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1 Introduction

Counterfactual analysis has long been a feature of macroeconomics. Ques-
tions such as what would have been the effects on inflation or output during
the Depression if monetary, fiscal or wages policy had been different were
addressed by using early macroeconometric models. Initially this looked rel-
atively easy, as the variables to be varied were treated as exogenous, and
so one formulated a baseline model of the economy and then asked how
the solutions for output and inflation would vary under different values for
these exogenous variables. Complications emerged when the variables to be
modified were actually endogenous. For example, changing government ex-
penditure will mean either a change in the money supply or an interest rate,
depending on how it is financed, and then the issue is whether any effects
were due to the variation in the latter rather than the former variable. This
led to a lot of applied work in institutions such as central banks that in-
volved "fixes" for endogenous variables. It took some time to work out how
to do this using models with forward looking expectations. A solution which
emerged was to enforce the "fix" with the aid of anticipated shocks. When
the fix was applied to an endogenous variable, inversion algorithms were re-
quired to translate these into values for the anticipated shocks. Burgess et.
al. (2013) have an excellent discussion of this. Anticipated shocks are the
equivalent of "news shocks" in academic models, being shocks that are known
contemporaneously having been announced in the past.

Of course the approach above requires a fully specified model of the en-
dogenous variables and any expectations. It is interesting therefore that
McKay and Wolf (2023) (MW) seem to have circumvented that need by
describing a method for constructing counterfactual outcomes which they
summarize as "..We show that, in a general family of linearized structural
macroeconomic models, knowledge of the empirically estimable causal effects
of contemporaneous and news shocks to the prevailing policy rule is sufficient
to construct counterfactuals under alternative policy rules"(p 1696). There
are essentially two strands to this method. One defines a general family of
models - we will refer to this family as the MW family (MWF) - that coun-
terfactuals are to be performed on, and the other is that one can recover the



counterfactual when one knows the casual effects of contemporaneous and
news shocks from data. This MWF class is captured by their equation (6)
and it stipulates that monetary policies only operate via the interest rate
channel i.e. there are no lagged policy shocks in the system describing the
economy. They point out that there are standard DSGE models that fall
into this class. However, there are also models that are not in the class.
Whether the data being analyzed has been generated from a model in this
class becomes an issue that arises a number of times in the following sections.

Given this family of models MW distinguish between policy and non-
policy shocks. If the DGP of the data is being captured by those models,
they argue that any change in the policy rule which results in changes in the
impulse responses to a selected non-policy shock can be found by combin-
ing the "causal effects of contemporaneous and news shocks to the prevailing
policy rule". This insight is novel and unexpected. We provide an alternative
derivation of how to find these combination weights. This utilizes lag opera-
tors and is perhaps a little clearer than their derivation. Section 2 describes
it.

Essentially their method finds the weights by using the impulse responses
from the Structural Moving Average (SMA) that is associated with the mem-
ber of the MWF that generated the data. The latter is often referred to as
a baseline structural model. The SMA is driven by the structural shocks
of this baseline model. Section 3 sets out a simple two variable NK model
in inflation and an interest rate and treats it as the baseline model. This
model is a simplified version of what MW provide as their motivating exam-
ple. There is an associated SMA which provides impulse responses for the
structural policy and non-policy shocks. MW’s proposition that possession
of this information will enable the impulse responses for a non-policy shock
upon variables to be recovered under some counterfactual monetary rule is
found to hold.

The question we then ask is what are the implications of this theoretical
insight for empirical work? MW seem to suggest that their method is not
just of theoretical interest but can also be used for empirical work, and they
provide an example of this. This raises the issue of whether we can recover
the counterfactual without knowing the structural model that has future
expectations in it. To do so it is necessary to recover the impulse responses
to the structural shocks. This has to be done without knowing the form of
the baseline structural model. On this MW comment (p 1696) that "Using
standard time-series methods, she can estimate the causal effects of these
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policy shocks". Can this really be done? Using the data one can certainly
determine the autocovariance matrices for the model variables under the
baseline, and this will indicate the order of the Wold Moving Average (WMA)
process that would characterize the data generated from it. But is this enough
information to recover the SMA? The latter is needed in order to get the
impulse responses to the structural shocks so as to capture the counterfactual.

"Empirically estimable" in their statement seems to involve not attempt-
ing to estimate the SMA but to utilize some extra (off-model) information
and an alternative Impulse Recovery Process (IRP). One such process would
be Local Projections (LP). To perform the latter it is necessary to recover
the shocks whose impulse responses are required. Instead MW fit a SVAR
to all the observables and recover some shocks and impulse responses from
the SVAR. So there are two different IRP’s here and one will most likely get
different responses. Consequently, which should be chosen and how likely is
it that either IRP can recover the SMA shocks?

Section 3 looks at these questions with our simple two variable model and
asks if there is an IRP that will recover the SMA impulse responses when the
baseline structural model is not known. We first observe that in the baseline
model there are more shocks than observables. Specifically, there are 3 base-
line model shocks and two observables. The latter fact means that there are
only two Wold innovations, e;. Consequently, the three baseline model shocks
cannot be recovered from a knowledge of just two WMA innovations, unless
one imposes some restrictions upon the SMA, and that requires knowledge of
the baseline structural model. SVARs would not deliver the required shocks,
one reason being that the baseline structural model has a VARMA solution.
The latter form arises due to MW having "news" shocks in the baseline model
that is the DGP generating the data. This section also asks whether one can
recover the baseline shocks by extending the data set beyond that generated
by the baseline model. Under some strong assumptions the answer would be
in the affirmative, provided one used an IRP like LP. But we argue these are
questionable assumptions.

News shocks are of fundamental importance to MW’s method for cal-
culating counterfactuals as they are needed for MW’s theorems about the
ability to generate the counterfactual to hold. To see this we construct a
model where we replace the counterfactual policy of a stable interest rate in
our two variable model with an interest rate rule, in the same way as in one
of MW’s examples. This produces impulse responses of sixth rather than
first order and, in order to ensure that one can recover the counterfactual
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impulse response of interest, one needs five news shocks. The need for that
many news shocks arises from the fact that the order of the polynomials in
the lag operator describing the impulse responses is high, and there can be
no lags in the monetary policy shock in the structural model so as to keep it
in the MWF.

MW look at the issue of what one does if a large number of news shocks
are needed and there are not enough observables to allow them to be de-
termined. They propose a "robust counterfactual solution" that uses least
squares to find a "best" predictor of the counterfactual. In our two variable
model there are more shocks than one needs. Consequently, there is no need
for a robust solution, and all one needs to accurately construct the coun-
terfactual is knowledge of the SMA impulse responses. The problem is we
cannot plausibly find the latter, so a "robust" solution, while it deals with
robustness to the number of shocks, fails to answer the question of what one
does if one cannot recover the SMA impulse responses. If we don’t know
the latter we cannot recover the counterfactual, even if we have more than
enough shocks.

Section 4 examines some empirical work MW provide which exploits a
range of monetary policy shocks that have been constructed in the literature.
They place these in a recursive SVAR model, treating that as the IRP. We
look at whether this is likely to recover the shocks from the structural baseline
model that is the DGP, and find it seems very unlikely. Certainly the SVAR
solution they offer is most likely bettered by an LP approach.

Finally, in section 5 we move away from trying to find the impulse re-
sponses for the SMA and return to the question of whether the MW family of
models is broad enough to capture the responses that characterize the data.
To do this we work with a model that is a simple extension of the earlier one.
It features effects of monetary policy on variables that do not operate via the
interest rate channel. In the MWF there are only effects via that channel.
If this broader family produces the data then one can no longer recover the
counterfactual responses with their method. The impulse responses coming
from the non-interest rate channel seem plausible, and so they are being ex-
cluded by the MWF. This is quite separate from the problem described above
of trying to recover the impulse responses when the baseline model is in the
MWF. Section 6 concludes.



2 A Different Derivation

We will work with a simple two variable system consisting of inflation 7,
and an interest rate 7;. In terms of our later discussion nothing is different
for more than two variables. This will be like their "illustrative example",
where there is a monetary shock v;, a news shock n; and an oil price shock
g¢. Following MW the first two shocks will be termed "policy" shocks. We
will use the illustrative example throughout this paper. The relation between
inflation, the interest rate and the three shocks is captured by an SMA

m = A"(L)v,+ A" (L)n, + B(L)e, (1)
iv = C*(L)ve+C*™(L)ny + D(L)ey. (2)

The impulse responses are captured by the polynomials in the lag operator
L, A*(L) etc. The coefficients attached to the L’ are the j'th period ahead
impulse responses.

The SMA representation above comes from combining some baseline
structural model with a monetary rule. Following that it is envisaged that
there is a change to a different policy rule i.e. a counterfactual experiment.
To begin we take the alternative policy rule as stabilizing the interest rate
iy to a value 7 (one of their examples). Nothing depends on this value so we
put 7 = 0, as they do. Now assume that the impulse responses of m; to &;
under the counterfactual is C'F(L). We want to put weights s; and s, on the
baseline responses A*(L) and A**(L) so that

CF(L) = B(L) + A*(L)s; + A™(L)ss. (3)
To get s; and so MW impose the counterfactual i; = 0 on (2) and so
0= D(L)+ C*(L)s1 + C*™(L)sa. (4)

Defining d as a vector containing the L7 terms in D(L), ¢* and ¢** doing the
same for C*(L) and C**(L), they propose getting s; and sy by regressing —d
on c* and c**.

To see how this strategy extends to a move to other counterfactuals con-
sider what happens if we moved from a baseline rule i; = dmy + v, + nys_1 to
a counterfactual 7, = ¢m;. Here we are adopting the formulation in MW’s
equation (3), where v; is a contemporaneous shock and n;_; is a news shock
about ¢ that is announced in period t —1. The equivalent of (4) is now found
by imposing i; = ¢m; to get



C*(L)vy + C™(L)ny + D(L)ey = ¢p(A*(L)vy + A™(L)ny + B(L))ey,
and so we would want s; and s, to satisfy
[C*(L) — ¢A*(L)]s1 + [C™(L) — pA™(L)]s2 = ¢B(L) — D(L). ~ (5)

Then, just as for the target interest rate case, we would run a regression,
now of (¢pb — d) against (¢* — ¢a*) and (™ — ¢pa**) to get s; and s. In all
cases of changing rules there will be some regression to get s; and so, but
with different regressors, depending on the counterfactual.

Two questions arise over this approach. The first is whether, given knowl-
edge of the sextuplet F ={B(L), A*(L), A**(L), D(L),C*(L),C**(L)}, there
are values for s; and s that produce an estimated C'F'(L) from (3) that is the
counterfactual. MW deal with that in their Proposition 1. We will assume,
as they do in examples, that if one knows F there are values for s; and s,
which produce the counterfactual. The second question is whether one can
estimate F in practice given data available from the baseline model, so as to
get s; and s, via a regression like (5). To investigate this it is necessary to
specify some baseline structural model that generates the data and then to
look at methods for recovering F from that data.

3 Example: From a Monetary Rule to an In-
terest Rate Target

3.1 A Simple Baseline Two Variable Structural Model

Consider a simple two equation baseline structural model with an interest
rate rule

T = BE(mg1) — i+ e+ e (6)
’it = (Sﬂ't + U + Ny (7)

This structure is meant to represent a simplified model that follows their
equations (1)-(3). The SMA solution can be found as follows



T = BE(Tg1) — 07 — v + €4+ 621 — My
(1+0)m = PE(m1) +er+e1— v —myq
e = OFE(m) +aler + &1 — vp — ng_q)
T = a(l+@)ey 4+ ag1 — avy — ang_q — agpny
= A"(L)vy + A™(L)n: + B(L)ey,

where ¢ = 1%5, a = 1—}%. The solution for the interest rate is
it = Ome+ v+ ng (8)
= 0B(L)er + (6A*(L) + 1)vy + (6A™ (L) + L)ny 9)
= D(L)ey + C*(L)vy + C*™(L)ny. (10)

Thus we have found an SMA like in (1)-(2). A key factor in our analysis
of this simple model is that the baseline model and its interest rate rule is
captured with the trio of responses {A*(L), A**(L), B(L)}. Only a triple is
needed for this case as D(L), C*(L), C**(L) are constructed from the triple.

One wants to use the triple to recover the impulse responses when the
interest rate rule is replaced with some counterfactual. Here, the latter will
be an interest rate target i; = 0. This counterfactual sets i; = 0 in (6)

Ty = BE (1) + &0+ 11

and will be
T = (1 + 5)&} + &1

We then need to use the information in D(L) etc. to see if we can get
CF(L)y=14+p+L.

To get s; and sy we solve C*(L)s; + C**(L)se = —D(L). That is done
by matching powers of L. One needs some parameter values, and so we put
these to 6 = 1.1, 8 = .99, thereby producing responses’

B(L) = 0.7007 + 0.4762L, A*(L) = —.4762, A*(L) = —0.2245 — .4762L
(11)

'One can do this analytically but it is easier to recover the responses from Dynare
output.



C*(L),C*(L) and D(L) are found from these. Because D(L) = 6 B(L),C*(L)
A*(L) + 1,C**(L) = A™(L) + L the matching of powers of L gives s; =
2.189, s = —1.1 and then
CF(L) = B(L)+ s1A*(L) + $,A™(L)
1.99 + L,

which replicates the counterfactual.
It is worth looking at this example in more detail. d is a 2 x 1 vector as
there are only two non-zero elements in D(L). Hence, putting

d = —[c* c**]{sl} (12)
= —Hs.

A solution for s is -H'd i.e. the estimates of s come from the regression
of —d on ¢* and ¢**, and there is a perfect fit. Does one need to have news
shocks in the interest rate rule? Suppose that i; = dm; + v; + v;_1. Then
C*(L) = ¢y + 1L and we would be regressing —d on ¢*s;. Because both d
and ¢* are now 2 X 1 vectors it would be rare that there is a unique s; that
satisfies —d = ¢*s;. One needs two different shocks in the regression. If d
had m non-zero elements it would be necessary to have m starred ¢’s i.e. m
shocks, if the regression was to perfectly predict d. If there were less than m
shocks (say two) one cannot find all the necessary weights, and this led to
MW’s proposal that one get the two weights by a "robust" procedure such as
least squares i.e. they are chosen to minimize the squared distance between
d and the predictions of it from what the regression with ¢* and ¢** would
give - this maximizes the R? from this regression.

3.2 The Issue with Shock Recovery in the Simple Model

Now the key element in the solution above is being able to recover A*(L), A**(L

and B(L) from the SMA using data generated by the baseline model. Poten-
tially, this can be done by recovering the shocks v; and 7, and then regressing
m; against contemporaneous and lagged values of v;, n; and ;. This brings
up the question of whether we can recover these shocks, particularly the one
capturing "news", as that is a key factor in MW’s results. The basic issue
is that there are three shocks ¢;,v; and n; but only two observables 7; and
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14, and the recoverability literature shows one cannot recover all three shocks
from fewer observables e.g. Pagan and Robinson (2022), inter alia. Often
this set-up is referred to as a "short" system.

To understand the problem that a short system raises consider the case
where there is just one observable y; driven by two structural policy shocks
11, and 7y, where 7,, is a news shock

Yr = any + bngy_y. (13)

One can estimate this system and get parameter estimates a, b provided one
knows the structural model is that in (13). If we all we have is the data
generated by (13) then the empirical covariances for y; will show it is an
MA(1) and therefore can be written as

Yy = Wy + Qwy_1,

where, like 7;, and 7, the error w; is white noise. We can estimate o
and var(w;) from the data on y; and find the impulse response of y; to w;.
However w; is neither 7n;, nor 7,,. Indeed it is a linear combination of all
{014—;} {An2,4—;} —see Nelson (1975). The w; are the Kalman filter prediction
errors when the equation is placed into a state space form, and so there is
only one of these, but there are two structural errors. In the same way,
for our simple two variable model there are three structural shocks and two
Kalman filter prediction errors, so it is not possible to recover all the three
shocks.

Suppose we knew ¢,. Then we could get B(L) and C'(L) by regressing
m; and 7; against €; and its lags. This is because the other determinants of
these variables are combinations of v,_; and n;_; and these are uncorrelated
with B(L)e; and C(L)gy, producing two observables zy; = m; — B(L)e; and
29y = 1y — D(L)g;. So now one would not have a short system, as there are
two observables and two shocks.

In order to recover the shocks v; and n; in this case - the system is not
short - one needs to know the SMA impulse responses, so we need to ask
if these can be recovered from the data. Because there are two non-zero
autocovariances for z;, z; follows an SMA of first order, meaning it has the
form

— 0 0 1 1

0 0 1 1
A1Vt + Qg + Q1 Vp—1 + QgpNip—1. (15)

22t
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There are eight parameters which need to be determined in the SMA. The
contemporaneous covariance matrix of z; , 'y, has three parameters, and the
lagged covariance matrix, 'y, has four, so there are only seven parameters
which summarize the data. Hence a restriction needs to be placed on this
SMA if we are to recover the impulse responses. One restriction that might
be applied is that v; only has contemporaneous effects on zy; i.e. a3; = 0,
which involves some knowledge of the structural system. This does not work
when there are three shocks to be found from the two observables, as there
are still only seven parameters in the covariance matrices, while the SMA
would now have twelve parameters. Accordingly, setting just a3, to zero
leaves too many unknowns at eleven.

What other IRP might be used? One which only estimates seven para-

meters is a recursive SVAR. Defining ¢, = [ z” } the recursive SVAR in z,
2t

will be B(L)z; = ¢,, with B(L) being triangular. The estimated shocks ¢,
will have covariance matrix I5. The model shocks v, and n; also have this.
Let these be 7,. Then ¢, = @n,, where @) is orthonormal. The problem is
that without extra information () is not unique, and so the impulse responses

for v, and n, cannot be computed.? The responses found from the SVAR for
¢, are not the A*(L), A**(L) from the baseline model SMA. Indeed, treating

—_

them as if they were, we would find that CF(L) = 0.301 + .297L, and not
1.99 4+ L. To understand the failure of this approach we observe that in an
SVAR one of the variables z;; or z9; must have a shock that is either v; or
ng, but this is not the case for (14)-(15). So imposition of a SVAR implies a
mis-specified SMA.

Is there any other way around this dilemma? One needs to either elimi-
nate shocks as above or look for other observables. If one just adds in a new
observable it would be stochastic and so introduce a new shock, keeping the
system short. To see that consider a simple extension of our two variable
system that is very close to what MW use in their equations (1)-(3).

2There are some questions that can be answered by recovering ¢, i.e. one does not need
71, but some combination of them that involves an orthonormal matrix @). One of these is
the recovery of the variance of a target variable under the counterfactual. The situation
arose in sign restriction studies using a () and was pointed out in Fry and Pagan (2011, p
955). This has been exploited by Caravello et al. (2013).
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ye = (i — ) +wy (16)
T = BE(T) F by e e (17)
’it = (Sﬂ't + U+ ng_q. (18)

This system has three variables but still more (four) shocks. One cannot
recover all shocks, but perhaps one can recover those of interest - &;, v, and
ny. To do this we examine the covariance matrix of the difference between
the estimated and actual shocks, P, given in Pagan and Robinson (2022).
The Pt*[t comes from the Kalman filter information. For a system to be
invertible ;[t must equal zero, as then one can recover the actual shocks
via a regression of them on the estimates. The diagonal elements of P}, tell
whether a particular shock is recoverable. Designating the j'th element of
dz’ag(PtTt) as &, this scalar index lies between zero and 1, as it equals 1 — R?,
where R? is from the regression of the actual shock against the estimated
filter shocks - see Buncic et. al. (2024). It has to be zero for invertibility to
hold for that shock.

Moreover, the index provides information about the degree of recover-
ability (in an infinite sample). With v = —.5,¢ = .6, = .99 and § = 2
we find that diag{F;,} = [0 .02 .34 .91 ], so that the only shock which
can be recovered is w;.? The index is small for ¢; but the other two shocks
cannot be recovered, in particular the news shock.? This is an issue with
having news shocks in the baseline model. They cannot be omitted from the
baseline model. If they are then one cannot capture the counterfactual.

3.3 A Recovery Method Consistent with the SMA?

There are some approaches in the literature in which the baseline model is
augmented with extra data, and the resulting observables are treated as noisy

3To see why this is so we note that (i; — ;) is autoregressive and can be instrumented
with (44—1 — m¢—1) to recover v and w;. It would then be possible to proceed in the same
way to get u; = vy +ny—1. But this is an MA(1) so v; and n;_; cannot be recovered from
that.

1For recovery of shocks from a SVAR representation one needs to look at P}, since
invertibility is needed. Another way of capturing the baseline model shocks Wouﬁd be to
use all the data rather than just current and lagged values, i.e. estimate them via the
Kalman smoother rather than the filter. Then it is necessary to examine Pt*|T . The
conclusions about recovery of impulse responses remain the same.
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signals of the shocks. Thus Gertler and Karadi (2015) assumed that there was
an observable based on futures, f;, and it was used as an external instrument
to identify a monetary shock. However, if one is to follow that approach one
has to be careful that no extra shocks are introduced, as one would then still
have a short system. Instead, assume there are three observables (;,, (5, and
(5, which relate to the policy shocks in the following way

Ciy = gu—1+te (19)
Cou = g1+ (20)
Ca = VGt gs—1 + ne. (21)

Here g;;—; summarize the contribution from past observables. The past ob-
servables must either be in the baseline model or be strictly exogenous.” If
gjt—1 = 0 then the observables (;, would be the baseline structural model
shocks. Of course the specifications above are an extra set of assumptions
not present in the baseline model.

Now the two variable system can be written as

T = A*<L)Ut + A**(L)nt + B(L)ét

’it = (57Tt + v + g1,
and, after substituting for the policy shocks from (19)-(20), it becomes

Cit = Gu—1+¢ (22)

Cot = Gat—1+ s (23)

Car = YCo + g3t—1 + 1t (24)

m = AY(L)(Cor — gat—1) + A (L)(Car — Yo — g3t-1) (25)
+B(L)(C1s — g1e-1)

it = 0T+ (Cor — g2e-1) + (Car—1 — Vo1 — G31-2)- (26)

Looking at the system in the five observables it is clear that it is recursive,
although (5, is missing from the interest rate rule and there is no shock in
that equation once the three model shocks are removed. Perhaps of most
significance is that (5, would have to precede 7; and 7; in any recursive
ordering.

B(L), A*(L) and A**(L) could be found by estimating (22) — (24) to get
¢, vy and ny and then using LP to get them. We will refer to this strategy

®Thus one cannot allow (5, to depend on inflation as it depends on the shock n;.
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as adjusted MW (AMW). In order to proceed in this way one needs some
observable measures (;, to work with and we return to a more concrete
analysis of it when discussing MW’s empirical example in section 4. In that
example MW do not use the LP strategy but rather an IRP that is a recursive
SVAR fitted to all observables. So it is like the system (22)-(26) above. It
is therefore worth discussing some conceptual issues with this IRP using
the simple system above. The first step is to recover shocks by estimating
the equations (22)-(24). In the second step the recursive SVAR is used to
produce impulse responses to the shocks. Now the covariance matrix of the
observables is singular, since there are only three shocks in the system, and
that would mean identities link A*(L)v;, A**(L)n; and B(L)e;. A singular
covariance matrix is unlikely to be the case for the data. To overcome this
one might assume that the model variables m; and #; are measured with white
noise error. If they are not white noise then extra dynamics are introduced
that are not in the structural model. Thus observed inflation 77 is different
to m; and the inflation equation has the measurement error as its shock. One
cannot replace 7; with 72 in the interest rate rule as that would mean that
the error terms in (25) and (26) are correlated, so the rule must incorporate
just the latent inflation m;. It is therefore clear that using an SVAR as an IRP
is problematic in this simple model. Things would worsen if the interest rate
rule had a term like 7;_; in it, since that would mean extra shocks with serial
correlation. The AMW approach seems a much more robust way of capturing
B(L), A*(L) and A**(L), although it uses an assumption about the additional
data that is not part of the baseline structural model. Moreover, there is no
certainty that the error term in the regression will be the shocks which one
wants. It might be that the equation for (,, has an error term that is either a
MA(1) in v; or even a combination of v; and n;. What the connection between
the constructed SVAR and SM A shocks was never clarified by MW. In order
for MW'’s theoretical results on replication of counterfactuals to be used one
has to have the shocks obtained from the selected IRP being the SMA shocks.
Another comment on how the MW material is being applied is worth
making. In the MW approach one needs to begin with a baseline model that
incorporates both monetary and news shocks. Some applications of MW’s
method start with a recursive SVAR in observables and then suggest that
a counterfactual can be recovered using some extra observables such as ;.
This is an incorrect use of MW’s result. Because C'F(L) will have an order
greater than zero the baseline model must have a news shock in it and so it
will not be a VAR process. Indeed, if the counterfactual is that an interest
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rate is held constant, imposing that on the initial SVAR would lead to an
unstable model.

3.4 The Role of News and Shock Recovery in A Mod-
ified Example

Let us look more closely at the role of news shocks. We return to a three
variable model in (16)-(17), now setting ¢» = .5 and § = 1.5 for the counter-
factual rule. Solving this gives the counterfactual response of m; to &4, and
it emerges that C'F(L) is essentially a sixth order polynomial - the first six
impulse responses captured by C'F(L) are non-zero and they are very very
small after that. To replicate C'F'(L) six "policy" shocks will now be needed.
The weights for the policies will be found from matching the polynomial
terms in

[C*(L) — pA™(L)]s1 + Z[C}‘*(L) — ¢A7(L)]sj+1 = ¢B(L) — D(L). (27)

So the baseline interest rate rule needs to incorporate six shocks. Just as
anticipated shocks were used to replicate fixes in macroeconometric models,
here one needs to use five news shocks n;;, 7 = 1,..,5. The baseline interest
rate rule then has the form

i = Omp+ v+ Ny +Nog1+ N30+ Nag1 + N5,

where ¢ is 1.1. Using this and the impulse responses for the six shocks from
the baseline structural model (16)-(17), we confirm MW’s theoretical result
that the counterfactual response of m; to €; can indeed be recovered, and it
is

CF(L) = .4904 + .2284L — .0619L* + .0168L* — .0045L* + .0012L°. (28)

One might also ask what would happen if we only used two policy shocks
and the baseline model was in the MWF? Then the regression being run of
(¢pb—d) against (c¢*—g¢a*) and (¢** —pa**) does not have an R? = 1 (unlike the
one with six policy shocks). The predicted counterfactual - MW’s "robust
counterfactual" - would be
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CF(L) = 0.2356 — .2186 L + .0378L* — .0088L? + .0021L* — .0005L5.

Even if one just looked at the first two terms there is no match to the coun-
terfactual. Notice that in order for us to quantify the extent to which the
robust counterfactual fails to capture C'F(L) we needed to know what the
latter is. The "robust counterfactual” fails to capture C'F(L), so shouldn’t
one just conclude that? Unless C'F(L) is known one cannot know how far
short the estimate is of the correct value but it does fail to capture the ac-
tual counterfactual. Isn’t it better to use the structural model to perform
counterfactual analysis than some short-cut that fails to produce the correct
counterfactual?

One important point to note is that the "robust counterfactual" is a
solution that aims to overcome the problem of having too few recoverable
shocks to replicate D(L). When there are more than enough, as in our two
variable model, there is no need for a robust solution, but there is still the
other crucial factor that one has to exactly recover F. The inability to do
this comes from having too many shocks. The "robust counterfactual" does
not address that concern.

Looking at this problem through the lens of autocovariances I'; there are
three observables in (16)-(17). Consequently, this means six parameters in
Iy and nine in each of the I'; (j = 1,..,6). So a total of sixty parameters.
In contrast the unrestricted SMA is a Vector MA process of order six, and
each of the MA matrices has thirty elements, giving two hundred and ten
parameters to estimate. To do that with the available information means
one hundred and fifty restrictions are needed on the SMA.

4 An Application to Exploiting Existing Stud-
ies of the Impact of Monetary Shocks

What do we conclude for empirical work from the analysis of section 37
Firstly, it is hard to see how one can recover the SMA without a great deal of
knowledge of the structural model, particularly when the baseline structural
model has news shocks. There are more shocks than observables, and it has
to be very rare that one can recover the impulse responses that one needs
to recover in order to replicate the counterfactual. MW’s theoretical work
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that one can recover the counterfactual if one knows the impulse responses
from the SMA is not in dispute; it is the ability to recover the latter impulse
responses that is.

It is hard to know what to make of the application that has probably
attracted most attention to the MW paper. It features their proposal to use
impulse responses found from a variety of measured monetary policy shocks
in order to construct "robust counterfactual" responses. One has to interpret
the data on monetary shocks as being able to capture, to some degree, the
shocks embodied in the baseline model SMA which generated the data. In
MW’s example (Figure C.2 of their paper) one wants to find the response
of inflation to an investment shock ¢; under a counterfactual monetary rule.
So, as in the examples of the previous section, one needs to get F;.

Following the discussion in section 3.3 MW utilize data on three con-
structed variables ¢ j+ to capture the shocks of interest ¢;, v; and n; - invest-
ment shocks coming from Ben Zeev et. al. (2015) (BZ), monetary policy
shocks from Gertler and Karadi (2015) (GK) and Romer and Romer (2004)
(RR). A strong interpretation of these observables would be that they are
g, vy and ny;. However, as we observed when discussing the two variable
model in section 3.3, it seems more general to allow the observable shocks
to differ from the baseline structural shocks via a wedge of past observ-
ables. Then one might regress the BZ, GK and RR observables against past
observables and recover the shocks from those regressions, treating them as
¢, v, ny. We referred to those estimated shocks as being AMW. Because MW
fit a SVAR(4) as their IRP, with the observable GK ordered first, the AMW
estimate of v; from the GK regression is the residual from the first equation
of their SVAR. The local projection of inflation upon the AWM shocks give
A*(L). Their estimate comes from the SVAR(4) in all the observables.® Fig-
ure 1 shows these for inflation and one sees that MW’s estimated responses
are a smoothed version of the LP values.

However RR is different. MW find n; by regressing RR against all the
variables of the SVAR except the contemporaneous interest rate (lags of this
are included). They order the RR variable after inflation and just before the
final variable that is the interest rate. The analysis in section 3.3 points to a
problem with doing that - the additional variables had to precede inflation.
Therefore we construct another estimate of n, by utilizing this re-ordered

6 As well as BZ,GK and RR there are variables for an output gap, inflation, commodity
prices and the interest rate.
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Figure 1: Responses of Inflation to estimates of v; from LP (AWM) and
MW’s SVAR(4)

18



0.4

0.2

-0.2

-0.4

-0.6

-0.8

-1.2

e [T MWaC] e====pi T aMW e——rrord

Figure 2: Impulse Responses of Inflation to a Unit News Shock from the
MW SVAR(4) (mwadj), the Adjusted MW (AMW) shocks, and Reordered
SVAR(3) shocks (rrord)

SVAR and get the responses from that reordered SVAR. Impulse responses
to the AMW shocks using RR are found by local projection. Figure 2 shows
the inflation responses from the three different IRPs. They produce quite
different estimates of what would be A**(L) and so different counterfactual
solutions. Given the analysis of the two variable model in section 3.3 it would
seem that the AMW estimates would better capture the SMA shocks.

5 A Broader Two Variable Model

Now, as seen from the value of A*(L) in the simple two variable model of
section 3.1 there is only a contemporaneous effect of the v; shock on inflation.
Why shouldn’t there be a lagged effect? To look at that we assume that the
baseline model generating the data and used to compute responses is
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T = BE(mg) — i + e+ 1 — v (29)
’it = (Sﬂ't + v+ ng_q. (30)

Using the same parameters as for the model of section 3.1 and p = 1.2,
A*(L) = —.7456—.5714L, while B(L), A**(L) are the same. The responses in

—_

A*(L) don’t seem implausible. Solving for s; and so and computing CF(L)
it is —6.4863 — 7.5619L, and this does not recover the counterfactual.

Why don’t we manage to produce the counterfactual with the the F
above? The answer lies in the fact that the baseline model in (29) and (30)
does not fit into the "general family" of baseline structural equations that
MW set up (their equation (6)). In the context of this simple two variable
case the MWEF allows only for an interest rate channel and so it precludes a
direct effect of v;_; upon inflation, allowing only an indirect one that comes
via the lagged interest rate i.e. from an equation like

= BE(T41) + €1 + €121 — aqly — Qoly_q.

Thus one can recover the counterfactual if the baseline model is from the
MWEF but one would not recover the counterfactual with this broader class of
model where the effects of monetary actions comes from channels other than
the interest rate. It might be that either announced news or the unanticipated
shock could have an effect upon sentiment or credit, and this could affect
output and inflation, even when there is a minor response of these variables
to the movement in the interest rate. This means that it is necessary to ask
how we know that the data has been generated by a member of the MWF i.e.
has the data produced impulse responses that do not come from a member
of the MWF family, as in the example above?’

6 Conclusion

The simple method set out by MW to capture counterfactual responses by
just finding impulse responses from some baseline structural model seems

"It might be asked why one can not find a MWF that will generate the same impulse
responses as the broader baseline model just used. Suppose one could. Then one would
be getting a trio of responses that fail to produce the counterfactual and that would reject
MW?’s result that the MWEF can reproduce the counterfactual.
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very promising. If one does have the complete set of responses F from the
SMA the method works as promised. So, as a piece of theoretical work, it is
fine. But to be of empirical use one has to find F. It is necessary to find that
exactly, if one is to recover the counterfactual impulse responses of interest.
The problem with MW’s procedure is that it works with baseline models that
have many news shocks, and that results in more shocks than observables.
In such a context one cannot expect to recover all the shocks of the SMA
and their impulse responses. Very strong assumptions on the SMA would be
needed to do that. It is unlikely that structural models with forward looking
expectations will deliver SMAs that have simple zero restrictions, as the
whole point of DSGE models is that they involve cross equation restrictions.
However, MW maintain that knowledge of the baseline structural model
is not needed. Adopting simple models that are close to those they use
for motivating their theory we saw that a great deal of information about
the structural model is needed if you are to recover the SMA. MW move
away from estimating the SMA and propose alternative Impulse Recovery
Processes that are meant to emulate the SMA. We look at an SVAR that
they use as an IRP and point out that there are conceptual issues with such
a choice. We first do this in the context of a simple model and then in
connection with their empirical work.

We also raise a question about the utility of their theoretical result. The
family of models that they adopt only has policy working through an interest
rate channel. This restricts the range of impulse responses to policy shocks.
To us there is nothing which says that the DGP of the data must be captured
by a member of the MWF. We show that such models exclude plausible
impulse responses. It may be that the data rejects such impulse responses
but one needs to show that.
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