commodity Index D 1994-01-03 1 Bloomberg
22 VXOVIX Cboe S&P 100/500 Volatility Index D 1990-01-02 1 St. Louis FRED
23 BASPTDSP Ted Spread D 2001-01-02 1 St. Louis FRED
24 WILL5000PRFC Wilshire 5000 Full Cap Price Index D 1971-01-01 5 St. Louis FRED
25 CPFF 3-Month Commercial Paper Minus Federal Funds Rate, Percent, Daily, Not Seasonally Adjusted D 1997-01-02 1 St. Louis FRED
26 SP500 S&P 500 price index D 1971-01-01 5 St. Louis FRED

Notes: Mnemonic refers to the statistical reference with which the time series can be fetched from the source. Frequency is either Q: quarterly, M: monthly, W: weekly or D: Daily.

Sample Start date refers to the first observation for a specific time-series in our sample period 1971-2020. t-code refers to transformation applied to each variable. 1:levels; 5:

log-differences.

Table 2: Description of the data used to construct the Financial Conditions Index.



Figure 5: FCI calculated with different signal extraction methods within the FAVAR. The four methods include the PCA - simple Principle
Components, EM-PCA which stands for Expectation Maximization PCA, PPCA - Probabilistic PCA and VBPCA - Variational Bayes PCA.



Figure 6: Reconstruction Mean Squared Error across four alternative PCA methods
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Notes: Mean-squared error statistics are calculated in-sample MSE =
1

N

∑
ij∈O(xij − x̂ij)

2, where O includes all indice for which xij is observed and x̂ij results from the

projection of Xt on the factors Ft in equation 2.1, permitting the reconstruction of the incomplete data set of financial variables that loan onto the FCI. for the observable

section of the standardized unbalanced panel of financial indicators across the different signal extraction methods.
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