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1 Introduction

Monetary policymakers often warn the public about asymmetric economic risks to inflation

and other macroeconomic variables. For example, the Federal Open Market Committee,

like most central banks, discusses these risks explicitly. Some central banks, including

the Bank of England and Norges Bank, publish asymmetric predictive densities for key

variables. Among others, Smith and Vahey (2016) and Adrian et al. (2019) examine

methods to quantify risks to macroeconomic variables, drawing explicit attention to the

asymmetric marginal distributions of some US macroeconomic variables.

A large and growing literature has focused on the forecast performance of density

combinations with variants of the Linear Opinion Pool (LOP) for macroeconomic vari-

ables. A useful feature of the framework is that the combinations require only density

forecasts from the experts (together with the realisations of the target variable)—experts’

predictions are treated as opinions to be pooled. The approach facilitates combination

of density forecasts from a wide range of sources, including survey respondents and fore-

casting models. Jore et al. (2010), Geweke and Amisano (2011), Kascha and Ravazzolo

(2011), Ranjan and Gneiting (2010), Gneiting and Ranjan (2013), Waggoner and Zha

(2012), Billio et al. (2013), Del Negro, Hasegawa and Schorfheide (2016) and Bassetti et

al. (2019), among others, provide recent applications and generalisations of the LOP. Hall

and Mitchell (2007), Geweke and Amisano (2011), Conflitti, De Mol and Giannone (2015),

Kapetanios et al. (2015) and Pettenuzzo and Ravazzolo (2016) discuss various schemes to

optimise weights for density combinations.

The LOP approach averages the density forecasts from experts in a manner that pre-

serves expert disagreement about probabilities. Unfortunately, the distribution of the

combination density forecast generally differs from the marginal distributions of the ex-

perts’ forecasts. In several nowcasting systems, such as the System for Averaging Models
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(SAM) developed at Norges Bank, the forecasts for inflation (and other variables) be-

ing combined are based on linear-Gaussian (or approximately Gaussian) models. In this

setting, if the target variable has an asymmetric distribution, the LOP combination fore-

casts typically fail to match features of the sample data. Arguably, most macroeconomic

variables including inflation are distributed asymmetrically.

In this paper, we propose a modification to the standard LOP approach, which over-

comes this limitation by explicitly considering combinations where inflation has an asym-

metric marginal distribution. Our methodology involves the decision maker applying a

Smirnov transform to reshape the LOP combination forecasts. Our proposed Empirically-

transformed Linear Opinion Pool (EtLOP) involves fitting a non-parametric Empirical

Cumulative Distribution Function (ECDF) to provide the marginal distribution for the

target variable. The decision maker uses a (modified) Smirnov transform to reshape the

combined density using the inverse of the ECDF. In doing so, the decision maker deploys

an algorithm adapted from the pseudo-random number generation methodology sometimes

referred to as inverse transform sampling.

An earlier literature on opinion (or predictive) pooling methods in decision making

stressed that the LOP approach does not satisfy various axioms usually associated with

individual and group rationality of the experts; see, for example, Genest and Zidek (1986).

Ranjan and Gneiting (2010) and Gneiting and Ranjan (2013) propose a solution to the

tendency of LOP to give over-dispersed aggregate combination forecast densities via a beta

transform. Bassetti et al. (2019) extend the approach using Bayesian methods to estimate

a mixture of betas. Ganics (2017) proposes re-weighting candidate forecast densities using

a measure of calibration.

In contrast, applying our EtLOP approach involves transforming the LOP forecast den-

sity using a non-parametric marginal distribution fitted to inflation (or another macroe-

conomic target variable). Recent papers utilising ECDFs to fit margins include, among
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others, the copula modelling papers by Smith and Vahey (2016), Loaiza-Maya and Smith

(2018) and Amengual et al. (2019). In contrast to these earlier studies, however, we do

not estimate the dependence parameters. Instead, we propose a method to transform the

predictions from an opinion pool to match the marginal distribution of the sample data,

without estimating the dependence between experts. Our computationally convenient ap-

proach suits either frequentist or Bayesian analysis, where the number of forecasts being

combined is large relative to the length of the time series available for the target variable,

which often makes the estimation of dependence parameters troublesome in practice.

We illustrate our methodology with an application examining real-time density fore-

casts for US inflation based on a large number of candidate misspecified models (experts)

in the tradition of for example Jore et al. (2010), Garratt et al. (2014) and Rossi and

Sekhposyan (2014). To keep things simple but relevant for monetary policymakers, we

utilise an expert space similar to Garratt et al. (2011), where each expert uses a bivariate

linear-Gaussian time series model for inflation and the output gap to produce “real-time”

h-step ahead forecasts for inflation. The decision maker combines the forecasts from the

experts using LOP and EtLOP and the approaches are compared using an evaluation

sample from 1990:1 to 2017:2. Relative to the more conventional LOP, our approach

improves forecasting performance by approximately 10% in terms of both point and den-

sity forecasting metrics, namely, the root mean squared forecast error (RMSFE) and the

continuous ranked probability score (CRPS).

Since geometric averaging of probabilities via the Logarithmic Opinion Pool (LogOP) is

often competitive with the arithmetic averaging approach (LOP) in terms of out-of-sample

predictive performance in macroeconomic applications, we replicate our analysis with Lo-

gOP and find a similar performance gain from the Empirically-transformed Logarithmic

Opinion Pool (EtLogOP).

The remainder of this paper is structured as follows. In Section 2, we set out our
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methodology for the empirically-transformed opinion pools and contrast with copula mod-

elling approaches. In Section 3, we apply our methodology to forecast densities for US

inflation. We present our results in Section 4, and in the final section, we draw some

conclusions.

2 A Framework for Opinion Pooling

In this section, we present the details of our proposal to empirically transform the predic-

tive densities from the LOP. We describe briefly the conventional opinion pooling method-

ology, contrast it with our own approach and then discuss some practical considerations.

2.1 Conventional Opinion Pooling

We begin by describing the LOP approach and contrasting it with LogOP; see Kascha and

Ravazzolo (2010) for further discussion of these two types of opinion pool. The decision

maker utilises the out-of-sample forecasts for inflation from the many experts (models) in

the combined forecast density:

pLOP (πτ ) =

J∑
j=1

wj,τ g(πτ | Ij,τ ), τ = τ , . . . , τ , (1)

where g(πτ | Ij,τ ) are the one step ahead forecast densities from expert (model) j,

j = 1, . . . , J , for the target variable πτ (inflation in our application), conditional on the

information set Ij,τ . The publication delay in the production of real-time macroeconomic

data ensures that this information set contains lagged variables, here assumed to be dated

τ − 1 and earlier. The non-negative weights, wj,τ , in this finite mixture sum to unity

and potentially change with each recursion in the evaluation period τ = τ , . . . , τ ; see the

discussion in, for example, Garratt et al. (2014).
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In contrast, the decision maker’s combined density defined by LogOP is:

pLogOP (πτ ) =

J∏
j=1

g(πτ | Ij,τ )wj,τ

∫ J∏
j=1

g(πτ | Ij,τ )wj,τdπτ

, τ = τ , . . . , τ , (2)

where the denominator is a constant that ensures that the combination density is proper.

The LogOP is linear in its logarithmic form.

Following Kascha and Ravazzolo (2010), to illustrate the idea behind our approach,

we consider a simple combination by the decision maker for a single target observation

based on the predictive densities supplied by two Gaussian experts. Both panels of Figure

1 plot the experts’ forecasts, where the prediction of Expert 1 has mean -2.0 and standard

deviation 1 and that of Expert 2 has mean 2.0 and standard deviation 2.0. The top panel

also plots the LOP forecast (assuming equal weights) which is bimodal, with a slightly

higher peak associated with the forecast mean of Expert 1. The bottom panel plots the

LogOP forecast, which is unimodal, but where the central mass sits between the twin

peaks of the LOP (shown in the top panel).

This static example illustrates several relevant features of conventional opinion pool-

ing with Gaussian experts. First, in the case of LOP, although the experts’ forecasts are

individually Gaussian, the combined LOP density does not necessarily match the func-

tional form of the forecasts from the individual experts. Second, the LOP often puts more

mass in the tails than LogOP. Third, the LOP tends to preserve disagreement about the

central probability mass of the experts, whereas LogOP does not. Regardless of the type

of opinion pool, in this example the aggregated forecast does not inherit all the properties

of the experts’ forecasts being combined.
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Figure 1: Conventional Combinations and Experts

-4 -3 -2 -1 0 1 2 3 4
0

0.1

0.2

0.3

0.4
Linear Combination

Expert 1
Expert 2
LOP

-4 -3 -2 -1 0 1 2 3 4
0

0.1

0.2

0.3

0.4
Logarithmic Combination

Expert 1
Expert 2
LogOP

6



2.2 Empirically-transformed Pooling

Our methodology involves non-parametric fitting of the marginal distribution for the target

variable. We exploit the separation of the marginal distributions from dependence familiar

from copula modelling strategies.

Suppose there is a multivariate time series, Z, comprising the target variable, infla-

tion, and the dependent macroeconomic variables.1 For the K macroeconomic time series

variables, Sklar’s Theorem (Nelsen, 2006) suggests there exists a copula function C such

that the joint distribution function can be written:

F (z) = C(u) (3)

where z = (z′
1, . . . , z

′
T )

′, u = (u′
1, . . . ,u

′
T )

′, zt = (z′1,t, . . . , z′K,t)
′, ut = (u′1,t, . . . , u′K,t)

′,

uk,t = Fzk(zk,t) with k = 1, . . . ,K.

The variables are assumed to be stationary and the margins time invariant. A copula

function C is a distribution function on the unit hypercube [0, 1]K , where all margins are

strictly uniform. Dependence between elements of Z is captured by the copula function.

Differentiate the distribution function to give the density of Z:

f(z) = c(u)

T∏
t=1

K∏
k=1

fzk(zk,t) k = j + 1 (4)

where fzk(zk,t) is the marginal density of zk,t, Fzk(zk,t) is the corresponding distribution

function, and c(u) = ∂
∂uC(u) is the copula density, where u = (u1, . . . , uK)′.

Sklar’s Theorem indicates that a copula density capturing the dependence between the

K variables exists but it is unknown. Assuming a Gaussian copula, for example, would

correspond to linear dependence.2

1In our subsequent application the experts view the output gaps as misspecified alternatives, each
working with a unique bivariate VAR specification to produce forecasts.

2Smith and Vahey (2016) discuss the relationship between copulas and Vector Autoregressions.
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In our density combination setting for a single target variable, inflation, each expert

produces forecasts from a unique model of inflation and the macroeconomic variables,

where there are J experts (models) in total. The decision maker aggregates the experts’

predictions for inflation but, by assumption, does not estimate the underlying relation-

ship between the K macroeconomic variables. In macroeconomic forecasting applications,

the density combination approach has been found to be robust in the presence of model

misspecifications.

In our applied work, each expert is defined by a unique forecasting model using a

single candidate output gap measure and a particular lag structure. We assume that

each expert estimates a linear dependence structure assuming Gaussian margins. Under

LOP, the decision maker combines the density forecasts produced by the experts, but

does not estimate the dependence structure between the target variable, inflation, and the

forecasts from the experts.3 The resulting LOP combination has an unknown marginal

distribution, as illustrated in Figure 1, that need not (and typically will not) match the

marginal distribution of the target macroeconomic variable.

We propose transforming the LOP combination forecast using the Empirical Cumula-

tive Distribution Function (ECDF) for inflation. In effect, we use the ECDF to reshape

the conventional combination distribution to match the marginal distribution of the sam-

ple data. The ECDF is the distribution function for the given sample—a step function

that represents the entire history of the outturns.

For expositional ease, in what follows we discuss the approach for a single forecast origin

and a single forecast horizon. (Generalisations to multiple horizons and many experts are

straightforward.) In our application described in the subsequent section, we deploy the

algorithm recursively to mimic real-time forecasting by the decision maker, fitting marginal

3The standard LOP approach to weighting forecast densities assumes that experts’ information sets are
conditionally independent; see, for example, the discussion in DeGroot and Mortera (1991).
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distributions on vintages of real-time data to match the approach commonly-utilised by

forecasters in practice.

Our algorithm involves the following four steps:

1. Fit an ECDF to the target time series variable, πt, fitting a non-parametric (time

invariant) distribution to the margin, F (πt).

2. Construct a (time-invariant) pseudo marginal distribution for the conventional LOP

combination of experts. Fitting an ECDF to the entire history of forecast densities

from the experts provides a proxy for the (typically unknown) distribution, φ(πt).

3. Draw from the LOP combination forecast density and construct the quantile for each

draw using φ(·). In effect, the swarm of forecasts has then been mapped onto the

unit interval (the forecast swarm has the scale of a probability).

4. Map the unit interval forecast swarm onto the observable scale using the the fitted

marginal distribution, exploiting the inverse ECDF, F−1(·), the quantile function.

Returning to our static example from the previous subsection, we highlight the ad-

vantages of empirically-transforming the experts’ forecast densities. Figure 2 plots the

same individual expert forecast densities as in Figure 1 but instead of showing the linear

combination (upper panel) and logarithmic combination (lower panel), these now include

the empirically-transformed linear and logarithmic combinations, respectively.

The improvements should be immediately visible. In the case of the linear combination

(upper panel), the combined LOP density preserves the uni-modality of the individual

(Gaussian) densities, with the peak closer to the forecast mean of Expert 1, with a long

right tail. This contrasts with the conventional LOP combination shown in Figure 1

(top panel), which is bimodal. Turning to the empirically-transformed LogOP shown in

Figure 2 (lower panel), the combination forecast density is again single peaked. Relative
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to the EtLOP case (upper panel), the empirically-transformed LogOP, EtLogOP, is more

peaked. The EtLogOP modal forecast differs little from EtLOP, with a similar long right

tail. Comparing the EtLOP combination forecast to the conventional LogOP displayed

Figure 1 (lower panel), the coventional forecast density is more diffuse and symmetric.

2.3 Discussion

Our algorithm is based on the idea that the (time-invariant) marginal distributions, F (·)
and φ(·), are well calibrated. Using non-parametric ECDFs provides a computationally

convenient and pragmatic strategy to fit the relevant margins. Given the well-calibrated

marginals, our approach converts the swarm from the conventional forecast combination

to the scale of Probability Integral Transforms, PITs, preserving the rank order of the

draws within the swarm, then transforms the unit interval swarm to reflect the marginal

distribution of the sample data. Among others, Rosenblatt (1952), Diebold, Gunther and

Tay (1998), Galbraith and van Norden (2012) and Rossi and Sekhposyan (2019) discuss

PITs properties.

In practice, we use the kernel smoother ksdensity from MATLAB to compute the

ECDFs, although the selection of the bandwidth is somewhat arbitrary. To deal with

this, when fitting φ(·), we treat the bandwidth as an unknown parameter and in our

application below check the robustness over a specified interval. (There exist alternative

means of selecting bandwidth, which typically rely on the minimisation of a risk function.)

3 Application: Forecasting US Inflation

To demonstrate the predictive effectiveness of our approach, we apply the algorithm to

conventional density forecast combinations for quarterly US inflation using the target dates

from 1990:1 to 2017:2 using a modelling space similar to Garratt et al. (2011).
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Figure 2: Empirically-transformed Combinations and Experts
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3.1 Expert Space, Forecasts and Data Considerations

Each expert utilises a (unique) bivariate VAR model space for inflation, πt, and the output

gap (the deviation of real output from potential), yt. The standard theory that aggre-

gate demand, captured by the output gap, influences the movements in inflation (with

unknown time lags), provides some foundation for the empirical specification, allowing for

simultaneity. The jth VAR model takes the form:

⎡
⎢⎣

πt

yjt

⎤
⎥⎦ =

⎡
⎢⎣

ajππ ajπy

ajyπ ajyy

⎤
⎥⎦

⎡
⎢⎣

πt−1

yjt−1

⎤
⎥⎦+

⎡
⎢⎣

εjπt

εjyt

⎤
⎥⎦ , t = 1, . . . , T, (5)

where [εjπt, ε
j
yt]

′ ∼ i.i.d. N(0,Σj). That is, we consider a baseline VAR specification

in which the measure of interest, the output gap, has been varied to give J linear and

Gaussian VAR models, indexed j = 1, . . . , J . For expositional ease, we ignore the intercept

and restrict the lag order of the J VARs to one.

Following Garratt et al. (2011), our baseline VAR setup uses seven output gap mea-

sures derived from the set of univariate off-model filters deployed by Orphanides and van

Norden (2002, 2005). Federal Reserve researchers Edge and Rudd (2012) deploy similar

univariate detrending methods.

We define the output gap as the difference between observed output and unobserved

potential (or the trend component of) output. We denote the (logarithm of) actual output

in t as qt, and let μj
t be its trend using definition j, where j = 1, . . . , J . The output gap,

yjt , is therefore defined as the difference between actual output and its jth trend measure

at time t. We assume the following linear trend-cycle decomposition:

qt = μj
t + yjt . (6)

The seven methods of univariate trend extraction in our baseline VAR are: quadratic,

12



Hodrick-Prescott (HP), forecast-augmented HP, Christiano and Fitzgerald, Baxter-King,

Beveridge-Nelson and Unobserved Components. We summarize these seven well-known

univariate filters in Appendix 1.

In our application, we vary a single auxiliary assumption to generate the model space.

Specifically, we vary the lag length in the VAR (which for ease of exposition we fixed at

one in equation (5)). If we have J output gap measures, and for any given yjt we have

L variants defined by different values of the maximum lag length, then in total we have

J × L models, each with a corresponding forecast of inflation (and the output gap) from

the ensemble system. In our application, we restrict L to a maximum of four and therefore

we consider 7× 4 models—28 forecasts from the experts to be combined. Therefore, there

are 29 margins for the system, 28 experts’ forecasts plus the target variable, inflation.

The motivation for deploying these models stems from their common usage by central

banks around the world. Nevertheless, as Orphanides and van Norden (2005) emphasise,

single VAR models of this type often perform little better than simple univariate autore-

gressive benchmarks in real-time out-of-sample evaluations of point forecasting accuracy.

In contrast, Garratt et al. (2011) note that using an ensemble of VAR models delivers

probabilistically well-calibrated forecast densities for inflation in the US and Australia.

3.2 Data

Orphanides and van Norden (2002, 2005) stress that our output gap measures are subject

to considerable data revisions. Failing to account for this by using heavily-revised data

can mask real-time predictive content. Since we are interested in real-time prediction,

parameter estimation is recursive for all specifications. Each recursion uses a different

vintage of data, where a vintage of data is the vector of time series observations available

from a data agency at the forecast origin.

The quarterly real-time real gross domestic product (GDP) US dataset has 112 vin-
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tages, with the first vintage (dated 1990:1) used for parameter estimation containing time

series observations from 1970:1 to 1989:4, and the last vintage used for parameter esti-

mation (dated 2017:2) spanning from 1970:1 to 2017:1. We use the second release of the

observed data to evaluate the forecasts. For example, when evaluating the h = 1 forecast

(nowcast) for 1990:1, we use the 1990:3 vintage observation of 1990:1. US GDP deflator

data are released with a one quarter lag.

The raw data for GDP (in practice, Gross National Product, GNP, for some vintages)

are taken from the Federal Reserve Bank of Philadelphia’s Real-Time Data Set for Macroe-

conomists. The data comprise successive vintages from the National Income and Product

Accounts, with each vintage reflecting the information available around the middle of the

respective quarter. Croushore and Stark (2001) provide a description of the real-time

GDP database. The GDP deflator price series used to measure inflation is constructed

analogously. We define inflation (output growth) as the first difference in the logarithm

of the GDP deflator (GDP) multiplied by 400.

Figure 3 displays inflation (upper panel) and real output growth (lower panel) for our

evaluation period, from 1990:1 to 2017:2 based on the final vintage of data. (The empirical

analysis which follows uses many vintages.)

For the observations displayed prior to the Great Recession—the Great Moderation—

inflation exhibits lower volatility and a higher unconditional mean. A striking feature of

the Great Recession and its aftermath is the increased threat of low inflation.

In contrast, during the run up to the Great Recession, between 2003 and 2006, there are

several realisations of high inflation. The upward spikes apparent in various inflationary

measures for the US during this period are often regarded as (the response to) relative price

movements, and, in particular, energy and food costs. See, for example, the discussion in

Yellen (2006) and Ravazzolo and Vahey (2014).4

4Yellen (2006) is downloadable from http://www.frbsf.org/news/speeches/2006/0315.html. Clark and
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Figure 3: US Inflation and Real Output Growth
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Terry (2010) discuss the absence of pass through from energy prices to other prices during the period.
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3.3 Forecast Combination and Empirical Transformation

The decision maker recursively combines the forecasts from the experts. Each expert uses

an expanding window for parameter estimation. For the first recursion the estimation

sample is 1970:1 to 1989:4 (window size 80 observations) and the last 1970:1 to 2017:1

(window size 189 observations).

To deploy our algorithm for the EtLOP combination, the decision maker must fit a

marginal distribution for inflation. The (smoothed) probability density function corre-

sponding to the fitted ECDF plotted in Figure 4 uses the final vintage of inflation data.

The marginal distribution displays some asymmetry, with the right tail extending rela-

tively far from the central mass. Since the decision maker uses recursive fitting based

on expanding windows of data, the fitted marginals for inflation vary slightly by forecast

origin in practice. The null hypothesis of normality is rejected at the 1% significance level

for the full sample of inflation data for all vintages.

It is straightforward to produce forecast densities for both inflation and the (jth)

output gap through our evaluation period: τ = τ , . . . , τ where τ =1990:1 and τ =2017:2

(110 quarterly observations). Our experts focus on forecasting inflation, given the output

gap data as well as lagged inflation data. Recall that we treat the “true” output gap as

latent. Following Clark and McCracken (2010) and others, the experts (and the decision

maker) use the second estimate as the target “final” data. For consistency, we report

results for the same definition of final data for all forecast evaluations.

For each expert, we estimate the parameters using Ordinary Least Squares over an

expanding window.

Our decision maker combines the out-of-sample forecasts from the VAR models using

the LOP and EtLOP. In the following section we compare the forecasting performances

of the various combinations and show the superiority of the empirically transformed opin-

ion pools. The performance metrics gauge point forecast accuracy, using the Root Mean
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Figure 4: ECDF Inflation
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Squared Forecast Error (RMSFE) and density forecast accuracy, using the average Con-

tinuous Ranked Probability Score (CRPS) proposed by Gneiting and Raftery (2007).

4 Results

In this section, we report results for the one-step ahead forecasts from the forecast origins.

Appendix 2 provides results for the four-step ahead case which display quantitively similar

forecast performance. All results reported refer to equal weighted LOP (and EtLOP)

combinations. (Recursively weighted combinations based on the time-averaged logarithmic

score or the time-averaged CRPS weights give similar results.)

4.1 Bandwidth Selection

Table 1a presents out-of-sample forecast metrics for EtLOP for a variety of values of the

bandwidth for F (·), denoted bw. Table 1b provides similar information for EtLogOP. The

first column reports how the Brier score (Brier, 1950) varies with bw, for the event defined

as inflation below its unconditional mean:

BS = (1/M)
τ∑

τ=τ

(oτ − fτ )
2, (7)

where M is the number of periods in the out-of-sample evaluation, τ minus τ , oτ is the

outcome (1 if inflation below mean, 0 otherwise), and fτ is the real-time probability,

generated by EtLOP (EtLogOP), that inflation is below its mean. Low Brier scores are

preferred. The second column reports the Root Mean Squared Forecast Error (RMSFE) as

a ratio to the benchmark LOP (LogOP). The third column displays the (time-averaged)

logarithmic score and the fourth column the (time-averaged) CRPS. The fifth column

reports p-values for the Knüppel (2015) test of calibration, based on the PITs, that allows

for autocorrelation and is flexible in the choice of raw moments. We employ the first two
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raw moments for the test statistic.

The first four columns of Table 1a suggest a relatively flat response over bw for the

Brier score, RMSFE, the logarithmic score and the CRPS for the EtLOP. The fifth column

indicates that the forecast densities are well calibrated typically, but here there is some

sensitivity to the bw value.

Turning to Table 1b, the EtLogOP generally shares the characteristics exhibited by the

EtLOP (described in Table 1a). Given the fairly robust performance across bandwidths, we

present results below for a representative case, where bw = 0.975, with the corresponding

rows in Table 1 in bold for emphasis.

4.2 Comparing Density Combinations

The first four rows of Table 2 display the main results of the paper, with the principle

concern being the contrast between EtLOP and the benchmark LOP, with EtLogOP and

LogOP provided for context. The EtLOP (EtLogOP) results refer to the bw = 0.975 case.

We also provide results in the fifth row for an univariate unobserved components stochastic

volatility (UCSV) model for inflation in the last row of Table 2, Δπt = α + εt + θεt−1.

This model has been found by Chan and Song (2018) and others to provide competitive

forecasting performance for US inflation. See Appendix 3 for details.

The first column of Table 2 reports the RMSFE and the second column reports the

time-averaged CRPS over the evaluation sample. Columns 3 to 5 give the tail-weighted,

right tail-weighted, and left tail-weighted CRPS, respectively. Except for the RMSFE and

CRPS statistics for the LOP model (first row, in italics), which are reported as absolute

values, all other values in columns 1 to 5 are computed as ratios to the LOP benchmark.

Ratios less than one, for both RMSFE and CRPS, indicate an improvement of forecast

performance, relative to the LOP benchmark model. The sixth column reports the p-

values of the Knüppel test of density calibration.
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The RMSFEs reported in the first column indicate a gain for both the EtLOP (and

the EtLogOP) of just under 10% over the LOP benchmark. The CRPS values reported

in column 2 likewise indicate a performance gain for EtLOP (and EtLogOP) of around

9% over the LOP benchmark. This performance gain is slightly greater when considering

the tail-weighted CRPS, either using both tails or just the right tail (columns 3 and 4),

whereas the left tail-weighted CRPS has a slightly smaller performance gain (column 5).

The forecast densities for the EtLOP (and EtLOgOP) are well calibrated, with p-values

for the Knüppel test exceeding 5%. In contrast, the benchmark LOP (and LogOP) are

poorly calibrated at the 1% significance level by the same test.

To summarise the results so far, empirically transformed opinion pools outperform their

more conventional counterparts in terms of point and density forecasting performance.

Turning to the UCSV model (relative to the benchmark), we see a broadly competitive

performance across metrics to the EtLOP, with a very modest performance improvement

generally, except for the calibration test where UCSV performs particularly well.

The upper and lower panels of Figure 5 show the 5% and 95% uncertainty bands of the

forecast densities, as well as the mean forecasts, for inflation for the LOP and the EtLOP,

respectively. The mean forecasts of the EtLOP model are quite close to those of the LOP.

There are differences in the shape of the forecast densities. For example, in 2010 the

5% threshold of the forecast density band in the LOP model extends below −1%, whereas

in the EtLOP model it is around −0.5%. A similar pattern can be seen elsewhere, for

example in 2002 and in the second half of 2015. This difference reflects the EtLOP’s ability

to match the skewness of the sample inflation data. Furthermore, a careful comparison

of the two panels (e.g. along the vertical lines) reveals that the EtLOP’s 90% band is

narrower than the LOP’s 90% band.

The upper and lower panels of Figure 6 display similar characteristics when comparing

the LogOP and EtLogOP combinations, with the empirically-transformed combination
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Figure 5: LOP and EtLOP Forecasts
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Figure 6: LogOP and EtLogOP Forecasts
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Figure 7: Forecast Densities for 2009:02

-2 -1 0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5
LOP and EtLOP

LOP
EtLOP

-2 -1 0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5
LogOP and EtLogOP

LogOP
EtLogOP

23



Figure 8: Recursive RMSFE and CRPS
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displaying more skew and being somewhat sharper than the conventional counterpart.

Figure 7 displays the forecast densities resulting from the four specifications for the tar-

get observation 2009:2, when inflation was unusually low. The densities of both empirically-

transformed opinion pools have less probability mass on high inflation outturns and are

somewhat less diffuse than their conventional counterparts.

Figure 8 provides a visual confirmation of the performance differentials in terms of the

levels of RMSFE and CRPS computed recursively through the evaluation sample. The

EtLOP (EtLogOP) dominates the LOP (LogOP) throughout, apart from during the first

year of the evaluation sample.

5 Conclusions

In this paper, we have proposed a methodology to improve the accuracy of combination

inflation forecasts based on the Linear Opinion Pool. Our approach involves transforming

the conventional combination forecast densities using an ECDF to match the marginal

distribution of the sample data. In our application, we have analysed US inflation, using an

evaluation sample considering the Great Recession, combining forecast densities produced

from a system of 28 VAR models of inflation and output gaps. We have demonstrated

that the Empirically-transformed Linear Opinion Pool results in considerably improved

forecast performance relative to the more conventional opinion pool and that our enhanced

approach is broadly competitive with a UCSV model. Further work in this area should

focus on applying the methodology to survey forecasts and investigating the scope for

improving the accuracy of joint forecast distributions.
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Table 1: Performance of Empirically-transformed Combinations, by

Bandwidth, bw

(a) EtLOP

bw BS RMSFE Ratio LS CRPS Knup

0.800 0.927 0.834 -3.757 0.530 0.014

0.825 0.923 0.836 -3.746 0.529 0.022

0.850 0.917 0.832 -3.737 0.529 0.016

0.875 0.919 0.831 -3.729 0.528 0.024

0.900 0.916 0.830 -3.722 0.528 0.034

0.925 0.908 0.830 -3.715 0.528 0.045

0.950 0.912 0.829 -3.709 0.528 0.057

0.975 0.906 0.829 -3.704 0.528 0.068

1.000 0.907 0.829 -3.699 0.528 0.079

1.025 0.908 0.829 -3.695 0.529 0.089

1.050 0.905 0.829 -3.691 0.529 0.096

1.075 0.898 0.829 -3.688 0.530 0.100

1.100 0.899 0.829 -3.684 0.530 0.103

1.125 0.912 0.830 -3.681 0.531 0.103

1.150 0.894 0.830 -3.678 0.532 0.101

1.750 0.903 0.831 -3.675 0.533 0.097

1.200 0.899 0.831 -3.673 0.531 0.091
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(b) EtLogOP

bw BS RMSFE Ratio LS CRPS Knup

0.800 0.926 0.830 -3.717 0.528 0.013

0.825 0.921 0.829 -3.705 0.528 0.022

0.850 0.917 0.828 -3.696 0.527 0.017

0.875 0.925 0.827 -3.687 0.526 0.027

0.900 0.917 0.827 -3.679 0.526 0.039

0.925 0.913 0.826 -3.672 0.526 0.053

0.950 0.911 0.826 -3.666 0.526 0.070

0.975 0.910 0.826 -3.661 0.526 0.087

1.000 0.909 0.825 -3.656 0.526 0.104

1.025 0.910 0.825 -3.651 0.527 0.120

1.050 0.903 0.826 -3.647 0.527 0.134

1.075 0.908 0.826 -3.644 0.528 0.144

1.100 0.901 0.826 -3.641 0.528 0.152

1.125 0.907 0.826 -3.638 0.529 0.156

1.150 0.898 0.827 -3.635 0.530 0.157

1.175 0.897 0.827 -3.633 0.531 0.155

1.200 0.904 0.828 -3.630 0.531 0.150

Notes: The first column reports the scaled Brier Score (BS), for the inflation event of less

than the sample mean, calculated by dividing the Brier Score by the measure of data uncertainty,

defined as: o(1−o), where o is the observed frequency of the event in question over the evaluation.

The second column, RMSFE, reports the ratio of the root mean squared forecast error relative

to the benchmark. Column three reports the logarithmic score (LS), column four the CRPS and

column five the p-values of the Knüppel (2015) test for density calibration.
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Table 2: Forecast Performance of Empirically-transformed and Conventional

Combinations, bw = 0.975

Model RMSFE CRPS CRPS-TW CRPS-RT CRPS-LT Knup

LOP 1.026 0.580 0.129 0.184 0.171 0.000

EtLOP 0.918∗∗ 0.910∗∗ 0.899∗∗ 0.891∗∗ 0.924∗∗ 0.070

LogOP 0.996∗∗ 1.002∗∗ 0.992∗∗ 0.989∗∗ 1.000 0.000

EtLogOP 0.914∗∗ 0.907∗∗ 0.891∗∗ 0.886∗∗ 0.924∗∗ 0.089

UCSV 0.904∗∗ 0.903∗∗ 0.888∗∗ 0.867∗∗ 0.935∗∗ 0.994

Notes: The first row in italics reports absolute values of the RMSFE and CRPS statistics for

the LOP, excluding the final column which reports the p-values of the Knüppel calibration test.

The remaining rows report ratios, relative to the LOP, for RMSFE and CRPS. Ratios less than

one, for both RMSFE and CRPS, indicate an improvement in forecast performance relative to the

LOP. As a rough guide, using a Harvey et al. (1997) small-sample adjustment of the Diebold and

Mariano (1995) test, the superscript ∗∗ denotes significantly different from the LOP at the 5%

level for RMSFE. The corresponding statistic for CRPS is denoted similarly. See notes to Table

1 for columns labelled CRPS and Knup. Columns three (CRPS-TW), four (CRPS-RT) and five

(CRPS LT) report tail-weighted, right tail weighted and left tail weighted CRPS; see Gneiting and

Ranjan (2011) and Diks et al. (2011).
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Appendix 1: Output trend definitions

We summarise the seven univariate detrending specifications below.

1. For the quadratic trend based measure of the output gap we use the residuals from a

regression (estimated recursively) of output on a constant and a squared time trend.

2. Following Hodrick and Prescott (1997, HP), we set the smoothing parameter to 1600

for our quarterly US data.5

3. Since the HP filter is a two-sided filter it relates the time-t value of the trend to future

and past observations. Moving towards the end of a finite sample of data, the HP

filter becomes progressively one-sided and its properties deteriorate with the Mean

Squared Error (MSE) of the unobserved components increasing and the estimates

ceasing to be optimal in a MSE sense. We therefore follow Mise et al. (2005) and

seek to mitigate this loss near and at the end of the sample by extending the series

with forecasts. At each recursion the HP filter is applied to a forecast-augmented

output series (again with smoothing parameter 1600), with forecasts generated from

an univariate AR(8) model in output growth (again estimated recursively using the

appropriate vintage of data). The implementation of forecast augmentation when

constructing real-time output gap measures for the US is discussed at length in

Garratt et al. (2008). We deliberately select a high lag order to ensure no important

lags are omitted—favouring unbiasedness over efficiency.

4. Christiano and Fitzgerald (2003) propose an optimal finite-sample approximation to

the band-pass filter, without explicit modeling of the data. Their approach implicitly

assumes that the series is captured reasonably well by a random walk model and

5We could, of course, allow for uncertainty in the smoothing parameter. We reduce the computational
burden in this application by fixing this parameter at 1600.
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that, if there is drift present, this can be proxied by the average growth rate over

the sample.

5. We also consider the band-pass filter suggested by Baxter and King (1999). We

define the cyclical component to be fluctuations lasting no fewer than six, and no

more than thirty-two quarters—the business cycle frequencies indicated by Baxter

and King (1999)—and set the truncation parameter (the maximum lag length) at

three years. As with the HP filter we augment our sample with AR(8) forecasts to

fill in the ‘lost’ output gap observations at the end of the sample due to truncation.

Watson (2007) reviews band-pass filtering methods.

6. The Beveridge and Nelson (1981) decomposition relies on a priori assumptions about

the correlation between permanent and transitory innovations. The approach im-

poses the restriction that shocks to the transitory component and shocks to the

stochastic permanent component have a unit correlation. We assume the ARIMA

process for output growth is an AR(8), the same as that used in our forecast aug-

mentation.

7. Finally, our Unobserved Components model assumes qt is decomposed into trend,

cyclical and irregular components

qt = μ7
t + y7t + ξt, ξt ∼ i.i.d. N(0, σ2

ξ ), t = 1, . . . , T (A1.1)

where the stochastic trend is specified as

μ7
t = μ7

t−1 + βt−1 + ηt, ηt ∼ i.i.d. N(0, σ2
η)

βt = βt−1 + ζt, ζt ∼ i.i.d. N(0, σ2
ζ ).

Letting σ2
ζ > 0 but setting σ2

η = 0, gives an integrated random walk. The cyclical
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component is assumed to follow a stochastic trigonometric process:

⎡
⎢⎣

y7t

y7∗t

⎤
⎥⎦ = ρ

⎡
⎢⎣

cosλ sinλ

− sinλ cosλ

⎤
⎥⎦

⎡
⎢⎣

y7t−1

y7∗t−1

⎤
⎥⎦+

⎡
⎢⎣

κt

κ∗t

⎤
⎥⎦ (A1.2)

where λ is the frequency in radians, ρ is a damping factor and κt and κ∗t are two

independent white noise Gaussian disturbances with common variance σ2
κ. We esti-

mate this model by maximum likelihood, exploiting the Kalman filter, and estimates

of the trend and cyclical components are obtained using the Kalman smoother. For

a detailed description of the unobserved components approach see Harvey’s (2006)

literature review and the references therein.
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Appendix 2: Forecast Performance of Empirically-transformed and Conven-

tional Combinations, h = 4

Model RMSFE CRPS CRPS-TW CRPS-RT CRPS-LT Knup

LOP 1.199 0.682 0.148 0.232 0.184 0.000

EtLOP 0.894∗∗ 0.881∗∗ 0.889∗∗ 0.871∗∗ 0.895∗∗ 0.000

LogOP 0.980∗∗ 0.996∗∗ 0.986∗∗ 0.986∗∗ 0.996∗∗ 0.000

EtLogOP 0.873∗∗ 0.864∗∗ 0.867∗∗ 0.842∗∗ 0.887∗∗ 0.000

UCSV 0.794∗∗ 0.818∗∗ 0.834∗∗ 0.734∗∗ 0.929∗∗ 0.075

Notes: The first row in italics reports absolute values of the RMSFE and CRPS statistics for

the LOP, excluding the final column which reports the p-values of the Knüppel calibration test.

The remaining rows report ratios, relative to the LOP, for RMSFE and CRPS. Ratios less than

one, for both RMSFE and CRPS, indicate an improvement in forecast performance relative to the

LOP. As a rough guide, using a Harvey et al. (1997) small-sample adjustment of the Diebold and

Mariano (1995) test, the superscript ∗∗ denotes significantly different from the LOP at the 5%

level for RMSFE. The corresponding statistic for CRPS is denoted similarly. See notes to Table

1 for columns labelled CRPS and Knup. Columns three (CRPS-TW), four (CRPS-RT) and five

(CRPS LT) report tail-weighted, right tail weighted and left tail weighted CRPS; see Gneiting and

Ranjan (2011) and Diks et al. (2011).
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Figure 9: LOP and EtLOP Forecasts
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Figure 10: LogOP and EtLogOP Forecasts
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Figure 11: Forecast Densities for 2009:02
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Figure 12: Recursive RMSFE and CRPS, h = 4
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Appendix 3: Unobserved Components with Stochastic Volatility (UCSV)

Since Stock andWatson (2007) the predictive accuracy of candidate methods relative to

the UCSV approach has become standard within the inflation forecasting literature. With

a focus on forecast densities, it is convenient to adopt the Bayesian approach described in

Chan and Song (2018), Chan, Koop, and Potter (2013) and Clark and Doh (2014). The

model specifies the following trend-cycle decomposition for inflation, πt:

πt = π∗
t + uπt , uπt ∼ N(0, eht)

where π∗
t represents trend inflation and uπt is a transitory deviation from the trend, often

referred to as the inflation gap. To define the UCSV model of Stock and Watson (2007),

we augment the trend-cycle decomposition with equations specifying AR(1) processes for

the inflation trend, π∗
t , and the log volatilities of the transitory and trend components, ht

and gt respectively:

π∗
t = π∗

t−1 + uπ
∗

t , uπ
∗

t ∼ N(0, egt)

ht = ht−1 + uht , uht ∼ N(0, σ2
h)

gt = gt−1 + ugt , ugt ∼ N(0, σ2
g).

The model is estimated using Markov Chain Monte Carlo (MCMC) methods, imple-

mented using the Gibbs sampler that sequentially draws from the full conditional distri-

butions of the parameters and the latent states. The parameters here are σ2
h and σ2

g where

the latent states are g, h and π∗. The priors are non-informative with estimated smooth-

ing parameters σ2
h and σ2

g ; see Chan and Song (2018) Appendix A. In contrast, Stock and

Watson (2007) set these parameters to 0.2 for US inflation. We draw 50,000 iterates, with

5,000 burnin.
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