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1 Introduction

The marginal likelihood is central to Bayesian model comparison and Bayesian model

averaging. Since analytical computation is only possible for a few simple models, most

models require computationally intense simulation-based methods to evaluate the typi-

cally high-dimensional integral of the marginal likelihood expression. Consequently, there

is a vast literature devoted to its estimation using Monte Carlo methods.1 Despite its

prominence, one well-known drawback of the marginal likelihood is that it is relatively

sensitive to the choice of prior—a small change in the prior that keeps inference of the

model parameters the same could have a large impact on the value of the marginal like-

lihood (see, e.g., Aitkin, 1991; O’Hagan, 1995).2 As such, the importance of sensitivity

analysis for marginal likelihood has long been recognized (e.g., Kass, 1993), but it is not

routinely done in empirical work due to the computation complexity and intensity of

marginal likelihood estimations.

In practice, even when a prior sensitivity analysis is conducted, therefore often only a

narrow aspect is investigated. For example, researchers might assess a specific aspect

of marginal likelihood sensitivities by recomputing its value using a different set of hy-

perparameters. However, this approach is ad hoc and requires a substantial amount of

computational overhead. Computational problems are especially severe in this context

because estimating the marginal likelihood under one set of priors would typically take

a substantial amount of time. In this paper we introduce a computationally feasible and

systematic approach to assess marginal likelihood sensitivities with respect to a variety of

hyperparameters that does not require the re-running of the MCMC chain. In particular,

we develop methods based on Automatic Differentiation (AD) to analyze the complete

set of prior hyper-parameter sensitivities of the marginal likelihood alongside the model

estimation.

In a nutshell, the AD approach provides an efficient way to compute derivatives of an

algorithm—i.e., local sensitivity of the outputs with respect to the inputs. It is “auto-

matic” in the sense that for an algorithm that maps inputs into any posterior output,

there is an automatic way of deriving its complementary algorithm of computing the sen-

1Popular approaches include Gelfand and Dey (1994), Newton and Raftery (1994), Frühwirth-
Schnatter (1995), Chib (1995), Gelman and Meng (1998), Chib and Jeliazkov (2001), Frühwirth-Schnatter
and Wagner (2008) and Friel and Pettitt (2008).

2In the case of hypothesis testing, Lindley (1957) shows that a point null hypothesis will always be
rejected if the variance of a conjugate prior goes to infinity. This observation can be traced back to
Jeffreys (1939).
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sitivities. Importantly for our purpose, the AD would only require running the original

algorithm once. While AD methods are now commonly used in Financial Mathematics

and Machine Learning, the approach is yet to be widely adopted in Econometrics or

Statistics. The computational intensity of AD together with the focus of standard AD

methods (and packages) on continuous mappings, pose extra challenges for an application

to common Bayesian MCMC computations and algorithms.

Jacobi, Joshi, and Zhu (2018) have addressed many of these challenges and develop

the first AD-based approach for input sensitivity analysis of Markov chain Monte Carlo

(MCMC) output from continuous and discontinuous high-dimensional mappings. Chan,

Jacobi, and Zhu (2018) extends this framework further to predictive simulation—in par-

ticular, to analyze the sensitivities of point and interval forecasts based on vector autore-

gressions on prior hyperparameters. This paper contributes to this line of research by

further extending the AD-based approach to the more computationally intensive setting

of computing the marginal likelihood using MCMC output and adaptive importance sam-

pling. There is by now a large literature on marginal likelihood estimation using MCMC

output; for a recent review see Friel and Wyse (2012) and Ardia, Baştürk, Hoogerheide,

and van Dijk (2012). Here we focus on two popular methods: Chib’s method (Chib, 1995;

Chib and Jeliazkov, 2001) and the improved cross-entropy method (Chan and Eisenstat,

2015, 2018).

A key innovation of this paper is to study the derivative of the cross-entropy parameter

with respect to the prior hyper-parameters, such that the cross-entropy parameters are

obtained via a numerical search of optimum. In the case where an analytical expression for

the gradient and Hessian are provided, we can readily apply regular AD to differentiate

the optimization algorithm. Unfortunately, if the number of steps required to reach

convergence is high, the algorithm produces a large expression graph. Instead of working

with the algorithm like the standard AD, we use its implicit derivative and estimates

using the simulated samples. The derivation of associated derivative is based on the

fact that the cross-entropy parameter is the optimal in minimizing the Kullback–Leibler

divergence measure. Hence, the result is easily extendable to a wider range of estimation

context, such as Variational Bayes, which allows analysts to assess the impact of the prior

assumptions on the parameter estimates.

A further challenge to address is the memory intensity of AD methods. With our goal

of applying AD for simulation-based marginal likelihood measures, we emphasize that

AD does not, despite its name, fully automate differentiation and can yield inefficient
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code if naively implemented. The first difficulty of applying AD here lies in the memory

constraints. The most natural form of applying AD in most statistical inference is to

apply the “Operator Overloading”, i.e., a new class of objects which contain the value

of a variable and its associated differential component. The memory requirement is then

simply twice the requirement for a function evaluation. What is more, an object needs be

stored in memory until all the nodes connected to that object have been evaluated. Unlike

the original paper of Jacobi, Joshi, and Zhu (2018), the marginal likelihood consists of

a post MCMC estimation procedure using intermediary values generated in the original

MCMC run. Hence, the dependence of the final estimate on the prior inputs contains

components that implicitly through those MCMC intermediary values. A naive storage

of all intermediary values and its associated derivatives will quickly exhaust the memory

of a standard computer. Hence, we need to formulate the marginal likelihood estimation

procedure such that the minimal amount of storage is needed. We specify the exact

quantities stored in the application section.

We illustrate our new methodology with two empirical applications in the context of mul-

tivariate series analysis using vector autorogressive and factor models. In each case we use

AD to compute the gradient of each estimator with respect to a variety of hyperparame-

ters and assess various aspects of the marginal likelihood sensitivity. The first application

compares two vector autoregressions (VARs) for modeling a US macroeconomic dataset

that involves GDP inflation, real output growth and Federal funds rate. In the second

application, we fit daily returns on nine foreign exchange rates using factor models with

different number of latent factors. While the conclusion in the first application—that the

VAR with t errors are more favored by the data over the benchmark Gaussian VAR—is

robust over a wide range of hyperparameter values, the preferred number of factors in

the second application is more uncertain—the weight of evidence can change noticeably

if we alter some hyperparameter values. Our findings therefore highlight the importance

of systematically performing a prior sensitivity analysis in Bayesian model comparison.

The rest of this paper is organized as follows. Section 2 first gives an overview of the

marginal likelihood and its estimation using Chib’s and the cross-entropy methods. We

then develop an AD-based framework to analyze the sensitivity of the two marginal

likelihood estimators with respect to a set of prior hyperparameters in Section 3. It is

followed by two empirical applications to illustrate the AD-based prior robustness analysis

in Section 4. Lastly, Section 5 concludes and briefly discusses some future research

directions.
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2 Marginal Likelihood Estimation

To set the stage, suppose we wish to compare the set of models {M1, . . . ,MK}, where

each model Mk is formally defined by a likelihood function p(y |ψk,Mk) and a prior on

the model-specific parameter vector ψk denoted by p(ψk |Mk). The gold standard for

Bayesian model comparison is the Bayes factor. Specifically, the Bayes factor in favor of

Mi against Mj is defined as

BFij =
p(y |Mi)

p(y |Mj)
,

where

p(y |Mk) =

∫
p(y |ψk,Mk)p(ψk |Mk)dψk (1)

is the marginal likelihood under model Mk, k = i, j. It therefore follows that if the Bayes

factor BFij is larger than 1, observed data are more likely under model Mi than model

Mj. This can be viewed as evidence in favor of Mi. For a more detailed discussion of the

Bayes factor and its role in Bayesian model comparison, see Koop (2003), Kroese and

Chan (2014) and Amisano and Giacomini (2007).

The marginal likelihood of a particular model can be interpreted as a joint density forecast

from that model evaluated at the observed data y—hence, if the observed data are likely

under the model, the corresponding marginal likelihood would be “large” and vice versa.

To see this, let y1:t = (y1, . . . ,yt) denote all the data up to time t with y1:T = y. Then,

we can factor the marginal likelihood as follows:

p(y |Mk) = p(y1 |Mk)
T−1∏
t=1

p(yt+1 |y1:t,Mk), (2)

where p(yt+1 |y1:t,Mk) is the predictive likelihood under model Mk, which can be inter-

preted as a one-step-ahead density forecast for yt+1.

The factorization of the marginal likelihood in (2) also reveals that its value is likely to be

sensitive to the choice of prior. For instance, the predictive likelihood p(y1 |Mk) depends

entirely on the prior distribution and not on the data. More generally, the component

p(yt+1 |y1:t,Mk) is likely to be heavily influenced by the prior distribution when t is

small. This highlights the relevance of performing sensitivity analysis when computing

the marginal likelihood.

Analytical computation of the marginal likelihood in (1) is only possible for a few simple
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models. More complex models require simulation-based methods to evaluate the typically

high-dimensional integral in (1). In what follows, we discuss two such methods. For the

marginal likelihood estimators in this section, we are interested in their sensitivities with

respect to the prior hyperparameters. More generally, let θ0 denote the vector of all inputs

that are of interest. We will then make the dependence on θ0 explicit. For example, we

write the prior density as p(ψ;θ0). Furthermore, from here onwards we suppress the

model indicator for clarity. For example, we denote the likelihood function simply by

p(y |ψ).

2.1 Chib’s Method

Chib’s method (Chib, 1995; Chib and Jeliazkov, 2001) is based on the observation that

the marginal likelihood is the normalizing constant of the posterior distribution. By

rearranging the definition of the posterior distribution, we have

p(y;θ0) =
p(y |ψ)p(ψ;θ0)

p(ψ |y;θ0)
.

Hence, a natural estimator of p(y) (written in log scale) is

log ̂p(y;θ0)Chib = log p(y |ψ∗) + log p(ψ∗;θ0)− log ̂p(ψ∗ |y;θ0). (3)

The posterior ordinate ψ∗ can in principle be any point in the support of the posterior

distribution, but for computational efficiency it is typically chosen to be some “high

density” point such as the posterior mean or mode.

In many situations we can evaluate both the likelihood and the prior distribution analyt-

ically. The only unknown quantity is the posterior ordinate p(ψ∗ |y;θ0), which can be

estimated using Monte Carlo methods. In particular, if all the full conditional distribu-

tions are known, then p(ψ∗ |y;θ0) can be estimated using posterior draws and additional

draws from a series of suitably designed Gibbs samplers, the so-called reduced runs.

To give a concrete example, suppose we can estimate a model using a 3-block Gibbs

sampler, and we have

p(ψ∗ |y;θ0) ≡ p(ψ∗1,ψ
∗
2,ψ

∗
3 |y;θ0) = p(ψ∗1 |y;θ0)p(ψ

∗
2 |y,ψ∗1;θ0)p(ψ∗3 |y,ψ∗1,ψ∗2;θ0).

The first quantity p(ψ∗1 |y;θ0) can be estimated using posterior draws and the last quan-
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tity p(ψ∗3 |y,ψ∗1,ψ∗2) can be evaluated exactly. The middle term p(ψ∗2 |y,ψ∗1;θ0) can be

estimated using draws from a reduced run that cycles through p(ψ2 |y,ψ∗1,ψ3;θ0) and

p(ψ3 |y,ψ∗1,ψ2;θ0) with ψ1 fixed at ψ∗1. The posterior ordinate of models with more

blocks can be estimated similarly, albeit additional reduced runs are required.

2.2 The Cross-Entropy Method

The cross-entropy method was originally developed for rare-event simulation by Rubin-

stein (1997, 1999) using a multi-level procedure to construct the optimal importance

sampling density. Chan and Kroese (2012) later show that the optimal importance sam-

pling density can be obtained more accurately in one step using MCMC. This new variant

is applied in Chan and Eisenstat (2015, 2018) for marginal likelihood estimation. Below

we outline the main ideas.

For estimating the marginal likelihood in (1), the theoretical zero-variance importance

sampling density is the posterior density p(ψ |y). Unfortunately, this density is only

known up to a constant and cannot be used directly in practice. However, it provides

a good benchmark to obtain a suitable importance sampling density. The key idea is

to locate a density that is “close” to this ideal importance sampling density, denoted as

f ∗ = f ∗(ψ) = p(ψ |y). Operationally, we consider a parametric family F = {f(ψ; v)}
indexed by the parameter vector v ∈ Rdimv , and then find the density f(ψ; v∗) ∈ F such

that it is the “closest” to f ∗.

One convenient measure of closeness between densities is the Kullback-Leibler divergence

or the cross-entropy distance. Specifically, the cross-entropy distance from f1 to f2 is

defined as: D(f1, f2) =
∫
f1(x) log(f1(x)/f2(x))dx. Given this measure, we locate the

density f(·; v) ∈ F such that D(f ∗, f(·; v)) is minimized. This minimization problem

can be shown to be equivalent to finding

v∗ce = argmax
v

∫
p(y |ψ)p(ψ) log f(ψ; v)dψ.

This maximization problem is difficult to solve analytically, but v∗ce can be estimated by

v̂∗ce = argmax
v

1

R

R∑
r=1

log f(ψr; v), (4)

where ψ1, . . . ,ψR are posterior draws. This is analogous to finding the maximum likeli-
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hood estimate for v if we treat f(ψ; v) as the likelihood function with parameter vector

v and ψ1, . . . ,ψR as an observed sample. Since finding the maximum likelihood estimate

is a standard problem, solving (4) is typically easy. For instance, analytical solutions are

available for the exponential family (e.g., Rubinstein and Kroese, 2004, p. 70). Finally,

once the optimal density f(·; v̂∗ce) is obtained, it is used to construct the importance

sampling estimator:

̂p(y;θ0)ce =
1

N

N∑
j=1

p(y |ψj)p(ψj;θ0)

f(ψj; v̂∗ce)
,

where ψ1, . . . ,ψN are independent draws from the optimal importance sampling density

f(ψ; v̂∗ce).
3 One main advantage of this importance sampling approach is that it is easy

to implement and the numerical standard error of the estimator is readily available. We

refer the readers to Chan and Eisenstat (2015) for a more thorough discussion.

3 Automatic Differentiation for Marginal Likelihood

In this section we introduce a general framework to analyze the sensitivity of two marginal

likelihood estimators with respect to a set of prior hyperparameters, θ0 ∈ Rp. This builds

on recent work by Jacobi, Joshi, and Zhu (2018) that has introduced prior robustness for

MCMC output based on Automatic Differentiation (AD), which is designed to compute

sensitivities with respect to the full set of input parameters.

3.1 AD Implementation

AD is an efficient means of computing derivatives, i.e., the local sensitivity of the outputs

with respect to the inputs. In a nutshell, for a function g, AD maps g into its vector of

first-order partial derivatives automatically, ∂
∂θ
g, i.e. a function operator

AD : g → ∂

∂θ
g.

Like the symbolic differentiation implemented in many widely used softwares, AD com-

putes exact partial derivatives of the original mapping up to floating point errors. Yet,

unlike the symbolic differentiation that focuses on obtaining the exact expression of ∂
∂θ
g,

3See also Frühwirth-Schnatter (1995), which constructs a different importance sampling density by
using a mixture of full conditional distributions given the latent states.

8



AD evaluates the derivatives alongside the original evaluation of g, which in turn alle-

viates the issue of expression overloading and hence typically maintains a relative fast

computation. AD is the same as symbolic differentiation once the derivative expression

obtained from the latter is simplified to minimize the computational complexity, but

the essence is that the simplification is automatic once the evaluation of derivatives is

embedded alongside the original algorithm. More importantly, AD completely avoids

the infeasible derivation of symbolic expressions, and focuses on the actual evaluation of

derivative values. This differentiates AD from symbolic differentiation.

Bayesian MCMC algorithms are complicated high-dimensional mappings that take inputs

such as hyperparameters of the prior distribution, the starting values of the chain and

the data. For many applications, we are typically interested in the effect of a subset of

these inputs, say, θ0, on posterior outcomes. Formally, MCMC is a function that maps

θ = (θ0,η0) ∈ Rp × Rl → G(θ0,η0),

where η0 refers to the set of inputs in combination with θ0 that are mapped via some

MCMC algorithm G into posterior quantities, albeit the analyst is not interested in

its relative sensitivities. Technically, the complementary AD is able to compute the

derivatives of the posterior output G with respect to the complete set of inputs, both θ0

and η0 . In practice, however, it is up to the analyst to choose which subset of inputs

are included in θ0.

AD is “automatic” in the sense that for an algorithm that maps the input vector θ0

into the posterior output vector, there is an automatic way of evaluating its comple-

mentary sensitivities without manually deriving the symbolic formula of the derivatives.

Instead, it is derived by first decomposing the original algorithm G into simpler opera-

tions G1, . . . ,Gk:

G = Gk ◦Gk−1 ◦ · · · ◦G1,

where

Gi : (xi,θ)→ xi+1

and xi is the intermediary values at step i. Then, the derivative of G can be obtained

via the chain-rule (that is implemented automatically in the compute program)

∂G(θ0,η0)

∂θ0
=

k∑
i=1

∂

∂xk
Gk

∂

∂xk−1
Gk−1 · · ·

∂

∂xi+1

Gi+1
∂

∂θ0
Gi,
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where ∂Gi

∂xi
, i = 1, . . . , k are the intermediate Jacobians of the simpler operations. While

the end result ∂G(θ0,η0)
∂θ0

is a dense matrix, the ∂Gi

∂xi
’s are typically very sparse matrix

because each operation Gi typically only updates one or two variables.

In the context of MCMC, sensitivities can often be derived using information about model

dynamics in simulation—i.e., the dependence of the posterior distribution on the set of

prior assumptions. AD accomplishes this by differentiating the evolution of the under-

lying state variables along each path. In comparison to the widely used numerical finite

difference methods, AD requires additional model analysis and programming, but this

additional effort is often justified by the improvement in the quality and comprehensive-

ness of calculated local sensitivities. Due to the computation burden of numerical finite

difference methods, typically only a very limited prior robustness analysis is implemented.

While AD methods have been widely used to undertake input sensitivity analysis in the

context of less computationally intensive classical simulation methods, particularly in

Financial Mathematics, it has only been recently introduced in the context of MCMC

simulation by Jacobi, Joshi, and Zhu (2018). In particular, the paper develops an AD

approach and AD based methods for a comprehensive prior robustness and convergence

analysis of MCMC output and shows how the Forward mode of differentiation can be

applied to compute Jacobian matrices of first order derivatives for MCMC based statistic

in various standard models. Since both Chib’s and the cross-entropy methods require

posterior draws of the model parameters, we apply the AD approach developed in Jacobi,

Joshi, and Zhu (2018) to obtain the first-order partial derivatives of the model parameters

with respect to θ0. What is new here is the additional steps needed to compute the

complete set of first-order derivatives of log ̂p(y;θ0)Chib and log ̂p(y;θ0)ce with respect

to θ0. We have also provided Matlab and R-code to implement the AD-based prior

sensitivity analysis. While most AD package act as a black box supporting a statistical

inference, we emphasize the extensibility of these package when it is taken to a new

application, in our case, computing the marginal likelihood as a post MCMC procedure.

It should allow advanced users to incorporate a custom derivative method for a function.

In this section we focus on the key points in passing the AD operator through Chib’s and

the cross-entropy methods.
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3.2 Gradient of Chib’s Estimator

Chib’s estimator for the log-marginal likelihood consists of three components: the log-

likelihood, the log-prior and the log-posterior, all evaluated at some posterior ordinate

ψ∗, such as the posterior mean or mode. Furthermore, let ψr, r = 1, 2, . . . , R denote the

posterior draws obtained using MCMC.

Given that we have already obtained the Jacobian of the posterior ordinate ∂ψ∗

∂θ0
as well

as the draws of the model parameters ∂ψr

∂θ0
for r = 1, 2, . . . , R. The Jacobian of the first

two components can be obtained via:

∂ log p(y |ψ∗)
∂θ0

=
1

p(y |ψ∗)
∂p(y |ψ)

∂ψ

∣∣∣∣
ψ=ψ∗

∂ψ∗

∂θ0

∂ log p(ψ∗;θ0)

∂θ0
=

1

p(y |ψ∗)

[
∂p(ψ;θ0)

∂ψ

∣∣∣∣
ψ=ψ∗

∂ψ∗

∂θ0
+
∂p(ψ∗;θ0)

∂θ0
p(ψ∗;θ0)

]
.

Here we assume that both the likelihood and the prior distribution functions are contin-

uously differentiable in ψ.

For the log-posterior term estimated from reduced runs, the derivative operator needs to

be applied through the additional Monte Carlo simulation as well. For example, for a

three-block Gibbs sampler with ψ = (ψ′1,ψ
′
2,ψ

′
3)
′, we have

∂

∂θ0
log ̂p(ψ∗ |y;θ0) =

∂p(ψ∗
1 |y;θ0)
∂θ0

p(ψ∗1 |y;θ0)
+

∂p(ψ∗
2 |y,ψ∗

1;θ0)

∂θ0

p(ψ∗2 |y,ψ∗1;θ0)
+

∂p(ψ∗
3 |y,ψ∗

1,ψ
∗
2;θ0)

∂θ0

p(ψ∗3 |y,ψ∗1,ψ∗2;θ0)
.

We can estimate the derivative of the first term via the original MCMC

∂p(ψ∗1 |y;θ0)

∂θ0
=

1

R

R∑
r=1

∂p(ψ∗1 |ψr
2,ψ

r
3,y;θ0)

∂θ0
+
∂p(ψ∗1|ψr

2,ψ
r
3,y;θ0)

∂ψ


∂ψ∗

1

∂θ0
∂ψr

2

∂θ0
∂ψr

3

∂θ0

 ,

where
∂p(ψ∗1 |ψr

2,ψ
r
3,y;θ0)

∂ψ
denotes the partial derivative of p(ψ1 |ψ2,ψ3,y;θ0) with

respect to ψ evaluated at ψ = (ψ∗1,ψ
r
2,ψ

r
3)
′.
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The second term can be estimated via a reduced run of N sample by fixing ψ∗1

∂p(ψ∗2 |y,ψ∗1;θ0)
∂θ0

=
1

N

N∑
n=1

∂p(ψ∗2 |ψn
3 ,ψ

∗
1,y;θ0)

∂θ0
+
∂p(ψ∗2 |ψn

3 ,ψ
∗
1,y;θ0)

∂ψ


∂ψ∗

1

∂θ0
∂ψ∗

2

∂θ0
∂ψn

3

∂θ0
+ ∂ψn

3

∂ψ∗
1

∂ψ∗
1

∂θ0


such that the sensitivities of ψn

3 is obtained in the reduced run through its direct depen-

dence on the hyperparameters and indirect dependence via ψ∗1.

Finally, the last term can be computed exactly as:

∂p(ψ∗3 |y,ψ∗1,ψ∗2;θ0)
∂θ0

=
∂p(ψ∗3 |y,ψ∗1,ψ∗2;θ0)

∂ψ


∂ψ∗

1

∂θ0
∂ψ∗

2

∂θ0
∂ψ∗

3

∂θ0

 ,

where
∂p(ψ∗3 |ψ∗1,ψ∗2,y;θ0)

∂ψ
denotes the partial derivative of p(ψ3 |ψ1,ψ2,y;θ0) with

respect to ψ evaluated at ψ = (ψ∗1,ψ
∗
2,ψ

∗
3)
′.

In terms of memory budget of the original MCMC, the computer needs to store: 1) ψ∗

and its associated derivatives; 2) ψr
2 and ψr

3 and their associated derivatives. To reduce

the memory requirement, the blocking should be chosen in a way that ψ1 is the of the

largest dimension.

3.3 Gradient of the Cross-Entropy Estimator

To calculate the gradient of the cross-entropy marginal likelihood estimator, we need

to first obtain ∂v∗
ce

∂θ0
. For cases where analytical expressions of v∗ce is available, e.g., for

Gaussian importance sampling density, the derivatives can be obtained directly via AD by

passing through the analytical evaluation. The associated memory cost is then negligible,

i.e. v∗ce is an analytical expression of ψr’s, and the value and its derivative of v∗ce are

accumulated in the original MCMC algorithm.

When obtaining v∗ce requires numerical search such the Newton-Raphson method, we can

compute the derivative via the implicit function theorem.

Proposition 1. Assuming that the importance sampling density f(ψ; v) is twice contin-
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uously differentiable in both v and ψ with

Eπ
[∣∣∣∣∣∣∣∣∂2 log f(ψ; v∗ce)

∂v2

∣∣∣∣∣∣∣∣] <∞, Eπ
[∣∣∣∣∣∣∣∣∂2 log f(ψ; v∗ce)

∂v∂ψ

∣∣∣∣∣∣∣∣] <∞
and

Eπ
[
∂2 log f(ψ; v∗ce)

∂v2

]
is positive definite, then

∂v∗ce
∂θ0

= −Eπ
[
∂2 log f(ψ; v∗ce)

∂v2

]−1(
Eπ
[
∂ log f(ψ; v∗ce)

∂v

∂ log(π(ψ;θ0))

∂θ′0

])
,

where the expectation Eπ is taken with respect to the posterior measure.

Proof. Based on the first-order condition for vce, we have∫
p(y|ψ)p(ψ)

∂ log f(ψ; v∗ce)

∂v
dψ = 0.

This is equivalent to∫
π(ψ;θ0)

∂ log f(ψ; v∗ce)

∂v
dψ = Eπ

[
∂ log f(ψ; v∗ce)

∂v

]
= 0.

Given the regularity assumption, we can now apply derivative with respect to θ0 to both

side

Eπ
[
∂2 log f(ψ; v∗ce)

∂v2

]
∂v∗ce
∂θ0

+ Eπ
[
∂ log f(ψ; v∗ce)

∂v

∂ log(π(ψ;θ0))

∂θ′0

]
= 0.

The result is immediate by re-arranging the above expression.

Let Ψ = {ψ1,ψ2, ...,ψR} denote the collection of posterior draws, its consistent sample

estimate is

∂v̂∗ce
∂θ0

= −

[
R∑
r=1

∂2 log f(ψr; v∗ce)

∂v2

]−1[ R∑
r=1

∂2 log f(ψr,v∗ce)

∂v∂ψj

∂ψj

∂θ0

]
.

This expression involves the storage of ∂ψr

∂θ0
’s from the original MCMC algorithm. Hence,

it is operational if we choose the importance sampling density in a way that most of the

parameters can be solved analytically, and the dimension of ψ that requires the above

manipulation is small.
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Finally, given the draws ψj, j = 1, . . . , N from the importance sampling density f(ψ; v̂∗ce),

the derivative of the CE estimator is given by:

∂ ̂p(y;θ0)ce
∂θ0

=
1

N

N∑
j=1

(
∂

∂ψ

(p(y |ψj)p(ψj;θ0)

f(ψj; v̂∗ce)

)∂ψj

∂v∗ce
− p(y |ψj)p(ψj;θ0)

f(ψj; v̂∗ce)
2

∂f(ψj; v̂∗ce)

∂v

)
∂v̂∗ce
∂θ0

+
p(y |ψj)

f(ψj; v̂∗ce)

∂p(ψj;θ0)

∂θ0
.

In other words, the sensitivity of the cross-entropy estimator with respect to θ0 is through

its dependence on v̂∗ce. Depending on the complexity of obtaining v∗ce, the Jacobian ∂ψj

∂v∗
ce

can be obtained either algorithmically or through the distributional derivative method in

Jacobi, Joshi, and Zhu (2018).

4 Empirical Applications

In this section we present two empirical applications to illustrate the proposed automated

prior sensitivity analysis based on Automatic Differentiation. The first application com-

pares two vector autoregressions (VARs) for modeling a US macroeconomic dataset. In

the second empirical example, we fit exchange rate data using factor models with different

number of latent factors.

4.1 Vector Autoregressions for the US Economy

Since the seminal work of Sims (1980), vector autoregressions (VARs) have become a

workhorse model for analyzing the evolving inter-relationships between multiple macroe-

conomic variables. VARs are widely used for structural analysis and macroeconomic

forecasting. In particular, VARs combined with the Minnesota prior developed in Doan,

Litterman, and Sims (1984) and Litterman (1986) are often used as benchmark models.

In the first application we perform a formal Bayesian model comparison exercise to com-

pare two popular VARs for fitting a US macroeconomic dataset. We aim to identify salient

model features that are useful in modeling the evolution and interdependence among the

macroeconomic time series. To that end, let yt be an n×1 vector of endogenous variables

at time t with t = 1, . . . , T . The first model we consider is the conventional VAR with
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Gaussian innovations:

yt = b + B1yt−1 + · · ·+ Bpyt−p + εt, εt ∼ N (0,Σ),

where b is an n×1 vector of intercepts, B1, . . . ,Bp are n×n matrices of VAR coefficients,

Σ is a covariance matrix, and N (·, ·) denotes the normal distribution.

For estimation purpose, this VAR can be written in the seemingly unrelated regression

(SUR) form as:

yt = Xtβ + εt, εt ∼ N (0,Σ), (5)

where Xt = In⊗(1,y′t−1, . . . ,y
′
t−p) and β = vec([b,B1, . . . ,Bp]

′) is the vector of intercepts

and VAR coefficients stacked by rows. Note that the dimension of β is kβ × 1 with

kβ = n(np+ 1).

Despite the empirical success of the standard VAR with Gaussian innovations, recent

research has found that macroeconomic variables are occasionally subject to large shocks

(see, e.g. Cúrdia, Del Negro, and Greenwald, 2014). Hence, the second model we con-

sider is a VAR with t innovations, which we denote as VAR-t. That is, instead of the

Gaussian distribution for the innovations, we assume they follow a multivariate t dis-

tribution. For ease of estimation, we use the following latent variable representation:

(εt |Σ, λt) ∼ N (0, λtΣ) with (λt | ν) ∼ IG(ν/2, ν/2), where IG(·, ·) denote the inverse-

gamma distribution. Then marginal of λt, εt has a multivariate t distribution with mean

vector 0, scale matrix Σ and degree of freedom parameter ν (see, e.g., Geweke, 1993).

Empirical work that uses VARs with t innovations include Clark and Ravazzolo (2015),

Cross and Poon (2016) and Chiu, Mumtaz, and Pinter (2017).

4.1.1 Data, Priors and Estimation

For our first application we use a US quarterly macroeconomic dataset that involves GDP

deflator, real GDP and Federal funds rate from 1954:Q3 to 2017:Q4. These three variables

are commonly used in structural analysis and forecasting (e.g., Banbura, Giannone, and

Reichlin, 2010; Koop, 2013). Both GDP deflator and real GDP series are transformed

to annualized growth rates, whereas the Federal funds rate is not transformed. All data

are sourced from the Federal Reserve Bank of St. Louis economic database, and they are

plotted in Figure 1.
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Figure 1: Plots of GDP deflator growth, real GDP growth and Federal funds rate.

Next, we describe the priors for the two VARs. In general, we maintain the same priors

for common parameters across models. For the Gaussian VAR, the parameters are β and

Σ. We assume a standard inverse-Wishart prior for Σ and a Minnesota-type prior for β

that shrinks the VAR coefficients to zero:

β ∼ N (0,Vβ), Σ ∼ IW(k0,Σ,S0,Σ), (6)

where IW(·, ·) denotes the inverse-Wishart distribution. The prior covariance matrix

Vβ is assumed to be diagonal with diagonal elements vβ,ii = κ1/(l
2ŝr) for a coefficient

associated to lag l of variable r and vβ,ii = κ2 for an intercept, where ŝr is the sample

variance of an AR(4) model for the variable r. We set κ1 = 0.22 and κ2 = 102. These

values imply that the coefficient associated to a lag l variable is shrunk more heavily to

zero as the lag length increases, but intercepts are not shrunk to zero. Further we set

k0,Σ = n+ 3, S0,Σ = κ3In with κ3 = 1. These hyperparameters are fairly standard in the

literature; see, e.g., Koop and Korobilis (2010) or Karlsson (2013).

For the VAR with t innovations, the parameters are β and Σ (the degree of freedom

parameter ν is fixed but we consider a range of values). We use exactly the same priors

for β and Σ as in the Gaussian VAR case given in (6).

Bayesian estimation of the two VARs are fairly standard. Estimation of the Gaussian
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VAR can be found in standard textbooks such as Koop and Korobilis (2010) or Chan

(2019). Estimation of a regression with t innovations can be found in Koop, Poirier, and

Tobias (2007) or Chan (2019).

4.1.2 Empirical Results

We fit the US quarterly dataset using VARs with Gaussian and t errors. For each VAR, we

compute the marginal likelihood value using both Chib’s method and the cross-entropy

method. The results are reported in Table 4.1.2.

Both Chib’s and the cross-entropy methods give essentially the same marginal likelihood

estimates. Our results show that the data overwhelmingly prefer VARs with t errors to

the benchmark with Gaussian errors. This is consistent with earlier empirical work that

show VARs with t errors generally forecast better than those with Gaussian errors (e.g.,

Cross and Poon, 2016; Chiu, Mumtaz, and Pinter, 2017; Chan, 2018). In addition, the t

VAR with the heaviest tail (ν = 5) receives the most support.

Table 1: Log marginal likelihood estimates of the VAR and VAR with t innovations using

the cross-entropy method (CE) and Chib’s method (Chib).

VAR VAR-t

ν = 5 ν = 10 ν = 30

CE −1416.7 −1322.2 −1344.7 −1381.5

Chib −1416.7 −1322.2 −1344.7 −1381.5

Next, Table 2 reports the derivatives of the log marginal likelihood estimates with respect

to the three key hyperparameters: κ1, κ2 and κ3. Recall that κ1 controls the overall

shrinkage strength of the VAR coefficients; κ2 is the prior variance for the intercepts; and

κ3 controls the prior mean of the covariance matrix Σ.

Table 2: Derivatives of log marginal likelihood estimates of the VAR and VAR with t

innovations with respect to the hyperparameters.

VAR VAR-t (ν = 5)

κ1 κ2 κ3 κ1 κ2 κ3

CE 424.3 −0.01 10.3 471.7 −0.01 5.6

Chib 424.3 −0.01 10.3 471.8 −0.01 5.6
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Our results show that the marginal likelihood estimates are relatively sensitive to κ1 and

κ3, but not to κ2. For example, increasing κ1 from the baseline value of 0.04 to 0.05

would increase the log marginal likelihood value of the Gaussian VAR by about 4.2,4 but

increasing κ2 by the same proportion—from the baseline value of 100 to 125—has little

impact on the marginal likelihood value.

Interestingly, even though the three hyperparameters are common across the two VARs,

their impacts on the marginal likelihood values differs across the two VARs. For example,

increasing κ1, i.e., decreasing the strength of shrinkage, helps the t VAR fit the data

better relative to the Gaussian VAR. In view of the differential impact of the common

hyperparameters, it would be of interest to assess if the ranking of the models would

change over a range of reasonable hyperparameter values. For example, even if we halve

the value of κ1, the log marginal likelihood values of the Gaussian and t VARs would

be about −1425 and −1332, respectively. Since the difference of the two values remains

large, the conclusion that the data strongly prefer the t VAR is reasonably robust.

To assess how the marginal likelihood estimates vary over a wider range of hyperparameter

values, one can plot the estimates together with the corresponding derivatives against

some hyperparameters of interest. For example, Figure 2 plots these values against κ1.

-0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

-1450

-1440

-1430

-1420

-1410

-1400

-1390

Figure 2: Marginal likelihood estimates (red dots) and the corresponding derivatives (blue

tangents) of the Gaussian VAR against κ1.

4To check this estimate, we redid the marginal likelihood estimation with κ1 = 0.05, while keeping
other hyperparameters exactly the same. The new marginal likelihood value increases by 3.6, which is
similar to the original estimate.
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As the figure shows, for values of κ1 less than, say, 0.1, the derivatives are large and

positive, indicating that a small increase in κ1 would substantially increase the marginal

likelihood value. However, for values of κ1 greater than 0.15, the derivative values are

small in magnitude and even negative, suggesting that the maximizer is less than 0.15.

Overall, the marginal likelihood values are all less than −1400, confirming that the data

favor the VAR with t errors.

4.2 Factor Models for Exchange Rate Returns

Factor models have been widely used in many different areas including psychology, bioin-

formatics, economics and finance. They are often used for modeling the dependence

structure of high-dimensional data. One central interest in factor analysis is to determine

the number of latent factors. In the second application we compare factor models with

different number of factors for fitting a dataset of exchange rates.

More specifically, let yt denote the n×1 vector of observations at time t with t = 1, . . . , T ,

and let ft represent a vector of k latent factors. Then, the k-factor model is specified as:

yt = Xtβ + Aft + εt, (7)

where Xt is an n×m matrix of regressors, β is the associated m×1 vector of coefficients

and A is the n × k loading matrix. The factors and the innovations are assumed to be

independent and normally distributed: ft ∼ N (0,Ω) and εt ∼ N (0,Σ), where Σ and Ω

are diagonal. For the purpose of identification, we also require n > 2k + 1 and assume

that A is lower triangular where the diagonal elements are unity (see, for example, the

discussion in Geweke and Zhou, 1996).

In our empirical work below we would only include intercepts but no other regressors.

Hence, Xt = In and β is an n× 1 column of intercepts.

4.2.1 Data, Priors and Estimation

In the second application we analyze daily returns on nine international currency exchange

rates relative to US dollar beginning in January 2007 and ending in December 2010.

Specifically, the exchange rate returns are computed as yit = 100 log(pi,t/pi,t−1), where pit

denotes the daily closing spot rate for currency i at time t. The nine currencies are the
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Australian Dollar (AUD), Canadian Dollar (CAD), Euro (EUR), Japanese Yen (JPY),

Swiss Franc (CHF), British Pound (GBP), South Korean Won (KRW), New Zealand

Dollar (NZD) and New Taiwan Dollar (TWD). These represent some of the most heavily

traded currencies over the period.

To specify the priors, first let a denote the vector of free elements in the factor loadings A

stacked by row. Note that the dimension of a is ka = kn−k(k+1)/2. Now, the parameters

for the k-factor model are β, a,Σ = diag(σ2
1, . . . , σ

2
n), and Ω = diag(ω2

1, . . . , ω
2
k). We

consider the following independent priors:

β ∼ N (β0,Vβ), a ∼ N (a0,Va), σ2
i ∼ IG(νσ2

i
, Sσ2

i
), ω2

j ∼ IG(νω2
j
, Sω2

j
) (8)

for i = 1, . . . , n and j = 1, . . . , k. We parameterize the priors so that they depend on 4 key

hyperparameters κ4, κ5, κ6 and κ7. More specifically, we set β0 = 0, Vβ = κ4In, a0 = 0,

Va = κ5Ika , νσ2
i

= 3, Sσ2
i

= κ6, νω2
j

= 3 and Sω2
j

= κ7, where κ4 = κ5 = κ6 = κ7 = 1.

Estimation of the factor model with fixed number of factors k is standard. Estimation

details can be found in Geweke and Zhou (1996) and Lopes and West (2004), and we do

not repeat them here. For marginal likelihood computation, we also need the evaluation

of the (integrated) likelihood; the analytical expression is given in the Appendix.

4.2.2 Results

We fit the exchange rate returns data using the factor models with k = 1 to k = 4 factors.

For each factor model, we compute the marginal likelihood value using both Chib’s and

the cross-entropy methods. We report the results in Table 4.2.2.

In contrast to the previous application, here Chib’s method and the cross-entropy method

give slightly different marginal likelihood estimates. However, both methods are consis-

tent in terms of the ranking of the models. In particular, both methods indicate that

the 4-factor model is most preferred by the data. But the weight of evidence is relatively

weak—the log Bayes factor in favor of the 4-factor model against the 3-factor model is

less than 3.5 for both methods. Furthermore, both methods indicate a substantial initial

increase in log marginal likelihood values—e.g. log marginal likelihood increases by about

270 from k = 1 to k = 2 factors—but the increase plateaus when k = 3.
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Table 3: Log marginal likelihood estimates of the factor model with k factors using the

cross-entropy method (CE) and Chib’s method (Chib).

k = 1 k = 2 k = 3 k = 4

CE −10039 −9768.1 −9687.8 −9685.6

Chib −10025 −9753.9 −9673.4 −9670.0

Next, Table 4 reports the derivatives of the log marginal likelihood estimates for the

3- and 4-factor models with respect to the four key hyperparameters: κ4, κ5, κ6 and κ7.

Recall that κ4 and κ5 respectively control the overall shrinkage strength of the intercepts

β and factor loadings a; κ6 and κ7 control the prior means of σ2
i and ω2

i , respectively.

Table 4: Derivatives of the log marginal likelihood estimates of the 3- and 4-factor models

with respect to the hyperparameters.

k = 3 k = 4

κ4 κ5 κ6 κ7 κ4 κ5 κ6 κ7

CE −4.5 −3.7 −24.7 −8.0 −4.5 −6.2 −24.9 −9.1

Chib −4.5 −3.8 −25.1 −7.7 −4.5 −6.1 −27.3 −11.3

The results suggest that the marginal likelihood values are relatively insensitive to the

four key hyperparameters. And with the possible exception of κ5, they seem to have

similar impact on the two factor models. Since κ5 controls the overall shrinkage strength

of the factor loadings a, and the dimension of a grows with k, this result might not

be surprising. Due to the differential impact of κ5, when we increase κ5, the 3-factor

model is less penalized and performs better relative to the 4-factor model. Given that

these two models have similar marginal likelihood values at the baseline setting, we

conclude that they essentially receive the same support from the data. This highlights the

value of performing a prior sensitivity analysis when comparing models via the marginal

likelihood.

5 Concluding Remarks and Future Research

We have developed a general method based on Automatic Differentiation to compute the

sensitivities of marginal likelihood with respect to a set of prior hyperparameters. We have

21



illustrated the methodology using two empirical applications. While the conclusion in the

VAR application is robust over a wide range of hyperparameter values, the most preferred

number of factors in the factor model application is more uncertain. Our findings therefore

highlight the importance to routinely conduct a prior sensitivity analysis in Bayesian

model comparison.

In future work, it would be useful to develop similar automated prior sensitivity analysis

for time-varying models. This is motivated by recent findings that models that allow

for time-varying parameters and stochastic volatility, such as those developed in Cogley

and Sargent (2001, 2005) and Primiceri (2005), tend to forecast substantially better, as

demonstrated in Clark (2011), D’Agostino, Gambetti, and Giannone (2013) and Cross

and Poon (2016). Furthermore, AD-based prior sensitivity analysis are particularly useful

when strong prior information is used, such as in estimating dynamic stochastic general

equilibrium models.
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Appendix: Integrated Likelihood of the Factor Model

In this appendix we provide an explicit expression for the integrated likelihood factor

model in (7). Recall that ft ∼ N (0,Ω) and εt ∼ N (0,Σ). By integrating out the factors

ft, we have

(yt |β,A,Ω,Σ) ∼ N (Xtβ,AΩA′ + Σ).

Evaluating this Gaussian distribution in the conventional way would involve computing

the n× n inverse (AΩA′ + Σ)−1, which is a time-consuming operation when n is large.

As pointed out in Geweke and Zhou (1996), one can avoid this computation problem by

using the Woodbury matrix identity:

(AΩA′ + Σ)−1 = Σ−1 −Σ−1A(Ω−1 + A′Σ−1A)−1A′Σ−1, (9)

which only requires computing the k×k inverse (Ω−1+A′Σ−1A)−1.5 In typical situations

where n is much larger than k, the computation saving is substantial. We further improve

the efficiency of this approach by vectorizing the operations and by implementing sparse

matrix routines.

To that end, we stack the observations over t and write (7) as:

y = Xβ + (IT ⊗A)f + ε,

where y = (y′1, . . . ,y
′
T )′, f = (f ′1, . . . , f

′
T )′, ε = (ε′1, . . . , ε

′
T )′ and X is similarly defined. It

follows that unconditional on f , y is jointly distributed as:

(y |β,A,Ω,Σ) ∼ N (Xβ, IT ⊗ (AΩA′ + Σ)).

Hence, the integrated likelihood (in log) of this model is given by

log f(y |β,A,Ω,Σ) =− Tn

2
log(2π)− T

2
log |AΩA′ + Σ|

− 1

2
(y −Xβ)′

(
IT ⊗ (AΩA′ + Σ)−1

)
(y −Xβ).

(10)

5Note that Σ and Ω are both diagonal matrices and their inverses are fast to compute.
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