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1 Introduction

Stars were historically used as a navigational tool to guide a journey. Today, stars play a

similar role in the conduct of macroeconomic policy. When an asterisk is attached to vari-

ables such as output, interest rates, or inflation, these variables are collectively known as

‘stars’ and refer to an equilibrium state towards which the economy is expected to adjust.

Potential output, the neutral real rate of interest and the Non-Accelerating Inflation Rate of

Unemployment (NAIRU) are prominent stars.1

Stars are effectively the steady-state values that exist in a theoretical model. Since they

are functions of the model’s parameters, any changes in the star variable itself would neces-

sitate changes in the parameters of the model. Often, such changes are difficult to account

for, because stars are likely to be complex, non-linear functions of the model’s parameters.

A simpler and more commonly used alternative approach is to treat the star variable as a

latent exogenous process, with a popular choice being a driftless random walk. As the star

variable is not directly observed, it needs to be estimated. This is typically done with a State

Space model, using the Kalman filter and smoother to extract a measure of the latent star

variable. In almost all such implementations, the number of shocks in the model exceeds the

number of observed variables. Adopting the description of Forni et al. (2019), such a system

is said to be ‘short’. A key finding from the recent theoretical work on shock recovery is that

it is never possible to recover all the shocks from a short system.

The objectives of this paper are two-fold. First, we demonstrate the importance of the

literature on shock recovery for the modelling of star variables — and more broadly — for

policy analysis. Although it is well known that stars are typically estimated imprecisely

(e.g., Staiger et al., 1997 and Laubach and Williams, 2003), particularly when this is done in

real time (Orphanides and van Norden, 2002), and which creates practical issues for their

1There are many new ones. Zaman (2022), for example, lists various stars arising in blocks describing price
inflation, wage inflation and interest rates.
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use in policy analysis, it is not well known that these models may not be able to recover

the star variable of interest to the policy maker. Second, we provide a critical review of

many widely used and recent models that have been developed to provide estimates of

stars for policy analysis. Specifically, we examine if the shocks driving the star variables in

these models can in fact be recovered from the observed data, as this is necessary to recover

the star variable itself. This is evaluated assuming the model is correct and that its true

parameters are known. We further show that the extent to which a model can recover a star

variable can be communicated intuitively with a correlation coefficient. This, we believe,

will be useful to policymakers who need to be able to judge the relevance of a model for the

policy process.

It is our view that those presenting estimates of stars from short systems are obliged to

show that the model can in fact recover the key shocks driving the star variable of interest.

Indeed, recoverability measures such as the correlation coefficient that we propose should be

routinely reported when estimating star variables in the same way that one reports standard

errors or confidence intervals to gauge the level of uncertainty surrounding point estimates

of parameters computed from a statistical model. Our experience is that this is rarely done.

In this paper, we show how to do so and how these results can be best communicated.

The remainder of the paper is structured as follows. Section 2 defines the concept of re-

coverability, the implications of a short system for recoverability, and distinguishes between

recoverability and statistical uncertainty. It also provides a summary of recently developed

approaches to assess shock recovery and explains how these can be extended to examine

recoverability of star variables.

In Section 3, several applications aimed at recovering star variables are provided. The

section begins with a simple example of recovery of potential output from the widely used

Hodrick-Prescott (HP) filter, which can be formulated as an Unobserved Components (UC)

model. It then proceeds to analyze recovery of the neutral real rate of interest from the
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influential Laubach and Williams (2003) model and its later updates in Holston et al. (2017,

2023), and extension in McCririck and Rees (2017), which is used in the Reserve Bank of

Australia’s policy model, Ballantyne et al. (2020). In all these models, the ability to recover

the star variables of interest is limited.

Section 4 proceeds to examine if recovery of stars can be improved by building on the

above models or by utilizing a different modelling approach. The original Laubach and

Williams (2003) model does not allow for an interest rate rule. Since including such a rule

also adds a monetary policy shock to the system, the number of excess shocks and thereby

the lack of recoverability of the neutral real rate remains unchanged. This is illustrated

within the model of McCririck and Rees (2017). Schmitt-Grohe and Uribe (2022) propose a

different type of structural model that incorporates stars. Although their setup is (partially)

more successful in recovering the neutral real rate, it crucially depends on the size of one

model parameter which attributes what might be thought to be an unrealistically high per-

centage (nearly 80) of the variation in output growth to the neutral real rate shock. Once

this parameter is set to what seems a more reasonable value, the natural real rate cannot be

recovered.

Section 4 subsequently assesses recoverability of star variables following an entirely dif-

ferent approach that avoids providing an explicit structural model for the star variable, but

instead defines it via the Beveridge-Nelson decomposition. Two such approaches, namely,

one by Morley, Tran and Wong (2023), and a second by Lubik and Matthes (2015) are out-

lined. While the former is more successful than the Laubach and Williams (2003) based

approaches, neither one of them can recover the star variable of interest.

In Section 5, two increasingly popular features of macroeconomic models are examined

that can potentially (and unintentionally) obscure the stars since they result in short systems.

These are news about future shocks and shocks that allow for stochastic volatility. The role of

expectations and the use of surveys of forecasts are also discussed. Lastly, Section 6 describes
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how one might model stars without adding extra shocks to a system. Such an approach has

been employed by Okimoto (2019) in the trend inflation literature using smooth-transition

models, and seems promising. Section 7 concludes the paper.

2 Recovering Latent Variables from Models

2.1 What is recoverability?

To answer this question, we utilize models that can be written in the following State Space

Form (SSF):

st = Ast−1 + Bεt (1)

ζt = Cst + Dεt, (2)

where the shocks εt are standard normal distributed with a zero mean and identity covari-

ance matrix. There may be identification and other econometric issues in estimating A, B, C

and D when there are more shocks than observables. Such issues are discussed in Buncic

(2021) for the model of Holston, Laubach and Williams (2017, HLW) that aims to capture

the neutral real rate of interest.2 Despite the empirical importance of such estimation prob-

lems, for the purpose of this paper we will assume that the numerical values provided in

the papers of the models considered are the true values. This is done so as to abstract from

estimation issues in our analysis.

There are two ways of looking at the equations (1) and (2) describing the relationship

between variables, realizations and shocks. One of these makes assumptions about the as-

sumed shocks εt and, given A, B, C, D, characteristics such as variances and covariances of

the random variable ζt can be determined. In this form the analysis is working from the

2This is sometimes also called the natural real rate.
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right to left of the SSF equations. As well as knowledge of the model parameters there are

auxiliary assumptions about the nature of εt, for instance, that they are uncorrelated. Given

these the SSF can be used to tell the investigator about the assumed model properties of ζt.

A different perspective comes from introducing the data. Now the LHS of (2) has the data

ζD
t and this is used to define the estimated shocks. These will be either filtered or smoothed.

We will largely work with smoothed shocks and denote them by ETεt. Thus, smoothed shocks

at time t are defined as the expectation of the shock εt using all the T observations in the

sample. Filtered shocks are denoted by Etεt and are estimated using data up to time period

t. Designating the data as ζD
t , the (Kalman smoothed) system can be expressed as:

ETst = AETst−1 + BETεt (3)

ζD
t = CETst + DETεt. (4)

Given a set of data (and A, B, C, D), one obtains smoothed shocks from the Kalman smoother.

Recovery is achieved when we can obtain εt from the data using ETεt. If it is possible to recover

εt, then it is possible to recover the latent variables st, as these are a function of the shocks. Recover-

ing shocks and stars are intrinsically interrelated.

It is important to highlight here once more that recovery is not a model estimation issue,

as we have assumed all parameters in the model to be known. It is a recovery issue and

examines whether it is possible to recover the assumed (theoretical) shocks from the data

when using the estimate ETεt and all the parameters of the model are known. The ability of a

model to recover the latent star variable one is trying to estimate when all model parameters

are known, or nearly so, is a self-evident, minimal property that any model should satisfy.
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2.2 Implications of excess shocks for recoverability

When the number of shocks equal the number of observed variables, then εt and ETεt gener-

ally coincide and recovery is satisfied. Therefore, whether the shocks εt have their assumed

properties can be directly assessed using the estimated ETεt. Conversely, when there are

more shocks than observables, the system is said to be ‘short’ (Forni et al., 2019), or have

‘excess shocks’ (Pagan and Robinson 2022) and recovery is not ensured.

To illustrate the implications of this, it is useful to think about a ‘short’ system in the

simplest possible scenario where we have one observed variable, and two shocks ε1t and

ε2t. We then obtain the following two equations corresponding to (2) and (4):

ζt = ε1t + ε2t (5)

ζD
t = ETε1t + ETε2t (6)

=

[
1 1

]
︸ ︷︷ ︸

G

 ETε1t

ETε2t


︸ ︷︷ ︸

ETεt

= GETεt. (7)

From the relation in (7), it is apparent that ETεt cannot be recovered uniquely from ζD
t ,

because G is not a square matrix and thus does not have an inverse. If G was square then

we would have a solution for ETεt = G−1ζD
t , and GG−1G = G. When it is not square G−1 is

replaced by a generalized inverse G+ that satisfies GG+G = G. Then ETεt = G+ζD
t . Letting

G+ =

 g1

g2

, GG+G = G implies that

g1 + g2 = 1,

and so there are many values for g1.
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To select one, it is common to find the value that minimizes G+′G+. For this case it yields

G+ =

 .5

.5

 ,

which implies that ETε1t = .5ζD
t = ETε2t. That is, the smoothed shocks ETε1t and ETε2t are

identical to one another, and thus cannot be separated using the data.

2.3 Assessing shock recoverability

When excess shocks exist in a model, not all model shocks can be recovered. However, it

may be possible to recover some shocks from the model, potentially those of relevance to

policy makers that drive the star variable of interest. There exist methods in the literature to

show which shocks can be recovered.

Forni et al. (2019), building on Sims and Zha (2006), developed a deficiency index to

determine whether in a SVAR there is sufficient information to recover a particular shock

from current and past information. They find that it may be possible to do so, even when

the system as a whole is not invertible. Their deficiency index fundamentally examines the

recovery of the shock from its filtered estimates.

Chahrour and Jurado (2022) extend the concept of invertibility to consider an expanded

information set which additionally includes future information. They term this recover-

ability. Pagan and Robinson (2022) discuss how this is related to the Kalman smoother.

In the context of the example of the previous sub-section, one would consider the index

ϕ = Var(ETε1t − ε1t). In the simple case above, ϕ would equal Var(1
2(ε1t + ε2t)) = .5, which

shows that ε1t cannot be recovered. What is attractive about this quantity is that the Kalman

smoother provides ETε1t. To practically implement this approach for assessing recoverabil-

ity, the shock is added to the state vector of the SSF, and the steady-state Kalman smoother
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is used to find smoothed estimates of it as well as its mean squared error (denoted by Pt|T).

This can be implemented for a wide range of models.

Turning to the interpretation of ϕ we note that

ϕ = Var(ETε1t − ε1t).

= Var(ETε1t)− 2Cov(ETε1t, ε1t) + Var(ε1t)

= Var(ETε1t)− 2ρ × σ(ETε1t) + 1

where ρ is the correlation between ETε1t and ε1t, and σ(ETε1t) ≡
√

Var(ETε1t) is the stan-

dard deviation of ETε1t. Re-arranging this equation yields an expression for the correlation

between the smoothed and actual shocks:

ρ =
1
2

(
1 − ϕ

σ(ETε1t)
+ σ(ETε1t)

)
. (8)

When the shock is recoverable ETε1t = εt and this implies that ϕ = 0. Because σ(ETε1t) =

σ(ε1t) = 1 it is the case that ρ = 1. At the other extreme, when ϕ = 1, then ρ = σ(ETε1t)
2 , and

so the correlation between ETε1t and εt depends on σ(ETε1t), which can easily be computed.

Since the star variable is a function of the shocks, whether it is recoverable or not can

be assessed by looking at Pt|T. Nonetheless, there are two aspects to take note of. First, in

some instances, the star variable is modelled as a latent non-stationary process. In this case,

it should be the (appropriately) differenced series that is assessed for recovery. Second, it is

necessary to normalize the differenced star variable so that ϕ lies between 0 and 1. It is thus

more convenient to report the correlation between the smoothed and actual (differenced)

star variable, akin to ρ above. This is a highly useful and intuitive way of communicating

the degree to which a model can recover a star variable. Indeed, our view is that one should

always routinely report such a correlation measure in the same way as one reports confi-

9



dence intervals to gauge the level of statistical uncertainty surrounding point estimates of

parameters.

The correlation of the differenced star variable above depends on σ(ETε1t). Instead of

calculating this quantity from the smoothed shocks obtained from the data, it is more ap-

propriate to use its population counterpart, which can be found by simulating a long se-

quence of data from the model, applying the Kalman filter and smoother to obtain ETε1t

and then computing σ(ETε1t) based on the sample standard deviation from the smoothed

series ETε1t. The correlation ρ, and its counterpart for the differenced star variable, can thus

be thought of as a population quantity.

An alternative way to assess the differences between the shocks estimated from the data

and the assumed model shocks was suggested by Plagborg-Møller and Wolf (2022); namely

the R2 from the population regression of the model shock ε1t against the estimated smoothed

shock ETε1t. An R2 of zero means there is no correlation between them, while an R2 of unity

means that one can perfectly recover the model shock ε1t from ETε1t. An appealing aspect of

all these approaches is that they generalize to non-linear models where the standard linear

Gaussian Kalman filter cannot be applied, provided that an alternative (non-linear) filter is

available to produce ETε1t.

Although we have abstracted from this, note that the estimated shocks can be correlated

for reasons other than the system being short, such as misspecification. Pagan and Robinson

(2022) present an indirect inference approach for assessing if the correlation in the estimated

shocks aligns with what was assumed by the model).

2.4 Consequences of shocks not being recoverable

The primary message of this paper is that if a star variable is modelled as a function of

unrecoverable shocks, then the star variable itself cannot be recovered from the data.
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There are various other consequences of excess shocks that can hinder our ability to in-

terpret the economy through a model. These are discussed in Pagan and Robinson (2022).

Of note here is that variance and variable decompositions relate the data to the estimated shocks.

When shocks are recoverable, and they have been assumed to be uncorrelated, the variance

of the data will equal the sum of the variances of the shocks. If, on the other hand, excess

shocks exist, then at least some of these estimated shocks will be correlated, counter to the

assumption underlying variance decompositions. Indeed, in models frequently used for es-

timating stars, the relationship between smoothed shocks is not a simple correlation but a

complex dynamic one, making it difficult to assess the economic importance of changes in

the star variables.

It is possible to compute the variance decomposition of ζt with respect to the εt, as is sug-

gested in Plagborg-Møller and Wolf (2022). This, however, is not a variance decomposition

of the data, but rather of what the assumed model and auxiliary assumptions imply. In an

exactly identified SVAR that has no excess shocks, these are the same, but this is not true in

cases with short systems.

3 Applications Aimed at Recovering Stars

To illustrate recoverability issues, we begin with a simple UC model which aims to recover

potential output from the Hodrick Prescott (1997) filter. We then move on to the models

of Laubach and Williams (2003) and their subsequent updates, Holston et al. (2017) and

(2023), which aim to estimate the neutral real rate. Finally, we look at a model that builds

upon Laubach and Williams (2003), namely that of McCririck and Rees (2017), but which

estimates three stars simultaneously: the NAIRU, the neutral real rate, and potential output.

In all of these cases, there are problems with recovering the star variables, particularly the

neutral real rate.
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3.1 Recovering Potential Output from the HP Filter

One fundamental star variable of interest is potential output. It is primarily used to con-

struct the output gap, which is a measure of slack in the economy. In the typical setting,

potential output yp
t is driven by permanent shocks ε1t, while the output gap yc

t is assumed

to be stationary, and thus can only be a function of transitory shocks ε2t. There are many

alternative specifications of these two components.

A popular one due to Hodrick and Prescott (1997) (HP) can be expressed as a UC model

taking the form:3

yt = yp
t + yc

t (9a)

∆2yp
t = σpε1t (9b)

yc
t = σcε2t, (9c)

where ε1t and ε2t are uncorrelated standard normal disturbances. As shown in Pagan and

Robinson (2022), the estimated smoothed permanent shocks ETε1t and the estimated smoothed

output gap shocks ETε2t are dynamically correlated via the identity:

(1 − 2L + L2)ETε1t = (1/λ)ETε2t, (10)

where λ is the smoothing parameter of the HP filter (commonly set to 1,600 for quarterly

macroeconomic data).4 This dynamic correlation via the identity in (10) makes it impossible

to disentangle the two different shocks ε1t (permanent) and ε2t (transitory) assumed to hold

in the theoretical model in (9) when using their smoothed estimates.

3See Harvey and Jaeger (1993).
4Note that

√
λ = σc/σp is the (inverse) signal-to-noise ratio parameter, where it is further common to assume

that σc is equal to unity, so that σp = 1/40.
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3.2 Recovering the Neutral Real Rate - Laubach and Williams (2003)

One the most influential models of the neutral real rate r∗t of the past two decades is that

of Laubach and Williams (2003, LW). There exist numerous alternative and/or extended

versions of the LW model in the literature, and these are widely used at central banks and

other policy institutions. The LW model consists of the following equations:

ỹt = α1ỹt−1 + α2ỹt−2 +
ar

2

2∑
i=1

(rt−i − r∗t−i) + σ1ε1t (11a)

πt = B(L)πt−1 + bI(π
I
t − πt) + bo(π

o
t−1 − πt−1) + byỹt−1 + σ2ε2t (11b)

∆zt = σ3ε3t (11c)

∆y∗t = gt−1 + σ4ε4t (11d)

∆gt = σ5ε5t (11e)

r∗t = c4gt + zt, (11f)

where ỹt = (yt − y∗t ) is the output gap, yt is log GDP, y∗t is potential GDP, rt is a real interest

rate, r∗t is the neutral real rate, and πt, π I
t and πo

t are various measures of inflation. There are

evolving processes for the trend growth of GDP gt, and ‘other determinants’ zt, which affect

r∗t . There are a total of five shocks {σiεit}5
i=1 with standard deviations {σi}5

i=1, and the error

terms {εit}5
i=1 have unit variances. While the focus of LW is on estimating r∗t , trend growth

gt is also estimated in the model.

In order to assess recoverability as defined by Chahrour and Jurado (2022), we follow

the approach of Pagan and Robinson (2022) and write LW’s model in (11) in SSF so that all

observables are contained in ζt on the LHS of (1), and all shocks and remaining latent states

are collected in the state vector st. The measurement equations are:

ζ1t = y∗t − α1y∗t−1 − α2y∗t−2 +
ar

2

2∑
i=1

r∗t−i + σ1ε1t, (12)
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ζ2t = byy∗t−1 + σ2ε2t, (13)

and the relevant state dynamics are given by:

∆y∗t = gt−1 + σ4ε4t (14)

∆gt = σ5ε5t (15)

∆r∗t = c4σ5ε5t + σ3ε3t. (16)

The state vector consists of y∗t , y∗t−1, gt, r∗t , r∗t−1, and the five shocks {εit}5
i=1 to be able to

assess shock recovery. The LHS observable part of ζt consists of:

yt − α1yt−1 − α2yt−2 +
ar

2

2∑
i=1

rt−i = ζ1t (17)

πt − B(L)πt−1 − bI(π
I
t − πt)− bo(π

o
t−1 − πt−1)− byyt−1 = ζ2t. (18)

All relevant parameter estimates are taken from LW and are reported in Appendix A for

convenience.

Note here that the SSF corresponding to LW’s structural model has five shocks, but only

two observed variables. This means that it will not be possible to recover more than two unique

shocks from this model. These could be linear combinations of all five shocks in the model,

which is often termed ”packages of shocks”, rather than any one of the five shocks in LW’s

model.

Given the SSF, we can determine which shocks are likely to be recoverable and which

ones are not. Following again Pagan and Robinson (2022), we compute the steady state

covariance matrix corresponding to the state vector containing the five shocks of interest,

which we denote by P∗
t|T. A shock will be recoverable from the model if the diagonal element
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of P∗
t|T contains a zero entry, and will be unrecoverable if it is equal to unity. For LW’s model,

the following values for diag(P∗
t|T) (corresponding to the five shocks {εit}5

i=1) are obtained:

diag(P∗
t|T) =

[
.71 .02 .98 .36 .94

]
. (19)

It is clear from equation (19) that the shock belonging to ‘other determinants’ ε3t and the trend

growth shock ε5t cannot be recovered from the LW model.5 Note from equation (16) that

these two shocks define the neutral rate. Hence, the neutral rate itself cannot be recovered

from this model. In fact, the correlation between the smoothed estimate of the change in the

neutral real rate and its true value is only 0.22.6 This, we believe, is useful information for

any policymaker considering using this model, distinct from that in the confidence intervals

reflecting statistical uncertainty.7

A direct consequence of the lack of recoverability in LW’s model is that the smoothed

shocks of the ∆y∗t , ∆gt and ∆zt equations given in (11d), (11e) and (11c) are related through

an identity. That is, defining ηit = σiεit, this identity involves the smoothed estimates of the

trend growth shock ∆ETη5t, the ‘other determinants’ shock ∆ETη3t, and the trend shock ETη4t:

∆ETη5t = 0.107∆ETη3t − 0.028ETη4t. (20)

Therefore, LW’s estimated model cannot distinguish which shocks are driving the real neu-

tral interest rate r∗t .

Holston, Laubach and Williams (2017, HLW) provide an updated version of the origi-

nal LW model using a somewhat different formulation of the Phillips curve equation (11b)

5The cost push shock ε2t, on the other hand, does seem to be recoverable.
6The correlation is calculated as

ρ =
Var(ET∆r∗t ) + Var(∆r∗t )− ϕ

2σ(ET∆r∗t )σ(∆r∗t )
,

where Var(∆r∗t ) = c242σ2
5 + σ2

3 , σ(∆r∗t ) ≡
√

Var(∆r∗t ), and Var(ET∆r∗t ) is found through simulation and appli-
cation of the Kalman filter and smoother to the simulated data.

7ϕ for the smoothed standardized change in the neutral real rate is 0.95.
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estimated over a longer sample period, and one might ask whether recoverability in HLW

improves over LW. Examining again the steady state covariance matrix corresponding to the

state vector it is clear that this is not the case. The diag(P∗
t|T) terms are shown below:8

diag(P∗
t|T) =

[
.72 .02 .99 .30 .97

]
,

suggesting that the lack of recoverability of the neutral rate is unchanged. Indeed, the cor-

relation for the estimated change in the neutral rate with the actual is 0.14.

From the smoothed states we can further establish the following two identities:9

ET∆r∗t = ETη5t + ETη3t, (21)

and

ET∆r∗t = ET∆r∗t−1 − .0495ETη1t + .0003ETη2t

− .0037ETη4t + .0231ETη1t−1 − .0078ETη4t−1. (22)

These show that whatever ET∆r∗t is measuring can be equally well explained by either (21)

or (22). The latter involves a dynamic combination of smoothed demand, technology and

Phillips curve shocks, while the former has smoothed values of the shocks meant to explain

the neutral real rate. Consequently, the presence of a short system creates interpretation

difficulties.

Due to the impact of COVID-19 on the variables in HLW’s model, Holston et al. (2023)

modify the specification in HLW by allowing potential output to be impacted by govern-

8For the sake of brevity and to avoid repetition, the equations of the HLW model are not reproduced here but
are readily available from Buncic (2022). The parameter estimates of HLW’s model for the U.S. are also taken
from Table 3 in Buncic (2022), and are reported once again in Appendix A of this paper.

9η5t has been multiplied by 4, reflecting that gt is annualized.
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ment policy responses, which they measure using the Oxford policy tracker (Hale et al.,

2021), and they allow the variance of the shocks to temporarily increase (similar to Lenza

and Primiceri, 2022). Using the parameter estimates from the post COVID-19 version of

HLW, once again we find that the shocks driving the neutral rate cannot be recovered, as

diag(P∗
t|T) for the five shocks yields:

diag(P∗
t|T) =

[
.55 .02 .47 .97 .99

]
.

Moreover, the correlation of the estimated change in the neutral rate with the actual remains

low (0.17).

In summary, in all three variants of the Laubach and Williams (2003) model it is not pos-

sible to recover r∗t from the data. This message can easily be communicated to policymakers

using the correlation coefficient between the value implied by the model and the estimate

from the data, which is never above 0.22.

To give one example of why this outcome will be an issue, consider the neutral real rate

evolving as ∆r∗t = σεt. Then the estimated neutral rate evolves as ET∆r∗t =σETεt. Suppose,

for example, that there is a zero correlation between εt and ETεt. Now the model implies that

rt and r∗t are co-integrated, so one might be led to plot rt against
∑t

i=1 ET∆r∗i . It could well

look as if one tracks the other but that would be a classic example of a spurious relationship;

that is, the visual tracking can look close even though there is no actual relationship, simply

because of the I(1) property of both series.

3.3 Recovering the Neutral Real Rate and the NAIRU - McCririck and

Rees (2017)

McCririck and Rees (2017, MR) is effectively an extension of LW’s model, adding an equation

for Okun’s law to enable the determination of a number of macroeconomic stars. These are:
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growth in potential GDP, the NAIRU, and the neutral real interest rate, denoted by gt, u∗
t

and r∗t , respectively. The model takes the following form:10

ỹt = α1ỹt−1 + α2ỹt−2 −
ar

2

2∑
i=1

(rt−i − r∗t−i) + σ1ε1t (23)

πt = (1 − β1)π
e
t +

β1

3

3∑
i=1

πt−i + β2(ut−1 − u∗
t−1) + σ2ε2t (24)

∆zt = σ3ε3t, (25)

∆y∗t = gt + σ4ε4t (26)

∆gt = σ5ε5t (27)

∆u∗
t = σ6ε6t (28)

ut = u∗
t + β(.4ỹt + .3ỹt−1 + .2ỹt−2 + .1ỹt−3) + σ7ε7t (29)

r∗t = 4gt + zt, (30)

where ỹt = (yt − y∗t ) is the output gap, yt is log GDP, y∗t is potential GDP, rt is the real interest

rate, r∗t the neutral real rate, ut is the unemployment rate and u∗
t the NAIRU, πt is inflation

and πe
t is measured expected inflation.

In MR’s model, there are three observables — output growth, inflation and the unem-

ployment rate — and seven shocks, so again the full set of seven shocks cannot be recov-

ered. Casting it in a State Space Form similar to that used for LW in Section 3.2, and using

the posterior means reported in Table A2 of their paper (also in Appendix A of this paper),

we find the following diagonal elements of P∗
t|T:

diag(P∗
t|T) =

[
.55 .03 .98 .24 .96 .49 .98

]
. (31)

10Note that in MR, gt rather than gt−1 is in the potential GDP growth equation, and the sign of the interest
rate variables in the IS equation has changed. Also, for ease of comparability, we use the shock numbering
{σiεit}7

i=1 as in LW, rather than the labelling used in MR.
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So, while there are issues in recovering the NAIRU shock ε6t, the biggest concern is still

the recovery of the neutral rate, since the diag(P∗
t|T) values corresponding to the two shocks

that define r∗t (ε3t and ε5t) are still indicating a lack of recoverability. A dynamic correlation

between the smoothed estimates of ε5t and several of the other shocks is also apparent.

Therefore, giving these shocks macroeconomic names or labels, and understanding what is

driving the estimates of r∗t , difficult.11 The correlation of the estimated and actual neutral

rate remains low (0.19).

4 Star Wars: Is there a Better Way to Recover Stars?

Even though one cannot recover stars from the models with excess shocks described above,

perhaps one can get closer by using a different structural representation or filter. In the

context of our metaphor of stars being used as a guide in a journey, it might be possible to

think of this strategy as devising a better star map in order to get a more precise view of the

location of the stars. To investigate this we consider two different structural models. The

first introduces an explicit interest rate (or policy) rule to the LW model; something that was

noticeably absent. The second model has both a monetary, as well as an interest rate rule in

it, and was recently proposed for estimating neutral real rates by Schmidt-Grohe and Uribe

(2022).

Instead of a different structural model one might get a clearer view of the stars with a

different telescope. In particular one might define the star variable via a Beveridge-Nelson

(1981, BN) decomposition and we consider two applications of this type. The first was

recently advocated by Morley, Tran and Wong (MTW, 2023), and a second by Lubik and

Matthes (2015, LM). The latter employ a finite-horizon version of the BN decomposition

linked to a TVP VAR model for variables related to the star.
11The identity ETη1t = −ET∆η1t−1 − 456.333ET∆η5t−1 − 3.771ETη4t−2 exists.
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4.1 Endogenous interest rates: can this change the outcome?

In the above applications involving the LW model, the policy rate was assumed to be ex-

ogenous, i.e., there was no equation to explain its evolution, such as a standard Taylor rule

commonly used in macroeconomic models. As Pagan and Wickens (2022) observed, this

means that the LW model has some undesirable features.

To see some of these undesirable features, it is useful to consider the time-series proper-

ties of the series implied by the LW model. By definition, r∗t is an integrated process of order

one, I(1) henceforth, since both gt and zt are I(1) processes. Because there is no equation

for rt in LW, there is no mechanism in place to ensure that r∗t and rt co-integrate. If they do

not co-integrate, then both the output gap, ỹt, and inflation πt will be I(1).12 Since the goal

of many central banks is to stabilize inflation, it is difficult to see how this can be achieved

when inflation is allowed to follow an I(1) process and there is no control rule to make it

I(0). A simple way to avoid this issue is to add a monetary rule to the LW model.

This can be examined with the MR model. As the latter was utilized in the MARTIN

policy model of the Reserve Bank Australia (see Ballantyne et al., 2020), it is natural to adopt

their nominal interest rate rule:

it = .7it−1 + .3(r∗t + πt − π̄ − 2(ut − u∗
t ))− ∆2ut + 1.19ε8t.

where π̄ denotes the inflation target. This implies that the real interest rate rt would be:

rt = .7rt−1 − .7∆πt + .3r∗t + .3π̄ − .6(ut − u∗
t )− ∆2ut + 1.19ε8t.

It is important to note that we have both an additional observed variable and an additional

monetary policy shock ε8t.

12Of course the model implies that y∗t is I(2), so that yt will be I(2) as well.
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So there are now four observed variables and eight shocks, again implying a short sys-

tem, meaning that not all shocks will be recoverable. This is seen by computing

diag(P∗
t|T) =

[
.54 .02 .96 .23 .95 .49 .76 .05

]
. (32)

Recall that the neutral real interest rate in this model is driven by the innovations to ∆zt

(ε3t), and technology growth shock ε5t. The relevant entries of diag(P∗
t|T) are 0.96 and 0.95.

Evidently, these are little changed from those in (31) at 0.98 and and 0.96. Therefore, adding

a policy rule does not appear to alter the lack of recoverability of the neutral real interest

rate.

4.2 New Structural Models - Schmitt-Grohe and Uribe (2022)

Schmitt-Grohe and Uribe (2022, SGU) present a new structural model for estimating the neu-

tral real rate. The model assumes that the log level of per capita output yt is driven by two

permanent stochastic components, xt and xr
t , which represent technology and non-monetary

factors affecting the real interest rate. Inflation πt is I(1) and its permanent component is

the nominal inflation target. Lastly, the nominal interest rate is I(1), and it is driven by two

permanent components — the inflation target and the non-monetary real rate permanent

component. Denoting the transitory (gap) components in these variables with a tilde, these

can be expressed as:

ỹt = yt − xt − δxr
t

π̃t = πt − xm
t

ı̃t = it − (1 + α)xm
t − xr

t .
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The neutral real rate is taken to be a combination of the permanent components driving

inflation, xm
t , and xr

t , although in their final model they set α = 0 producing

r∗t = xr
t .

This is different to LW’s natural rate specification in equation (11f), which takes the form:

r∗t = c4gt + zt.

Thus, in LW r∗t responds to growth in potential GDP (∆gt) coming from technology, as well

as to an ”other” real non-monetary shock, ∆zt. In contrast, the SGU specification has no role

for technology shocks to affect r∗t . Therefore, SGU’s model is rather different to LW’s.

To analyze the properties of SGU’s model, we define Φt =
[

ỹt π̃t ı̃t

]′ and ξt =[
∆xm

t τm
t ∆xt τt ∆xr

t

]′, where τm
t and τt are stationary monetary and real shocks. Then

the dynamics for the gaps Φt are described by the following Vector AutoRegression (VAR)

equation:

Φt = BΦt−1 + Cξt,

while the observation equations are:

∆yt = ∆ỹt + ∆xt + δ∆xr
t + σyε

y
t (33)

∆πt = ∆π̃t + ∆xm
t + σπεπ

t (34)

∆it = ∆ı̃t + (1 + α)∆xm
t + ∆xr

t + σiε
i
t, (35)

where ε
y
t , επ

t and εi
t are measurement errors. As the observed variables are first differences,

these measurement error shocks will have a permanent impact. Notice that even without

the addition of measurement errors, the system is short, having three observables and five
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shocks.

The shocks are assumed to evolve as AR(1) processes:

∆xm
t = ρ1∆xm

t−1 + σ1ε1t

τm
t = ρ2τm

t−1 + σ2ε2t

∆xt = ρ3∆xt−1 + σ3ε3t

τt = ρ4τt−1 + σ4ε4t

∆xr
t = ρ5∆xr

t−1 + σ5ε5t. (36)

SGU estimate the system parameters by Bayesian methods. Some of the entries in C are fixed

at values needed for identification of the parameters. The posterior means of the parameters

are provided in the Appendix.

It should be clear that, to recover r∗t , one needs to be able to recover ε5t in (36). Including

the measurement errors, there are eight shocks and three observed variables, which means

that we can only recover three shocks.13 The last eight entries of the diagonal of the P∗
t|T

matrix are:

diag(P∗
t|T) =

[
.81 .56 .59 .56 .16 .91 .74 .67

]
. (37)

From (37) it appears that only the neutral real rate shock ε5t might be recovered, as the value

of .16 could be viewed as close to zero.

One might ask here how recovery of the real rate shock changes with the sensitivity of

the output gap to it. This is captured by the parameter δ in (33) as it’s value determines how

important technology shocks are relative to ”other” real shocks.14 At the extreme, when

δ = 0, a much higher value for P∗
t|T of .83 is found for ε5t, and that would suggest that the

13There are 16 states in total consisting of ∆xm
t , zm

t , ∆xt, zt, ∆xr
t , ỹt, π̃t, ı̃t plus the eight innovations{

{εit}5
i=1 , ε

y
t , επ

t , εi
t
}

.
14In SGU’s paper, the posterior median of δ is 8.6, so there is little difference between that value, and the
posterior mean value which we use (8.3292).
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shock cannot be recovered. This points to a fundamental role for δ in the recovery of shocks

in this model. To examine this more closely take the equation for the output gap:

ỹt = b11ỹt−1 + b12π̃t−1 + b13 ı̃t−1 + c11∆xm
t

+ c13∆xt + c14zt + c15∆xr
t .

There is a measurement equation involving observed output growth ∆yt that is given by:

∆yt = (b11 − 1)ỹt−1 + b12π̃t−1 + b13 ı̃t−1 + c11∆xm
t

+ c13∆xt + c14zt + (c15 + δ)∆xr
t + σyε

y
t

= ηt + (c15 + δ)∆xr
t .

Suppose now that ρ5 = 0 in equation (36). Then, ηt is uncorrelated with ∆xr
t . Moreover,

δ does not affect the variance of this latter variable. Hence the variance of ∆yt would vary

directly with δ, once all other parameters are set (e.g. to the posterior mean). This gives

rise to two interesting observations. First, the posterior mean of c15 is very small (−.0051).

If it was zero, then the model variance of ∆yt will depend on δ2. This may explain why

SGU found that there was some evidence of counter-intuitive negative values for δ. Indeed,

setting δ = 8.3292 (the posterior mean) produces standard deviations of ∆yt, ∆pt and ∆it of

4.67, 1.63 and 1.32, whereas putting δ = −8.3292 we similarly get 4.65, 1.63 and 1.32.

Secondly, the fraction of the variance of ∆yt explained by the real rate shock ε5t will

rise as δ rises. Thus, when δ = 8.3292 we find that nearly 80% of the variation in GDP

growth is due to neutral real rate shocks. This appears to be rather high, since these are

shocks that, as Schmitt-Grohe and Uribe (2022, p. 4) write: “could stem from, for example,

secular variations in demographic variables, exogenous changes in subjective discount rates, or in

other factors determining the domestic or external willingness to save”. To reduce this influence
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it is necessary to reduce the magnitude of δ. Indeed, if δ = 2, the real neutral rate shocks

explain 18% of output growth and, with that value, the diag(P∗
t|T) entry for the fifth shock

ε5t is .71, indicating that it cannot be recovered. Clearly, the issue here is whether we have

strong opinions about the likelihood of these ”other” real shocks driving so much of growth,

while technology shocks determine so little, which is what a value of δ = 8.3292 implies.

Why does one get such a high δ estimate from the model? Fundamentally, δ is a free

parameter that enables the model to better match the data on output growth. To see this, note

that the standard deviation of GDP growth is 4.89 in the empirical data. Setting δ = 8.3292

leads to a model based value of the standard deviation of GDP of 4.67, and this evidently

matches the data rather well. If instead, δ = 2, there is a standard deviation of GDP growth

of 2.37 — a rather poor match. Thus, as δ rises, a larger proportion of output growth is

accounted for by the real neutral rate shock, making recovery of that shock easier from the

data.

4.3 A Different Telescope - The Beveridge-Nelson Filter

The Beveridge-Nelson (BN) decomposition has been used in several ways to estimate stars.

Morley et al. (2023, MTW) is a recent approach. They define the star variable as the perma-

nent component of a series found with the BN decomposition. This is a sensible proposal,

but there are possible short system issues which we investigate in the first sub-section that

follows below. An earlier proposal using BN was Lubik and Matthes (2015, LM) who esti-

mate a simple TVP-VAR for three variables to find the neutral real rate. They deviate from

the standard BN decomposition by working with a time horizon of five years rather than an

infinite one when defining the permanent component as the ‘long-run’ forecast. Again, there

are short system issues that we cover.
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4.3.1 The MTW (2023) BN Approach

MTW’s strategy consists of three steps to estimate the star variable of interest, which is the

real neutral rate r∗t . Unlike other studies, MTW treat the real rate of interest rt as latent and

define the observable real rate as r̃t = rt + vm1t, where vm1t is an I(0) measurement error,

uncorrelated with rt.15 There are other observable variables in the system. To briefly sum-

marize the MTW approach, we use the data generating process of their simulation example

in Section 3.3, which contains one additional observable variable x̃t that is similarly related

to xt via measurement error vm2t.

First, an assumption about the behaviour of the latent variables rt and xt is made. In

their simulations, these variables follow a VAR(1) of the form:

 ∆rt

∆xt


︸ ︷︷ ︸

∆zt

=

 0 −.05

0 .95


︸ ︷︷ ︸

A

 ∆rt−1

∆xt−1


︸ ︷︷ ︸

∆zt−1

+

 v1t

v2t


︸ ︷︷ ︸

vt

∆zt = A∆zt−1 + vt, (38)

where

 v1t

v2t


︸ ︷︷ ︸

vt

∼ N

( 0

0

 ,

 .1125 .1

.1 .1


︸ ︷︷ ︸

V

)
. (39)

The BN definition of the permanent components corresponding to (38), denoted with a su-

15It is unclear why the measurement error is on the level of rt, rather than on the growth rate ∆rt, since it
would become less and less important as the sample size grows. Nonetheless, the same analysis that we
provide below would still apply if it was on ∆rt.
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perscript p, is given by:

∆zp
t = (I − A)−1vt (40) ∆rp

t

∆xp
t

 =

 1 .05

0 .05


−1  v1t

v2t



=

 1 −1

0 20


 v1t

v2t

 ,

yielding the individual equations:

∆rp
t = v1t − v2t (41a)

∆xp
t = 20v2t. (41b)

The relations in (41) are the permanent components of the (multivariate) BN decomposition

of ∆zt, where ∆rp
t in (41a) is the BN estimate of ∆r∗t .

In their second step, because r̃t and x̃t are observables and rt and xt are not, all the vari-

ables are connected by measurement errors specified as vmt =
√

0.05 vt, where vt is defined

in (39). This leads to the system:

∆r̃t = ∆rt + ∆vm1t

∆x̃t = ∆xt + ∆vm2t,

which implies

∆z̃t = ∆zt + ∆vmt

= (I − AL)−1vt + ∆vmt.

27



Consequently, the BN estimate of the permanent component in terms of observables ∆z̃t is:

∆z̃p
t = (I − A)−1vt. (42)

Comparing (42) to (40), one can see that the shocks driving the permanent components of z̃t

and zt are the same.

MTW assume that the researcher mistakenly lets ∆r̃t and ∆x̃t follow a VAR(1) process, as

was true of ∆rt and ∆xt, when getting a preliminary BN estimate of the permanent compo-

nent r∗t .16 This ‘preliminary BN’ estimate ∆r̃∗t is given by:

∆r̃∗t = 1.06ṽ1t − .949ṽ2t. (43)

Note here that there is serial correlation in ∆r̃∗t (its first order auto-correlation coefficient is

−.15).

Finally, since ∆r∗t = v1t − v2t (the permanent component in (41a) from the VAR(1) speci-

fication) is a white noise process, and ∆r̃∗t in (43) is not, MTW proceed to find an estimator

of ∆r∗t in the third step which has that property. They describe this as ‘robust to misspeci-

fication’, where the misspecification term refers to the presence of measurement error. To

produce their ‘robust’ estimator of ∆r∗t (∆r̂∗t ), they assume an AutoRegressive Moving Aver-

age (ARMA) process for ∆r̃∗t , and then derive the new estimate ∆r̂∗t from the BN solution for

that process. Fitting an ARMA(1, 2) model to ∆r̃∗t gives:

∆r̃∗t = .377∆r̃∗t−1 + ωt − .620ωt−1 + .071ωt−2,

16The VAR(1) coefficient estimates are inconsistent since ∆z̃t is a Vector Autoregressive Moving Average
(VARMA) process, and not a VAR. To find the large sample estimates of the VAR(1) coefficients, we simu-
late 50,000 observations from their VARMA model and fit a VAR(1) to the simulated data. This gives:

∆r̃t = −.043∆r̃t−1 − .049∆x̃t−1 + ṽ1t

∆x̃t = −.112∆r̃t−1 + .945∆x̃t−1 + ṽ2t.
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where ωt is white noise. MTW then define the robust estimate of the BN permanent com-

ponent as ∆r̂∗t = 1−.620+.071
1−.377 ω̂t = .72ω̂t, and its standard deviation is .72 × .152 = .11. By

construction, this approach produces an estimate with the property that ∆r̂∗t is white noise.

However, ∆r̂∗t is not ∆r∗t . The correct BN permanent shock is v1t − v2t, which has a standard

deviation of .11. Regressing this against ω̂t gives a recovery R2 of .61. This illustrates that

while MTW is more successful than Laubach and Williams (2003) and its related approaches,

one cannot recover the actual permanent shock with this strategy.

For comparison, a regression of the correct BN permanent shock against the preliminary

value ∆r̃∗t yields an R2 of .58, and this preliminary value is more volatile (its standard devia-

tion is .157). This highlights that their correction improves the estimate of the variance of the

correct BN permanent shock. However, its robustness is limited to producing an estimate

for the change in the real neutral rate which is white noise and it does not recover ∆r∗t .

To understand why this is the case it is useful to find what it is that determines the

shock driving it, ω̂t. Regressing ω̂t against current and ten lags of v1t, v2t, vm1t and vm2t

gives an R2 = .9998, i.e., this is virtually an identity. When the terms vm1t and vm2t are

excluded, the R2 drops to .7, indicating that the measurement errors are very informative

in the computation of ω̂t, and hence the robust estimate. Contrary to this, the true BN

decomposition involves only v1t − v2t, and therefore none of the lags or current values of

vm1t and vm2t provide useful information in predicting it. The importance of measurement

errors to the robust estimate ∆r∗t contributes to its recovery R2 of .61.

4.3.2 Recovering Stars using Time-Varying Parameter Models

Another way the BN decomposition has been used to estimate stars is to couple it with a

Time-Varying Parameter (TVP) model. As an example, consider the study by Lubik and

Matthes (2015, LM) who estimate a simple TVP-VAR for three variables: the growth rate of

real GDP, the PCE inflation rate, and the same real interest rate as in LW (2003). Their pro-
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posal is to measure the natural real rate of interest as the (conditional) long-horizon forecast

of the observed real rate, so it is a variant of the BN definition of the permanent component.

In their paper, the chosen time horizon is five years.

To illustrate the issues with such an approach, consider a simpler TVP model for a single

equation only, the real interest rate, consisting of:

rt = ρtrt−1 + σ1ε1t (44)

∆ρt = σ2ε2t, (45)

where ε1t and ε2t are mutually and serially uncorrelated. Suppose, for simplicity we define

r∗t as the prediction of rt two periods ahead (instead of the five used in LM), that is, r∗t =

Etrt+2. Then, to compute Etrt+2, we construct the following from the relations in (44) and

(45):

r∗t = Et(ρt+2rt+1 + σ1ε1t+2)

= Et[(ρt + σ2ε2t+2 + σ2ε2t+1)rt+1 + σ1ε1t+2]

= Et[(ρt + σ2ε2t+2 + σ2ε2t+1)(ρt+1rt + σ1ε1t+1)

= Et[(ρt + σ2ε2t+2 + σ2ε2t+1)(ρt + σ2ε2t+1)rt)]

= Et(ρ
2
t + σ2

2 )rt. (46)

Now, in the above all random variables observed at time t are known, but future ones are

unknown and are replaced by their unconditional means of zero, i.e., Et(ε1t+i) = 0, ∀i > 0.

It then needs to be recognized that, while rt is known, ρt is not, and the expectation must be

conditional on the data. The relation in (46) then leads to a star type of estimate of r∗t having

the form:

r∗t = Et(ρ
2
t )rt + σ2

2 rt.
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The problem then is that Et(ρ2
t ) is not computed by the Kalman filter. To proceed, Lubik and

Matthes (2015) did something different. For this case their approach would be to measure

r∗t as rtEt(ρt+2), and not Et(ρ2
t )rt + σ2

2 rt, as implied by the TVP model.

More generally, in any TVP VAR there will be shocks that would drive the structural

equations and shocks that determine the evolution of the TVPs. So, there will be excess

shocks. Consequently there will be linear relations between at least some of the filtered

quantities, potentially making it again hard to know how to interpret the estimated r∗.

5 Common Model Features that can Obscure the Stars

We now turn to two more recent features of modern macroeconomic models that are widely

implemented, but which feature excess shocks and whose resulting lack of shock recovery

does not appear to be appreciated. As these hinder shock recovery, such features potentially

obscure the stars.

The first are news shocks. These were argued by Beaudry and Portier (2004 and 2006)

to be a major source of economic fluctuations. Subsequently, they have been included in

many DSGE models, particularly in the specification of technology shocks. Estimates of the

importance of news shocks differ dramatically; see, for example, Khan and Tsoukalas (2012)

and Christiano et al. (2014).

The second is stochastic volatility. This was initially included in models used to summa-

rize the data; a prominent macroeconomic example is the univariate model of U.S. inflation

by Stock and Watson (2007). More recently, SV has increasingly been included in models

which interpret the economy through shock estimates and impulse responses; see, for ex-

ample, the SVAR of Mumtaz and Zanetti (2013).
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5.1 News and the Role of Expectations

News shocks imply that the solution to the model is a VARMA rather than a VAR process.

In the first sub-section below, we show in a simple example that the news shock cannot be

recovered and explain why. Subsequently, we turn to examining a strategy which has been

applied for avoiding a short system by expanding the number of observables through the

utilization of published forecasts, and discuss some of its implications for the recovery of

stars.

5.1.1 Absorbing the News

Consider the following structural system for zt

zt = δzt−1 + ut (47)

ut = σ0ε0
t + σ1ε1

t−1. (48)

The shock ut is comprised of ε0
t , an unanticipated shock that is realized in period t, and

ε1
t−1, namely a news shock that is anticipated in period t − 1 to materialize in period t. This

formulation dates back at least to Beaudry and Portier (2004). It follows that

zt = δzt−1 + σ0ε0
t + σ1ε1

t−1

= δzt−1 + ωt + αωt−1,

where ωt is a white noise process with zero mean and variance σ2
ω. This makes zt an ARMA(1, 1)

and the parameters can be estimated (subject to identification checks). However,

σ0ε0
t + σ1ε1

t−1 = ωt + αωt−1,
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and so

ωt = (1 + αL)−1(σ0ε0
t + σ1ε1

t−1). (49)

As can be seen from (49), ωt will be a linear combination of all {ε0
i , ε1

i−1}t
i=1 and so the shock

that can be estimated, ωt, is neither ε0
t nor ε1

t−1.17 A consequence of this is that it is not

possible to find the separate contribution of the two shocks to the data variance, as explained

in Section 2.3. In line with the earlier discussion, these difficulties arise because there is a

single structural equation and thus only one observable, but there are two shocks that one is

trying to recover. The system is thus short, unless an extra observable can be found.

5.1.2 Expanding the Observables with Forecasts

The shock ε1
t−1 above is a forecast error due to news about yt at time t using information

at t − 1. It has been suggested that one might use forecasts of the variable yt from an out-

side source for this, and that constitutes an extra observable; see, for example, Hirose and

Kurozumi (2021). They use a small New-Keynesian (NK) model that has three variables:

output yt, inflation πt, and interest rates rt (each in log deviations from their respective

steady-state values).18 Each structural equation for these variables has its shocks governed

by the news structure above in (48), although Hirose and Kurozumi (2021) have news up to

five periods, rather than one. This results in a total of 18 shocks, with only three observables,

leading to a system that is (very) short. Hirose and Kurozumi (2021) utilize forecasts from

a real-time data set of the Federal Reserve Bank of Philadelphia as measures of expected

inflation, output growth and interest rates in order to alleviate the short system.

To illustrate what one might gain from this, we use the following simplified NK model

17This was pointed out by Nelson (1975); see also McDonald and Darroch (1983).
18See Section 3 on page 1446 in Hirose and Kurozumi (2021). The model here is somewhat simplified to make
the point.
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with news that has the structure in (48) below:

yt = ωjyt−1 + (1 − ωj)Et(yt+1)− τ(it − πt) + σ1ε1t + σ4ε4t−1 (50)

πt = γπt−1 + κyt + σ2ε2t

it = ϕrit−1 + (1 − ϕr)(ϕππt + ϕyyt) + σ3ε3t,

where ε1t, ε2t and ε3t are preference, cost-push and monetary shocks, respectively, and ε4t

is the news shock. There are 3 observables and 4 shocks, so the system is short. Using

parameter estimates for the NK model based on Hirose and Kurozumi (2021) (see Appendix

A) we find:19

diag(P∗
t|T) =

[
.22 0 0 .78

]
,

so that the fourth shock, the shock capturing news about the future, is not recoverable.

Nonetheless, two of the model shocks, ε2t and ε3t, are recoverable. Looking at the correlation

of these with either ETε1t or the news shock ETε4t, we find that they are close to zero, but

that the correlation between ETε1t and ETε4t is .39. One can thus find the joint contribution

of ε2t and ε3t to the volatility of the data on yt, πt and it, but one cannot determine the relative

or individual contributions of ETε1t and ETε4t.

Alternatively, if one has an observed forecast of yt+1, one might replace Et(yt+1) in (50)

with it to obtain the news shocks.20 Obviously, when estimating the model parameters this

would also be simplified as Et(yt+1) is then known. This strategy has been followed by

others such as Barsky and Sims (2012).21 Particularly noteworthy is Crump et al. (2019),

which provides a recent, comprehensive account of estimating the NAIRU. In the baseline

19To do this we simulate data from the NK model with the parameter values and then find the exact VAR
structure, i.e. the identity linking variables and generated shocks. This can then be placed in state space form.
The method is the same as used in Liu et al. (2018).
20Et(yt+1) will be a linear function of the shocks in the system which will include ε4t−1 so it provides another
structural equation whose dependent variable is observable when forecasts are used for it.
21Barsky and Sims (2012) use forecasts of GDP as the extra variable.
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specification of Crump et al. (2019), the unemployment rate is taken to evolve as ut = (ut −

u∗
t )+ zt + ūt, where u∗

t is the natural rate of unemployment and (ut − u∗
t ) the unemployment

gap. A secular trend in unemployment is ūt while zt is the deviation of the natural rate

from this secular trend. It is necessary to measure both ūt and u∗
t . The former is measured

using data on flows into and out of unemployment over time for six demographic groups.

The process involves a factor model with a common component. Although this model is

short, Pagan and Robinson (2022) observe that, if there were a large number of groups, one

could recover the factor, here ūt. For any finite number of groups, however, the system is

short. Subsequently for the measurement of the NAIRU the estimated ūt is treated as being

observed, and as is typically done (e.g. in McCririck and Rees 2017), a Phillips curve is

used to relate inflation to the unemployment gap, with the latter here assumed to follow an

exogenous AR(2) process, while zt follows an AR(1). There are now excess shocks in Crump

et al.’s system, and so the system is short.

A characteristic of Crump et al. (2019) is the careful handling of inflation expectations

in the Phillips curve, including the use of survey forecasts from professional forecasters, as

in Hirose and Kurozumi (2021). However, equating forecasts and expectations to eliminate

a short system in any model that incorporates a NAIRU would be making a questionable

assumption, as it has been shown in the past that the expectations of households and pro-

fessional forecasters differ (see, for example, Dräger et al., 2016). Crump et al. (2019) instead

allow for a measurement error between these survey expectations and the expectations in

the model, but then the system is short again, although the degree of recovery of the shocks

may be improved.22 We note here also that exploring further how forecasts and expectations

data can be used in the estimation of stars seems to be a productive area for future research.

22This is also done by Alichi et al. (2017).
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5.2 Stochastic Volatility (SV)

The second increasingly common model feature which results in a short system is the in-

tegration of an error term into the macroeconomic model that treats time varying volatility

as a stochastic volatility process. To see how this materializes, consider the following sim-

ple example. Suppose that there is a single variable and it has conditional volatility that is

specified to follow an SV process. This produces the following model:

yt = B1yt−1 + exp{.5ht}εt (51a)

ht = µ + βht−1 + ωt. (51b)

Although estimation of the parameters can be complex and is important in practice, let us

assume here that we have parameter estimates or know the true values as we have done

throughout the paper. Then, define:

ζt = yt − B1yt−1

⇔ ζ2
t = exp{ht}ε2

t ,

so that

log(ζ2
t ) = ht + log(ε2

t )

= µ + βht−1 + ωt + log(ε2
t ). (52)

Computing smoothed shocks gives an SSF form

log(ζ2
t )

D = µ + βETht−1 + ETωt + ET log(ε2
t ) (53)

ETht = µ + βEtht−1 + ETωt. (54)
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Because there is only one observable log(ζ2
t ) in (51), the system is short and both the shocks

εt and ωt cannot be recovered.23 Note here again that it has been assumed that parameters

are either known or estimates of them are available. The SSF has to hold — it is an implication

of the SV model. The inclusion of a SV process therefore can be problematic when the model

is used to interpret, rather than summarize, the data using the shocks, as is the case when

estimating stars.

Is there an alternative to the SV model? Yes, of course. Other major classes of models

for capturing conditional volatility, namely (E)GARCH (Bollerslev, 1986, and Nelson, 1991),

are not short and are well capable of capturing the same type of time varying volatility

behaviour in macroeconomic variables as the SV model.24 For example, one might use an

EGARCH model taking the form:

yt = B1yt−1 + exp{.5ht}εt

ht = µ + βht−1 + αε2
t−1,

and avoid recoverability issues introduced by an SV process error specification.

6 Eliminating Shocks: Smooth-Transition Models for a Star

Are there alternative ways to handle short systems when estimating stars? Pagan and Robin-

son (2022) canvassed the idea of adding in extra observables to short systems. The other al-

ternative considered was to delete shocks. One clearly does not want to do that if the shock

has some economic content, but if the sole purpose is to account for an exogenous process,

then there are other ways of handling that.

Consider, for example, the standard assumption that the NAIRU u∗
t evolves as an ex-

23This scenario is exactly the same as the one in Section 2.2, albeit with the second shock being log transformed.
24One might recall that Engle’s (1982) empirical application was for the modelling of U.K. inflation.
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ogenous I(1) process. Many adopt this formulation on the grounds that there have been

movements in the NAIRU. This then seems to provide a ”free lunch”, or more charitably, an

agnostic approach, as no stance needs to be taken on when these shifts took place, and how

the star variable changed between these shifts. Instead it is constantly changing over time.

As an alternative to that, one could specify a process for u∗
t that allows for a finite number

of changes. A simple approach would be that of Okimoto (2019), who uses a smooth transi-

tion model to describe the evolution of the star variable trend inflation π∗
t .25 With a sample

of T observations, the aim of this approach is to capture the evolution of the star as undergo-

ing a smooth transition from the value at the beginning of the sample µ1 to that at the end µ2

using a deterministic function that depends on (t/T).26 There are many such functions that

could be applied, one of which is the exponential function employed by Okimoto (2019):

π∗
t = µ1 + G(st; c, γ)(µ2 − µ1) (55)

G(st; c, γ) =
1

1 + exp(−γ(st − c))
, γ > 0

st ≡
t
T

.

A similar approach was used by Murphy (2020) in the context of Australian models, albeit

with a different transition function G(·) in (55).27 We believe that further analysis of the

approach of modelling star variables using smooth-transition models, such as evaluation

of their real-time reliability — akin to Orphanides and Van Norden (2002) for unobserved-

component models — is warranted to better understand their potential usefulness for policy.

25See the survey in van Dijk et al. (2002) on smooth-transition models.
26One could allow for knot points in the sample as well, just as one does with spline functions.
27Lye and McDonald (2021) has elements of this. Recently Gao et al. (2022) have proposed a related approach
for TVP SVAR models.
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7 Conclusion

Stars are frequently cited in speeches by central bank officials and the financial press when

addressing the appropriateness of the current policy stance. Moreover, estimates of stars are

routinely published by central banks and organizations such as the OECD in their Economic

Outlook report. Recently, authors from the World Bank have produced an extensive cross-

country database of stars such as the growth rate of potential output (see Kilic Celik et al.,

2023). In general, substantial resources are devoted to estimating stars, which highlights

their importance in the conduct of macroeconomic policies.

Federal Reserve Chairman Jerome H. Powell once commented that conventional wisdom

is that monetary policy involves navigating by stars like ships of the past, but shifting stars

makes that challenging (Powell, 2018). In that regard, Sablik (2018, p. 3) records that New

York Fed President John C. Williams (one of the authors of the LW model) bemoaning the

challenges of using the natural real rate as a guide for policy by saying: ‘As we have gotten

closer to the range of estimates of neutral what appeared to be a bright point of light is really a fuzzy

blur’. These comments illustrate some of the issues related to parameter uncertainty, shifts

in stars, and wide confidence intervals surrounding estimates of stars. They significantly

complicate the conduct of macroeconomic policy. And they are well known.

The point of this article is more fundamental. Drawing on the recent theoretical literature

on shock recovery, we simply ask whether the models used to estimate stars can in fact

recover the true star from the observed data, or nearly so. This would seem to be a minimal

desirable property of any model. We address this question in the most favorable setting

possible, namely, when the models used to measure the star variables are correctly specified

and all their parameters are known. In many cases, the answer to this question is no.

Understanding the limitations of models which play a critical role in the conduct of

macroeconomic policy is important. Whether a model can recover the variable it is intended
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to measure is paramount, yet it is not routinely discussed. Just as presenting confidence

intervals around stars is standard practice for demonstrating the statistical uncertainty sur-

rounding the estimates, the extent of recoverability of the star variable also needs to become

typical disclosure information. We have shown how this can be communicated simply as a

correlation between the estimated (first difference) in the star variable and its actual value,

which is easily calculated using the Kalman filter and smoother. This correlation should be

routinely reported alongside the star estimates to policymakers.

One conclusion from this paper is that our ability to navigate economic policy by the

stars is even more limited than we thought. A second is that re-thinking how star variables

are modelled more broadly could be promising, and we provide one possible account of

how that might be done. At present, star variables are generally handled as an exogenous

stochastic variable. This is a purely statistical approach and whether the model can recover

the star variable is ignored. More generally, there is a trend to incorporate greater flexi-

bility into macroeconomic models, frequently by introducing additional shocks, and these

inevitably lead to short systems. While the aim of providing a better description of the data

is admirable, it is necessary to recognize that this has limitations. Free lunches are rarely

available in econometrics.
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Dräger, L., Lamla, M. J. and D. Pfajfar (2016), “Are Survey Expectations Theory-Consistent? The
Role of Central Bank Communication and News,” European Economic Review, 85(C), 84-111.

Engle, R. F. (1982), “Autoregressive Conditional Heteroscedasticity with Estimates of the Variance
of United Kingdom Inflation,” Econometrica, 50, 987-1008.

Forni, M., L. Gambetti and L. Sala (2019), “Structural VARs and Noninvertible Macroeconomic
Models,” Journal of Applied Econometrics, 34, 221-246.

Gao, J., Peng, B. and Y. Yan (2022), “Nonparametric Estimation and Testing for Time-Varying
VAR Models,” Monash Econometrics and Business Statistics Working Papers, 3/22, Monash University,
Department of Econometrics and Business Statistics.

Hale, T., Angrist, N., Goldszmidt, R., Kira, B., Petherick, A., Phillips, T., Webster, S., Cameron-
Blake, E., Hallas, L., Majumdar, S. and H. Tatlow (2021), “A Global Panel Database of Pandemic
Policies (Oxford COVID-19 Government Response Tracker),” Nature Human Behaviour, 5(4), 529-538.

41



Hirose, Y. and T. Kurozumi (2021), “Identifying News Shocks with Forecast Data”,” Macroeco-
nomic Dynamics, 25, 1442-1471.

Hodrick, R. and E. C. Prescott (1997), “Post-war U.S. Business Cycles: A Descriptive Empirical
Investigation,” Journal of Money, Credit, and Banking, 29, 1-16.

Holston, K., T. Laubach and J. C. Williams (2017), “Measuring the Natural Rate of Interest: Inter-
national Trends and Determinants,” Journal of International Economics, 108 (Supplement 1), S59-S75.

Holston, K., T. Laubach and J. C. Williams (2023), “Measuring the Natural Rate of Interest After
COVID-19,” Mimeo, Federal Reserve Bank of New York.

Khan, H. and J. Tsoukalas (2012), “The Quantitative Importance of News Shocks in Estimated
DSGE Models,”Journal of Money, Credit and Banking, 44(8), 1535-1561.

Kilic Celik, S., M. A. Kose, F. Ohnsorge, and F. U. Ruch (2023), “Potential Growth: A Global
Database,” Policy Research Working Paper, 10354, World Bank, Washington, DC.

Laubach, T. and J. C. Williams (2003), “Measuring the Natural Rate of Interest,” Review of Eco-
nomics and Statistics, 85, 1063-1070.

Lenza, M. and G. E. Primiceri (2022), “How to Estimate a Vector Autoregression after March
2020,” Journal of Applied Econometrics, 37(4), 688-699.

Liu, X., A. R. Pagan and T. Robinson (2018), “Critically Assessing Estimated DSGE Models: A
Case Study of a Multi-sector Model,” The Economic Record, 94, 349-371.

Lubik, T.A. and C. Matthes (2015), “Calculating the Natural Rate of Interest: A Comparison of
Two Alternative Approaches,” Federal Reserve Bank of Richmond Economic Brief, 15-10.

Lye, J. N. and I. M. McDonald (2021), “Can Loss Aversion Shed Light on the Deflation Puzzle?”
Review of Keynesian Economics, 9(1), 11-42.

McCririck, R. and D. Rees (2017), “The Neutral Interest Rate,” Reserve Bank of Australia Bulletin,
September.

McDonald, J. and J. Darroch (1983), “Consistent Estimation of Equations with Composite Moving
Average Disturbance Terms,” Journal of Econometrics, 23, 253-267.

Morley J., T. D. Tran and B. Wong (2023), “A Simple Correction for Misspecification in Trend-Cycle
Decompositions with an Application to Estimating r*,” Journal of Business and Economic Statistics,
forthcoming.

Mumtaz. H. and F. Zanetti (2013), “The Impact of the Volatility of Monetary Policy Shocks,”Journal
of Money, Credit and Banking, 45(4), 535-558.

Murphy, C. W. (2020), “Decisions in Designing an Australian Macroeconomic Model,” Economic
Record, 96, 252-270

Nelson, C. R. (1975), “Rational Expectations and the Predictive Efficiency of Economic Models,”
Journal of Business, 43, 331-343.

Nelson, D. B. (1991), “Conditional Heteroskedasticity in Asset Returns: A New Approach,” Econo-
metrica, 59, 347-370.

Okimoto, T. (2019), “Trend Inflation and Monetary Policy Regimes in Japan,” Journal of Interna-
tional Money and Finance, 92(C), 137-152.

Orphanides, A. and S. van Norden (2002), “The Unreliability of Output-Gap Estimates in Real
Time,” The Review of Economics and Statistics, 84(4), 569-583.

42



Pagan, A. R. and T. Robinson (2022), “Excess Shocks Can Limit the Interpretation,” European
Economic Review, 145, 104-120.

Pagan, A. R. and M. Wickens (2022), “Checking if the Straitjacket Fits,” Essays in Honor of M.
Hashem Pesaran: Prediction and Macro Modeling, Advances in Econometrics, 43A, 271-292.

Plagborg-Møller, M. and C. K. Wolf (2022), “Instrumental Variable Identification of Dynamic Vari-
ance Decompositions,” Journal of Political Economy, 30, 2164-2220

Powell, J. H. (2018), “Opening Remarks: Monetary Policy in a Changing Economy”, a speech at
Federal Reserve Bank Kansas City, Changing Market Structures and Implications for Monetary Policy:
Economic Policy Symposium, Jackson Hole, Wyoming, August 23-25, 2018.

Sablik, T. (2018), “The Fault in R-Star”, Econ Focus, Federal Reserve Bank of Richmond, Fourth Quar-
ter 2018, 3-5.

Schmitt-Grohe, S. and M. Uribe (2022), “The Macroeconomic Consequences of Natural Rate Shocks:
An Empirical Investigation,” NBER Working Paper, 30337.

Sims, C. A. and T. A. Zha (2006), “Does Monetary Policy Generate Recessions?” Macroeconomic
Dynamics, 10(2), 231-272.

Staiger, D., J. H. Stock, and M. W. Watson (1997), “The NAIRU, Unemployment and Monetary
Policy,” Journal of Economic Perspectives, 11(1), 33-49.

Stock, J. H. and M. W. Watson (2007), “Why Has U.S. Inflation Become Harder to Forecast?,”
Journal of Money, Credit and Banking, 39(s1), 3-33.
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Appendix A: Parameter Values

Laubach and Williams (2003)

σ1 = .387, σ2 = .731, σ3 = .323, σ4 = .605, σ5 = .102

α1 = 1.51, α2 = −.57, by = .043, αr = −.098, c = 1.068.

LW give the sum of α1 + α2 and not α1, α2. The values here come from Table 3 of Buncic
(2022).

Holston, Laubach and Williams (2017)

The values here come from Table 3 of Buncic (2022).

σ1 = 0.3338 σ2 = 0.7862 σ3 = 0.1742 σ4 = 0.5739 σ5 = 0.1230

α1 = 1.5399 α2 = −0.5986 ar = −0.0679 bπ = 0.6708 by = 0.0756

Holston, Laubach and Williams (2023)

σ1 = 0.4516 σ2 = 0.7873 σ4 = 0.5000 σ5 = 0.1453 σ3 = 0.1181

α1 = 1.3872 α2 = −0.4507 ar = −0.0790 bπ = 0.6800 by = 0.0733

κ2020Q2−Q4 = 9.0326 κ2021 = 1.7908 κ2022 = 1.6760 c = 1.1283 ϕ = −0.0854,

where the κ terms capture the temporary increase in the shock variances and ϕ denotes the
coefficient on the Oxford COVID tracker.

McCririck, and Rees (2017)

These are the posterior mean values reported in Table A2 on page 17 of their paper.

σ1 = .32, σ2 = .80, σ3 = .34, σ4 = .55, σ5 = .05, σ6 = .15, σ7 = .07

α1 = 1.48, α2 = −.54, αr = .06, β1 = .41, β2 = −.33, β = .64.
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Schmitt-Grohe and Uribe (2022)

We thank Martin Uribe for providing these. We put α = 0 as we did not receive a posterior
mean value for that. The posterior median reported in the paper is very close to 0.

B =

 .2627 .0187 −.5031
.3129 .3292 −.1170
.2268 −.0977 .5048

 , C =

 −.0956 0 −.2603 1 −.0051
−.4892 0 .5632 .8727 .3651
1.3964 1.0 −.0309 .2579 −.2184


ρ1 = .2426, ρ2 = .3298, ρ3 = .2619, ρ4 = .4254, ρ5 = .3110

σ1 = .4824, σ2 = .6250, σ3 = 1.3624, σ4 = 1.0913, σ5 = .4723

δ = 8.3292, σy =
√

1.2304, σπ =
√

.4862, σi =
√

.3208.

Hirose and Kurozumi (2021)

Their model is more complex as it has news shocks in each of the three structural equa-
tions, more expectations, stochastically varying technology and an extra effect of growth on
inflation. Because of these differences the parameters are adjusted.

ωj = 0.6; τ = 0.4; σ1 = 2.66; σ4 = 1.3

γ = .8; κ = .2; σ2 = 1.4

ϕr = .7; ϕπ = 1.5; ϕy = .5; σ3 = .05
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