	(1)	(2)
	$Financial \rightarrow Non-Financial$	Sovereign \rightarrow Non-Financial
Bilateral bank claims		
(i) All sectors	0.244^{***}	0.034
	(0.065)	(0.086)
(ii) Non-bank private sector	0.341^{***}	0.124
	(0.113)	(0.155)

Table 3: Geographical connectedness and financial linkages

Note: The table reports the results of regressing the pairwise cross-country connectedness measures on bilateral bank claims from the consolidated banking statistics database of the Bank for International Settlements (BIS). We differentiate between (i) bilateral bank claims of country i to all sectors of country j, and (ii) bilateral bank claims of country i to the non-bank private sector of country j. We divide bilateral bank claims by country j's GDP to control for economy size. The BIS consolidated banking statistics measure banks' country risk exposures by capturing the claims of banks' foreign affiliates (ultimate risk basis). This consolidation approach is consistent with our strategy of aggregating the connectedness measures by the geographical location of a bank's headquarter. Each OLS regression includes a constant and country dummies. Standard errors are in parentheses. *** denotes significance at the 1% level.

	Autos & Industrials	Consumers	Energy	TMT	Financial	Sovereign	Total
Optimal Flastic Not	4.2726	2.5729	2.7713	2.8523	8.2922	5.8820	4.5380
Constant	4.2926	2.5783	2.7243	2.8725	8.3319	5.7668	4.5424
$\frac{\text{mean}}{\text{AR}(1)}$	4.3141	2.5795	2.8296	2.8735	8.2759	5.8282	4.5528
Ridge	4.2950	2.5853	2.7799	2.8611	8.3120	5.9312	4.5561
Constant Elastic Net	4.2826	2.5799	2.7806	2.8610	8.3226	5.8725	4.5503

Table 4: Out-of-sample forecast results

Note: The in-sample period is 23/10/2006 - 31/12/2014, the out-of-sample period corresponds to 02/01/2015-28/07/2017. The table shows the mean squared error (MSE) of our baseline elastic net model (first row) by sector and compares it to a number of competitor models. Our optimal elastic net model (first row) chooses optimal α and λ jointly in the shrinkage and selection process. The constant mean model uses the in-sample mean of each variable as forecasts. The AR(1) model conducts forecasts based on the fitted values from a persistent process. Ridge regression applies shrinkage in the VAR with $\alpha = 1$ and constant elastic net uses a fixed elastic net mixing parameter of $\alpha = 0.5$ and chooses only the optimal λ in the penalty function.

Figure 6: CDS network before and after Lehman Brother's bankruptcy

(a) Before: September 1, 2008

(b) After: November 6, 2008

Figure 7: CDS network before and after the onset of the sovereign debt crisis $% \left({{{\rm{CDS}}}} \right) = \left({{{\rm{CDS}}}} \right)$

(b) After: May 5, 2010

Figure 8: Dynamic system-wide connectedness

Note: The above figure shows the results from calculating time-varying parameters of the overall connectedness measure written in Eq. (7), using a rolling-window of 200 days.

Figure 9: Dynamic cross-sectoral connectedness

Note: The above figure shows the results from calculating time-varying parameters of the connectedness measure aggregated by sector, using a rolling-window of 200 days. Each measure is normalized by the number of entities so that the graph shows the average impact for each sector.

Figure 10: Dynamic network connectedness across country groups

Note: The above figure shows the results from calculating time-varying parameters of the connectedness measure aggregated by country group, using a rolling-window of 200 days. (G)IIPS countries are Ireland, Italy, Portugal and Spain (Greece is exluded due to data availability). Each measure is normalized by the number of entities so that the graph shows the average impact for each group of countries.

(a) Mixing parameter α

Figure 11: Distribution of elastic net parameters for different window sizes

(b) Penalty tuning parameter λ

Note: Figure (a) shows the evolution of the elastic net mixing parameter α for the dynamic VAR framework over the sample period for different window sizes in the rolling-regression. Figure (b) depicts the corresponding values (log scale) for the penalty tuning parameter λ . Each observation for α and λ represents the average value across all 152 VAR equations for each window.

Figure 12: Dynamic Granger-causality connectedness

Note: The figure shows the share of Granger-causality linkages between CDS entities, i.e. it presents the share of non-zero links relative to the total number of possible links. The underlying VAR is estimated with a rolling-window of 200 days. The above figure is the analogue to the system-wide connectedness measure depicted in Figure 8 which is based on variance decompositions.

Appendix

Table A.1: List of CDS Entities

Entity Name	Sector	Sub-Sector	Country	Name Code
Adecco	Non-financial	Autos & Industrials	Switzerland	ADE
Volvo	Non-financial	Autos & Industrials	Sweden	VOL
Akzo Nobel	Non-financial	Autos & Industrials	Netherlands	AKN
Alstom	Non-financial	Autos & Industrials	France	ALS
Anglo American	Non-financial	Autos & Industrials	UK	ANA
Astrazeneca	Non-financial	Autos & Industrials	UK	ASZ
Atlantia	Non-financial	Autos & Industrials	Italy	ATL
Bae Systems	Non-financial	Autos & Industrials	UK	BAE
BASF	Non-financial	Autos & Industrials	Germany	BAS
Bayer	Non-financial	Autos & Industrials	Germany	BAY
BMW	Non-financial	Autos & Industrials	Germany	BMW
Bouvgues	Non-financial	Autos & Industrials	France	BOU
Clariant	Non-financial	Autos & Industrials	Switzerland	CLA
Saint-Gobain	Non-financial	Autos & Industrials	France	SAG
Michelin	Non-financial	Autos & Industrials	Switzerland	MIC
Continental	Non-financial	Autos & Industrials	Germany	CON
Daimler	Non-financial	Autos & Industrials	Germany	DAI
Deutsche Post	Non-financial	Autos & Industrials	Germany	DPO
Evonik	Non-financial	Autos & Industrials	Germany	EVO
Finmeccanica	Non-financial	Autos & Industrials	Italy	EVC
CKN Holding	Non-financial	Autos & Industrials	IIK	CKN
Clancoro	Non financial	Autos & Industrials	Switzorland	
Koninklijke DSM	Non-financial	Autos & Industrials	Netherlands	DSM
Air Liquide	Non-financial	Autos & Industrials	France	ΔIR
Lanyes	Non-financial	Autos & Industrials	Cermany	LAX
Linde	Non-financial	Autos & Industrials	Germany	LIN
Pouroot	Non financial	Autos & Industrials	Franco	DFU
Renault	Non-financial	Autos & Industrials	France	REN
Rontokil Initial	Non financial	Autos & Industrials		REI
Rolls Poyce	Non financial	Autos & Industrials	UK	ROP
Sanofi Aventia	Non financial	Autos & Industrials	Franco	SAA
Siomong	Non financial	Autos & Industrials	Cormony	SIF
Steme Engo Owi	Non-financial	Autos & Industrials	Finland	SEC
Stora Eliso Oyj	Non-financial	Autos & Industrials	Polgium	SEC
Thusson Krupp	Non-financial	Autos & Industrials	Cormony	SOL TUV
UDM Kummene Ori	Non financial	Autos & Industrials	Finland	TIIV
Valee	Non financial	Autos & Industrials	France	VAT
Vinci	Non francial	Autos & maustrials	France	VAL VIN
V IIICI Vallagana gan	Non-financial	Autos & maustrials	Correction	V IIN VOI
voikswagen Wandal	Non-financial	Autos & Industrials	Germany	VUL
vvendel A seen	Non-financial	Autos & Industrials	France	WEN
Accor Electrologi	Non-mancial	Consumers	rrance Carrola	AUU
Liectrolux	Non-financial	Consumers	Sweden	ELE
Auchan	Non-financial	Consumers	France	AUC
Alliance Boots	Non-financial	Consumers	UK	ALL
Carrefour	Non-financial	Consumers	France	CAR
Casino Guichard	Non-financial	Consumers	France	CAG
Compass	Non-financial	Consumers	UK	COM
Danone	Non-financial	Consumers	France	DAN
Lufthansa	Non-financial	Consumers	Germany	LUF
Diageo	Non-financial	Consumers	UK	DIA
Experian Finance	Non-financial	Consumers	UK	EXF

	(/		
Entity Name	Sector	Sub-Sector	Country	Name Code
Henkel	Non-financial	Consumers	Germany	HEN
Ladbrokes	Non-financial	Consumers	UK	LAD
Imperial Brands	Non-financial	Consumers	UK	IMB
ISS Global	Non-financial	Consumers	Denmark	ISS
J Sainsbury	Non-financial	Consumers	UK	JSA
Kering	Non-financial	Consumers	France	KER
Kingfisher	Non-financial	Consumers	UK	KIN
Koninklijke Ahold Delhaize	Non-financial	Consumers	Netherlands	AHO
Koninklijke Philips	Non-financial	Consumers	Netherlands	PHI
LVMH	Non-financial	Consumers	France	LVM
Marks & Spencer	Non-financial	Consumers	UK	M&S
Metro	Non-financial	Consumers	Germany	MET
Nestlé	Non-financial	Consumers	Switzerland	NES
Next	Non-financial	Consumers	UK	NEX
PernodRicard	Non-financial	Consumers	France	PER
Safeway	Non-financial	Consumers	UK	SAF
Svenska Cellulosa	Non-financial	Consumers	Sweden	SCE
Swedish Match	Non-financial	Consumers	Sweden	SWM
Tate & Lyle	Non-financial	Consumers	UK	T&L
Tesco	Non-financial	Consumers	UK	TES
Unilever	Non-financial	Consumers	UK	UNI
BP	Non-financial	Energy	UK	BP
Centrice	Non-financial	Energy	UK	CEN
EON	Non-financial	Energy	Germany	EON
Edison	Non-financial	Energy	Italy	EDI
Energias de Portugal	Non-financial	Energy	Portugal	EDP
Electricité de France	Non financial	Energy	Franco	FDF
ENRW	Non-financial	Energy	Cormony	EDF
	Non-financial	Energy	Italy	ENE
ENCIE	Non-financial	Energy	Franco	ENC
ENGLE Fortum OVI	Non-imancial	Energy	France	ENG
Cog Natural SDC	Non-imancial	Energy	Finiand	FUI
Gas Natural SDG	Non-imancial	Energy	Spain	SDG
Iberdrola	Non-mancial	Energy	Spain	IBE
National Grid	Non-financial	Energy		NGR
Royal Dutch Shell	Non-financial	Energy	Netherlands	RDS
RWE	Non-financial	Energy	Germany	RWE
Statoil	Non-financial	Energy	Norway	STA
Total	Non-financial	Energy	France	TOT
United Utilities	Non-financial	Energy	UK	UNU
British Telecom	Non-financial	TMT	UK	BTE
Deutsche Telekom	Non-financial	TMT	Germany	DTE
Hellenic Telecom	Non-financial	TMT	Greece	HTE
ITV	Non-financial	TMT	UK	ITV
Nokia	Non-financial	TMT	Finland	NOK
Orange	Non-financial	TMT	France	ORA
Pearson	Non-financial	TMT	UK	PEA
Publicis	Non-financial	TMT	France	PUB
Relx	Non-financial	TMT	UK	REL
St Microelectronics	Non-financial	TMT	Switzerland	STM
Ericsson	Non-financial	TMT	Sweden	ERI
Telefonica	Non-financial	TMT	Spain	TEF

(Table A.1 continued)

Entity Name	Sector	Sub-Sector	Country	Name Code
Telekom Austria	Non-financial	TMT	Austria	TEA
Telenor	Non-financial	TMT	Norway	TEL
Telia	Non-financial	TMT	Sweden	TEI
Vivendi	Non-financial	TMT	France	VIV
Vodafone	Non-financial	TMT	UK	VOD
Wolters	Non-financial	TMT	Netherlands	WOL
WPP	Non-financial	TMT	UK	WPP
Aegon	Fina	ancial	Netherlands	AEG
Allianz	Fina	ancial	Germany	ALL
Generali	Fina	ancial	Italy	GEN
Aviva	Fina	ancial	UK	AVI
AXA	Fina	ancial	France	AXA
Hannover Rueck	Fina	ancial	Germany	HRE
Munich RE	Fina	ancial	Germany	MRE
Swiss RE	Fina	ancial	Switzerland	SRE
Zurich Insurance	Fina	ancial	Switzerland	ZIN
Dexia	Fina	ancial	Belgium	DEX
BNP Paribas	Fina	ancial	France	BNP
Crédit Agricole	Fina	ancial	France	CAG
Société Générale	Fina	ancial	France	SOG
Deutsche Bank	Fina	ancial	Germany	DBA
Commerzbank	Fina	ancial	Germany	COB
Bank of Ireland	Fina	ancial	Ireland	BOI
Intesa Sanpaolo	Financial		Italy	INS
Banca Monte Di Paschi	Financial		Italy	BMP
Banca Popolare	Fina	ancial	Italy	BPO
Unicredit	Fina	ancial	Italy	UNI
Mediobanca	Fina	ancial	Italy	MED
ING	Fina	ancial	Netherlands	ING
Babobank	Fina	ancial	Netherlands	RAB
Banco Comercial Port	Fina	ancial	Portugal	BCP
Santander	Fina	ancial	Spain	SAN
BBVA	Fina	ancial	Spain	BBV
Boyal Bank of Scot	Fina	ancial	UK	BBS
HSBC Bank	Fina	ancial	UK	HSB
Barclays Bank	Fine	ancial	UK	BAB
Lloyds Bank	Fine	ancial	UK	LLB
Standard Chartered	Fine	ancial	UK	SCH
UBS	Fine	ancial	Switzerland	UBS
Credit Suisse	Fine	ancial	Switzerland	CSU
Austria	Sour	projan	Austria	
Belgium	Sove	preign	Relgium	REL
France	Sove	areign	France	$FB \Delta$
Cormany	Sovereign		Cermany	GER
Ireland	Sovereign		Ireland	IRE
Italy	Sovereign		Sovereign Italy	
Nothorlands	Sove	roign	Notherlands	NFD
Dortugal	50V6 50	roign	Portugal	DOD
Spoin	50V6 50	roign	Spain	FSD
Span HK	50V6 Sorr	roign	Spain	LIK
UIX	5000	ereign	Span	0N

(Table A.1 continued)

Online Appendix¹

A. Determining the number of common factors

Hallin and Liška (2007) propose a consistent information criterion for determining the number of q common dynamic shocks in Forni et al.'s (2000) generalized dynamic factor model. The criterion builds on the (n, T)-asymptotic properties of the eigenvalues for the spectral density matrix of the observable variables Y_{nt} . The spectral density matrix is denoted by $\Sigma_n(\theta)$, where $\theta \in [-\pi, \pi]$, and its corresponding eigenvalues in decreasing order of magnitude are denoted by $\kappa_{n1}(\theta), ..., \kappa_{nn}(\theta)$. As $n \to \infty$ it can be shown that the projection $X_{it}^{(n)}$ of Y_{it} onto the space spanned by $\Sigma_n(\theta)$'s first q dynamic principal components provides a consistent reconstruction of X_{it} , where the number q is equivalent to the number of diverging eigenvalues of $\Sigma_n(\theta)$. As illustrated by Hallin and Liška (2007) the q dynamic principal components and the $X_{it}^{(n)}$'s are the solutions to an optimization problem in which the expected mean of squared residuals is minimized.

Accordingly, Hallin and Liška (2007) propose that the estimated number of factors, for given (n, T) and a maximum number of common factors q_{max} , is determined by minimizing the following information criterion:

$$IC_{2;n}^{T}(k) = \log\left[\frac{1}{n}\sum_{i=k+1}^{n}\frac{1}{2M_{T}+1}\sum_{l=-M_{T}}^{M_{T}}\kappa_{ni}^{T}(\theta_{l})\right] + kp(n,T),$$
(OA.1)

where $0 \le k \le q_{max}$.

 $M_T > 0$ is a truncation parameter and p(n, T) is an appropriate penalty function whose conditions and properties are discussed in detail by Hallin and Liška (2007). Provided that p(n,T) is an appropriate penalty function, then multiplying the penalty with an arbitrary positive real constant c, i.e. cp(n,T), is also appropriate. The uncertainty regarding the choice of c is exploited by Hallin and Liška (2007) to derive a practical guide for the selection of q, which is based on a mapping of $c \to q_{c,n}^T$ and $c \to S_c$ in a joint plot. $q_{c,n}^T$ denotes the number of factors resulting from applying the IC_2 criterion in Eq. (OA.1) and S_c captures

¹Not for publication.

the variability among the J values of $q_{c;n_j}^{T_j}$, j = 1, ..., J in a sample with fixed n and T and allows for an assessment of the stability of the factors for a given c.

Figure OA.1: Hallin and Liška (2007) IC_2 criterion

Note: The figure shows the joint mapping of $c \to q_{c,n}^T$ and $c \to S_c$ for the panel of 152 CDS returns. $q_{c,n}^T$ is derived from applying the IC_2 criterion as shown in (OA.1) using a penalty function of $p(n,T) = (M_T^{-2} + M_T^{0.5}T^{-0.5} + n^{-1})\log(\min[n, M_T^2, M_T^{-0.5}T^{0.5}]).$

Figure OA.1 depicts the joint mapping for our sample of 152 CDS series. As can be seen the values for S_c are 0 in several intervals of c, which are called "stability intervals" in the terminology of Hallin and Liška (2007), while the values for S_c fluctuate heavily in other regions of c (hence they are called "instability intervals"). For values of c close to 0, the first "stability interval" typically yields the maximum possible numbers of common factors $\hat{q} = q_{max}$. Since low values of c are associated with severe underpenalization Hallin and Liška (2007) propose to choose the number of factors $\hat{q} = q_{c,n}^T$ by considering the $c \to S_c$ mapping where \hat{c} belongs to the second "stability interval". In Figure OA.1 this is the case for the interval c = [1.15, 1.84] which corresponds to q = 1, hence the criterion clearly identifies one common factor in our sample and higher-order factor model specifications are not supported.

B. Dataset of CDS spreads

Panel A: CDS non-financial corporations									
			Raw returns			Idiosyncratic returns			
Country	Entities	Mean	Std.	Min	Max	Mean	Std.	Min	Max
			dev.				dev.		
Austria	1	0.00	3.12	-24.76	25.16	0.00	2.03	-12.76	18.34
Belgium	1	0.04	3.33	-24.99	27.46	0.00	2.20	-13.46	26.59
Denmark	1	-0.04	3.65	-83.40	38.09	0.00	3.25	-82.86	32.30
Finland	4	0.04	3.43	-83.81	37.77	0.00	2.61	-84.21	33.87
France	24	0.02	3.34	-58.90	60.05	0.00	2.32	-59.10	56.89
Germany	19	0.02	3.41	-33.47	103.03	0.00	2.36	-32.10	104.47
Greece	1	0.06	4.68	-33.14	44.11	0.00	3.69	-26.79	44.37
Italy	4	0.05	3.71	-53.65	33.74	0.00	2.73	-52.62	31.62
Netherlands	6	3.29	0.032	-77.98	80.75	0.00	2.41	-80.11	78.10
Norway	2	0.02	3.14	-25.62	29.90	0.00	2.36	-16.90	26.71
Portugal	1	0.06	4.13	-39.00	29.34	0.00	2.76	-29.63	19.28
Spain	3	0.03	4.03	-39.99	30.53	0.00	2.64	-19.22	30.17
Sweden	6	0.02	2.96	-28.86	51.84	0.00	2.11	-24.43	51.71
Switzerland	6	0.02	3.57	-44.11	44.11	0.00	2.60	-36.85	38.27
UK	30	0.03	3.39	-127.01	140.46	0.00	2.56	-129.97	139.87
Panel B: CDS	financial in	nstitutions	3						
			Raw r	eturns			Idiosyncra	tic returns	3
Country	Entities	Mean	Std.	Min	Max	Mean	Std.	Min	Max
			dev.				dev.		
Belgium	1	0.11	4.47	-35.06	86.61	0.00	4.23	-34.17	86.82
France	4	0.05	4.80	-43.96	62.68	0.00	3.24	-22.58	42.14
Germany	5	0.05	4.96	-47.63	61.34	0.00	3.32	-37.74	40.60
Ireland	1	0.08	5.84	-86.90	60.45	0.00	5.61	-86.73	58.79
Italy	6	0.08	4.76	-53.99	75.37	0.00	3.38	-53.62	55.22
Netherlands	3	0.07	4.44	-38.22	67.65	0.00	3.38	-32.84	62.16
Portugal	1	0.10	4.31	-35.41	40.67	0.00	3.40	-17.93	47.57
Spain	2	0.05	4.79	-45.72	32.54	0.00	3.07	-16.60	20.17
Switzerland	4	0.05	4.51	-41.03	56.25	0.00	3.06	-33.50	30.57
UK	6	0.06	4.80	-70.69	65.79	0.00	3.44	-61.27	56.97
Panel C: CDS	sovereigns								
			Raw r	eturns			Idiosyncra	tic returns	3
Country	Entities	Mean	Std.	Min	Max	Mean	Std.	Min	Max
			dev.				dev.		
Austria	1	0.09	10.42	-200.14	153.14	0.01	10.17	-197.03	153.23
Belgium	1	0.06	4.46	-28.76	30.59	0.00	3.93	-28.04	31.58
France	1	0.07	10.17	-200.14	153.14	0.00	9.97	-197.37	153.24
Germany	1	0.07	9.45	-133.50	154.04	0.01	9.27	-133.93	154.23
Ireland	1	0.08	16.40	-208.63	207.18	0.00	16.33	-208.23	207.81
Italy	1	0.07	4.21	-36.27	33.12	0.00	3.55	-33.11	25.59
Netherlands	1	0.10	6.25	-65.92	65.92	0.00	6.12	-65.35	69.46
Portugal	1	0.11	4.60	-51.27	27.99	0.00	4.05	-34.40	25.59
Spain	1	0.06	5.24	-57.05	57.05	0.00	4.87	-58.66	56.74
UK	1	0.09	4.44	-40.54	93.60	0.00	4.21	-40.90	92.17

Table OA.1: Summary statistics of CDS data by country

Note: The table shows descriptive statistics of CDS raw and idiosyncratic returns by country and sector. Raw CDS returns have been demeaned prior to computation of the common and idiosyncratic returns.

C. Additional results for cross-sectoral connectedness

Figure OA.2: Dynamic cross-sectoral connectedness, net contribution

Note: The above figure shows aggregate net contribution of the financial and sovereign sector, respectively, to the non-financial sector in a dynamic framework (rolling window of 200 days). Net contribution of the financial sector is "aggregate connectedness from financial institutions to non-financial corporations" *minus* "aggregate connectedness from non-financial corporations to financial institutions". Net contribution of the sovereign sector is "aggregate connectedness from sovereigns to non-financial corporations" *minus* "aggregate connectedness from sovereigns to non-financial corporations" *minus* "aggregate connectedness from non-financial corporations to sovereigns". Each measure is normalized by the number of entities so that the graph shows the average impact for each sector.

Figure OA.3: Dynamic cross-sectoral connectedness, sub-sectors

Note: The above figure shows the results from calculating time-varying parameters of the connectedness measure aggregated by sub-sectors, using a rolling-window of 200 days. Each measure is normalized by the number of entities so that the graph shows the average impact for each sub-sector.

Figure OA.4: Static Granger-causality cross-sectoral network connectedness

Note: The figure shows the share of Granger-causality linkages between sectors, i.e. it presents the share of non-zero links relative to the total number of possible links across sectors.

D. Robustness checks results

Figure OA.6: Network with forecast horizon h = 15

Figure OA.7: Network with forecast horizon h = 20

Figure OA.8: Network based on 2-factor model

Table OA.2: Rank correlation coefficients between baseline model (1 factor, 10 days forecast horizon) and alternative specifications

(a) Financial \rightarrow Non-Financial						
	Ranking of Senders	Ranking of Receivers				
<u>Forecast horizon</u>						
5 days	0.997***	0.997***				
15 days	0.981^{***}	0.996^{***}				
20 days	0.997^{***}	0.997^{***}				
2 common factors	0.812***	0.439***				
	(b) Sovereign \rightarrow Non-Financial					
	Ranking of Senders	Ranking of Receivers				
Forecast horizon						
5 days	0.987^{***}	0.989^{***}				
15 days	1.000^{***}	0.993***				
20 days	0.987^{***}	0.989^{***}				
2 common factors	0.988***	0.809***				

Note: The table reports rank correlation coefficients for rankings of receivers/senders based on different specifications of the underlying VAR model. The comparison is always the ranking resulting from the baseline model with one common factor and a 10 days forecast horizon as reported in Table 2. A value of 1 indicates that the ranking is exactly equal between the baseline model and the alternative model.

(a) 150 days