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ABSTRACT

This paper proposes a new approach to estimating high dimensional time varying
parameter structural vector autoregressive models (TVP-SVARs) by taking advan-
tage of an empirical feature of TVP-(S)VARs. TVP-(S)VAR models are rarely used
with more than 4-5 variables. However recent work has shown the advantages of mod-
elling VARs with large numbers of variables and interest has naturally increased in
modelling large dimensional TVP-VARs. A feature that has not yet been utilized is
that the covariance matrix for the state equation, when estimated freely, is often near
singular. We propose a specification that uses this singularity to develop a factor-like
structure to estimate a TVP-SVAR for 15 variables. Using a generalization of the re-
centering approach, a rank reduced state covariance matrix and judicious parameter
expansions, we obtain efficient and simple computation of a high dimensional TVP-
SVAR. An advantage of our approach is that we retain a formal inferential framework
such that we can propose formal inference on impulse responses, variance decomposi-
tions and, important for our model, the rank of the state equation covariance matrix.
We show clear empirical evidence in favour of our model and improvements in esti-
mates of impulse responses.

Keywords: Large VAR; time varying parameter; reduced rank covariance ma-
trix.
JEL Classification: C11, C22, E31
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1 Introduction

Vector autoregressive models (VARs) have provided many valuable insights in applied

macroeconometrics. The past decade has seen considerable interest in VARs with

parameters that evolve over time – time varying parameter VARs (TVP-VARs) –

particularly with heteroscedasticity, to better capture the evolving dynamics of the

underlying variables. More recently researchers have been developing methods to

estimate larger systems of variables in VARs to avoid limitations that arise when

too few variables are modelled. The problems that motivate using both TVP-VARs

and large VARs are compelling, but addressing both problems in one model leads

to significant computational challenges. This paper proposes an approach to address

these challenges.

Banbura, Giannone and Reichlin (2010) argue for modelling many variables in a

large VAR to avoid a number of problems that arise from modelling too few vari-

ables. They (and other authors such as Carriero, Kapetanios and Marcellino (2011),

Giannone, Lenza, Momferatou and Onorante (2014), Koop (2013) and Koop and

Korobilis (2013)), point out that forecasts, policy advice and analysis of structure

suffer problems resulting from omitted variable bias from using too few variables in

the VAR. Typical sample sizes in the VAR literature, however, are not large and so

using large VARs leads to significant parameter proliferation making estimation and

more general inference either difficult or infeasible. Banbura et al. (2010) address this

problem by employing the so-called Litterman prior to impose sufficient shrinkage to

permit inference.

The time varying parameter vector autoregressive model (TVP-VAR) allows for

the processes generating macroeconomic variables to evolve over time. These models,

which are most commonly given a state space representation, have informed us on a
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range of questions of interest to policymakers with perhaps the most notable area of

application being on the transmission of monetary policy (see, for example, Cogley

and Sargent (2001, 2005), Primiceri (2005), and Koop et al. (2009)). Although

the number of variables modelled using TVP-VARs tends not to be very large, the

arguments for using large VARs have quite naturally led to efforts to develop large

TVP-VARs. As the number of states grows polynomially in the number of variables

and time then, as in the large VARs, computational difficulties are encountered in

these models when there are many variables. These difficulties tend to limit the

number of variables modelled using the TVP-VAR.1

An issue that has been bubbling away in the background in the literature on TVP-

VARs is the treatment of the state equation covariance matrix. This matrix is often

specified as diagonal, although there is good reason to specify this as a full matrix.

Primiceri (p. 830, 2005) provides an argument that a full covariance matrix for the

vector of all mean equation states and the structural parameters would be most ap-

propriate as the states are, and are expected to be, highly correlated. However, he

does not adopt such a specification in order to avoid parameter proliferation and the

attendant computational issues. Primiceri does maintain a full covariance matrix for

the reduced form mean equation states and more papers are doing so (see for exam-

ple, Eisenstat, Chan and Strachan (2016)). A full state equation covariance matrix

poses significant computational challenges for large TVP-VARs. As the number of

variables n grows, the number of mean parameters grows at order n2 and the number

of parameters in the state equation covariance matrix grows at n4.

Koop and Korobilis (2013) present an approach to approximating large TVP-

VARs by a particular treatment of the state equation covariance matrix. Using

1A few papers, such as Carriero, Clark and Marcellino (2016a,b) and Chan (2018), have developed
large VARs with stochastic volatility. But these papers all restrict the VAR coefficients to be
constant.
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forgetting factors they replace the state equation covariance matrix with a matrix

proportional to a filtered estimate of the posterior covariance matrix. In this paper

we present an alternative restriction on the state equation covariance matrix that

results in a reduced number of state errors driving the time-varying parameters.

The first contribution of this paper is to present an alternative approach to es-

timating large TVP-VARs. We increase the number of variables we can model in

a TVP-VAR by taking advantage of the strong correlations among the states. We

preserve the exact state space model but achieve parsimony by imposing a restriction

suggested by the data; that the state equation covariance matrix has reduced rank.

An early observation by Cogley and Sargent (2005) shows, using principal component

analysis, that the posterior estimate of the covariance matrix for the state equation

appears to have a very low rank. We formalise this observation into a model speci-

fication. Primiceri (2005) points out that small state equation error variances cause

problems for frequentist computation. Our approach, by contrast, uses this feature

to improve Bayesian estimation.

A TVP-VAR with a reduced rank covariance matrix for the states permits a

significant reduction in the dimension of the states without reducing the dimension

of the VAR. For example, we estimate a TVP-VAR for 15 variables, with two lags

and stochastic volatility. In this model there are 585 time varying parameters which

the data suggest are driven by 8 states. The reduction in the number of sources of

states driving the time varying parameters comes by removing states that the data

suggest are not needed. The resulting estimates of the time varying parameters are

far more precise as a result.

As the dimension of models increases, estimation faces computational challenges.

We employ a range of strategies, in addition to the reduced rank structure, to mitigate

these issues. Each makes a small contribution on their own, but collectively they
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allow us to estimate larger models. First, by estimating the structural form of the

TVP-VAR directly, we remove one sampling step in the Gibbs sampler. This is

particularly important as estimating the reduced form TVP-VAR involves drawing

two blocks of parameters that are naturally highly correlated. We collapse these

two blocks into one and draw that block in one step. Next, to achieve a readily

computable specification we generalize the scalar non-centered specification of the

state space model by Frühwirth-Schnatter and Wagner (2010) to the matrix non-

centered specification. This removes another step from the sampler as we draw the

initial states and the state covariance matrix together in a single step. Further, we

avoid the Kalman filter and smoother and, instead, use the precision sampler of Chan

and Jeliazkov (2009). This precision sampler uses a lower order of computations to

draw from the same posterior as the Kalman smoother.

The specification of the reduced rank model requires semi-orthogonal matrices

and ordered positive elements. This specification induces nonstandard supports for

the parameters and Bayesian computation on such supports is difficult. Another

contribution of this paper, then, is to use a judicious selection of parameter expan-

sions and priors for the expanding parameters to develop a specification that is fast,

efficient and easy to compute. This expansion is part of the generalization of the re-

centering method of Frühwirth-Schnatter and Wagner (2010) to a multivariate setting

mentioned above.

The structure of the paper is as follows. In Section 2 we present the idea with

a general state space model. We outline the model specifications that result from

different assumptions about the rank of the state equation covariance matrix. This

section also contains a technical derivation of the reduced sources of errors model that

results from a reduced rank state equation covariance matrix. In Section 3 we outline

posterior computation. Section 4 presents an application using a TVP-VAR with 15
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variables to demonstrate the proposed methodology. Section 5 concludes and gives

some indication of directions for future research.

2 Reducing the Sources of Variation

2.1 Overview

We will apply the reduced sources of error approach to a structural form TVP-VAR

(TVP-SVAR). In VAR analysis, the measurement equation is often specified on the

reduced form parameters, although we can readily transform between the reduced

form and structural form. We prefer the structural form as it reduces the number of

blocks of parameters to be estimated and makes the dependence among the structural

and reduced form parameters simpler (i.e., linear).

For the n× 1 vector yt for t = 1, ..., T, the TVP-SVAR can be written as

B0,tyt = μt +B1,tyt−1 + · · ·+Bp,tyt−p + εt, εt ∼ N(0,Σt), (1)

where B0,t, . . . , Bp,t are n×n and Σt = diag(exp(h1,t), . . . , exp(hn,t)). The first matrix
B0,t is n×n with ones on the diagonal and is commonly specified as lower triangular.
Given the structure of B0,t, we may write B0,t = I −Bt so that the matrix Bt has

zeros on the diagonal. The TVP-SVAR can now be written as:

yt = μt +Btyt +B1,tyt−1 + · · ·+Bp,tyt−p + εt
= μt + (y

�
t ⊗ In)Dbt +

�
y�t−1 ⊗ In

�
b1,t + · · ·+

�
y�t−p ⊗ In

�
bp,t + εt,

where bl,t = vec (Bl,t), l = 1, ..., p and Dbt = vec (Bt) where bt contains all the
n(n−1)
2

non-zero elements of Bt in a vector and D is an appropriately defined n2 × n(n−1)
2
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selection matrix. If we define the n× k matrix

xt =
�
In (y�t ⊗ In)D

�
y�t−1 ⊗ In

� · · · �
y�t−p ⊗ In

��
such that k =

�
np+ 1 + n−1

2

�
n and the (k × 1) vector αt =

�
μ�t b�t b�1,t · · · b�p,t

��
,

we can write the above model using a standard but reasonably general specification

of the state space model for an observed n × 1 vector of observations yt with n × k
matrix of regressors xt :

yt = xtαt + εt, εt ∼ N (0,Σt) , (2)

αt = αt−1 + ηt, ηt ∼ N (0, Qα) , α0 = α ∼ N (α, V ) . (3)

In the application in Section 4, it will be more convenient to transform from the VAR

to the VECM form, but this again can be written in the general form in (2) and (3).

We therefore continue with the general form of the model and delay giving specific

details on the prior we use until Section 4. We can now present the idea of reducing

the sources of errors in a general linear Gaussian state space model.

We have not imposed any restrictions on the above model at this point and all of

the parameters in the VAR are able to vary over time. The dimension reduction occurs

by applying a rank reduction to the covariance matrix for the state equation, Qα. If

we set the rank of Qα to rα = rank (Qα) ≤ k, then after applying the appropriate

transformations (detailed in the next subsection below) we can write the model in (2)

and (3) as follows:

yt = xtα + xtAαfα,t + εt, εt ∼ N (0,Σt) , (4)

fαt = fα,t−1 + zα,t, zα,t ∼ N (0, Irα) , fα,0 = 0, (5)
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where Aα is a (k × rα) matrix, fα,t and zα,t are (rα × 1) vectors and the errors εt and
zt are independent of one another. As rα is generally much smaller than k, we call

the model in (4) and (5) the reduced sources of error model.

The technical details on the link between the general form of the state space

model in (2) and (3) and the final form in (4) and (5), including centring and para-

meter expansions, are presented in the following subsection for the interested reader.

There are a number of choices in modelling the state space model and the correlation

structure. In this paper we extend the above to reducing the rank of the covariance

matrix for the volatility states, Qh. We present two specifications, the second encom-

passes the first but there are significant differences in computation between the two

specifications.

In the transformation from (2) to (3) we use αt = α + Aαfα,t where AαA�α = Qα.

This function implies that the k time varying parameters in αt are driven by rα ≤ k
states, fα,t, in a factor-like structure for the states. The elements of Aα and fα,t are

not identified and this results from the use of parameter expansions. These expansions

relax the form of the model to improve estimation. In fact, we derive the above form

starting from identified parameters but then introduce the parameter expansions that

take away this identification.

To give an impression of the extent of dimension reduction that is typically

achieved, consider our empirical application. We have n = 15 variables and T = 250

observations for a VAR with 2 lags. The dimension of the states αt and the covariance

matrix Qα in the unrestricted model in (2) and (3) has dimension 305,235. With rank

of Qa set to rα = 4, which is preferred in this application, then Specification 1 in (4)

and (5) has dimension 3,850 representing a 98.7% reduction in model dimension. It

is worth noting that the dimension reduction is greater, the larger is n.

Recall that with the full covariance matrix Qα the dimension of this matrix grows
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at rate n4. Instead of using the specification of the state space model with a full

covariance matrix Qα, one might therefore use a diagonal specification of Qα in the

hope of reducing the dimension of the model. However, this does not result in as

great a dimension reduction as using a reduced rank Qα. In the case considered in

our application, for example, the states αt and the diagonal covariance matrix Qα in

the unrestricted model in (2) and (3) would have dimension 143,070. Thus the model

(4) and (5) with rank of Qa of rα = 4 still has a dimension 97.3% smaller than if a

diagonal form were chosen for Qα.

2.2 Mapping to the reduced sources of errors model

In this subsection, we present the details of the transformations from (2) and (3)

to (4) and (5). Important features of the transformed model are that there are no

unknown parameters in the state equations and that the parameters to be estimated

all appear in the mean equation. Further, all of the parameters in α, Aα and fα,t

have conditionally normal posteriors.

Frühwirth-Schnatter and Wagner (2010) develop a computationally efficient spec-

ification of the state space model that permits the time variation in individual para-

meters to be ‘turned off’. This approach involves two transformations: recentering

(or non-centering) and parameter expansion. We leave for a subsequent paper con-

sideration of turning off time variation. Rather we use the non-centered specification

to develop a reduced rank model from which it is simpler to obtain draws of the

parameters.

In recentering, the initial value is subtracted from all states and this is divided

by the standard deviation of the state equation error. This transformation moves the

initial state and the standard deviation into the mean equation leaving no unknown
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parameters in the state equation.

The Frühwirth-Schnatter and Wagner (2010) approach is developed for scalar or

independent states. That is, Qα is assumed to be scalar or a diagonal matrix. In

our model the covariance matrix Qα is a full symmetric matrix allowing correlation

among the elements of ηt. We denote the initial state by α. Generalizing to this case,

the recentering transforms from αt to �αt via
αt = α +Q

1/2
α �αt, (6)

and the model subsequently becomes

yt = xtα + xtQ
1/2
α �αt + εt, εt ∼ N (0,Σt) , (7)

�αt = �αt−1 + �zt, �zt ∼ N (0, Ik) , �α0 = 0. (8)

This more general specification requires a useful definition for Q1/2α , the square root

of the covariance matrix Qα. There are several ways to define the square root of

a full symmetric matrix, but for our purposes the definition must allow for Qα to

have reduced rank. Our preferred definition, which can readily accommodate rank

reduction, uses the singular value decomposition.

The singular value decomposition of Qα can be written as Qα = UΛU � where

Λ = diag {λ1,λ2, ...,λk}, λi ≥ λi+1 ≥ 0 and U ∈ O (k) ≡ {U (k × k) : U �U = Ik} is an
orthonormal matrix: U �U = Ik. Given Qα, the elements of U are identified up to sign

(which is trivially resolved). The matrix Q1/2α is defined simply as Q1/2α = UΛ1/2U �.

In this paper we impose parsimony by letting the k − rα smallest singular values of
Λ to be zero. That is, we allow λrα+1 = λrα+2 = · · · = λk−1 = λk = 0 and collect

the nonzero singular values into Λ1 = diag {λ1,λ2, ...,λrα}. In this case, we can con-
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formably decompose U = [U1 U2] such that U1 ∈ Vrα,k ≡ {U (k × rα) : U �U = Irα}
and U �1U2 = 0 an rα × (k − 1) matrix of zeros. Under this restriction

Q1/2α = UΛ1/2U � = U1Λ
1/2
1 U �1.

We introduce the square root of the reduced rank covariance matrix into the

specification (6) to obtain the expression

αt = α + U1Λ
1/2
1 U �1�αt

= α + U1Λ
1/2
1 f

t
, (9)

where in the second line we have taken the linear combination f
t
= U �1�αt. The rank

reduction implies a reduction in the number of states from k (in αt) to rα (in f t).

Taking the linear combination f
t
in the state equation implies also taking the linear

combinations of the zt = U
�
1�zt. Here we have used the result that a linear combination

of standard normal random variables (�zt) in which the linear combinations are formed
using a set of unit vectors (U1 in our case) results in a vector of standard normal

variables (zt). Thus the resulting state equation vector of errors, zt, is an rα− vector
of standard normal variables. That is, the state equation is now

f
t
= f

t−1 + zt, zt ∼ N (0, Irα) , f
0
= 0.

The above specification involves the parameters U1 and Λ1 which have very non-

standard supports. These nonstandard supports significantly complicate computation

and it is difficult to obtain an efficient and simple algorithm. This issue is addressed

by mapping to a less restrictive form by introducing unidentified parameters.

The second step in the approach of Frühwirth-Schnatter and Wagner (2010) is to
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introduce an unidentified parameter via an approach called parameter expansion, to

map the parameters to more standard forms and supports. Used judiciously, transfor-

mation via parameter expansion can make computation much simpler and more effi-

cient. This is achieved by the mapping to standard supports and employing standard

distributions thereby simplifying computation and breaking down the dependency in

the parameters (see discussion in, for example, Liu, Rubin and Wu (1998) and Liu

andWu (1999)). Importantly, this approach has proven useful in reduced rank models

such as cointegrating vector error correction models (see Koop, Léon-González and

Strachan (2010)), factor models (Chan, Léon-González and Strachan (2018)), and

simultaneous equations models (Koop, Léon-González and Strachan (2012)).

Working in the scalar case, Frühwirth-Schnatter and Wagner (2010) introduce an

indicator ι that randomly takes the values −1 or +1. The support for ι is therefore
a one-dimensional orthogonal group, O (1). Generalizing this, we expand the set of

parameters by introducing the orthonormal matrix C ∈ O (rα) where O (rα) is the
rα-dimensional orthogonal group. Define the matrix Aα = U1Λ

1/2
1 C �. Note that the

definition of Aα is just a standard singular value decomposition of a real matrix with

singular values on the diagonal of Λ1/21 . Introducing this expanding parameter C into

the model through (9) we obtain

αt = α + U1Λ
1/2
1 C �Cf

t

= α + Aαfα,t,

fα,t = fα,t−1 + zα,t, zα,t ∼ N (0, Irα) , fα,0 = 0

in which fα,t = Cf t and zα,t = Czt. Introducing the above transformation into the

measurement equation in (7) and replacing the state equation in (8) by the one above,

we obtain the final form of the full state space model as that given in (4) and (5).
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2.3 Two Specifications for the Variance

The standard model assumed in the literature specifies αt and ht = (h1,t, . . . , hn,t)
� as

a priori independent and that the covariance matrix in the state equation for ht is

full rank. For example, a standard specification is a random walk log-volatility

ht = ht−1 + ηh,t ηh,t ∼ N (0, Qh)

where Qh = diag (σ2h1, , . . . ,σ
2
hn) and the random walk is initialized with h0.

In this section we apply the dimension reduction to the log variances, ht, in (1).

That is, we generalise to permit Qh to be a full, possibly reduced rank symmetric

matrix. Much of the parameter proliferation in the TVP-SVAR occurs in the mean

equations but we could just as reasonably wish to reduce the number of states driving

the stochastic volatility. The volatility component of the models we propose here

resembles that of Carriero et al. (2016a). Expanding upon the specification in Section

2.1, we consider two specifications of the log volatility ht for reducing the dimensions of

the TVP-SVAR. The first, Specification 1, assumes the mean equation and volatilities

share common states while Specification 2 specifies them to be a priori independent.

The rationale for the first specification is that structural change in the mean and

variance could come from a common source. That is, structural change is driven

by a common factor. Specification 2 adopts the more standard assumption that the

mean and variance states are independent. Specification 1 of the process for αt and

ht encompasses Specification 2.

It is not difficult to imagine that shocks can drive changes in the whole structure

of the model such that changes in the mean and variance parameters are driven by

the same states. To allow for this possibility, we allow for the mean equation and

volatility to influence each other in the most general model specification. In this
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model, the most general form, we allow the mean equation states, αt, to be correlated

with the log volatilities in ht. To permit this we specify a state equation for αt and

ht jointly as:

θt =

⎛⎜⎝ αt

ht

⎞⎟⎠ .
Specification 1 has state equation

θt = θt−1 + ηθ,t, ηθ,t ∼ N (0, Qθ) , (10)

such that the mean and variance states are correlated. After applying the rank

reduction to the above specification, the time varying parameters in the model are

θt = θ + Afθ,t, A =

⎛⎜⎝ Aα

Ah

⎞⎟⎠ ,
fθ,t = fθ,t−1 + zt, zt ∼ N (0, Ir) , fθ,0 = 0,

where r = rα + rh, A is (n+ k)× r and fθ,t is r × 1.
It is more common to impose, usually for computational convenience, that the

errors in the state equations for αt and ht are independent. However, we wish to

retain dependence among the volatilities. The second model, Specification 2, assumes

that αt and ht are independent such that

A =

⎛⎜⎝ Aα

Ah

⎞⎟⎠ =

⎛⎜⎝ Aα,11 0

0 Ah,12

⎞⎟⎠ .

15



In this case, we could rewrite the model for ht as

ht = h+ Ah,11fh,t,

fh,t = fh,t−1 + zh,t, zh,t ∼ N (0, Irh) , zh,0 = 0,

where Ah,11 is n × rh, fh,t is rh × 1 and, as we might reasonably expect that the
volatilities can be modelled with common factors, then rh ≤ n.

3 Posterior Estimation

The state space structure specifies the priors for the states – fα,t, fh,t and fθ,t –

so we now describe the priors for the initial conditions θ = (α�, h�)� and covariance

matrices a = vec (A) .

Frühwirth-Schnatter and Wagner (2010) provide evidence in support of using the

Gamma prior, rather than the inverted Gamma prior, for their scalar state equation

variance. In the generalisation presented in this paper, this equates to using aWishart

prior for Qθ. For the full rank (r = k) case, a zero mean normal prior for A implies

a Wishart prior for Qθ (see, for example, Zellner pp. 389-392 (1971) and Muirhead

(1982)). We therefore give the matrix A a normal prior distribution, a = vec (A) ∼

N
�
0, cI(n+k)r

�
for all three specifications. Through some experimentation, we find

c = 10−3 to be reasonable in a wide variety of settings.

For the initial states θ = {θj} (which contains the elements of α and h), we note
that in large models the dimension may be substantial, and hence, shrinkage priors

may be desirable. This implies a choice of structure on the prior covariance matrix

V θ =
�
V θj

�
. A number of options explored in the large Bayesian VAR literature may

be applied here. We consider the stochastic search variable selection (SSVS) prior of
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the form:

θj | δj ∼ N (θj, cδjV θj), (11)

δj ∼ qδj(1− q)1−δj ,

where δj ∈ {0, 1} , c1 = 1 and c0 is some small constant. Of course, this will collapse
to a typical normal prior if either q = 1 or c0 = 1. Further, we combine SSVS with

Minnesota priors as suggested in Korobilis (2013). Having normal conjugate priors

for the initial conditions (α, h), the covariances (a = vec (A)) and the states (the ft),

the resulting conditional posteriors are normal for Specifications 1 and 2.

For the purposes of this section, we collect the T states into the vectors fm =�
f �m,1, f

�
m,2, . . . , f

�
m,T

��
for m = α, h or θ. Further, let aα =

�
vec (α)� , vec (Aα)

��� and
ah =

�
h�0, vec (Ah)

�� . The description of the priors above implies that the vectors aα,
fα, ah and fh have a normal form such as N

�
μ
m
, V m

�
for μ = a or f. Volatility Spec-

ification 2 leads to a straightforward sampler. For Specification 2, MCMC involves

five blocks:

1. (aα|sα, fα, h0, y) ∼ N
�
aα, V α

�
;

2. (fα|aα, sα, h0, y) ∼ N
�
fα, V f,α

�
;

3. (sα|aα, sα, h0, y) ;

4. (ah|aα, fα, y) ∼ N
�
ah, V h

�
;

5. (fh|aα, fα, h0, y) ∼ N
�
fh, V f,h

�
;

of which steps 1, 2, 4 and 5 involve only analytically tractable conditional distri-

butions, all of which are straightforward to sample from. The states, sh, drawn in
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step 3 are the states determining the normal mixture components when drawing the

stochastic volatilities using the algorithm of Kim, Shephard and Chib (1998).

For Specification 1 the MCMC consists of sampling recursively from:

1. (aα|fθ, h0, Ah, y) ∼ N
�
aα, V α

�
;

2. (fθ|aα, h0, Ah, y) ;

3. (ah|aα, fθ, y) ∼ N
�
ah, V α

�
.

Under this specification, the measurement equation is nonlinear in fθ (since it

enters both the conditional mean and the volatility simultaneously), and therefore,

(fθ|α, Aα, h0, Ah, y) is not analytically tractable. We therefore sample it using an
accept-reject Metrolpolis-Hastings (ARMH) algorithm as described in Chan and Stra-

chan (2012). Specifically, we use a normal proposal centered on the conditional pos-

terior mode �fθ with the variance �Vθ set to the negative inverse Hessian evaluated at
the mode of ln p (fθ|., y). The derivation of �fθ and �Vθ is given in Appendix 1.
Once the mode �fθ is obtained, the proposal precision �V −1θ is given by a by-product

of the scoring algorithm and a matrix that can be easily evaluated at the mode upon

convergence (See Appendix 1). We then generate proposals as f cθ ∼ N
� �fθ, �Vθ� for the

ARMH step as detailed in Chan and Strachan (2012). The use of ARMH as opposed

to standard M-H appears to provide substantial gains in terms of acceptance rates

(and hence sampling efficiency), particularly for larger models (i.e. as the size of fθ

increases). Intuitively, the normal proposal is symmetric, while p (fθ|., y) will typically
be skewed. This mismatch in shape will lead to higher rejection rates for a standard

M-H approach as the dimension of fθ increases. ARMHmitigates this by adjusting the

shape of the proposal to better fit the skewness of the target distribution. As a result,

acceptance rates are substantially increased. For example, in the macroeconomic
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application discussed below, the model with n = 15 and rα = 10 yields an acceptance

rate of about 89.9%.

4 Application

4.1 Implementation

We use a data set containing a total of 15 variable to estimate the time-varying effects

of surprise productivity (non-news) and news shocks. To understand the effects of

dimension upon the results, we estimate the model with n = 8 variables and again

with all n = 15 variables for contrast. The data consists of quarterly macroeconomic

series covering the period 1954Q3—2008Q3, with each variable described in Table 1.2

Given a subset of these variables, we assume the system admits a structural TVP-

VAR representation of the form

yt = B
−1
0,t μt + Π1,tyt−1 + · · ·+ Πp,tyt−p + At�εt, �εt ∼ N (0, In) , (12)

where At = B−10,tΣ
1/2
t ,

Σt = diag (exp (h1,t) , . . . , exp (hn,t)) and

Σ
1/2
t = diag (exp (h1,t/2) , . . . , exp (hn,t/2)) .

Following Barsky and Sims (2011), non-news and news shocks in �εt are identified by
the restrictions:

1. non-news is the only shock affecting TFP on impact;

2Following standard practice in the news shock literature, all series are de-meaned.
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2. news is the shock that, among all of the remaining shocks, explains the max-

imum fraction of the forecast error variance (FEV) of TFP at a long horizon

(set to 20 years in our application).

Table 1: Variables used in each estimated model.
Core variables Additional variables for the n = 15 model
1 Log TFP 9 Log RPI
2 FED funds rate 10 Log real SEP500
3 GDP deflator inflation 11 Unemployment Rate
4 Log hours per capita 12 Vacancy rate
5 Log real GDP per capita 13 TB3MS Spread
6 Log real consumption per capita 14 GS10 Spread
7 Log real investment per capita 15 Log real dividends
8 GS5 Spread

To implement the methodology outlined in the previous sections in estimating

(12), we begin with the structural form in (1)

yt = μt +Btyt +B1,tyt−1 + · · ·+Bp,tyt−p + εt, εt ∼ N (0,Σt)

were �εt = Σ−1/2t εt. To more simply apply a prior that are more useful in large models,

we respecify the model in VECM form

Δyt = μt +BtΔyt + Πtyt−1 + Γ1,tΔyt−1 + · · ·+ Γp−1,tyt−p+1 + εt (13)

where Bt is the same lower triangular matrix defined in (12). Next, define

xt =
�
In (Δy�t ⊗ In)D

�
y�t−1 ⊗ In

� �
Δy�t−1 ⊗ In

� · · · �
Δy�t−p+1 ⊗ In

��
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such that k =
�
np+ 1 + n−1

2

�
n and αt is the (k × 1) vector

αt =
�
μ�t b�t π�t γ�1,t · · · γ�p−1,t

��
,

where μt and bt are defined in Section 2 and γl,t = vec (Γl,t) l = 1, ..., p − 1 and
πt = vec (Πt). Consequently, we can now write (13) in the form of (2) and (3) as:

Δyt = xtαt + εt εt ∼ N (0,Σt) ,

αt = αt−1 + ηt ηt ∼ N (0, Qα) α = α0 ∼ N (α, V ) .

The advantage of this VECM specification is that it facilitates specifying more flexible

shrinkage priors for

α =
�
μ�0 b�0 π�0 γ�1,0 · · · γ�p−1,0

��
,

which is useful in large dimensional settings.

In addition to the SSVS specification in (11) combined with the Minnesota prior

for θ = (α�, h�)� = {θj}, we also implement “inexact differencing” as advocated by
Doan et al. (1984), Banbura et al. (2010), and others. This is done by setting the

prior mean to θj = 0 for all j and the prior variance as

V θj =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if θj ∈ h0, θj ∈ μ0, or θj ∈ b0,
102

2n
if θj ∈ π0,

0.3
2nl2

if θj ∈ γl,0 for l = 1, . . . , p− 1.

For SSVS, we set c0 = 0.01 and q = 0.5. Finally, we scale each Δyi to have sample

standard deviation one before commencing sampling, which facilitates the use of
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generic prior settings like the ones given above. However, the effect of this scaling

is reversed in the post-processing of draws such that all outputs such as impulse

response functions are reported on the originally scaled data.

Once draws of Bt, Πt, Γ1,t, . . . ,Γp−1,t, and Σt are obtained, they are transformed

to draws of Π1,t, . . . ,Πp,t from (12) as

B0,t = In −Bt
Π1,t = In +B

−1
0,t (Πt + Γ1,t) ,

Πl,t = B
−1
0,t (Γl,t − Γl−1,t) , l = 2, . . . , p− 1,

Πp,t = −B−10,t Γp−1,t.

To recover At, we begin with �At = B−10,tΣ− 1
2

t . Note that by construction �At is lower
triangular and therefore the non-news shock is identified in accordance with restriction

1 above. However, the news shock generally does not satisfy restriction 2. Following

Barsky and Sims (2011), the desired restriction is implemented by constructing an

orthogonal matrix Qt using a spectral decomposition of impulse response functions.

Specifically, for each period t we compute the impulse responses of log TFP to all

shocks excluding non-news for the periods t, t+1, . . . , t+80. Let Rs be the (n− 1)×1
vector of impulse responses at time t+ s and take the spectral decomposition

�QtD�
t
�Qt = 80�

s=0

RsR
�
s,

where the eigenvalues in Dt are in descending order. Setting

Qt =

⎡⎢⎣ 1 0

0 �Qt
⎤⎥⎦
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and At = �AtQt achieves the desired identifying restriction, which is sufficient for com-
puting forecast error variance decompositions. To derive impulse response functions,

we further identify the sign of the news shock by requiring that the maximum impact

of news on log TFP across all horizons is positive.3

4.2 Results

We begin by conducting an extensive empirical analysis on the choice of rα (number

of mean equation states) and rh (number of states driving the volatility) using the

Deviance Information Criterion (DIC) as the model comparison criterion. The DIC is

based on the integrated likelihood – i.e., the joint density of the data marginal of all

the latent states – and is computed using the method in Chan and Eisenstat (2018).

The relative DICs are presented in Tables 2-3. A lower DIC value indicates more

preference for the given model. For the model with n = 8 the DIC results suggest the

preferred model is Specification 2 with five states in total: two states driving the mean

equation coefficients in αt and three states driving the volatilities ht. Specification 1

is strongly rejected although does better with fewer states driving θt. Increasing the

number of variables in the system to n = 15, the DIC select Specification 2 again

although now with seven states: four states driving the mean equation coefficients in

αt and, again, three states driving the volatilities ht.

In Figures 1 to 15 we present a range of impulse response functions and variance

decompositions for responses to news and non-news shocks. The impact shocks in

Figures 3 and 11 show significant variation over time in the impact of non-news shocks

upon log TFP. The Figures 4 and 12 show that the long run impact of a new shock on

the real variables − log TFP, log real per capita GDP, log real per capita consumption
3In computing �Qt for t > T − 80 we set Φl,t+s = Φl,T for all t+ s ≥ T .
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and log real per capita investment − has declined over time with the density of the

response moving towards zero. This effect is particularly clear for the larger model

with n = 15.

There is a noticeable second order effect upon the estimated posterior impulse

responses in both the n = 8 and the n = 15 models. Specifically, we see that the

error bands suggest that there was a very large increase in uncertainty about the

immediate effect of news shocks upon the Fed funds rate, the spread and to a lesser

extent upon inflation around 1980. It is also in these second order effects upon the

posterior that we see the effect of estimating a smaller model. Looking at Figures

4 and 12, the error bands are much tighter for the larger model despite this model

having many more parameters to be estimated. We also see that estimating the

smaller model we have the impression that the posteriors for a number of impacts,

particularly to non-news shocks, are skewed at particular points in time and have

higher probability of producing outliers from one tail at these times. These effects

largely disappear when we estimate the larger, less restricted model.

5 Conclusion

This paper presents an approach to reducing the dimension of the TVP-SVAR, while

preserving the full number of time varying parameters. The aim is to permit more

efficient estimation of larger systems while preserving a full probability model and all

formal inferential opportunities. The specification we employ is new and has a number

of advantages. The dimension reduction is achieved by choosing a reduced rank of

the state equation covariance matrix using empirical evidence. We employ DIC to

select the rank of the covariance matrix. The specification is an exact one, allowing

estimation of outputs, such as impulse responses and variance decompositions, and
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their full posterior distributions.

Computation remains a challenge in any large dimensional model, including the

one presented in this paper. To mitigate this issue in this model we present a number

of techniques that improve computation. These include careful specification of the

model, judicious choice of computation algorithm, SSVS with a Minnesota prior to

reduce the number of parameters, and use of parameter expansions to attain more

readily computable forms for the final model. As a result, we present an approach

that increases the range of models available to macroeconomists.

The application to a large system of 15 variables in a time varying VAR suggests

that the estimates remain precise with sensible error bands. We find evidence of time

variation in the impulse responses and differences between smaller and larger models.

Subsequent work will consider automated selection of the rank of the state equation

covariance matrix and inference on whether specific states vary over time or not (as

per Frühwirth-Schnatter and Wagner (2010)).
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A Appendix 1: Obtaining the mode and Hessian

for the ARMH step

We use a scoring algorithm to find �fθ numerically. To this end, the gradient and
Hessian of the log of the conditional posterior of fθ, ln p (fθ|., y) , are given by:

d ≡ d ln p (fθ|., y)
(dfθ)

� = −H �Hfθ − 1
2
(Ir ⊗ A�h) ιrT

+
1

2
(Z +W )�Σ−1 (y −Xα−Wfθ) ,

D ≡ d2 ln p (fθ|., y)
(dfθ) (dfθ)

� = D1 +D2

D1 = −H �H − 1
2
Z �Σ−1Z − 1

2
W �Σ−1W,

D2 = −1
2
(Z −W )�Σ−1W − 1

2
W �Σ−1 (Z −W ) ,

Z = Y (IrT ⊗ Ah) +W,

where Y = diag
�
(y1 − x1α1)� , ..., (yT − xTαT )�

�
, Σ = diag (h�1, . . . , h

�
T ),

W =

⎡⎢⎢⎢⎢⎣
x1Aθ

. . .

xTAθ

⎤⎥⎥⎥⎥⎦ , H =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Ir

−Ir Ir

. . . . . .

−Ir Ir

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

Observe that given this, a standard Newton-Raphson algorithm could be constructed

by updating �f (j+1)θ = �f (j)θ −D−1d.

However, −D is not guaranteed to be positive definite for all fθ, and in fact, will only
be positive definite in a very small neighborhood around �fθ in many applications.
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Thus, using the standard Newton-Raphson scoring algorithm will not work well in

practice. Nevertheless, we can construct a similar algorithm by replacing D with D1.

The advantage of this approach is that D1 is guaranteed to be positive definite

for all fθ, and therefore, an update from any fθ will always be an ascent direction.

The disadvantage, of course, is that in the neighborhood around the mode where D is

positive definite, the convergence may be theoretically slower than what is achieved

by standard Newton-Raphson. However, even this drawback may be small to the

extent that Ey (D2) = 0. In fact, D1 is closely related to the Fisher information

matrix

F = −H �H − 1
2
(IrT ⊗ A�hAh)−W �Σ−1W,

which is sometimes used to construct scoring algorithms. Using either F or D will

guarantee positive ascent for any value of fθ; we prefer D1 as it appears to yield

faster convergence in practice. Finally, note that D, D1 and F are all sparse, banded

matrices which results in fast computation of updates even in large dimensions.
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B Appendix 2: Derivation of posterior terms

In this appendix we define the terms in the conditional posteriors presented in Section

3 for aα and ah in both specifications and fh and fα in Specification 2. Each of

these parameters has a normal prior of the form aα ∼ N (0, V α), fα ∼ N �
0, V f,α

�
,

ah ∼ N (0, V h), and fh ∼ N
�
0, V h,α

�
, and a conditional normal posterior.

For Specification 2, recall the model specification in (2) and (3) reproduced here:

yt = xtα + xtAαfα,t + εt, εt ∼ N (0,Σt) ,

fαt = fα,t−1 + zα,t, zα,t ∼ N (0, Irα) , fα,0 = 0,

Σt = diag
�
eh1,t , . . . , ehn,t

�
ht = (h1,t, , . . . , hn,t)

�

ht = h+ Ahfh,t,

fh,t = fh,t−1 + zh,t zh,t ∼ N (0, Irh) , fh,0 = 0,

To obtain a simple form for the posterior for aα =
�
α�, vec (Aα)

��� we use
yt = xtα +

�
f �α,t ⊗ xt

�
vec (Aα) + εt

=
�
xt

�
f �α,t ⊗ xt

��
aα + εt

Stack yt over time to form the Tn× 1 vector y, stack the matrices �xt �
f �α,t ⊗ xt

��
into the Tn× krα matrix X, and similarly stack εt into the Tn× 1 vector ε. We can
now write the measurement equation as

y = Xaα + ε where ε ∼ N (0,Σ) . (14)

Σ is the diagonal matrix in which the (t+ i, t+ i)th element is the variance of the ith
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element of εt where i ∈ {1, . . . , n} . With a prior of the form N (0, V α), the posterior

has the form N �
aα, V α

�
where V α =

�
X �Σ−1X + V −1α

�−1
and aα = V αX

�Σ−1y.

To define the terms in the posterior for the factors fα,t and fh,t, we first define

the form of the prior covariance matrices V f,α and V f,h. Let the (r × 1) vector ft be
either fα,t or fh,t such that r = rα or r = rh respectively. In generic form then, the

state equation for the factors can be written as

ft = ft−1 + zt, zt ∼ N (0, Ir) , f0 = 0.

Stack the ft into the Tr × 1 vector f, similarly stack the zt into z, and let R be the
(Tr × Tr) differencing matrix,

Rr =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ir 0 0 0

−Ir Ir 0 0

0 −Ir Ir 0

0 0 0 Ir

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

We can now write

Rrf = z z ∼ N (0, ITr) and so f = R−1r z ∼ N
�
0, (R�rRr)

−1
�
.

This shows that the priors covariance matrices for fα,t and fh,t are V f,α =
�
R�rαRrα

�−1
and V f,h =

�
R�rhRrh

�−1
respectively.

To define the terms in the posterior for the fα,t, N
�
fα, V f,α

�
, we write the mea-
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surement equation as

yt − xtα = xtAαfα,t + εt

= xtaα + εt where xt =
�
xt

�
f �α,t ⊗ xt

��
.

Stacking yft = yt − xtα over time to form the Tn× 1 vector yf and defining

Xf =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1Aα 0 0

0 x2Aα · · · 0

...
. . .

0 0 xTAα

⎤⎥⎥⎥⎥⎥⎥⎥⎦
we can write V f,α =

�
X �Σ−1X +R�rαRrα

�−1
and fα = V f,αX

f �Σ−1yf .

For the vector ah =
�
h� vec (Ah)

��� with posterior N �
ah, V h

�
, we apply the

transformation from Kim, Shephard and Chib (1998) and condition upon the states

sh to obtain the measurement equation as

y∗t = ln
�
ε2t + c

�−mt = h+ Ahfh,t + ε
∗
t

= x∗tah + ε
∗
t where x

∗
t =

�
In

�
f �h,t ⊗ In

��
.

The term ε∗t + mt is normal with mean vector mt.4 Let y∗ = {y∗t } be the Tn × 1
vector of stacked y∗t , X

∗ be the Tn× nrh matrix of stacked x∗t . Finally, let Σh be the
diagonal matrix in which the (t+ i, t+ i)th element is the variance of the ith element

of ε∗t where i ∈ {1, . . . , n} . Combining the likelihood with the prior N
�
0, V ah

�
we

can write V h =
�
X∗�Σ−1h X

∗ + V −1ah
�−1

and ah = V hX
∗�Σ−1h y

∗.

4The means and variances of the elements of ε∗t + mt depend upon the states in sh and are
presented in Table 4 of Kim, Shephard and Chib (1998).
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Finally we define the terms in the conditional posterior for fh,t, N
�
fh, V f,h

�
.

Again conditional upon the states identified in sh, the measurement equation can be

written

y∗∗t = ln
�
ε2t + c

�−mt − h = Ahfh,t + ε∗t .

Let y∗∗ be the Tn× 1 vector of stacked y∗∗t , X∗∗ be the Tn× Trh matrix (IT ⊗ Ah) .
Finally, let Σh be the diagonal matrix in which the (t+ i, t+ i)

th element is the

variance of the ith element of ε∗t ; i = 1, . . . , n. Combining the likelihood with the

prior N
�
0,
�
R�rhRrh

�−1�
we can write V f,h =

�
X∗∗�Σ−1h X

∗∗ +R�rhRrh
�−1

and fh =

V f,hX
∗∗�Σ−1h y

∗∗.

In Specification 1, the conditional posteriors for aα and ah have the same form as

that in Specification 2 except with fα,t and fh,t replaced by fθ,t.
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C Tables and Figures

Table 2: DICs for models specified with n = 8 and various combinations of rα and rh.
All values are relative to the DIC of the constant coefficient model (i.e. rα = rh = 0).

3 states 5 states 7 states 10 states 12 states
rα rh DIC rα rh DIC rα rh DIC rα rh DIC rα rh DIC
3 0 -402 5 0 -422 7 0 -351 10 0 -102 12 0 88
2 1 -443 4 1 -452 6 1 -349 8 2 -269 8 4 -200
1 2 -414 3 2 -486 4 3 -478 6 4 -358 7 5 -333
0 3 -334 2 3 -490 3 4 -475 5 5 -446 6 6 -360

1 4 -408 1 6 -410 4 6 -483 5 7 -384
0 5 -338 0 7 -336 2 8 -463 4 8 -442

shared -263 shared -68 shared 199 shared 441 shared 769

Table 3: DICs for models specified with n = 15 and various combinations of rα and rh.
All values are relative to the DIC of the constant coefficient model (i.e. rα = rh = 0).

3 states 5 states 7 states 10 states 12 states
rα rh DIC rα rh DIC rα rh DIC rα rh DIC rα rh DIC
3 0 -764 5 0 -766 7 0 -742 10 0 -366 12 0 -140
2 1 -771 4 1 -816 6 1 -688 8 2 -486 8 4 -573
1 2 -711 3 2 -887 4 3 -892 6 4 -697 7 5 -655
0 3 -562 2 3 -851 3 4 -888 5 5 -854 6 6 -800

1 4 -756 1 6 -698 4 6 -876 5 7 -792
0 5 -583 0 7 -565 2 8 -800 4 8 -840

0 10 -545 0 12 -577
shared -770 shared -835 shared -719 shared -418 shared 199
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Figure 1: Impulse-response functions to non-news shocks in 1963Q4, 1972Q3, 1981Q2,
1990Q1 and 1998Q4 (mean, and 16-84 percentiles of the posterior distribution) for
the n = 8 variables model.
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Figure 2: Impulse-response functions to news shocks in 1963Q4, 1972Q3, 1981Q2,
1990Q1 and 1998Q4 (mean, and 16-84 percentiles of the posterior distribution) for
the n = 8 variables model.
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Figure 3: Time-varying responses to non-news and news shocks on impact (mean,
and 16-84 percentiles of the posterior distribution) for the n = 8 variables model.
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Figure 4: Time-varying responses to non-news and news shocks at 40 quarters after
impact (mean, and 16-84 percentiles of the posterior distribution) for the n = 8
variables model.
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Figure 5: Fractions of forecast error variance explained by non-news shocks in 1963Q4,
1972Q3, 1981Q2, 1990Q1 and 1998Q4 (mean, and 16-84 percentiles of the posterior
distribution) for the n = 8 variables model.
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Figure 6: Fractions of forecast error variance explained by news shocks in 1963Q4,
1972Q3, 1981Q2, 1990Q1 and 1998Q4 (mean, and 16-84 percentiles of the posterior
distribution) for the n = 8 variables model.
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Figure 7: Time-varying fractions of forecast error variance explained by non-news and
news shocks on impact (mean, and 16-84 percentiles of the posterior distribution) for
the n = 8 variables model.
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Figure 8: Time-varying fractions of forecast error variance explained by non-news and
news shocks at 40 quarters after impact (mean, and 16-84 percentiles of the posterior
distribution) for the n = 8 variables model.
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Figure 9: Impulse-response functions to non-news shocks in 1963Q4, 1972Q3, 1981Q2,
1990Q1 and 1998Q4 (mean, and 16-84 percentiles of the posterior distribution) for
the n = 15 variables model.
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Figure 10: Impulse-response functions to news shocks in 1963Q4, 1972Q3, 1981Q2,
1990Q1 and 1998Q4 (mean, and 16-84 percentiles of the posterior distribution) for
the n = 15 variables model.
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Figure 11: Time-varying responses to non-news and news shocks on impact (mean,
and 16-84 percentiles of the posterior distribution) for the n = 15 variables model.
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Figure 12: Time-varying responses to non-news and news shocks at 40 quarters after
impact (mean, and 16-84 percentiles of the posterior distribution) for the n = 15
variables model.
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Figure 13: Fractions of forecast error variance explained by non-news shocks in
1963Q4, 1972Q3, 1981Q2, 1990Q1 and 1998Q4 (mean, and 16-84 percentiles of the
posterior distribution) for the n = 15 variables model.
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Figure 14: Fractions of forecast error variance explained by news shocks in 1963Q4,
1972Q3, 1981Q2, 1990Q1 and 1998Q4 (mean, and 16-84 percentiles of the posterior
distribution) for the n = 15 variables model.
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Figure 15: Time-varying fractions of forecast error variance explained by non-news
and news shocks on impact (mean, and 16-84 percentiles of the posterior distribution)
for the $n=15$ variables model.
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Figure 16: Time-varying fractions of forecast error variance explained by non-news
and news shocks at 40 quarters after impact (mean, and 16-84 percentiles of the
posterior distribution) for the n = 15 variables model.
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