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1 Introduction

As a consequence of the European sovereign debt crisis that followed the 2007-08 finan-

cial crisis, the sovereign-bank nexus attracted considerable attention in the literature (e.g.,

Acharya et al. 2014; Alter and Beyer 2014; De Bruyckere et al. 2013). In contrast, little

empirical evidence exists on the degree to which the non-financial corporate sector (real sec-

tor) in Europe has been affected by the rise in sovereign and bank credit risk. There are two

empirical studies that investigate the impact of sovereign credit risk on the non-financial

corporate sector based on European credit default swap (CDS) data (Bedendo and Colla

2015; Augustin et al. 2018). Both studies find significant risk spillovers from sovereigns

to corporations in Europe. However, there is only scant evidence on the transmission of

credit risk from financial institutions to non-financial corporations during the crisis events.

In addition, little attention has been paid to the simultaneous measurement of interactions

between all three sectors of the economy (financial, sovereign, and non-financial). Given

that a fundamental component in the concept of systemic risk is the notion of negative ex-

ternalities for the real economy,1 incorporating these negative real effects in any quantitative

measurement of systemic risk should be given greater emphasis.

In order to fill this gap in the literature, this paper conducts a network analysis that

captures the linkages among 152 CDS series for European sovereigns, financial institutions

and non-financial corporations over the period 2006-2017. Our unified empirical framework

incorporates recent techniques to measure systemic risk by quantifying connectedness in high-

dimensional networks, similar to the approaches adopted by Barigozzi and Hallin (2017) and

Demirer et al. (2018). Specifically, we employ elastic net shrinkage in a vector autoregressive

(VAR) setup to overcome the dimensionality problem in large datasets. We also control for

common shocks using a dynamic factor approach. We derive static and dynamic measures

1Following the report prepared by the International Monetary Fund (IMF), the Financial Stability Board
(FSB) and the Bank for International Settlements (BIS) for the G20, systemic risk can be defined as “a risk
of disruption to financial services that is (i) caused by an impairment of all or parts of the financial system
and (ii) has the potential to have serious negative consequences for the real economy”(IMF/FSB/BIS 2009,
p. 2).
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of connectedness to characterize the network of CDS spreads over the sample period. The

empirical evidence presented in this paper contributes to a better understanding of the

financial and real economic effects of the crisis events in the past decade. To the best of

our knowledge, we are the first to provide evidence on the joint transmission of bank and

sovereign risk to the European non-financial sector.

Our empirical approach has close ties to recent theoretical work that emphasizes network

connectedness in financial or economic contexts. For example, there is a growing body

of theoretical studies that illustrate how increasing interconnectedness can pose a serious

threat to the stability of the financial system due to contagion and amplification effects

(Acemoglu et al. 2015; Elliott et al. 2014; Glasserman and Young 2015; Glasserman and

Young 2016). From a real-sector perspective, Acemoglu et al. (2012) show that intersectoral

input-output linkages between firms can give rise to aggregate (or economy-wide) fluctuations

when idiosyncratic or sectoral shocks propagate, thus leading to network effects that impact

the aggregate economy.

The adverse interactions between banks, corporates and sovereigns played a prominent

role in the Eurozone crisis (IMF 2013). One transmission channel making corporations

vulnerable to changes in sovereign creditworthiness is the so-called “transfer-risk” channel.

It implies that distressed governments may be forced to shift some parts of the debt burden

to the corporate sector; for example, by raising corporate taxes. An increase in sovereign risk

may therefore lead to lower current and future profitability in the corporate sector (Acharya

et al. 2014). Another reason to expect a sovereign-corporate link is the joint influence of

rating agencies. Borensztein et al. (2013) provide evidence for “sovereign ceilings” that

prevent corporations from being rated above the sovereign. Deteriorations in credit ratings

of sovereigns thus lead to lower ratings for corporations located in the respective country,

translating into higher costs of debt capital for the corporate sector (Almeida et al. 2017).

Besides the sovereign-corporate link, there are reasons to assume a relationship between

banks and the non-financial corporate sector. Since banks in financial distress need to
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reduce their credit exposure and/or increase interest rates, corporations are likely to face

higher bank funding costs. This can erode the financial health of these firms and increase

the probability of default. Abildgren et al. (2013) provide evidence for such a relationship

based on micro data for banks and firms in Denmark. Minamihashi (2011) identifies a credit

crunch effect resulting from bank failures in Japan, which leads to a substantial decrease in

the investment activity of client firms.

There is, of course, a very large literature that deals with the transmission of financial

risks of various kinds that cannot be reviewed due to space limitations. Moreover, a rich

variety of channels exist that explain the propagation of financial risks both across types

of financial assets as well as across countries. A considerable portion of the literature has

focused on generating empirical results. Betz et al. (2016) investigate the network for the

sovereign-bank nexus in Europe. They find that, during the Eurozone sovereign debt crisis,

financial markets fragmented along national borders. Moreover, connectedness is found to

peak around 2008-10 and again around 2011-13 which is compatible with our findings. An

important difference between their study and ours, however, is that we explicitly evaluate the

transmission of risks beyond the banking sector, using a sample of CDS spreads that includes

a large number of non-financial corporations. For a comprehensive review on risk spillovers

we refer the reader to two related literature surveys by Hasman (2013) and Chinazzi and

Fagiolo (2013). One feature of the literature is that there is still an overwhelming emphasis

on the transmission of risks between banks and sovereigns.2 Augustin et. al. (2018) and

Bedendo and Colla (2015) are exceptions. Nevertheless, in common with our study and the

literature more generally, there is also a preference to relying on CDS spreads (e.g., Acharya

et al. 2014; Bedendo and Colla 2015; Betz et al. 2016; Breckenfelder and Schwaab 2018).

Our goal is to quantify the joint transmission of bank and sovereign credit risk to the non-

financial corporate sector in Europe by making use of recent advances in the econometrics of

2Also notable according to the surveys cited above is that theoretical models have yet to catch-up in
explaining the extant empirical evidence about how and why connectivity between financial assets evolves
in the manner reported by several studies.
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large-dimensional networks. We estimate and visualize our corporate-financial-sovereign net-

work both statically (full-sample period) and dynamically (rolling-window). For the static

case we find that our network is characterized by a dominant financial sector located in the

center of the network, while non-financial corporations and sovereigns are grouped in sectoral

clusters around the financial center. Aggregating contagion effects to the non-financial sec-

tor at the country-level reveals a strong geographical component in the network, reflected in

sizeable differences in the pattern of real-sector risk transmission between peripheral coun-

tries and countries located in the geographical center of Europe. Based on the dynamic

estimation framework we identify an increase in the transmission of financial and sovereign

credit risk to the non-financial sector during the global financial crisis and the European

debt crisis. By contrast, we find that the transmission of risk within the non-financial sector

remained largely unchanged during crisis events. We conclude that financial and sovereign

risk were main drivers of European corporate credit risk in the period considered.

Viewed in isolation some of our findings are not surprising. After all, the onset and spread

of the financial crisis in Europe clearly possessed a strong geographic element even if some

countries felt the impact more strongly than others. However, we demonstrate that there

is significant time variation in both the cross-sectoral transmission of risk and in the degree

of system-wide risk transmission. This yields new insights into how the nexus of credit risk

between banks, sovereigns and non-financial firms evolved over time. To our knowledge we

are the first to generate such results within a unified empirical framework. Moreover, our

framework is a useful tool for policy institutions as it allows for a quasi real-time monitoring

of systemic risks in the financial sector and beyond.

The remainder of this paper is organized as follows. Section 2 outlines the econometric

methodology for estimating and visualizing the networks. Section 3 describes the data used

in our analysis. In Section 4 we present and discuss our results. Finally, we provide a brief

conclusion and an outlook in Section 5.
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2 Econometric methodology

We use variance decompositions in VAR models to assess the interconnectedness of CDS

returns. Diebold and Yilmaz (2014) show that the classical VAR framework can be used

to model the network structure for a panel of time series by defining the weight associated

with edge (i, j) in the network as the proportion of the h-step-ahead forecast error variance

of variable i that is accounted for by the innovations in variable j. While this methodology

is in principle applicable to a wide range of different settings, it is constrained by curse-of-

dimensionality problems, as classical VAR estimation becomes unstable in high-dimensional

networks. Demirer et al. (2018) tackle the dimensionality problem of the Diebold-Yilmaz

approach by estimating the network using the LASSO (“least absolute shrinkage and selec-

tion operator”), a penalized regression method that allows to select and shrink the VAR

parameters in optimal ways. Barigozzi and Hallin (2017) propose to remove the effect of

common shocks before applying LASSO or related penalized regression techniques, as the

presence of collinearity badly affects estimation stability.

Following these recent developments in the econometric modelling of networks, we apply

a ‘factor plus sparse VAR’ approach in our analysis of credit risk transmission. That is, we

first implement a factor model to remove common shocks and then, using the idiosyncratic

returns, estimate a large-dimensional VAR that considers elastic net shrinkage, a variant

of LASSO methods, to tackle dimensionality issues. Given the large number of time series

under investigation in our study it becomes imperative to find ways of adapting the Diebold-

Yilmaz approach, now widely used in the literature, but combine their methodology with

tests that provide the means to economize on the considerable demands on the data.

Other approaches using shrinkage methods such as LASSO to characterize financial net-

works may be found in the literature. One example is the study by Betz et al. (2016)

which constructs generalized tail-risk networks for the European bank-sovereign system. In

their approach the network link between entities i and j is defined by their degree of tail

dependence using LASSO quantile regressions, i.e. how much a change in j’s conditional
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Value-at-Risk (VaR) impacts the VaR of i. Our approach instead relies on quantifying con-

nectedness based on mean estimates of variance decompositions and using elastic net for

shrinking and selecting the parameters. In addition, while Betz et al. (2016) use observ-

able variables (macro-financial state variables) to control for common shocks, our framework

considers a latent factor structure.

2.1 Removing common shocks

Similar to Barigozzi and Hallin (2017), we use dynamic factor methods to separate common

shocks from idiosyncratic shocks before estimating the network structure. For our n × T

panel of logarithmic CDS returns Y = (Y1t, Y2t, ..., Ynt)
′, we consider the generalized dynamic

factor model representation by Forni et al. (2000, 2015, 2017) and Forni and Lippi (2001),

which admits the decomposition of Y := Yit, for all i and t, into a common component Xit

and an idiosyncratic component Zit:

Yit = Xit + Zit. (1)

It is further assumed that the common component is driven by q factors defined as an

orthonormal unobservable white noise vector ut = (u1t, u2t, ..., uqt)
′, such that Xit can be ex-

pressed as an auto-regressive representationXit =
∑q

k=1 bik(L)ukt, where the filters bik(L) are

one-sided and square summable. Using frequency-domain principal components (Brillinger

1981), Forni et al. (2015, 2017) show how to recover the common and idiosyncratic compo-

nents based on an estimator for the spectral density of Xnt.

To determine the number of factors q, we apply the Hallin and Lǐska (2007) criterion,

which favors q = 1.3 Consequently, we choose to conduct our analysis with one common

factor.4 Figure 1 shows the evolution of the common factor over the sample period. Most

3The Online Appendix provides a detailed discussion of the methodology to determine the number of
common factors in the sample.

4This is in line with Berndt and Obreja (2010) who show for the period 1994-2008 that the common
dynamics in European CDS spreads are captured by a single common factor (first principal component)
which accounts for about half of the variation in their sample, while the second factor (second principal
component) explains only 8 percent.
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notable are the clusters of large CDS spread changes during the 2007-09 global financial

crisis and the 2010-12 European sovereign debt crisis, reflecting the highly volatile financial

markets during these periods.

[Figure 1 about here]

To provide a more detailed characterization of the common factor, we report some statistics

regarding its properties in Table 1. Panel A shows the proportion of variance explained by

the common factor averaged by sectors and over the total sample, respectively. In total, the

common factor explains about one third of the variation in all CDS returns and between 44

and 46 percent of the variation in corporate sector CDS. For the sovereign sector average

explanatory power is considerably lower (9 percent). To give an indication of the fundamental

drivers of the common factor, we investigate in Panel B the correlation of the common factor

with the CBOE Volatility Index (VIX), a measure of global uncertainty and risk aversion,

and a key determinant of the global financial cycle (Rey 2015). We find a clear positive

relationship between the common factor of European CDS returns and the VIX, indicating

that European CDS spreads increase when global uncertainty increases.

[Table 1 about here]

From a conceptual perspective, a key motivation underlying our approach of disentangling

idiosyncratic from common drivers of variation in our dataset of CDS returns is that we are

interested in measuring the “pure” contagion risk component of systemic risk. Contagion risk

can be defined as “an initially idiosyncratic problem that becomes more widespread in the

cross-section, often in a sequential fashion” (ECB 2011, p. 141). Our empirical framework

thus separates contagion risk from a second form of systemic risk: the common exposure

to shocks in financial markets or the macroeconomy (De Bandt et al. 2009; ECB 2011).

Moreover, by focusing on idiosyncratic dependencies of CDS returns, our empirical strategy

is closer to the theoretical concept of financial networks in which the origin of contagion is

7



a shock to an individual institution that is subsequently transmitted to other institutions

through the web of obligations (Glasserman and Young 2016).5

An alternative framework to the latent factor model employed in this paper is to use a

structural model approach in which credit spreads are determined by a number of struc-

tural factors suggested by theory such as interest rates, leverage and asset volatility (Collin-

Dufresne and Goldstein 2001; Leland and Toft 1996; Longstaff and Schwartz 1995). Struc-

tural models are widely used in credit risk modelling; yet empirical tests suggest that struc-

tural models typically cannot accurately explain credit spreads (Eom et al. 2004; Huang

and Zhou 2008).6 Relatedly, the empirical literature finds that changes in credit spreads are

even harder to explain by structural factors than levels (Collin-Dufresne et al. 2001; Zhang

et al. 2009). Hence, while structural models provide important insights on underlying the-

oretical pricing mechanisms, we employ a more practical reduced-form approach to explain

interdependencies between CDS spreads, while remaining silent on the economic (structural)

determinants of spreads.

2.2 Characterizing networks via variance decompositions

To obtain empirical measures that help to characterize the network of CDS returns, we build

on the econometric framework proposed by Diebold and Yilmaz (2014) and Demirer et al.

(2018), which is based on variance decompositions in large-dimensional VAR models.7

Specifically, we write the following covariance stationary VAR with n endogenous variables,

representing the n estimated idiosyncratic components Zt = (Z1t, Z2t, ..., Znt)
′ as defined in

5An alternative approach to control for common shocks is to include observable market variables as
exogenous regressors in the econometric model. However, the drawback of this strategy is that these relevant
market variables need to be identified a priori by the researcher with the consequence that the results might
be dependent upon the particular set of chosen market variables.

6Eom et al. (2004) analyse five different structural models empirically and conclude that the accuracy
of structural models is a problem. They find that most structural models overestimate the credit spread of
riskier firms and underestimate the credit risk of safer firms. Similarly, Huang and Zhou (2008) test five
structural models for empirical accuracy and reject three of the models. However, the other two models still
fail to predict CDS spreads accurately.

7An earlier but less general version of this methodology is outlined in Diebold and Yilmaz (2009, 2012).
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Eq. (1):

Zt =

p∑
k=1

ΦkZt−k + εt, (2)

where εt ∼ (0,
∑

), Φk is a parameter matrix of dimension n × n and the lag length is two

(p = 2).

The model in Eq. (2) can be expressed in its moving average representation as follows:

Zt =
∞∑
k=0

Akεt−k, (3)

where Ak is the matrix of moving average coefficients at lag k. These moving average

coefficients are crucial for assessing the dynamics of the system. Using forecast error variance

decompositions for h steps ahead enables to determine how much of the variance of each

variable Zi, for i = 1, 2, ..., n, is due to shocks to another variable included in the system. In

calculating variance decompositions we adopt the generalized impulse-response framework

of Koop et al. (1996) and Pesaran and Shin (1998), using a forecast horizon of h = 10

days.8 This approach accounts for correlated shocks across markets by using the historically

observed distribution of the shocks. As a consequence, all estimation results are invariant

to the ordering of variables in the VAR. The invariance to ordering can also be seen as a

disadvantage as it circumvents a direct role for economic theory in providing guidance about

the ordering of the variables. While a sensible approach might be to rank variables from, say,

most to least systemically important this is very challenging when there are 152 variables to

consider. Moreover, history also suggests that it need not always be the most systemically

important country or firm that triggers a crisis (i.e., the so-called ’black swan’). If that is

the case any ordering of the VAR is likely to be viewed as being arbitrary.

Defining θij as the h-step-ahead error variance in forecasting variable Zi that is due to

shocks to variable Zj, where i, j = 1, 2, ...n, we can obtain the relative contribution (in

percent) of each variable Zj to the forecast error of variable Zi by normalizing by the sum

8The results are robust to changing the forecast horizon (see robustness checks in Section 4.3.3).
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of all row entries in the variance decomposition matrix:

γij =
θij∑n
j=1 θij

× 100. (4)

Each element γij has a value between 0 and 100 and provides a quantitative measure for the

pairwise directional connectedness from CDS entity j to CDS entity i. Based on the estimates

for pairwise directional connectedness, it is possible to construct a range of informative

connectedness measures by summing the elements γij at different levels of aggregation, from

individual (firm- or sovereign-level) to aggregate connectedness (system-wide).

At the individual level, total directional connectedness to entity i “from” all other entities

j is defined as:

γi←• =

∑n
j=1j �=i γij∑n
i,j=1 γij

=

∑n
j=1j �=i γij

n
. (5)

Conversely, total directional connectedness from entity i “to” all other entities j can be

constructed as follows:

γ•←i =

∑n
j=1j �=i γji∑n
i,j=1 γji

=

∑n
j=1j �=i γji

n
. (6)

Note that the individual measures can also be restricted to a subset of entities j. For example,

we will be interested in the total directional connectedness from (to) entity i to (from) all

sovereign/financial/non-financial entities j.

The most aggregate measure of connectedness (system-wide connectedness) is obtained by

summing all individual measures of total directional connectedness:

γTotal =

∑n
i,j=1i�=j γij∑n
i,j=1 γij

=

∑n
i,j=1i�=j γij

n
. (7)

Moreover, we can construct additional aggregate measures such as sectoral connectedness by

aggregating pairwise connectedness measures at the sector-level and geographical connected-

ness by aggregating pairwise connectedness at the country-level. We use several indicators

in order to provide a comprehensive overview of the composition of connectedness.
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2.3 Elastic net shrinkage

Since our VAR needs to be estimated in very high dimensions (152 variables), it is essential

to reduce the number of parameters to be estimated in order to circumvent the “curse of

dimensionality”. In our network analysis we use elastic net shrinkage (Zou and Hastie 2005),

which is a variant of LASSO methods, to shrink, select and estimate our VAR model.9 While

there are few comparisons of the properties of different forms of LASSO shrinkage (these are

more common in the medical literature) the elastic net penalty has the advantage of being

relatively less aggressive in reducing the number of selected variables. It also tends to group

predictors that are more strongly correlated. Hence, the likelihood of incorrectly omitting a

variable is reduced. Simulation studies and real world applications show that the elastic net

estimator often outperforms the pure LASSO, particularly when the number of predictors is

large relative to the number of observations (Zou and Hastie 2005). Consequently, the ben-

efits of the elastic net estimator materialize especially well in our dynamic (rolling-window)

estimation of the CDS network as here the sample size becomes small but the number of

variables remains large.

Elastic net solves the following least-square estimation problem:

β̂ = argmin
β

(
T∑
t=1

(Zit −
p∑

k=1

β
′
k,iZt−k)

2 + λ

p∑
k=1

[
(1− α)|βk,i|+ α|βk,i|2

])
, (8)

where i = 1, ..., n, and Z is the matrix of idiosyncratic returns. Zou and Hastie (2005) define

the function (1−α)|βk,i|+α|βk,i|2 as the elastic net penalty, which is a combination of the

“LASSO penalty” and the “ridge penalty”. The elastic net penalty is controlled by α that

takes a value between 0 and 1. For α = 1, the elastic net becomes simple ridge regression,

and for α = 0, we obtain the LASSO penalty. The tuning parameter λ controls the overall

strength of the penalty with the number of penalized (zero) regressors increasing in λ. Hence,

for λ = 0 we obtain the standard OLS estimator with no penalization and no selection. We

9See Tibshirani (1996) for an introduction to LASSO.
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select α and λ jointly for each equation by 10-fold cross validation over a grid of possible

values, using the values for α and λ that produce the lowest in-sample mean squared error for

the model. While selecting both α and λ by cross validation is computationally very costly,

particularly when it comes to rolling-window regressions where the procedure is repeated

for each window, this approach ensures that we pick the set of regressors with the best

in-sample model fit. By contrast, fixing α and choosing only λ would be computationally

less costly, but would result in a worse in-sample model fit as shown by our out-of sample

forecast exercise reported in Section 4.3.1.

2.4 Network visualization

Due to the high-dimensional nature of our network, consisting of 152 nodes and 152× 151 =

22, 952 links, presenting the results in an informative manner is challenging. In what follows,

we characterize the estimated networks by means of graphical representations that visualize

the results according to data characteristics and estimated connectedness measures.10

Node names and colors: Each node represents one variable abbreviated by a three-digit

name code (see Table A.1 in the Appendix for a detailed list of all name codes). Node color is

defined by the sectoral affiliation of each entity: Financial Institutions are yellow, Sovereigns

are red, Autos & Industrials are blue, Consumers are green, Energy corporations are purple,

and TMT (Technology, Media & Telecommunications) firms are light salmon.

Node size: Node size is a linear function of total directional connectedness “to others”

(Eq. 6). Hence, entities that contribute relatively more credit risk to other entities are

represented by bigger nodes in the network. Node size can be interpreted as a direct visual

measure of systemic importance of the respective firm or sovereign.

Node location: We use the force-directed algorithm of Fruchterman and Reingold (1991)

to determine node location. The algorithm positions the nodes in the two-dimensional space

in such a way that repelling and attracting forces among the nodes exactly balance. The

10All network visualizations are generated in the software R using the packages igraph and ggplot2.

12



force of repulsion and attraction between two nodes is determined by pairwise directional

connectedness “to” and “from”. CDS entities that are linked through high pairwise direc-

tional connectedness are thus positioned close to each other, while CDS entities that are

linked through low pairwise directional connectedness are drawn further apart. As a result,

CDS entities with many strong links to other entities will be located in the network’s center

(i.e., these entities are more systemically important), while nodes for CDS entities with weak

links to others will be located in the network’s periphery (less systemically important).

Link thickness: Each link is a linear function of pairwise directional connectedness such

that a relatively thicker link between two nodes indicates strong pairwise connectedness.

3 Data

Our data set comprises 152 daily CDS series of European sovereigns, financial institutions,

and non-financial corporations. CDS spreads provide a more accurate measure of credit risk

(i.e., the risk of an entity defaulting on its debt) than bond yields for three main reasons.

First, CDS contracts are standardized products with pre-specified and fully documented

credit derivatives agreements (Augustin et al. 2014), whereas bond terms and conditions are

heterogeneous and depend on various features, including maturity, issue amount and coupon

structure. Second, CDS markets are typically less influenced by liquidity effects relative to

bond markets. Longstaff et al. (2005), for example, find that a large proportion of bond

spreads is related to measures of bond-specific illiquidity such as bid-ask differentials.11

Third, CDS spreads provide a timelier market-based indicator of credit risk, as documented

by empirical studies showing that CDS markets lead bond markets in the price discovery

process (Blanco et al. 2005; Palladini and Portes 2011).

We consider CDS spreads with a maturity of five years, which is typically the contract

11While recent theoretical and empirical evidence suggests that CDS prices are influenced by liquidity
effects too (Bongaerts et al. 2011; Corò et al. 2013), the magnitude of these effects is likely to be greater for
bond markets than for CDS markets. Comparing the magnitude of the liquidity premium across CDS and
bond markets, Bühler and Trapp (2009) estimate that 35 percent of bond spreads is attributable to liquidity,
whereas in CDS markets the liquidity component is only 4 percent.
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specification with the highest liquidity. We choose CDS quotes for euro-denominated senior

unsecured debt with the modified-modified restructuring clause for firms and the cumulative

restructuring clause for sovereigns. These types of contracts represent the conventional terms

for CDS contracts in Europe. The sample period runs from October 23, 2006 to July 28,

2017, thus covering both the global financial crisis and the European sovereign debt crisis.12

We source our data through Datastream and Bloomberg.13

Our sample includes sovereign CDS quotes from the following 10 countries: Austria, Bel-

gium, France, Germany, Ireland, Italy, Netherlands, Portugal, Spain and the UK.14 To ensure

that our sample comprises the most relevant European corporate CDS entities, we consider

only data from financial and non-financial corporations that were part of the Markit iTraxx

Europe index over the sample period.15 The Markit iTraxx Europe refers to the 125 most

actively traded European corporate entities with investment grade credit ratings. The index

contains corporate CDS from five different sectors: Autos & Industrials, Consumers, Energy,

TMT (Technology, Media & Telecommunications) and Financials. The group of financial

CDS entities includes both banks and non-bank financial intermediaries (insurance compa-

nies). Our analysis thus addresses the need expressed by regulators to include insurance

companies in systemic risk assessments.16

12The starting date of our sample is dictated by data availability. Using an earlier starting date would
result in a substantially smaller sample of CDS series due to missing data.

13Our procedure in collecting the data is as follows: we first check data availability for a specific CDS
entity in Datastream; if the data are available, we include them in our sample; if the data are not available
in Datastream, we check data availability in Bloomberg and add the series to our sample if the data are
available.

14Data for Greece are not available for the full-sample period, because trading of Greek CDS contracts
was suspended from March 9, 2012, when a so-called “credit event” was declared by the International Swaps
and Derivatives Association as a consequence of the Greek debt restructuring agreement. We therefore omit
Greek CDS from our analysis.

15The constituents of the iTraxx Europe are revised twice a year, such that there are frequent changes in
the composition of the index. We decide to consider a company for inclusion in our sample if it was at least
once part of the iTraxx Europe index during our sample period.

16Insurance companies can be important for financial stability because they are major investors in financial
markets, insurers and banks are increasingly interconnected and insurance companies insure the (financial)
risks of households and firms (ECB 2009). G20 governments reacted to the growing importance of insurers
for financial stability by asking the Basel Financial Stability Board (FSB) to consider insurers alongside
banks in the development of a policy framework to specifically address the systemic risks associated with
systemically important financial institutions (FSB 2011).
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After excluding all corporate CDS series for which more than 15 percent of the observations

are stale values, our final sample consists of CDS spreads for 109 non-financial corporations,

33 financial institutions, and 10 sovereigns. Table A.1 provides a full list of all companies and

countries included in our analysis and Table OA.1 in the Online Appendix reports summary

statistics (by country).

4 Empirical results

We characterize the CDS network both statically (full-sample) and dynamically (rolling-

window) based on variance decompositions of the idiosyncratic CDS returns in a large-

dimensional VAR. Providing time-varying estimates for contagion effects to the non-financial

sector is one of the principal contributions of this study as this is essential for generating

useful policy implications.

4.1 Static estimation of the CDS network

4.1.1 Full-sample individual CDS network

Figure 2 shows the full-sample CDS network using the force-directed algorithm by Fruchter-

man and Reingold (1991) to determine node locations. We observe a strong sectoral cluster-

ing of corporates and sovereigns, as nodes of CDS entities from the same sector tend to bunch

together. Financial institutions are all located in the center of the network, whereas non-

financials and sovereigns are located around the center, indicating the systemic importance

of the financial sector in Europe. The central role of the financial sector is also evidenced

by the large node size of financial institutions relative to non-financial corporations and

sovereigns.17 Non-financial companies in the sectors Consumers, Autos & Industrials and

TMT show the strongest links to the financial sector, while Energy corporations are located

closer to the sovereign sector.

17As explained above, node size is a function of “to” connectedness. Hence, entities that are more important
to the system in terms of credit risk transmission have larger nodes.

15



[Figure 2 about here]

To provide a more detailed account of the most important individual transmitters of

sovereign and bank credit risk to the non-financial sector, we present a ranking of the largest

senders of credit risk in Table 2. The ranking is based on aggregating all pairwise directional

connectedness measures “to” non-financial corporations for each individual financial institu-

tion and sovereign, respectively. The ranking can be interpreted as a quantitative indicator

for the systemic importance of each financial and sovereign entity to the real economy. Con-

versely, we also present a ranking for the largest receivers of credit risk from sovereigns and

financials in Table 2. It is shown that the ranking for the senders of financial risk is headed

by two major European banks, namely Santander and Crédit Agricole, followed by a major

insurance company (Swiss RE). All banks in the top 10 ranking (Santander, Crédit Agricole,

Société Générale, BBVA and Unicredit) are designated by the FSB as “global systemically

important banks” that are subject to additional capital and other regulatory requirements

under the Basel III framework (see FSB (2014) for a complete list of all identified banks).18

The presence of five insurance companies in the top 10 of financial risk senders underscores

the importance of including non-bank financial intermediaries into systemic risk assessments

as proposed by regulators (ECB 2009).

[Table 2 about here]

An interesting feature of the financial institutions in our network is that their link size to

non-financial firms is positively correlated with their link size to other financial institutions.

Figure 3 depicts this relationship by plotting average directional connectedness of individual

financial institutions to all non-financial firms (this corresponds to the observations in the

ranking of senders in Table 2(a)) on the horizontal axis against average directional connect-

edness of individual financials to all other financial institutions on the vertical axis. The

18In addition, the insurance company Allianz (rank 9 in Table 2) is designated as a “global systemically
important insurer (G-SII)” by the FSB (see FSB (2016) for the separate list of all G-SIIs).
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structure of the estimated network hence reveals that financial institutions which gener-

ate the largest contagion effects within the financial system are also the most important

transmitters of contagion effects to the real economy.

[Figure 3 about here]

Turning to the largest non-financial receivers of contagion effects from financial institutions

(second panel in Table 2(a)), we observe that the top 10 is dominated by corporations from

the sectors Autos & Industrials (Air Liquide, Bayer, Akzo Nobel, Svenska Cellulosa) and

Consumers (Henkel, Ahold Delhaize, Carrefour, Accor, Casino Guichard). A look at the

bottom of the ranking indicates that energy corporations, such as RWE, BP and Iberdrola,

are less affected by financial risk shocks.

As for the links between sovereigns and the non-financial sector (Table 2(b)), we find

that the southern European countries Italy, Portugal and Spain, which were among the

most severely stressed countries during the debt crisis, are by far the largest transmitters of

credit risk. Sovereigns from the “core” of the Eurozone (Austria, Germany, France, Belgium,

Netherlands) as well as the UK are much less important in terms of credit risk transmission.19

Finally, on the receiving end of the sovereign risk channel (second panel in Table 2(b)), we

see that there are mainly energy companies at the top of the ranking. The only exceptions

are the TMT companies Telefonica and Hellenic Telecom.

4.1.2 Cross-sectoral network connectedness

Building on the findings from the individual CDS network, which already highlighted some

sectoral patterns in credit risk transmission, we next move to an aggregate perspective on

cross-sectoral connectedness. Our aim is to identify sectoral heterogeneity in the magnitude

of contagion effects. Figure 4 shows the sectoral decomposition of directional connectedness

19Surprisingly, Ireland is the least important sender despite its central role in the Eurozone crisis. This
may be explained by Ireland’s fast recovery from the crisis in comparison with the countries from southern
Europe.
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from financials and sovereigns to non-financial firms. We observe that the financial sector is a

more important contributor of credit risk to the non-financial sector than the sovereign sector.

For the non-financial sectors Autos & Industrials, Consumers and TMT the magnitude of

contagion shocks from financial institutions is roughly two to four times stronger relative

to sovereigns. Only energy companies are comparatively more affected by contagion shocks

from sovereigns (by a factor of roughly 1.5). At the same time, compared with other non-

financial sectors, the energy sector is less affected by contagion from financial institutions.

[Figure 4 about here]

An important factor that can explain both the relatively stronger sensitivity of the energy

sector to sovereign risk shocks and the lower sensitivity to financial risk shocks is the own-

ership structure of energy corporations. The energy sector is of great strategic importance

to the public sector, which is why sovereigns are often major shareholders in energy firms

to retain influence on corporate decisions.20 Firms with government ties often receive state-

guaranteed loans and are more likely to be bailed out than firms without government ties

(Faccio et al. 2006). Our results are consistent with the notion that the energy sector’s large

proportion of (partially) government-controlled firms, and the superior financing conditions

associated with government control, is responsible for the relatively lower exposure of the

energy sector to financial risk shocks. At the same time, the prevailing degree of government

control in the energy sector creates a stronger link to variations in sovereign risk, as rising

concerns about the solvency of sovereigns erodes the credibility of state-guaranteed loans

and decreases the likelihood for bailouts.

20Among the 18 energy firms in our sample, 9 are characterized by a substantial public ownership, i.e.,
the government share in the company is more than 5 percent based on publicly available sources (corporate
websites, annual reports, etc.). By contrast, among the remaining non-energy firms in the non-financial
sector only 12 percent are characterized by a substantial public ownership.
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4.1.3 Geographical network connectedness

Despite the common market there exist regional differences across European countries, rang-

ing from cultural differences (including language) to purely economic differences related to

e.g., macroeconomic fundamentals, credit ratings and the size of national banking sectors.

All of these country-specific factors may give rise to a relationship between the geographical

location of firms and sovereigns and the size/direction of credit risk transmission.21

[Figure 5 about here]

To provide more detailed insights into the geographical component of the CDS network,

we conduct a country-level decomposition of credit risk contagion in Figure 5. We observe in

Figure 5(a) that Spain, France, Germany and Switzerland are the main senders of financial

risk, as indicated by the size of their financial sector nodes. The main receivers of financial

risk (indicated by color-level) are the non-financial sectors of countries located in the core

of Europe (Belgium, France, Germany, Netherlands, Sweden, UK), while the non-financial

sectors of countries in the southern periphery (Portugal, Spain, Italy, Greece) are less affected

by financial risk shocks. Our findings of a strong cross-border component in the transmission

of bank risk in Europe is consistent with the findings of Breckenfelder and Schwaab (2018)

with regards to bank-sovereign spillovers. They document that bank risk in stressed eurozone

countries spilled over to non-stressed euro area sovereigns during the sovereign debt crisis.

Turning to the transmission of risk from sovereigns to non-financial firms in Figure 5(b)

reveals a different geographical pattern. Here, the major senders of risk are the southern

European countries Portugal, Spain and Italy, while the contribution of core European coun-

tries is much less. In addition, the geographical dispersion of sovereign risk shocks is mainly

limited to the periphery, which is the main receiver of shocks as indicated by the magnitude

of sovereign-corporate connectedness and the link size between peripheral countries. Conse-

21See Ang and Longstaff (2013) and De Santis (2012) for evidence on country-specific risk factors in
European sovereign CDS spreads.
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quently, our results suggest that real-sector contagion of sovereign risk does not spread from

the periphery to the center, but remains predominantly a regional phenomenon.

We next assess whether cross-country contagion effects can be explained by the degree of

financial linkages between countries. Theoretical work on financial contagion effects suggests

that geographically interrelated claims and liabilities in the banking system can facilitate

cross-country transmissions of financial shocks (Allen and Gale 2000). We test whether

stronger financial linkages between European countries lead to stronger contagion of financial

and sovereign risk to the non-financial sector by using data on bilateral bank claims provided

by the Bank for International Settlements (BIS) to proxy financial linkages. We distinguish

between two aggregates of bilateral bank claims: (i) bilateral bank claims of country i to all

sectors of country j, and (ii) bilateral bank claims of country i to the non-bank private sector

of country j. To assess the influence of these two measures of financial linkages on the cross-

country dimension of contagion to the non-financial sector, we then run OLS regressions

with the country-level pairwise connectedness measures as the dependent variable and one

of the financial linkages proxies as the independent variable.

[Table 3 about here]

The results in Table 3 suggest a clear positive relationship between cross-country conta-

gion effects from the financial sector and financial linkages (first column). Countries that

share stronger financial linkages experience stronger cross-border contagion between their

financial and non-financial sectors than countries with weaker financial linkages. Our results

complement empirical findings from studies focusing exclusively on contagion effects within

the banking sector. For example, Tonzer (2015) shows that international linkages in inter-

bank markets contribute to the channeling of financial distress across borders. However, our

results do not suggest an influence of financial linkages on the magnitude of cross-border

contagion effects for sovereign credit risk (second column in Table 3), which highlights again

the rather regional nature of the sovereign-real sector risk channel.
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4.2 Dynamic estimation of the CDS network

To assess the time-varying nature of the CDS network, we next move to a dynamic frame-

work based on rolling-window (200 days) estimations, with repeated cross validation of the

penalty parameter λ and the elastic net mixing parameter α in each window.22 Looking

at the evolution of connectedness across time allows us to assess whether the propagation

of shocks intensified during crisis events, which is consistent with the concept of “shift-

contagion” (Rigobon 2016). Naturally, our emphasis is on the evolution of the network

structure following the global financial crisis and the European sovereign debt crisis.

4.2.1 Global financial crisis

The critical event in the global financial crisis was Lehman Brother’s bankruptcy on Septem-

ber 15, 2008. In Figure 6 we show the CDS network at two different stages for comparison.

In (a) the network is depicted for the period before Lehman Brother’s bankruptcy (the 200

days window ends on September 1, 2008), while in (b) the network is shown for the period

after the Lehman collapse (the 200 days window ends on November 6, 2008).

[Figure 6 about here]

The key pattern that emerges after comparing the two plots is that a large cluster of

financial institutions moves from the periphery to the center of the network after Lehman’s

collapse, reflecting an increase in connectedness of the financial sector to others. An increase

in overall transmission of credit risk to others, i.e., the systemic risk component of the finan-

cial sector, can be further deduced from the large node size of many financial institutions,

such as UBS, Société Générale (SOG) and Deutsche Bank (DBA). As for Lehman’s effect on

the non-financial sector, we observe that Autos & Industrials and TMT corporations cluster

very close to the financial sector, while the energy sector and most consumer corporations

are relatively farther away from the financial center after Lehman’s bankruptcy.

22We also estimate the idiosyncratic components for each window separately.
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4.2.2 European sovereign debt crisis

To visualize how the CDS network was transformed following the European sovereign debt

crisis, we analyze the network graph before and after the onset of the crisis in Figure 7. We

clearly see that connectedness is rather low before the crisis (late-2009), particularly with

regards to sovereigns which form their own cluster in the periphery of the network. After

the onset of the Eurozone crisis in May 2010 (following the first bailout package for Greece),

connectedness increases drastically, thereby fundamentally altering the network’s structure.

Now we observe that the nodes for sovereign entities moved to the network’s center and

that the stressed countries Italy, Spain, Ireland and Portugal have very large nodes, which

highlights their central role in the crisis. In addition, the sovereign CDS nodes attract

a large number of both financial and non-financial corporations that are grouped closely

around them. Hence, Figure 7(b) does not only reveal a strong sovereign-financial nexus

but it also shows pronounced contagion effects from sovereigns to non-financial corporations

during the European debt crisis.

[Figure 7 about here]

4.2.3 System-wide connectedness

Moving from the individual to the aggregate perspective, we depict in Figure 8 the evolu-

tion of overall network connectedness, i.e., the degree to which all idiosyncratic CDS returns

co-move with each other over time. We observe wide fluctuations in connectedness over the

sample period. While system-wide connectedness is at less than 70% at the beginning of the

sample, it shows an increasing trend until the Lehman collapse in late-2008. After a down-

ward trend in 2009, network connectedness jumps substantially following the outbreak of the

European debt crisis in early-2010. Throughout 2010 system-wide connectedness remains

elevated with several pronounced spikes, reflecting the high degree of financial distress and

uncertainty in the Eurozone during this period. The culmination is reached in October and

November 2010 when the level exceeds 90 percent, suggesting that markets reacted with a
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fear of more contagion in CDS spreads.23

[Figure 8 about here]

In the first quarter of 2011 overall contagion risk decreases noticeably, as evidenced by

the drop in system-wide connectedness. The decline in contagion effects resulted from the

agreement of euro area leaders on March 11, 2011 to allow the EFSF (European Financial

Stability Facility) and the ESM (European Stability Mechanism) to directly intervene in

primary markets for sovereign debt.24 Over the remainder of the sample period, system-wide

connectedness fluctuates persistently, albeit with smaller swings. There is a mild upward

trend in connectedness from mid-2012 until early-2017, reflecting that even after the most

severe crisis events came to an end, CDS spreads remained tightly linked to each other across

all sectors. This indicates that market participants continued to closely monitor conditions

in all CDS markets simultaneously.

4.2.4 Cross-sectoral network connectedness

With the goal of focusing specifically on temporal fluctuations in credit risk transmission to

the non-financial sector, we conduct a sectoral decomposition of connectedness in Figure 9.

The results suggest a large degree of heterogeneity in dynamic connectedness across sectors.

As for the credit risk shocks from the financial sector, we observe several spikes throughout

the sample period. Financial-real sector connectedness is particularly high during the 07/08

global financial crisis and the 2010-12 European debt crisis, providing evidence for contagion

effects to the non-financial corporate sector. Interestingly, both the level and the fluctuations

23This was a crucial stage in the European debt crisis, as concerns about the fiscal strength of Ireland
and Portugal prompted markets to expect that a Greek-style program would be extended to these two
countries. On October 18, 2010 Angela Merkel and Nicolas Sarkozy surprised markets by announcing that
future sovereign bailouts would require ‘haircuts’ on sovereign bond holdings (also, see Brunnermeier et al.
2016).

24Moreover, the resignation of Axel Weber from the Bundesbank presidency in February 2011 may also
have contributed to the decrease in contagion risk because markets may have interpreted this event as
signalling that after the departure of a major opponent of the ECB’s current policy stance at that time, the
ECB would further expand its Securities Markets Programme (SMP) in the future.

23



of connectedness between financial and non-financial corporations increase toward the end

of the sample period (2015-2017).

[Figure 9 about here]

With regards to sovereign risk (second plot), the dynamic connectedness measure reflects

a clear trend. Following the start of the European debt crisis, connectedness rises drastically

and then remains at this high level during the most stressing stages of the crisis. In early-

2011 we observe a considerable decline in the magnitude of sovereign risk transmission.

The downward trend continues until early-2014, fluctuations thereafter remain modest. The

findings can be interpreted in favor of the ECB’s monetary policy stance, as they suggest

that the ECB was successful in curbing the contagion effects to the non-financial sector.

As a comparison, we also present intra-sectoral connectedness of non-financial corporations

(last plot in Figure 9). It shows almost no fluctuations over time, reflecting that crisis events

influenced only the transmission of credit risk from the financial and sovereign sector, but

not the transmission of risk within the non-financial sector.

To control for a potential feedback channel running from the non-financial sector to finan-

cial institutions and sovereigns, respectively, we also consider the pure net contribution of the

financial and sovereign sectors.25 Yet, the dynamic evolution of cross-sectoral connectedness

remains almost unaffected by this modification. Finally, we break down dynamic connect-

edness by sub-sectors of corporates which shows that each sub-sector displays somewhat

different dynamics, suggesting a role for sector-specific drivers in risk transmission.26

4.2.5 Geographical network connectedness

The static network analysis already revealed a strong geographical component in the mag-

nitude and direction of credit risk transmission to the non-financial sector. To further inves-

25This is achieved by subtracting the spillover effects originating in the non-financial sector from those
operating in the opposite direction. The results are presented in the Online Appendix (Figure OA.2).

26See Figure OA.3 in the Online Appendix.
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tigate geographical patterns in a dynamic framework, we differentiate between two groups

of risk senders at the country-level and calculate the evolution of risk transmission for each

group separately. We form a group of GIIPS banks, i.e., financial institutions headquartered

in the so-called “GIIPS” countries (Greece, Ireland, Italy, Portugal, Spain) and a group

of non-GIIPS banks, i.e., financial corporations headquartered in “non-GIIPS”, or “core”,

countries (Belgium, France, Germany, Netherlands, Switzerland, UK). Moreover, to capture

possible geographical differences in the transmission of sovereign risk, we adopt the same

grouping procedure for “GIIPS” and “non-GIIPS” sovereigns.

[Figure 10 about here]

Figure 10 shows each country group’s contribution to financial and sovereign risk trans-

mission over time. As for the risk transmission from the financial sector to non-financial

corporations (first plot), the difference between the two country groups appears to be small.

For most of the sample period the two separate connectedness measures move in tandem.

In 2010, we observe a relatively stronger contribution from banks in GIIPS countries. In the

second half of the sample (2013-2017), financial shocks from non-GIIPS banks are typically

stronger than those from GIIPS banks.

Regarding risk transmission from the sovereign sector, the difference in contributions be-

tween GIIPS and non-GIIPS is sizeable, as visible in the second plot of Figure 10. With the

beginning of the sovereign debt crisis in early-2010, risk shocks from GIIPS sovereigns in-

creased relatively more than risk shocks from non-GIIPS sovereigns. In terms of magnitude,

our estimates suggest that at the height of the sovereign debt crisis in 2010, sovereign risk

shocks transmitted from GIIPS sovereigns to non-financial corporations are roughly twice as

strong as risk shocks transmitted from non-GIIPS sovereigns.

In 2011, connectedness decreases for both country groups. But while connectedness from

non-GIIPS sovereigns returns to its pre-crisis level in 2011, that of stressed GIIPS countries

remains elevated throughout 2011 as a result of continuing political and economic tensions
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in these countries. Only in the first half of 2012, the level of sovereign risk transmission from

GIIPS sovereigns converges back to that of non-GIIPS countries, possibly as an outcome of

the more aggressive ECB policy stance under the new president Mario Draghi.27 From mid-

2012 onwards, sovereign connectedness remains relatively stable, with both country groups

contributing about the same amount of credit risk. This changes in 2015, where we ob-

serve another increase in contagion from GIIPS-sovereigns as a consequence of uncertainties

regarding the newly elected Syriza-government in Greece.

4.3 Model evaluation and comparison

In this section we carry out a number of exercises to evaluate our methodology and to

compare our approach to alternative model specifications and modelling approaches.

4.3.1 Performance and properties of elastic net estimator

By design the elastic net estimator chooses the best model (lowest error) in-sample by jointly

selecting the elastic net mixing parameter α and the penalty tuning parameter λ. To evaluate

the out-of-sample performance of our methodology we conduct a forecasting exercise in which

we split our sample in an in-sample-period from 23/10/2006 to 31/12/2014 and an out-of-

sample period from 02/01/2015 to 28/07/2017. We first estimate our elastic net model

in-sample using the methodology described in previous sections and then use the fitted

values to evaluate the model in the out-of-sample period. We compare the elastic net model

to the following competitor models: (i) the constant mean model which uses the in-sample

mean of each variable as forecasts, (ii) the AR(1) model which conducts forecasts based on

the fitted values from a persistent process, (iii) the ridge estimator which applies shrinkage

in the VAR with α = 1, and (iv) the constant elastic net estimator which uses a fixed elastic

net mixing parameter of α = 0.5 and chooses only the optimal λ in the penalty function.

27After Mario Draghi took office as the new president of the ECB in November 2011, the governing council
lowered interest rates in two steps by a combined 0.5 percent to 1 percent over the course of five weeks. In
addition to these measures, the ECB announced at the December 2011 meeting two exceptional longer-term
refinancing operations (LTRO), which provided unlimited amounts of liquidity to banks with a three-year
maturity.
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Table 4 shows the results of the forecasting exercise for our elastic net estimator (first row)

and the competitor models (rows 2-5). It is shown that the elastic net model performs best

out-of-sample relative to the competing models, since it produces on average the lowest MSE

for the total sample.

[Table 4 about here]

To provide insights into the properties of the elastic net parameters α and λ in the dynamic

framework we plot their distribution over the sample period for different window sizes (150,

200, and 250 days) in Figure 11.28 The mixing parameter α does not fluctuate much over the

sample period, remaining in the range between 0.1 and 0.3 for the most part, which is close

to the LASSO estimator (α = 0). The distribution of α is very similar across the different

window sizes, indicating that the mixing parameter is little affected by the choice of window

size. There are more dynamics at work for the penalty tuning parameter λ (Figure 11(b)).

It is larger at the beginning of the sample but then declines with the onset of the global

financial crisis, suggesting that the larger degree of interconnectedness after the crisis start

leads the elastic net estimator to penalize the parameters less to find the optimal model fit.

The lowest values for λ are observed for the peak of the sovereign debt crisis (2010-11), which

is also the period for which our measure of system-wide connectedness (Figure 8) shows the

highest estimates. As for the impact of the window size on λ, we observe that, in general, a

smaller window leads to a slightly larger penalty (higher values for λ).

[Figure 11 about here]

4.3.2 Comparison with Granger-causality network

The econometric approach used in this paper uses variance decompositions to characterize the

network. An alternative approach is to focus on the short-term VAR coefficient matrices as

28We are grateful to an anonymous referee for this helpful suggestion.
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e.g. in Billio et al. (2012) who use pairwise Granger-causality to characterize the network.29

The Granger-causality approach is less granular than the variance-decomposition approach

as it only tests whether coefficients are zero or non-zero without taking into account the

magnitude of non-zero coefficients. Nevertheless, to provide a comparison to our approach,

which should be viewed rather as a complement than a substitute, we implement the Granger-

causality approach to a large-dimensional setting by defining connectedness as the number

of short-run spillover coefficients in the VAR that are not shrunk toward 0 by elastic net.30

[Figure 12 about here]

Figure 12 shows the resulting system-wide connectedness for the dynamic framework (200

days rolling-window), which depicts the percentage of non-zero links for each window. It

is thus the Granger-causality analogue to Figure 8. A strong increase in connectedness is

visible in the run-up to the global financial crisis, while after the crisis Granger-causality

links indicate a number of fluctuations but with no clear discernible trend. This suggests

that the Granger-causality measure is lacking the granularity, in particular compared to

the variance decomposition approach pursued in this paper, to serve as a helpful tool in

monitoring systemic risks in quasi real-time.31

4.3.3 Robustness checks

We conduct robustness checks for the static (full-sample) framework for (i) different forecast

horizons and (ii) a 2-factor specification. In the Online Appendix we depict the visualized

networks resulting from these alternative model specifications. It is shown that changing

29We thank an anonymous referee for the suggestion to compare our approach with an alternative empirical
framework.

30Note that we do not consider significance of the coefficients since direct model inference after variable
selection via LASSO or elastic net is not valid, because the p-values are distorted since the variables that
are selected will tend to be those that are significant (Tibshirani et al. 2016).

31The results for cross-sectoral connectedness in the static (full-sample) framework based on the Granger-
causality approach are reported in Figure OA.4 in the Online Appendix. It shows that the differences across
sectors are substantially less pronounced compared to the variance decomposition approach, suggesting that,
similar to the dynamic framework, the unweighted (i.e., zero vs. non-zero) Granger-causality approach may
mask important dependencies among variables.
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the forecast horizon to 5, 15 or 20 days has very little impact on the network structure

as the visualizations look almost identical. The 2-factor specification leads to more visible

changes in the network structure, which is not surprising given that the additional factor

removes correlation from the variables in the sample. However, the main findings remain

qualitatively similar: we observe a strong clustering of sectors and a dominant financial

sector which is an important transmitter of shocks to non-financial corporations. Beyond

visual inspections we evaluate robustness in a more formal way by computing bivariate

correlation coefficients for the rankings of the most important senders/receivers between the

baseline model and alternative specifications (Table OA.2). The correlation coefficients are

all statistically significantly positive and all except one are very close to 1, thus indicating

that the network structure does not change substantially if alternative model specifications

are chosen.

For the time-varying framework we focus on the sensitivity of results to different window

sizes. Figure OA.9 reports the measure for system-wide connectedness using windows of 150

days, 200 days (baseline) and 250 days. We observe that the dynamic pattern of the system-

wide connectedness measures are comparable across window sizes. For example, both the

Lehman bankruptcy and the outbreak of the European sovereign debt crisis are captured

by all window specifications. As expected, a smaller window size produces a slightly more

sensitive measure as reflected in larger spikes and drops, in particular for the window size

of 150 days. Moreover, a change in the window size results in a small level shift of the

system-wide connectedness measure in that a smaller window size produces on average a

slightly larger degree of connectedness at each point in time.

5 Conclusions

Motivated by the scant empirical evidence on the propagation of credit risk shocks from

financial institutions and sovereigns to the non-financial sector of the economy, we conduct

a network analysis using 152 CDS series for European financial institutions, sovereigns and
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non-financial corporations over the period from October 2006 to July 2017. Our methodol-

ogy relies on recent techniques to measure and visualize connectedness in large-dimensional

systems of financial variables. Our main findings suggest a sectoral clustering in the CDS net-

work, where financial institutions are located in the center of the network and non-financial

as well as sovereign CDS are grouped around the financial center, reflecting the systemic

importance of the financial sector in Europe. We also detect a geographical component in

the network, as evidenced by differences in risk transmission across countries.

Our methodological framework is flexible enough to provide time-varying estimates of the

CDS network, which can be a useful tool for systemic risk monitoring. We show that both the

Lehman bankruptcy and the European debt crisis fundamentally transformed the network

structure. By contrast, we find that the transmission of risk within the non-financial sector

remained largely unchanged during the crisis events. Taken together, our results indicate

that bank and sovereign risk are important drivers of corporate credit risk. Out-of-sample

evaluations and comparisons with alternative approaches show that our estimator performs

relatively better and provides more granular estimates of connectedness.

Our network analysis identified the source, direction and relative size of credit risk shocks

to the non-financial sector in Europe. Future research could further include the sign of

the shocks’ impact as additional information in the characterization of the network, as in

Dungey et al. (2017). A signed network would reflect whether a shock to one entity has an

amplifying or dampening effect on each of the other entities in the system. This approach

would take into account that contagion is more likely between nodes that are linked through

positive weights rather than negative weights.
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Figure 1: Evolution of common factor over sample period

Table 1: Properties of the common factor

Panel A: Variance explained by the common factor

Sector Autos &
Industrials

Consumers Energy TMT Financial Sovereign All CDS

R2 0.455 0.439 0.438 0.459 0.444 0.094 0.3373

Panel B: Correlation with global uncertainty (VIX)

ρ(Ft,ΔV IXt) ΔV IXt ΔV IXt−1 R2

0.326 0.047∗∗∗ 0.035∗∗∗ 0.174

Note: Panel A shows the explanatory power (R2) of the common factor for individual CDS returns aver-
aged by sector. In Panel B we investigate the link between the common CDS factor and global uncertainty
as proxied by the VIX. ρ(Ft,ΔV IXt) is the Pearson’s correlation coefficient, ΔV IXt, ΔV IXt−1 and R2

are the estimates of regressing the common factor Ft on VIX returns (contemporaneous and first lag):
Ft = c+ΔV IXt+ΔV IXt−1+εt.

∗∗∗ denotes significance at the 1% level based on Newey-West standard
errors.
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Figure 2: CDS network graph for full-sample period (2006-2017)

Note: The network pictured above is estimated using forecast error variance decompositions in
a ‘factor plus sparse’ VAR. The position of links and nodes is determined by the force-directed
algorithm of Fruchterman and Reingold (1991).
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Table 2: Ranking of largest senders and receivers of credit risk

(a) Financial → Non-Financial

Sender

Rank Name Connected-
ness “To”

1 Santander 0.58
2 Crédit Agricole 0.54
3 Swiss RE 0.52
4 Société Générale 0.49
5 BBVA 0.49
6 Hannover Rueck 0.47
7 Zurich Insurance 0.46
8 Munich RE 0.45
9 Allianz 0.44
10 Unicredit 0.43
...

...
...

29 Standard Chartered 0.17
30 Rabobank 0.14
31 Dexia 0.13
32 Mediobanca 0.11
33 Bank of Ireland 0.08

Receiver

Rank Name Connected-
ness “From”

1 Air Liquide 0.81
2 Henkel 0.77
3 Ahold Delhaize 0.73
4 Svenska Cellulosa 0.73
5 Bayer 0.66
6 Akzo Nobel 0.65
7 Carrefour 0.64
8 Accor 0.63
9 Relx 0.63
10 Casino Guichard 0.62
...

...
...

105 Hellenic Telecom 0.07
106 RWE 0.07
107 BP 0.07
108 Iberdrola 0.06
109 Nokia 0.04

(b) Sovereign → Non-Financial

Sender

Rank Name Connected-
ness “To”

1 Italy 0.28
2 Portugal 0.22
3 Spain 0.21
4 UK 0.12
5 Austria 0.12
6 Germany 0.11
7 France 0.11
8 Belgium 0.11
9 Netherlands 0.11
10 Ireland 0.09

Note: The connectedness measures in all tables
above are normalized by the number of entities so
that the results represent the average value per
entity.

Receiver

Rank Name Connected-
ness “From”

1 Energias de Portugal 0.56
2 ENEL 0.47
3 Telefonica 0.43
4 National Grid 0.39

5 Électricité de France 0.39
6 Iberdrola 0.36
7 EON 0.35
8 Hellenic Telecom 0.34
9 ENBW 0.34
10 ENGIE 0.32
...

...
...

105 Michelin 0.03
106 Glencore 0.03
107 Metro 0.03
108 Volvo 0.02
109 Alliance Boots 0.01
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Figure 3: Individual senders of financial risk
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Note: The plot shows the relationship between financial institutions’ total con-
nectedness to other financial institutions and financial institutions’ total con-
nectedness to non-financial firms over the full-sample period (2006-2017).

Figure 4: Aggregate cross-sectoral connectedness
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Note: The plot shows directional connectedness from financials and sovereigns,
respectively, to non-financial firms, aggregated by sector type for the full-sample
period (2006-2017). To ensure comparability, the aggregate measures are nor-
malized by the number of entities so that the measures reported above represent
average connectedness per entity of the corresponding sector.
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