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Abstract

This paper evaluates how adaptive learning agents weight different pieces of informa-

tion when forming expectations with a recursive least squares algorithm. The analysis

is based on a renewed and more general non-recursive representation of the learning al-

gorithm, namely, a penalized weighted least squares estimator, where a penalty term ac-

counts for the effects of the learning initials. The paper then draws behavioral implications

of alternative specifications of the learning mechanism, such as the cases with decreasing,

constant, regime-switching, adaptive, and age-dependent gains, as well as practical recom-

mendations on their computation. One key new finding is that without a proper account

for the uncertainty about the learning initial, a constant-gain can generate a time-varying

profile of weights given to past observations, particularly distorting the estimation and be-

havioral interpretation of this mechanism in small samples of data. In fact, simulations

and empirical estimation of a Phillips curve model with learning indicate that this par-

ticular misspecification of the initials can lead to estimates where inflation rates are less

responsive to expectations and output gaps than in reality, or “flatter” Phillips curves.
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“The longer you can look back,
the farther you can look forward.”

–Winston Churchill

1 Introduction

Adaptive learning can generate out-of-equilibrium expectations that help explain deviations
from rational expectations and an economy’s transitional dynamics towards equilibrium. Under
adaptive learning, agents’ beliefs are modeled through the assumption of a recursive learning

∗Auckland University of Technology, New Zealand; and Centre for Applied Macroeconomic
Analysis, Australian National University. Corresponding author: jaqueson.galimberti@aut.ac.nz,
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mechanism that updates agents’ perceptions about the economy as new data observations be-
come available. The weight given to these observations is a key determinant of the degree of
persistence introduced by adaptive learning in the evolution of expectations, and, hence, it is an
important factor in the explanation of deviations from rational expectations predictions. In this
paper we study the behavioral implications of alternative specifications of the learning mech-
anism, showing how these assumptions can affect the way agents weight information when
forming expectations according to a recursive least squares algorithm.

The first contribution of this paper is the proposal of a new and more general non-recursive
representation of the learning algorithm. Namely, we show that the recursive least squares
(RLS), a commonly assumed mechanism to represent agents econometric learning, is more
properly represented by a penalized weighted least squares (WLS) estimator, where a penalty
term accounts for the effects of the learning initial estimates.1 The pace of RLS learning is
regulated by a sequence of learning gains, which also determines how different pieces of infor-
mation are weighted in the implied estimates of agents’ perceived law of motion. The frame-
work proposed in this paper provides flexible analytical expressions for the calculation of these
weights under alternative assumptions on the behavior of the learning gains, including the tra-
ditional decreasing-gain (Marcet and Sargent, 1989) and constant-gain (Sargent, 1999) specifi-
cations, as well as more sophisticated mechanisms such as endogenous gain-switching (Marcet
and Nicolini, 2003) and age-dependent (Malmendier and Nagel, 2016) gain specifications.

Several instructive results are derived on the basis of this new framework. First, the influ-
ence of the learning initials can become non-negligible for applied purposes, especially under
a constant-gain setup, where the weights given to past observations decrease geometrically.
For example, for calibrations and samples of standard macroeconomic applications, it can take
almost 5 decades of quarterly data for the latest observation to receive a weight as high as
the weight given to the initial estimate–although the relevance of initials is well known in the
literature (see, e.g., Carceles-Poveda and Giannitsarou, 2007; Slobodyan and Wouters, 2012b;
Berardi and Galimberti, 2017b), the framework developed in this paper allows a more precise
account of these effects. Second, although the effect of the initials are less persistent under a
decreasing-gain setup, the often assumed equivalence between this formulation and the tradi-
tional ordinary least squares estimator from econometrics does not hold for arbitrary learning
initials, but only under the assumption of a diffuse initial, which is equivalent to a diffuse prior
in a Bayesian context–this is another puzzling observation that applied researchers quickly
learn with the computation of learning estimates and that the framework of this paper clarifies.

One key new finding of this paper is that the assumption of a diffuse initial also implies that
the profile of weights given to past observations under constant-gain learning is time-varying,

1A similar correspondence between the RLS and the standard (i.e., without the penalty term) WLS was pre-
sented in Berardi and Galimberti (2013), except that under the assumption of a diffuse initial prior, in which case
the effects of the learning initials are not taken into account; also note that most recursive formulations of statis-
tical estimators adopted in the adaptive learning literature are drawn from the system identification literature in
engineering (e.g., Ljung and Soderstrom, 1983).
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causing a geometric decay of weighting stronger than would have been expected from asymp-
totic analysis of the learning algorithm. This result can have important implications for the
estimation of models with learning, because it can lead to an overweighting of the initial sam-
ple of observations used for model estimation. In fact, simulating the estimation of a new
Keynesian Phillips curve model we find that diffuse initials lead to stronger small sample dis-
tortions in the model estimates. Particularly, the misspecified initials result in “flatter” Phillips
curve estimates in the sense that inflation rates seem less responsive to changes in real marginal
costs than they actually are. A back-of-the-envelope calculation based on the simulation results
with a sample of 50 observations indicates the diffuse initial’s distortion can lead to Phillips
curve slope estimates about half its true value. Empirical estimates with US data also indicate
that the diffuse initials lead to systematically lower estimates of the relevance of expectations
for the determination of inflation, and imply flatter Phillips curve estimates than those obtained
with initials consistent with the constant-gain learning mechanism.

The new framework is also useful for the analysis of more recent specifications of the learn-
ing gains. Particularly, the learning from experience approach of Malmendier and Nagel (2016)
stands, in the framework of this paper, as a generalization of decreasing-gain learning applied
at cohort-level data. Consistent with their analysis, we find that this mechanism implies a pro-
file of weights given to lifetime observations that is varying with the agent’s age. Nevertheless,
another interesting new observation facilitated by our framework is the finding that this setup
can lead to hump-shaped profiles of weights given to lagged observations throughout an agent’s
lifetime. For example, under an usual calibration of this mechanism, an agent would be giving
an increasing weight to 20-years lagged observations all the way till reaching the age of 60
years old. Finally, the case of time-varying learning gains is also considered to show how the
framework of this paper can be informative for the design of mechanisms consistent with a
behavioral concern with ongoing structural changes in the economy.

The remainder of this paper is split into four other sections: Section 2 outlines the general
framework of recursive learning and the new non-recursive representation of the learning al-
gorithm; Section 3 shows how to use this framework for drawing the information weighting
and behavioral implications of different specifications of the learning gains; Section 4 presents
simulation and empirical analysis of the distortionary effects of diffuse initials in the estimation
of models with constant-gain learning; Section 5 concludes with some remarks.

2 Framework

In models with adaptive learning a perceived law of motion (PLM) is specified relating the
variables agents are assumed to observe and those variables they care and need to form expec-
tations about. Focusing on a univariate case a typical PLM specification is given by a linear
regression model of the form

yt = x′tφ t + εt , (1)

3



where yt is assumed to be related to a vector of (pre-determined) variables, xt = (x1,t , . . . ,xk,t)
′,

through the vector of (possibly time-varying) coefficients φ t = (φ1,t , . . . ,φk,t)
′, and εt denotes

a white noise disturbance term. This specification can be easily extended to a multivariate
context, by augmenting yt , εt , and φ t with extra columns, and to different specifications of
lag/lead in the timing of expectations, by adjusting the timing of xt .

In a typical economic modeling context, the observations of yt needed to estimate (1), as
well as some or all of the regressors in xt , are endogenously determined within a hypothetical
structural model. These observations are the result of market equilibrium and the interaction
between the economic decisions by the many different actors that compose the economy, such
as households, firms, and policymakers. Hence, due to the relevance of expectations for these
agents’ economic decisions, the same macroeconomic outcomes that are relevant for the for-
mation of expectations are themselves determined by expectations, a feature often called self-
referentiality. Notwithstanding, for the purposes of deriving weighting expressions we will
abstract from one side of this self-referential nature of expectations, and focus instead on the
modeling of agents’ PLM. I.e., we will assume agents form expectations according to equa-
tion (1) without accounting for the endogeneity of the involved variables. Notice, as is usually
the case in applications of adaptive learning, this implies some degree of bounded rationality
in the way agents form expectations. The effects of self-referentiality are more fully taken into
account in the simulation and empirical estimation exercises presented in Section 4.

Recursive learning A recursive estimator is assumed to represent how agents update their
PLM estimates as new observations become available. One popular algorithm (see Berardi and
Galimberti, 2014, for rationale and a comparative of alternatives) is given by the Recursive
Least Squares (RLS),

φ̂ t = φ̂ t−1 + γtR−1
t xt

(
yt−x′t φ̂ t−1

)
, (2)

Rt = Rt−1 + γt
(
xtx′t−Rt−1

)
, (3)

where γt is a learning gain parameter, Rt stands for an estimate of regressors’ matrix of second
moments, E [xtx′t ], and the

{
φ̂ 0,R0

}
initial estimates are set to be consistent with plausible

agents’ beliefs at the beginning of the modeled sample (see Berardi and Galimberti, 2017b, for
further discussion and methods). The learning gain is an important parameter of this learning
mechanism because it determines how quickly new information is incorporated into the recur-
sive estimates, and hence, how quickly agents react to different pieces of information. More
precisely, the sequence of learning gains can be related with the relative weights given to sam-
ple observations in the estimation process. In order to draw this relationship it is useful to
consider the non-recursive formulation corresponding to this estimation problem.
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Non-recursive form One important contribution of this paper is to provide a new and more
general non-recursive representation of the RLS learning algorithm accounting for the initials.
When initialized from arbitrary initials, φ̂ 0 and R0, the RLS has a non-recursive form given by

φ̂ t = argmin
t

∑
i=1

ωt,i
(
yi−x′iφ̂ t

)2
+ωt,0

(
φ̂
′
0− φ̂

′
t

)
R0
(
φ̂ 0− φ̂ t

)
, (4)

=

[
t

∑
i=1

ωt,ixix′i +ωt,0R0

]−1[ t

∑
i=1

ωt,ixiyi +ωt,0R0φ̂ 0

]
, (5)

where the weights are related to the sequence of learning gains according to

ωt,i =


∏

t
j=1
(
1− γ j

)
f or i = 0(initial),

γi ∏
t
j=i+1

(
1− γ j

)
f or 0 < i < t,

γt f or i = t,

(6)

Interestingly, when the initial is taken into account, the RLS is equivalent to a Weighted Least
Squares (WLS) estimation problem augmented with a penalty on squared deviations between
estimates and initials.

Correspondence between penalized WLS and RLS To see how the RLS of (2)-(3) can
be derived from the penalized WLS formulation of (5) and (6), first notice that iterating (3)
recursively from R0 we have that

Rt =
t

∑
i=1

ωt,ixix′i +ωt,0R0,

which is the inverse of the first term in (5), leading to

φ̂ t = R−1
t

[
t

∑
i=1

ωt,ixiyi +ωt,0R0φ̂ 0

]
. (7)

For the second term notice that

t

∑
i=1

ωt,ixiyi =
t−1

∑
i=1

ωt,ixiyi + γtxtyt ,

= (1− γt)
t−1

∑
i=1

ωt−1,ixiyi + γtxtyt ,

and
ωt,0R0φ̂ 0 = (1− γt)ωt−1,0R0φ̂ 0,
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where we use
ωt,i = (1− γt)ωt−1,i,

which follows from (6). Hence, (7) is equivalent to

φ̂ t = R−1
t

[
γtxtyt +(1− γt)

(
t−1

∑
i=1

ωt−1,ixiyi +ωt−1,0R0φ̂ 0

)]
. (8)

Lagging (7) one period we find that

Rt−1φ̂ t−1 =
t−1

∑
i=1

ωt−1,ixiyi +ωt−1,0R0φ̂ 0,

which can be substituted into (8) to yield

φ̂ t = R−1
t
[
γtxtyt +(1− γt)Rt−1φ̂ t−1

]
. (9)

From (3) notice that
(1− γt)Rt−1 = Rt− γtxtx′t ,

which substituted into (9) and after rearranging leads to

φ̂ t = R−1
t
[
γtxtyt +

(
Rt− γtxtx′t

)
φ̂ t−1

]
,

= γtR−1
t xtyt + φ̂ t−1− γtR−1

t xtx′t φ̂ t−1,

= φ̂ t−1 + γtR−1
t xt

(
yt−x′t φ̂ t−1

)
,

establishing the correspondence between the penalized WLS solution of (5) and the RLS of (2).

Penalized WLS in matrix form It is sometimes useful to have estimators in matrix form. For
the case with arbitrary initials, φ̂ 0 and R0, the RLS is equivalent to the solution of a penalized
regression problem given by

φ̂ t = argmin
{(

yt− φ̂
′
tXt

)
Ωt
(
y′t−X′t φ̂ t

)
+ωt,0

(
φ̂
′
0− φ̂

′
t

)
R0
(
φ̂ 0− φ̂ t

)}
,

where Xt =(x1,x2, . . . ,xt) is a (k× t) matrix collecting the regressors’ time series, yt =(y1,y2, . . . ,yt),
Ωt = diag(ωt,1,ωt,2, . . . ,ωt,t) is a weighting matrix with the sequence of weights in the main
diagonal and zeros otherwise. The solution to this minimization problem is then given by

φ̂ t =
(
XtΩtX′t +ωt,0R0

)−1 (XtΩty′t +ωt,0R0φ̂ 0
)
.

Relation to literature To the best of the author’s knowledge this non-recursive formulation
of the RLS for arbitrary initials has never been outlined in the previous literature. Berardi
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and Galimberti (2013), for example, have drawn a correspondence between the RLS and the
standard (without penalty) WLS, except that under the assumption of a diffuse initial prior,
when R0→ 0. From a Bayesian point of view, Rt is inversely related to the uncertainty in the
corresponding Kalman filter estimates of φ t (see Evans et al., 2010). Hence, R0 → 0 can be
interpreted as increasing the uncertainty about the initial estimates, and it is only under this
diffuse prior assumption that the standard WLS is equivalent to the RLS. Also, notice that if
R0 = 0 (exactly rather than as a limit), (2)-(3) implies that φ̂ 1 = (x1x′1)

−1 x1y1, which will be
indeterminate2 for k > 1.

For applied purposes, the learning process implied by the RLS of (2)-(3) will require the
specification of initials. Hence, an appropriate account of the implied relative weights given
to sample observations can only be obtained by including the penalty on deviations of the
estimates from the learning initials, as in (5). The weight given to this penalty, nevertheless, is
adjusted according to the weights given to the sample observations and the initial estimate of
the regressors’ matrix of second moments. We discuss the relevance of these initials and the
observation weights in the next section.

3 Information weighting

The weight given to a sample observation determines the amount of information from that
particular observation that is incorporated into the parameters’ estimates. The non-recursive
estimator above allows the calculation of such weights for any arbitrary sequence of learning
gains. Also notice that the weights, ωt,i, defined in equation (6), are already in relative terms,
though this equivalence does not hold under diffuse initials.

Absolute and relative weights What in fact matters for estimation are the relative weights
instead of their absolute values. To see that, consider the effects of multiplying the sequence
of weights in the solution to the penalized WLS problem,

{
ωt,0,ωt,1, . . . ,ωt,t

}
in equation (5),

by a constant κ; clearly, such a re-scaling of the weights will have no effect over the resulting
estimates because the constant factor entering in the numerator will cancel out with that enter-
ing in the denominator of the estimator. In order to calculate the relative weights we need to
divide the absolute weights by the sum of weights given to sample observations and the initial.
It turns out that the relationship defined between the weights and the learning gains implies that
this sum will always be equal to unity. Letting W n

t stand for the sum of weights starting from
weight n up to weight t, from the definition of the absolute weights, (6), this sum of weights

2More precisely, x1x′1 must have full rank for a non-degenerate inverse to exist; to guarantee the existence of
this inverse, γt = 1 must also be ruled out.
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can be expanded according to

W 0
t =

t

∑
i=0

ωt,i,

=
t

∏
j=1

(
1− γ j

)
+

t−1

∑
i=1

γi

t

∏
j=i+1

(
1− γ j

)
+ γt . (10)

Expanding the first term of (10) we have that

ωt,0 = (1− γ1)(1− γ2) . . .(1− γt−1)(1− γt) ,

= (1− γ2) . . .(1− γt−1)(1− γt)− γ1

t

∏
j=2

(
1− γ j

)
,

= 1− γt−
t−1

∑
i=1

γi

t

∏
j=i+1

(
1− γ j

)
. (11)

Returning to (10) we then have

W 0
t = 1− γt−

t−1

∑
i=1

γi

t

∏
j=i+1

(
1− γ j

)
+

t−1

∑
i=1

γi

t

∏
j=i+1

(
1− γ j

)
+ γt ,

= 1.

Hence, in the context of the correspondence between the RLS and the penalized WLS outlined
in this paper, the relative weights will be equal to their corresponding absolute weights, and we
can focus directly on the weights defined by equation (6). Moreover, it is often more interesting
to evaluate how the observation weights evolve relative to the last observation in the sample,
i.e., redefining equation (6) in terms of lags relative to the end of the sample, ϖt,l = ωt,t−l , in
which case we look at

ϖt,l =

γt−l ∏
l−1
j=0
(
1− γt− j

)
f or 0 < l < t,

γt f or l = 0.
(12)

For clarity of notation, in what follows we also add superscripts to the different definitions of
learning gains and their implied weights.

3.1 Decreasing-gain

The decreasing-gain (DG) specification has been prominent in the adaptive learning literature
since the seminal contributions of Bray (1982); Marcet and Sargent (1989). Under a decreasing
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gain, traditionally modeled as γ
dg
t = 1/(t +1), the weights are given by

ω
dg
t,i =


∏

t
j=1

(
j

j+1

)
= 1

2
2
3 · · ·

t−1
t

t
t+1 = 1

t+1 f or i = 0,

1
i+1 ∏

t
j=i+1

(
j

j+1

)
= 1

i+1
i+1
i+2 · · ·

t
t+1 = 1

t+1 f or 0 < i < t,

1
t+1 f or i = t,

and every observation receives an equal weight that is decreasing with the sample size, which
makes the DG-RLS particularly interesting for the analysis of learning convergence towards
equilibrium. Particularly, notice that asymptotically, as t → ∞, the weight given by the DG-
RLS to any observation, and the initial, decreases towards zero.

OLS equivalence breakup The DG-RLS is often motivated as representative of real-time
econometricians due to its resemblance with the Ordinary Least Squares (OLS) estimator from
econometrics,

φ̂
ols
t =

[
t

∑
i=1

xix′i

]−1[ t

∑
i=1

xiyi

]
.

Considering the prominence of the OLS estimator, an equivalence with the RLS may provide
a rationale for adaptive learning as a device representative of, say, real-time econometricians.
However, as equation (5) now makes clear, such an equivalence would require disregarding the
learning initials (or assuming a diffuse prior as discussed above).

3.2 Generalized decreasing-gain

A recent strand of the literature has revived the decreasing-gain specification with the proposal
of so-called learning from experience, where agents expectations are modeled at cohort-level
(Malmendier and Nagel, 2016, MN). Under this type of learning individuals’ beliefs are more
strongly affected by the data observed during their lifetimes, hence leading to a dispersion in the
cross-section of expectations depending on the age structure of the population of agents; MN
find some empirical support for this result from consumer expectations data collected through
surveys. Their modeling of learning is based on a generalization of the decreasing-gain setup
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(denoted by GDG-RLS in what follows) by assuming that3

γ
gdg
t =

θ

t +θ
, (13)

with θ > 0; in fact, notice that the original DG-RLS is obtained when θ = 1. Otherwise, it is
interesting to cast the GDG-RLS weights in lag recursive form, starting from ϖ

gdg
t,0 = θ/t+θ and

expanding to

ϖ
gdg
t,1 = ϖ

gdg
t,0

(
t

t−1+θ

)
,

ϖ
gdg
t,2 = ϖ

gdg
t,1

(
t−1

t−2+θ

)
,

...

ϖ
gdg
t,l = ϖ

gdg
t,l−1

(
t− l +1
t− l +θ

)
,

which makes clear that the weight given to lagged observations within a sample of data de-
creases with the lag if θ > 1, and increases if θ < 1. Also note that the higher (lower) θ is
above (below) 1, the quicker the decay (ascent) in the relative weights given by the GDG-RLS
to observations farther into the past.

Age-dependent experiences The GDG specification also implies a time-varying profile of
weights as the sample size grows. In behavioral terms this is what MN (p. 59) refer as “ex-
periences earlier and later in life to have a different influence” on expectations. To see this
consider how the weight given to a fixed observation lag evolves as the sample increases by
one observation; the ratio between the two corresponding weights is given by

ϖ
gdg
t,l

ϖ
gdg
t−1,l

=

θ

t−l+θ ∏
l−1
j=0

(
t− j

t− j+θ

)
θ

t−1−l+θ ∏
l−1
j=0

(
t−1− j

t−1− j+θ

) ,
=

t
t− l

(
t−1− l +θ

t +θ

)
, (14)

which is smaller than 1 if θ < t/l; this latter condition is always true for the latest observations
(l = 0)–younger individuals are more strongly influenced by the latest observation than older

3The exact gain specification in MN is actually given by

γ
mn
t,s =

{
θ

t−s i f t− s≥ θ ,

1 i f t− s < θ ,

where t − s stands for the age of the agent; however, from a computational point of view, this specification is
clearly problematic because it can lead to degenerate inverses when t− s ≤ θ , as discussed in footnote (2), and
indeterminate initials. The alternative proposed in equation (13) is not affected by this issues at the same time that
it captures the intended weighting profiles.
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ones–and for θ ≤ 1. For lagged observations, the weight decreases with the sample size as long
as θ is small enough relative to the sample size/lag ratio. These effects are depicted in Figures
1a and 1b.

Figure 1: Generalized decreasing-gain weights.

(a) Lagged weights by age.
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(b) Lifetime weights by observation lag.
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Notes: Weights calculated for quarterly data using eqs. (6)-(13) and θ = 3. The circles in panel
(b) indicate the turning points of the corresponding curves.

Recurring memories When θ > 1, the weight given to some lagged observations may in-
crease as the sample size grows—although an individual’s memories of past experiences tend
to fade away, “recurring memories” may have a comeback as the individual ages. Here, by
recurring memories we mean the memories recalled over a moving window of lagged obser-
vations4. This effect is more clearly illustrated in Figure 1b: notice how the weights given to
10 and 20-years lagged observations increase during an individual’s lifetime at the same time
that the weights given to more recent observations are decreasing; after a threshold age, here
of 30 years for the 10-years lag and 60 years for the 20-years lag, the lagged weights start to
decrease as well, giving rise to a hump-shaped profile of lagged weights. Also notice, from
equation (14), that the higher θ the earlier the effects of recurring memories will start to show
up within the agent’s lifetime. Although this property seems to have gone unnoticed so far in
the learning from experience literature, its effects are likely to be of secondary importance in
the explanation of cohort level expectations data. Particularly, notice that the increase in the
lagged weights tend to be small relative to the weights given to more recent observations.

3.3 Constant-gain

The constant-gain (CG) learning specification was introduced in the applied learning literature
by Evans and Honkapohja (1993) and became popular after Sargent (1999) for its improved

4An earlier version of this paper denoted these as “dormant memories,” which would be more appropriate if a
weight ω

gdg
t,i increased over time for a given i.
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capability of tracking the evolution of time-varying environments. This specification has also
been under the spotlight of the most recent research on the dynamic modeling of expectations
for its potential of generating escape dynamics over finite stretches of time (see Williams,
2019) and asymptotically stable distributions of beliefs (see Galimberti, 2019). Under CG-
RLS learning, γ

cg
t = γ̄ , and the weights are given by

ω
cg
t,i =

∏
t
j=1 (1− γ̄) = (1− γ̄)t f or i = 0,

γ̄ ∏
t
j=i+1 (1− γ̄) = γ̄ (1− γ̄)t−i f or 0 < i≤ t.

i.e., the sequence of sample observation weights is related to the learning gain by a geometric
progression given by ω

cg
t,i = γ̄ (1− γ̄)t−i. Hence, the relative weights given to past information

by the CG-RLS decrease with the observation lag (l = t− i); moreover, notice that this result
also holds asymptotically: although the CG-RLS also assigns a vanishing weight to any given
sample observation i, the information weight given to observations at a fixed lag l do not change
with t. This property makes the CG-RLS particularly well suited for modeling the behavioral
assumption that agents give a higher emphasis to the more recent observations than to those
collected farther into the past.

Persistently influential initials In contrast with the decreasing-gain specification, under the
CG-RLS the influence of the learning initials can become non-negligible for applied purposes.
Particularly, whereas ω

cg
t,0 also decreases with the sample size, the duration of the effects of the

initials within finite samples will depend on the learning gain. In fact, it is possible to calculate
how far, within a sample of data, the initial will have a greater weight than the data observation
by solving:

ω
cg
t,i? = ω

cg
t,0,

γ̄ (1− γ̄)t−i? = (1− γ̄)t ,

i? =
log(γ̄)

log(1− γ̄)
,

which is decreasing with γ̄ , i.e., the lower the learning gain the longer it takes for a data point
to receive a weight higher than the initial. Strikingly, for a gain value of γ̄ = 0.02, which is
typically found in applications with quarterly macroeconomic data (see Berardi and Galimberti,
2017a, for a review), it takes over 193 observations (or over 48 years of quarterly data) for the
CG-RLS to assign a weight to the latest observation as high as the weight given to the learning
initial. Alternatively, one may be interested in the cumulative weight given to the sample of
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observations relative to the initial:

i∗

∑
j=1

ω
cg
t, j = ω

cg
t,0,

i∗ =
log(1/2)

log(1− γ̄)
,

which is again decreasing with γ̄ , but leading to less startling accounts of the initials effect: for
γ̄ = 0.02, i∗ ' 34, i.e., it takes about 81/2 years of quarterly data for the CG-RLS to assign a
higher weight to the sample of observations than the learning initials in the PLM estimates.

Finite sample distortion under diffuse initials Without a proper initialization of R0, the
weights given to lagged observations by the CG-RLS can decay faster than the profile of
weights expected from its asymptotic operation. Particularly, under diffuse initials, R0 = 0,
the CG-RLS sample weights are given by

ϖ
dcg
t,l =

γ̄ (1− γ̄)l

1− (1− γ̄)t , (15)

which are declining not only with the observation lag, but also with the size of the sample.
These effects are illustrated in Figures 2a and 2b; notice the asymptotic weights depicted in
Figure 2a are in fact equivalent to ϖ

cg
t,l . Hence, although the relative sample weights also

decrease as the observation becomes outdated, the actual profile of relative sample weights is
not time-invariant, which can distort the behavioral interpretation of a constant gain in small
samples. Interestingly, in a parallel with the age-dependent gain specification discussed above,
letting t stand for age, equation (15) implies that a younger agent would assign a higher weight
to any given observation than an older one experiencing the same observation. We will return
to a quantification of this effect in the simulation analysis of Section 4 below.
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Figure 2: Constant-gain weights under diffuse initials.

(a) Lagged weights by sample.
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(b) Sample weights by observation lag.
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Notes: Weights calculated using equation (15) with γ̄ = 0.02.

3.4 Time-varying gains

Time-varying gains offer an alternative to relax the determination of information weighting
under learning. In the literature, this has been achieved either by merging the decreasing- and
constant-gain specifications (Marcet and Nicolini, 2003; Milani, 2014), or by turning the de-
termination of the gains endogenous with an additional adaptation mechanism (Kostyshyna,
2012; Berardi and Galimberti, 2017a). In both cases the learning gain is adjusted according
to the recursive forecasting performance of the implied expectations, increasing/decreasing the
gain (or switching from decreasing- to constant-gain and vice-versa) during periods of ele-
vated/low forecasting errors. These time-varying approaches allow the modeling of behavioral
shifts of attention that agents give to incoming data, which could be motivated as a concern
with structural changes.

Adaptive gains revisited Benveniste et al. (1990) and Kushner and Yang (1995) propose the
use of an outer mechanism to adjust the learning gain for tracking slowly time-varying systems.
In its most general form the gains are adjusted according to

γt =
[
γt−1 +αx′tΨ̂t−1

(
yt−x′t φ̂ t−1

)]γ+
γ−
, (16)

where Ψ̂t keeps track of the algorithm’s past estimation performance, α is an adaptation con-
stant, and [•]γ+

γ−
is a truncation operator. In this approach, the gain is increased (decreased)

following evidence of systematic (contradictory) estimation errors (see also Berardi and Gal-
imberti, 2017a, p.226-8, for more details and intuition). However, one interesting implication
of our results is that the learning gain does not need to increase for the weight given to the latest

14



observation to rise; more formally, ϖt,0 > ϖt,1 only requires that

γt > γt−1 (1− γt) ,

γt >
γt−1

1+ γt−1
. (17)

Hence, our results imply that the symmetric adaptation of learning gains, according to (16),
leads to an asymmetric over/under-weighting of new observations following to evidence of
systematic/contradictory estimation errors. In fact, Kushner and Yang (1995, p.1405) suggest
adding a correction term in (16) to stabilize γt around values that are slightly smaller than the
optimal value implied by the stochastic approximation used to derive this mechanism.

Gain-switching revisited Marcet and Nicolini (2003) propose an endogenous gain mecha-
nism that can be represented in our framework as5

γ
gs
t =


γ̄

1+sγ̄
i f C

γ̄ otherwise,
(18)

where s = t− ts stands for the number of periods since the last time the constant-gain was used,
and C for a regime-switching condition. Using equation (17) we find that a switch from the
decreasing-gain, γ

gs
t−1 = γ̄/(1+(s−1) γ̄), to the constant-gain regime, γ

gs
t = γ̄ , would always

imply that the latest observation will be given a higher weight than the previous one—which
is consistent with the structural change/tracking rationale given to this learning mechanism.
When the switch goes on the other direction, from the constant-gain, γ

gs
t−1 = γ̄ , to a decreasing-

gain, γ
gs
t = γ̄/(1+ γ̄), equation (17) turns into an equality, which means the new observation is

given a weight that is equal to that given to the previous observation. Table 1 summarizes the
effects of all possible regime transitions on the weight given to the new observation, both within
the latest sample (1a) and relative to the previous sample (1b). It is interesting to note that the
magnitude of the effect of some of these regime switches depends on γ and s. Particularly, a
higher constant learning gain leads to a greater weight to the new observation not only within
the CG learning regime, but also in the transition from DG (t−1) to CG (t), and the latter effect
will be greater the longer learning has operated under DG before the switch.

5The decreasing-gain specification in Marcet and Nicolini (2003) is actually equivalent to γt =
γt−1

1+γt−1
, which

implies, for an initial gain given by γ0 = γ̄ , the formulation presented in equation (18) with ts = 0.
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Table 1: Gain-switching weighting dynamics.

(a) Last (ϖt,0) vs. lagged (ϖt,1) weight:

DG (t−1) CG (t−1)

DG (t) Equal Equal

CG (t) Increase
(more for ↑ γ and ↑ s)

Increase
(more for ↑ γ)

(b) Last (ϖt,0) vs. previous (ϖt−1,0) weight:

DG (t−1) CG (t−1)

DG (t) Decrease
(more for ↑ γ and ↓ s)

Decrease
(more for ↑ γ)

CG (t) Increase
(more for ↑ γ and ↑ s)

Equal

4 Simulation and empirical application

One key finding of our analysis of information weighting under least squares learning is that the
assumption of diffuse initials can distort the profile of weights given to sample observations by
a constant-gain mechanism. Given the popularity of this learning mechanism, we now turn to
a quantification of these effects with a simulation of the estimation of a macroeconomic model
and an empirical application. Particularly, we focus on a standard new Keynesian Phillips curve
model, given by

πt = βπ
e
t+1 +λxt +α +ut , (19)

xt = ρxt−1 + vt ,

where πt is inflation, πe
t+1 represents agents’ expectations for next period inflation, xt is a proxy

for real marginal cost, often measured as output gaps, and ut is a disturbance. Under adaptive
learning agents form expectations according to a PLM given by

πt = φt−1xt +ϕt−1 + zt ,

where φt and ϕt are parameters estimated with the LS algorithm of (2)-(3), and are expected to
converge to the rational expectations equilibrium (REE), φ∗= λ/(1−βρ) and ϕ∗=α/(1−β ),
as long as β < 1 and βρ < 1 (E-stability condition, see Evans and Honkapohja, 2001, pp. 198-
200).

4.1 Simulation analysis

We generate 10,000 samples of artificial series of πt and xt assuming that γ = 0.03, β = 0.99,
λ = 0.2, α = 0, ρ = 0.7, ut ∼N (0,3), and vt ∼N (0,1). For each sample we simulate the model
for 2,000 observations, discarding the first 1,000 and using the remaining data for estimation
of β̂ , under varying sample sizes and R̂0 prior assumptions. We focus on the estimation of β̂

because this is a key parameter determining the relevance of forward-looking expectations for
inflation in this model. All other parameters, including the learning initial φ0, are set to their
actual values–because we set α = 0, we drop the intercept from the PLM.
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Under learning, the actual law of motion is given by

πt = (βρφt−1 +λ )xt +ut .

Since we are fixing γ , ρ , and λ , estimation of β̂ is linear on the interaction between φt−1 and
xt . Hence, we estimate β̂ by regressing πt − λxt on ρφt−1xt and a constant using OLS–our
results on β̂ are qualitatively similar when adding λ̂ or γ̂ for joint estimation, although the
latter requires nonlinear estimation methods. To avoid effects of unstable dynamics we discard
simulations where β̂ < 0 or β̂ > 1/ρ , the latter following from the E-stability condition.

We evaluate the effect of a diffuse initial by considering how alternative assumptions of R̂0

affect the average estimates of β̂ . Figure 3a presents the average estimation results over dif-
ferent estimation samples–here we focus on mean deviations (bias) between the estimates and
their simulated values, but their mean squared deviations (variance) lead to similar results on
the positive domain. The β̂ estimates are, on average, below their actual value. As expected,
these estimates tend to converge to their actual values for bigger estimation samples. However,
the use of diffuse initials, R̂0 = 0, leads to greater biases, which also tend to be stronger for the
smaller estimation samples. The learning curves presented in Figure 3b offer an explanation
for these effects: the diffuse initials make the learning estimates oversensitive to the first obser-
vations in the sample, hence confirming our prediction that this approach can add up to finite
sample distortions in the estimation of models with learning.

Figure 3: Constant-gain simulated estimation exercise.

(a) Average bias.
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Notes: Statistics are averaged across repeated simulations of model (19), discarding boundary
estimates as described in the text. The blue dashed line, corresponding to R̂0 = 1.00R0,
does not show up in 3b because its corresponding MSD is always equal to 0 (by defini-
tion) and the MSDs are depicted in logarithmic scale.

Quantitatively, we find that the use of diffuse initials lead to β̂ estimates between 0.44 and
0.13 below the true value, and 0.27 and 0.08 below the estimates obtained with the correct
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initial, for the samples with 50 and 1,000 observations, respectively. This parameter is among
the determinants of the slope of the Phillips curve in this model, or how responsive inflation
is to changes in real marginal costs. Under learning this slope will be varying with φt , but
taking this model’s REE as a reference, a β̂ deviation of 0.44 from its true value implies a
Phillips curve slope estimate about half the magnitude (or “flatter”) of its true value, 0.33
versus 0.65, respectively–notice part of this effect comes from the small sample distortion of
estimates as the use of the correct initial still leads to a downward biased slope of 0.47, on
average. This is equivalent to saying that estimation of this model with diffuse initials, and a
sample of 50 observations, would lead a researcher to infer that when this economy is producing
10% above its full-employment capacity, prices would be rising at a 3.3% inflation rate, when
they will actually be rising 6.5% (plus a random shock). Hence, misspecified initials, and their
associated distortions to how sample information is weighted under constant-gain learning, can
lead to flatter Phillips curve estimates.

4.2 Empirical estimates

We now turn to an empirical evaluation of the effects of diffuse initials on the estimation of the
standard new Keynesian Phillips curve model under constant-gain learning, as outlined above.
For this purpose we obtain quarterly US data on CPI and real GDP covering the period from
1947 to 2019. We then measure inflation, πt , by the log change in CPI relative to the same
quarter in the previous year, and derive output gap measures using the Hodrick-Prescott filter
on the log real GDP series to stand for the forcing variable, xt .

We again focus on the estimation of β̂ , while pre-fixing the other parameters to plausible
values: γ = 0.03 is in the range of calibrations reported by Berardi and Galimberti (2017a,
Fig.8) to match survey forecasts of US CPI inflation from professionals, consumers, and poli-
cymakers; λ = 0.05 is close to previous empirical estimates of hybrid forms of this model in the
literature, which tend to be positive and borderline significant (see Mavroeidis et al., 2014, for
a survey); and, ρ = 0.85 is directly obtained by estimating the first-order autocorrelation in the
output gap series. For the learning initials we use pre-sample data to estimate {φ0,ϕ0} using
WLS in order to obtain initials consistent with the constant-gain learning adopted in the esti-
mation sample (see Berardi and Galimberti, 2017b). We then consider two variants for initial
matrix of second moments: (i) the estimate obtained with the pre-sample training, R̂0 = Rwls

0 ;
(ii) a re-scaled version to represent the diffuse initial approach, R̂0 = 10−6Rwls

0 .
In order to avail the effects of different estimation samples, we fit the model both with

the full-sample and across sub-samples of the data. Table 2 presents the estimation results.
The β̂ estimates are generally positive and statistically significant across the different samples
and R̂0 assumptions. We also find that the implied estimates of the slope of the Phillips curve
have decreased during the so-called Great Moderation period (1986–2006), which is consistent
with previous evidence in the literature (Slobodyan and Wouters, 2012a), but rebounded since
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the financial crisis of 2007-09. The latter is also consistent with the broader view on the role
of deviations from rational expectations as an explanation for the apparent continuation of a
flattening of the US Phillips curve in recent periods (see Coibion et al., 2018). Namely, we
find no evidence of a flattening following the financial crisis when expectations are modeled
according to adaptive learning.

Table 2: Empirical estimates of a Phillips curve model with constant-gain learning.

1965-2019 1965-1985 1986-2006 2007-2019
(220 quarters) (84 quarters) (84 quarters) (52 quarters)

- Under pre-initialized R̂0:
β̂ 0.938∗∗∗ 0.750∗∗ 0.486∗∗ 1.040∗∗

(0.258) (0.323) (0.240) (0.464)
implied φ̃ 0.247 0.138 0.085 0.433

- Under diffuse R̂0:
β̂ 0.890∗∗∗ 0.668∗∗∗ 0.387∗ 0.481∗∗

(0.213) (0.195) (0.227) (0.195)
implied φ̃ 0.206 0.116 0.074 0.085

Notes: Standard errors in parentheses are heteroscedasticity and autocorrelation ro-
bust (Newey and West, 1994), and statistical significance at the 1%, 5%, and
10% levels of significance are indicated by ∗∗∗, ∗∗, ∗, respectively. The implied
slope of the Phillips curve is obtained according to the REE.

We find that the use of diffuse learning initials leads to systematically lower estimates of
β̂ , confirming our simulation evidence. This means that the misspecification of that crucial
learning parameter can lead to misleading conclusions about the sensitiveness of inflation to
expectations and its effects on output gaps. In fact, using a pre-initialized R̂0, we find a sharp
increase in the relevance of expectations in the latest sample, whereas under diffuse initials the
increase is less evident–the standard errors of the point estimates, nevertheless, suggest these
changes across sub-samples are not statistically significant at standard levels of significance.

5 Concluding remarks

This paper proposed a more general non-recursive representation of the recursive least squares
algorithm that is used in the adaptive learning literature to represent how agents form their
expectations in economic settings. According to this new formulation, the recursive learn-
ing mechanism is more properly represented by a penalized weighted least squares estimator,
where a penalty term accounts for the effects of the learning initial estimates. The non-recursive
formulation also allowed a renewed analysis of how information is weighted in the implied
estimates of agents’ perceived law of motion. Such weights are directly determined by the
sequence of learning gains used in the recursive least squares algorithm, and the framework
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proposed in this paper provides flexible analytical expressions for their calculation under dif-
ferent assumptions on the evolution of the learning gains.

Drawing on this refreshed framework this paper provided renewed behavioral implications
of alternative assumptions about the learning gains. One interesting finding is that the appli-
cation of decreasing-gains to cohort-level data, an approach that has found empirical support
from recent research on consumers’ expectations survey data, can lead to the emergence of a
hump-shaped profile of weights to lagged observations. Another key finding is that, without
a proper account for the learning initial, the estimation of models under the assumption of a
constant gain over increasing samples of data would imply agents give a decreasing weight
to more recent observations, distorting the real-time tracking interpretation of this mechanism.
The relevance of this distortion was evidenced by simulation and empirical exercises, where the
misspecified initials led to a systematic underestimation of the slope of a Phillips curve model.
Hence, a proper account of how information is weighted under alternative learning mechanisms
is an important aspect for the estimation of models of imperfect information such as adaptive
learning. This paper attempted to provide useful guidelines on the design and choice of such
learning mechanisms for applied economics research.
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