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1. Introduction 

The theoretical benefits of improving market integration through increased electricity markets 

interconnectedness are well established and include improved security of supply, enhanced 

competition and greater economic efficiency, as well as environmental benefits (Newbery et 

al. 2016). However, the potential costs of interconnectedness beyond those captured through 

volatility spillovers are relatively less explored in the literature. In interconnected electricity 

markets, shocks in one region are expected to transmit to other regions through external links, 

commonly known as spillovers (Pesaran and Pick, 2007). Shocks in electricity markets are 

more common than in other commodity markets with abrupt jumps that can be several orders 

of magnitude greater than the mean, due to electricity, as a product, being non-storable, demand 

being inelastic and supply being inelastic at high output levels. Therefore, price spikes above 

a certain price threshold represent one of the main risks faced by electricity market participants 

in interconnected electricity markets (see e.g., Becker et. al., 2007; Clements et al., 2015; 

Christensen et al. 2012; Manner et al., 2016 for applications to the Australian market). 

The existence of abnormally high price spikes raises the issue of whether there is 

sufficient transmission capacity. As discussed by Clements et al. (2015) in the context of the 

National Electricity Market (NEM), an important aspect influencing the inter-regional 

transmission of price spikes is the availability of spare capacity on the interconnectors between 

the regions. As they note (at p. 384) " if spare import capacity is (not) available, [price] spikes 

should be smaller (larger) in size as generation capacity from the nearby region can (cannot) 

be transmitted to meet the local demand." Prior research on electricity price linkages and 

information transmission in the NEM has identified the existence of spillovers of volatility (or 

second moment) risk (e.g., Apergis et al., 2017a; Han et al., 2017; Ignatieva and Truck, 2016; 

Higgs, 2009; Worthington et al., 2005; Higgs and Worthington, 2005). However, focusing on 

volatility alone ignores that the distribution of electricity prices is skewed and heavily tailed 
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and what this implies for risks due to transmission of extreme events in terms of their magnitude 

(via skewness spillover) and the likelihood of their occurrence (via kurtosis spillover). We 

show that it is equally important to monitor the transmission of these extreme risks, alongside 

transmission of volatility risk, in an interconnected electricity market. 

In addition, building on the reasoning in Clements et al. (2015), we address the question 

of whether there is sufficient transmission capacity between the states, given that greater 

transmission capacity would reduce the incidence and magnitude of the transmission of 

extreme events; hence, reducing the prevalence of higher moments risk for market participants. 

The benefit of focusing on higher moment channels, and not just volatility risk, is that higher 

moment risks contain more predictive information about underlying network constraints and 

future evolution of electricity market prices, given that regional energy markets exhibit 

significant tail dependence and asymmetries (Ignatieva and Truck, 2016). For instance, the 

fatter the tail, the greater the probability of obtaining price changes that are extreme. Studies 

of skewness and kurtosis linkages can provide insights into the spread of fat tail risks across 

electricity markets since they respectively capture the magnitude and occurrence of extreme 

events, such as high impact-low frequency events that are becoming more common in the 

NEM. 

The remainder of the paper is structured as follows. Section 2 discusses the existing 

literature on electricity market interconnectedness based on dynamics of moments. The data 

and construction of realized moments are discussed in section 3. Section 4 describes the 

econometrics framework. Section 5 presents the results, while section 6 concludes. 

2. Overview of the NEM and Relevant Literature 

2.1. Interconnections in the NEM 
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The NEM was created as a wholesale market for electricity in the Eastern states (Victoria 

(VIC), New South Wales (NSW), South Australia (SA) and Queensland (QLD)) in 1998 with 

Tasmania (TAS) joining in 2005. The NEM is an energy-only gross pool with a real-time 

uniform first-price auction clearing mechanism and forward derivative markets traded both on-

exchange and Over-the-Counter (OTC) at 300–400% of physical trade (Simshauser, 2018b). 

The NEM operates as a nationally interconnected system, physically connecting the five state-

based regional markets (TAS, SA, VIC, NSW and QLD), covering about 40,000 kilometres 

(km) of transmission lines with a combined customer base of 9 million people. 

In liberalised electricity markets, such as the NEM, retailers purchase electricity at an 

unregulated spot price and sell to consumers at a regulated price leading to extreme price 

spikes, which is a major source of risk for electricity retailers (Christensen et al. 2012). 

Therefore, retailers and generators enter into hedging contracts in order to manage price 

volatility in the NEM. Electricity generators and retailers trade through a spot market operated 

by the Australian Energy Market Operator (AEMO) (Nepal and Foster, 2016). To price this 

hedging accurately requires an understanding of the wholesale price linkages and the nature of 

risks between interconnected regional markets in the NEM. The central problem lies in the 

actual quantification of the full range of risks. As Levy (1969) pointed out, expected utility 

depends on all of the moments of the distribution and higher moments cannot be neglected.  

There are only six regional operational interconnectors among the five electrically 

connected regional markets in the NEM (see Figure A1). There are two interconnectors 

operating between NSW-QLD and SA-VIC. However, VIC-TAS and NSW-VIC are connected 

by one interconnector. There is no direct physical interconnection between QLD-SA and NSW-

SA. The regional interconnectors largely follow the state boundaries covering a distance of 

more than 5,000 kms, running from Port Douglas in QLD to Port Lincoln in SA (Nepal and 

Foster, 2016), making the NEM one of the longest interconnected power systems in the world. 
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The occurrence of extreme price spikes in the NEM spot electricity price represents a 

major source of risk for electricity retailers, and the forecasting of these extreme price spikes 

is important for effective risk management (Christensen et al. 2012). This is especially 

necessary because tail risks arising from policy uncertainty and extreme events can have a 

catastrophic impact on the stability of interconnected electricity markets.   

For example, in 2016, SA experienced three major blackouts including a total grid 

collapse – Australia’s first black system event since the early 1960s (Simshauser, 2018b). This 

catastrophic event led to questioning of the ability of the NEM to deliver energy security and 

reliability, prompting calls for SA to quit the NEM (Finkel et al., 2017). 

2.2. Review of Literature 

 Interconnectedness between energy and energy commodity markets through volatility 

spillovers has been extensively explored (Sadorsky, 2012; Apergis et al. 2017a). However, 

focusing on volatility alone ignores that the distribution of electricity prices is skewed and 

heavily tailed and what this might imply for other risks of interconnectedness; specifically risks 

due to transmission of extreme events in terms of their magnitude (via skewness spillover) and 

the likelihood of their occurrence (via kurtosis spillover). Improved prediction of the extreme 

price spikes is important for market participant risk management (Becker et al. 2007). 

One set of studies have focused on examining the degree of integration of European 

electricity markets. An early correlation analysis showed that returns in European electricity 

markets appear to be independent of each other (Bower, 2002). Another study, performing a 

Principal Component Analysis (PCA) on cross-border capacity auctions, rejected the 

assumption of full market integration (Zachmann, 2008). The application of fractional 

cointegration analysis led to the conclusion that a month day ahead prices are more resilient to 

system shocks than spot prices, which are more event dependent (Menezes and Houllier, 2016). 
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 A recent study uses cointegration and error correction modelling to show that there is 

large potential for improving market integration in European electricity markets (Gugler et al. 

2018). The application of multivariate GARCH (MGARCH) models and volatility impulse 

response functions (VIRF) to quantify the impact of shocks on return volatility is limited in the 

European context.  The impact of shocks is usually not persistent, owing to the non-storability 

characteristics of electricity, while large increases in expected conditional volatilities are 

possible even if their probability is low based on the application of MGARCH and VIRF (Le 

Pen and Sevi, 2010). An application of impulse response techniques to study the shock 

transmission in European electricity forward markets, found the size and proximity of 

neighbouring markets to have little influence (Bunn and Gianfreda, 2010). Results from hidden 

Markov regime switching models conclude that the frequency of extreme events is positively 

related to the amount of renewable energy sources in the power system, while dependence 

measures across markets are asymmetrical (Lindstrom and Regland, 2012). 

Another strand of the literature has examined the degree of integration in North American 

electricity markets.  For the U.S. a bivariate cointegration test, a price-difference test and a 

causality test failed to reject the null hypothesis of market integration and price competition 

among wholesale electricity submarkets in the Pacific Northwest region of the Western System 

Coordinating Council (WSCC) (Woo, Lloyd-Zanetti and Horowitz, 1997). On the other hand, 

the application of unit root tests and cointegration techniques found pairwise cointegration 

among 11 regional U.S. western markets (De Vany and Walls, 1999). Another study also 

showed that a relationship exists between prices of distant regions in the U.S. using acyclic 

graphical methods (Park et al. 2006). In the Canadian context, an application of a MGARCH 

model found linear and non-linear bivariate relationships between deregulated natural gas and 

electricity markets in Alberta (Serletis and Shahmoradi, 2006). 
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In the Australian context, cointegration tests and Kalman filter analysis concluded that 

there was a lack of integration in the NEM due to significant transmission constraints among 

regional interconnectors (Nepal and Foster, 2016). The application of  Phillips and Sul (2007) 

transition modelling and econometric convergence tests identified a long run, common price 

growth pattern in the cluster formed by the three Eastern States (NSW, QLD, VIC), which 

share common market characteristics and limited physical interconnection (Apergis et al. 

2017b). The application of MGARCH models to electricity returns showed that price 

transmission is low, but that volatility spillovers are present across the five markets 

(Worthington et al. 2005). An analysis of the intraday price volatility processes in the NEM 

showed significant innovation and volatility spillovers in the conditional standard deviation 

equation, even when market and calendar effects were included (Higgs and Worthington, 

2005). Intraday prices exhibited significant asymmetric responses of volatility to the flow of 

information in the NEM. The application of a MGARCH model with time-varying correlations 

to model price and volatility inter-relationships in the Australian wholesale spot electricity 

market confirmed the presence of positive own mean spillovers in all four markets studied and 

little evidence of lagged mean spillovers from  other markets (Higgs, 2009). A Copula method 

applied to model dependence between regional Australian electricity markets found significant 

positive dependence between each of the markets (Ignatieva and Truck, 2016).  

The majority of previous studies on electricity volatility spillovers make use of low 

frequency data (daily or aggregated daily prices) and employ MGARCH models. However, 

due to the increasing availability of intraday data, recent studies have constructed realized 

volatility non-parametrically from intraday returns and employed the Diebold and Yilmaz 

(2009, 2012) spillover index within a VAR framework (e.g., Han et al. 2017; Apergis et al., 

2017a). Han et al. (2017) found that spillover effects are more pronounced in the physically 

interconnected regions, exhibiting time and event dependent patterns. Apergis et al. (2017a) 
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applied VAR to quantify asymmetries in volatility spillover emerging from good and bad 

volatility and showed that Australian regional electricity markets are linked asymmetrically. 

However, addressing many of the important questions in which policymakers are interested, 

such as whether the introduction, and subsequent abolishment of carbon pricing or payments 

for closure policy in the NEM have played a significant role in the transmission of extreme 

price movements between interconnected electricity markets requires a skewness (or third 

moment) linkage analysis, which is currently missing in the literature.  

To summarize, there are relatively few studies that have examined volatility spillovers 

between electricity markets and these do not consider the dynamics of higher moments such as 

skewness and kurtosis. Becker et al. (2007) is the only study in the NEM context that allowed 

for skewness in the distribution of electricity prices during high‐price episodes by examining 

Queensland electricity prices. We show, in section 3, that the realized volatility; skewness and 

kurtosis, constructed non-parametrically from intraday Australian electricity returns, 

consistently display long-memory characteristics. Using data from the NEM, our study 

contributes to the extant literature by applying a fractionally integrated VAR (FIVAR) model 

in order to capture the data generating process of these higher moments. 

3. Data and construction of realized moments 

3.1 Data 

We collect half-hour interval spot electricity prices for NSW, QLD, SA and VIC from 

the AEMO.2 In the NEM, demand and supply are matched simultaneously in real time via a 

centrally coordinated dispatch system, with spot prices used for settlement set at five-minute 

intervals by the AEMO. The half-hour spot prices employed for settlement are the average of 

the five-minute spot prices. Our sample covers the period from 01 January 1999 0:00 to 31 

 
2 Data are publicly available at http://www.aemo.com.au/. 
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December 2017 23:30, comprising 1,332,424 half-hour prices observed in the four regional 

markets.3 For the purpose of calculating the logarithmic returns, we drop those observations 

with non-positive prices.4 As we aggregate intraday returns in order to get the daily realized 

moments, our final sample consists of prices for 6,940 trading days in each market. 

3.2 Construction of realized moments 

We capture the return distributions of the Australian electricity markets by constructing 

their four realized moments nonparametrically based on half-hour logarithmic returns. The 

daily realized returns are calculated as the sum of half-hour logarithmic returns during the day, 

𝑅𝑅! =#𝑟",!

$

"%&

																																																																		(1)	

         

where 𝑟",! (measured in percentage) is the 𝑖th half-hour logarithmic return in day t and M is the 

number of the intraday returns in trading day t. By construction, the daily realized return is 

identical to the daily return calculated using daily close to close prices. Following Andersen et 

al. (2003) and Amaya et al. (2015), we define the realized higher moments of returns, including 

the realized variance (𝑅𝑉𝑎𝑟!), realized skewness (𝑅𝑆!) and realized kurtosis (𝑅𝐾!) as,  

𝑅𝑉𝑎𝑟! =#𝑟",!'
$

"%&

																																																																				(2) 

 
3 We do not include Western Australia or the Northern Territory in our analysis since there a direct lack of 
interconnection capacity between these two jurisdictions and the rest of Australia and they are not part of the 
NEM. The lack of direct physical interconnection does not allow for arbitrage of electricity prices, at least in the 
short run (Apergis et al. 2017a). Due to the limited availability of data for Tasmania (available since mid-2005) 
compared to other markets (available since 1999), we similarly do not include Tasmania in our main analysis. 
However, we do include Tasmania in a robustness check focusing on a shorter period of time.  
4 Negative prices occur as coal fired generators are too costly to shut down and thus bid negative prices in order 
to maintain capacity. Typically, these negative prices are rarely the market settlement price received by suppliers. 
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𝑅𝑆! =
√𝑀∑ 𝑟",!($

"%&

𝑅𝑉𝑎𝑟!
(/' 																																																															(3) 

𝑅𝐾! =
𝑀∑ 𝑟",!*$

"%&

𝑅𝑉𝑎𝑟!'
																																																																		(4) 

The realized volatility (𝑅𝑉!) represents the standard deviation of the return distribution, 

which is calculated by taking the square root of 𝑅𝑉𝑎𝑟!, 𝑅𝑉! = 4𝑅𝑉𝑎𝑟!. Note that the four 

realized moments (𝑅𝑅! , 𝑅𝑉! , 𝑅𝑆! and 𝑅𝐾!) are all in percentage terms. 

Table 1 presents summary statistics for the four daily realized moments in each market. 

SA exhibits higher level of deviation across all moments in RV, RS and RK primarily owing 

to the heavy reliance on renewables. The daily return distributions of all four electricity markets 

not only display a very high level of volatility, but also show some degree of asymmetry (RS 

deviates from 0) and fat tail (RK deviates from 3). It is, however, not clear from examining 

Table 1 alone the risk transmission mechanisms across all moments between highly 

interconnected markets (NSW-QLD and SA-VIC) in the NEM. This implies that it is necessary 

to analyse the risk transmission mechanism of market interconnectedness not only via RV, but 

also via higher moments of the return distribution; namely, RS and RK.  
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Table 1: Summary statistics 

State  Mean  Std. Dev.  Skewness  Kurtosis Max Min 
Panel A: Realized Return (RR) 

NSW 0.22 24.43 1.16 80.75 512.53 -435.87 
QLD 0.67 35.17 0.88 50.73 606.20 -520.96 
SA -0.66 64.82 1.84 102.42 1,553.37 -993.62 
VIC 0.30 38.48 0.31 102.54 829.93 -830.66 

Panel B: Realized Volatility (RV) 
NSW 96.43 77.28 3.69 24.11 1,064.84 6.96 
QLD 130.71 130.89 2.96 14.08 1,228.03 10.28 
SA 143.47 132.60 2.75 12.34 1,371.29 14.53 
VIC 113.10 82.56 3.49 23.81 1,330.23 8.88 

Panel C: Realized Skewness (RS) 
NSW 0.33 0.80 -0.06 6.08 6.68 -5.29 
QLD 0.27 0.92 -0.07 7.05 6.15 -5.95 
SA 0.19 0.98 -0.38 10.53 6.44 -6.48 
VIC 0.30 0.81 -0.16 7.16 6.02 -6.39 

Panel D: Realized Kurtosis (RK) 
NSW 6.13 3.63 2.40 11.42 45.08 2.04 
QLD 7.01 4.66 2.04 7.93 40.27 2.02 
SA 6.89 5.02 2.47 10.81 42.93 1.93 
VIC 5.99 3.66 2.52 12.09 42.43 1.99 

Note: This table shows the descriptive statistics for the daily realized return (RR), realized 
volatility (RV), realized skewness (RS) and realized kurtosis (RK) of Australian electricity 
markets over the period 01 January 1999 to 31 December 2017.  

We first examine the characteristics of each moment of the electricity return distribution. 

Figure 1 shows the autocorrelation (ACF) structures up to lag 50 (nearly two and a half months) 

for four moments of the NSW electricity return distribution.5 We find clear evidence that RV, 

RS and RK of all four electricity markets display long-memory characteristics with a slowly 

decaying ACF. Meanwhile, we find mixed results of long- and short-memory behaviour 

regarding RR. The RRs of NSW and QLD show evidence of long memory behaviour, which 

is reflected in the rejection of a unit root process based on the Augmented Dickey-Fuller (ADF) 

 
5 We do not show the ACF of RR, RV, RS and RK for other markets in order to conserve space. The ACF of RV, 
RS and RK show similar patterns across four states. The ACF of QLD’s RR is similar to NSW’s, whereas the 
RRs of SA and VIC shows an abrupt die out of the ACF. Details are available upon request. 
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test, but the ACFs do not die out quickly. Conversely, the RRs of SA and VIC exhibit short-

memory behaviour illustrated by the abrupt die out of the ACF.                

Figure 1: Autocorrelations of realized moments in the NSW electricity market 

 

Note: This figure shows the autocorrelation functions (ACF) of the four realized moments in the NSW electricity 
market up to 50 lags (nearly two and a half months). The dashed line illustrates the 95% confidence interval 
bounds for the ACF of a white noise process.   

We present estimates of fractional degrees of the four realized moments using the 

Shimotsu (2007) approach in Table 2. The results are consistent with our preliminary analyses 

using ACFs. That is, the degrees of integration of RRs of SA and VIC are very close to zero, 

which is indicative of short-memory behaviour, whereas, that for RV, RS and RK deviate 

significantly from zero, but are less than 1, implying long-memory behaviour. 
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 Table 2: Fractional degrees of realized moments in the four markets 

 RR  RV  RS  RK 
NSW 0.04***  0.32***  0.29***  0.26*** 

 [7.07]  [78.51]  [68.18]  [63.04] 
QLD 0.11***  0.31***  0.32***  0.28*** 

 [18.57]  [58.16]  [65.35]  [54.31] 
SA 0.00  0.32***  0.22***  0.20*** 

 [-0.34]  [70.23]  [43.47]  [41.65] 
VIC 0.00  0.30***  0.24***  0.23*** 

 [-0.82]  [76.09]  [54.03]  [54.32] 
Note: The fractional degrees of realized moments are estimated using the Shimotsu (2007) approach. The cross-
market realized moments are grouped to perform the multivariate estimation. The brackets contain t-statistics. 
***, **, and * denote statistical significance at 1%, 5% and 10% level, respectively. 

4. Methodology      

4.1 Fractionally integrated VAR model           

Evidence of a mixture of long and short-memory in the four realized moments of the 

electricity return distribution motivates the use of a multivariate fractionally integrated process. 

We analyse risk transmission mechanism of the market interconnectedness via all four realized 

moments. As Table 2 shows different long memory degrees regarding higher moments of 

different markets, we require our multivariate system to be able to capture a flexible, rather 

than a fixed, set of degrees of integration. Therefore, we employ a fractionally integrated VAR 

(FIVAR) model for the empirical analysis. Previous studies have shown a FIVAR specification 

to be effective in capturing long-memory behaviour in economics, finance and commodity 

markets (e.g., Andersen et al., 2003; Chiriac and Voev, 2011; Do et al., 2016; Yip et al., 2017).   

We consider FIVAR models for a vector of four endogenous variables, 𝑅! =

(𝑅&! , 𝑅'! , 𝑅(! , 𝑅*!)′. To examine the risk transmission across markets via four realized 

moments, we form four (4) systems; one for each type of realized moment, across four markets. 

For example, in a FIVAR model of RV, the 4-dimensional vector 𝑅! has the form  𝑅! =

(𝑅𝑉+,-,! , 𝑅𝑉./0,! , 𝑅𝑉,1,! , 𝑅𝑉234,!)′.  

In general, a FIVAR model of 𝑅! can be specified as,   
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𝐴(𝐿)𝐵(𝐿)𝑅! = 𝑢! ,																				𝑡 = 1,2, … , 𝑇																																	(5) 

with 𝐿 denotes the lag operator and 𝑢!~(0, Σ5) is an identically and independently distributed 

error term. Σ5 = {𝜎"6; 𝑖, 𝑗 = 1,… , 4} represents the variance-covariance matrix of 𝑢!. 𝐴(𝐿) =

𝐼* − ∑ 𝐴"𝐿"
7
"%& , where 𝐴" is the (4 × 4) coefficient matrix and 𝐼* is the (4 × 4) identity matrix. 

𝑝 is the lag order determined using the Schwarz Information Criterion (SIC).6  

𝐵(𝐿) is a diagonal matrix of memory degrees, 𝑑", for 𝑖 = 1,… , 4, such that, 𝐵(𝐿) =

diag	{(1 − 𝐿)8! , (1 − 𝐿)8" , … , (1 − 𝐿)8#}. The inverse diagonal element, (1 − 𝐿)98$, can be 

generated using a binomial expansion as follows: 

(1 − 𝐿)98$ =#
Γ(𝑗 + 𝑑")

Γ(𝑑")Γ(𝑗 + 1)
𝐿6 =#𝜉6

(8$)𝐿6
<

6%=

<

6%=

																																							(6) 

where Γ(. ) is the gamma function; 𝜉=
(=) = 1,	and 𝜉6

(=) = 0,	for 𝑗 ≠ 0. 

We estimate our FIVAR models using the maximum likelihood procedure proposed by 

Nielsen (2004). We employ the Nielsen (2004) approach for three main reasons. First, this 

approach allows one to estimate the fractional degrees and coefficient matrices 𝐴" in one step. 

This helps avoid potential complexity faced when fractional differencing a long-memory 

process with a small sample size with the two-step estimation method.7 Second, it allows 

endogenous variables in the FIVAR system to have different fractional integration degrees. 

Third, the Nielsen (2004) approach is efficient with a finite sample as small as T=100. This 

feature allows us to estimate the spillover index using a rolling window sample.  

Nielsen (2004) estimates the FIVAR model by maximizing the likelihood function, 

 
6 Based on the SIC, the lag orders (𝑝) of FIVAR systems for RR, RV, RS and RK are 1, 1, 2, and 1, respectively.  

7 FIVAR models can also be estimated using a two-step estimation method, which has commonly been employed 
in previous studies (e.g., Do et al., 2014; Yip et al., 2017). With the two-step method, the first stage estimates the 
vector of memory degrees (d) in a multivariate framework such as Shimotsu (2007). In the second stage, the 
FIVAR model is transformed to the VAR model by applying the relationship 𝑌% = 𝐵(𝐿)𝑅% to Eq. (5) and then 
using Multivariate Least Square to estimate the coefficient matrices 𝐴& for 𝑖 = 1,… , 𝑝. We also perform the two-
step approach to estimate our FIVARs as a robustness check. Our main results remain consistent. 
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𝑙(𝑑) = −
𝑇
2 ln X1 −

|Ω(𝑑=)| − |Ω(𝑑)|
|Ω(𝑑=)|

[ 

where, Ω(𝑑) = 𝑇9&∑ [𝐵(𝐿)𝑢!][𝐵(𝐿)𝑢!]′>
!%& . 𝑑= denotes the initial values of fractional degrees 

for numerical optimization. In our study, we employ Shimotsu (2007) to obtain 𝑑=.  

4.2 The generalized spillover index in a FIVAR model 

We follow the approach in Diebold and Yilmaz (2012) to construct the generalized 

spillover indices within our FIVAR models. The H-step-ahead generalized forecast-error 

variance decomposition (FEVD) within a FIVAR model can be represented as: 

𝜔"6
?(𝐻) =

𝜎669&∑ (𝑒"	AΛBΣ5𝑒6)'C9&
B%=

∑ (𝑒"	AΛBΣ5ΛBA 𝑒")C9&
B%=

																																																				(7) 

with 𝑒" being a (4 × 1) vector that has one as its 𝑖th element and zeros elsewhere, and ΛB can 

be generated as,	ΛB = ∑ 𝚵6
(8)ΦB96

B
6%=  with Λ= = 𝐼* if ℎ = 0. 𝚵6

(8) is the diagonal (4 × 4) 

matrix with 𝜉6
(8$) as the 𝑖th diagonal element.8 Φ" is the 𝑖th coefficient matrix in the moving 

average representation of Equation (5), which can be calculated recursively as Φ" =

∑ Φ"96𝐴6
7
6%&  with Φ= = 𝐼*. Each entry of the FEVD matrix can be normalized by its row sum, 

as follows: 

𝜔f"6
?(𝐻) =

𝜔"6(𝐻)
∑ 𝜔"6(𝐻)*
6%&

																																																																					(8) 

with ∑ 𝜔f"6(𝐻)*
6%& = 1 and ∑ 𝜔f"6(𝐻) = 4*

",6%&  by construction. 

 
8 We note that the effect of d values on the FEVD is captured by 𝜉'

()!). We perform a simulation exercise to 
understand the relationship between j (j runs from 0 to h), the d values and 𝜉'

()!). We find that  𝜉'
()!) is bounded 

between 0 and 1. When j increases the  𝜉'
()!) decreases for a given d value. We conclude that the diagonal matrix 

𝚵'
()) (with 𝜉'

()!) as its elements) acts as an adjustment factor when the variables exhibit long-memory behavior. 
Its impact on the FEVD (and therefore the spillover indices) is marginal. The FEVD is mainly driven by the 
coefficient matrices 𝐴& and the variance-covariance matrix of the error term, Σ+. However, we note that 
accommodation of the fractional degrees in econometrics modelling is essential to capture the underlying data 
generating process of the variables, which helps to avoid potential biases in estimating the 𝐴& and Σ+. 
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Using the normalized FEVD matrix, calculated in (8), we construct the spillover 

indices as proposed by Diebold and Yilmaz (2012). The total spillover index describes the 

contribution of spillover across all the variables to the total forecast error variance, 

𝑆?(𝐻) =
∑ 𝜔f"6(𝐻)*
",6%&,"D6

4 × 100																																																		(9) 

The directional spillover from all other variables 𝑗 to a variable 𝑖 are computed as: 

𝑆"←6
? (𝐻) =

∑ 𝜔f"6(𝐻)*
6%&,6D"

4 × 100																																													(10)	 

The directional spillover from one variable 𝑖 to all other variables 𝑗 is defined as: 

𝑆"→6
? (𝐻) =

∑ 𝜔f6"(𝐻)*
6%&,6D"

4 × 100																																														(11) 

Finally, net spillover from a variable 𝑖 to all other variables determines whether it is a 

net transmitter or net receiver of spillover, 

𝑆"
?(𝐻) = 𝑆"→6

? (𝐻) − 𝑆"←6
? (𝐻)																																													(12) 

5. Empirical results 

In this section, we examine how higher moment risks are transmitted across the NEM’s 

four regional markets (NSW, QLD, SA and VIC). Using the whole sample, we construct 

overall spillover indices based on the 10-step-ahead FEVD. The dynamic spillover indices are 

generated by utilizing a 200-day rolling window with 10-step-ahead FEVD.9   

5.1 Transmission of higher moment risks across markets 

This subsection summarizes the results of risk transmission mechanism via each realized 

higher moment. Table 3 presents the overall spillover among the four market components of 

 
9 Our choice of window size (200 days) and forecasting horizon (10 days) is standard in many markets (e.g., see 
Apergis et al., 2017a, for the electricity market; Baruníck et al., 2015, for the petroleum market; Diebold and 
Yilmaz, 2012, for the stock market). We check the sensitivity of the window size by doing the analysis with 150-
day and 250-day windows. We also try different forecasting horizons of 1 day, 5 days and 7 days. We find that 
our results are robust regarding different choices of window size or forecasting horizon.     
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the NEM over the whole period 01st Jan 1999 to 31st Dec 2017. We find that not only volatility, 

but also the effects of skewness and kurtosis spillovers in the NEM are significant, given that 

their total spillover effects are all greater than 30%. Shocks emanating from NSW and VIC 

have the largest influence on the NEM’s spillover via all four realized moments.10 That NSW 

and VIC contribute most in terms of volatility spillover within the NEM is consistent with 

previous findings by Apergis et al. (2017a). Our results additionally show that NSW and VIC 

also contribute most to the NEM’s spillover via other moments of the electricity return 

distribution; namely, return, skewness and kurtosis. In this respect, our findings are consistent 

with previous studies for stock markets showing that higher order moment risks are transmitted 

across markets (see e.g., Del Brio et al., 2017; Do et al., 2016).   

The finding that shocks emanating from NSW and VIC have the largest influence on the 

NEM’s spillovers via all four realized moments can be explained by several factors. First, these 

two states have the largest electricity generation and consumption in the NEM. Second, both 

states have the largest export share of electricity to other markets. Third, there is also a 

convergence in generation technologies between these two states reflected in the significant 

reliance on coal for baseload electricity generation. Both NSW and VIC source more than 75 

percent of their electricity generation from coal, while electricity generation from black and 

brown coal exceeds more than 70 percent in the NEM as a whole. Our findings, in this respect, 

are consistent with earlier studies on electricity market integration, such as Zachmann (2008), 

which suggest that convergence in electricity generation and consumption patterns are crucial 

factors in facilitating market integration. Overall, our results are consistent with findings in 

Lindstrom and Regland (2012) for European electricity markets that dependence can be 

explained by both geography and types of energy used. Our results are also consistent with 

 
10 The “To others” column in Table 3 shows that spillover contributions from NSW’s RR, RV, RS and RK to 
other markets are 42.18%, 35.44%, 51.33% and 44.92%, respectively. Meanwhile, the spillover contributed by 
VIC’s RR, RV, RS and RK are 36.74%, 48.96%, 40.68%, and 40.34%, respectively.     



18 
 

studies for currency and stock markets that more developed markets exhibit greater evidence 

of higher moments spillovers than emerging markets (see Do et al., 2016) and that the world’s 

leading stock markets, such as the United States, are the dominant source of global spillovers 

at second, third and fourth moments (see Del Brio et al., 2017).      

Table 3: Overall spillover (%) among four regional markets of the NEM via each 
moment: Row (From), column (To) 

  NSW QLD SA VIC To others 
Panel A: Realized Return (RR) 

NSW 68.10 14.16 6.33 21.70 42.18 
QLD 10.71 77.97 1.37 3.96 16.04 
SA 4.13 1.16 78.04 8.96 14.25 
VIC 20.20 4.99 11.55 67.21 36.74 
From others 35.04 20.31 19.25 34.62 Total 

27.30 Net spillover 7.15 -4.27 -5.00 2.12 
Panel B: Realized Volatility (RV) 

NSW 62.80 13.37 5.91 16.15 35.44 
QLD 9.42 76.59 0.83 2.55 12.79 
SA 6.45 1.16 71.08 18.11 25.72 
VIC 21.73 4.66 22.57 67.59 48.96 
From others 37.60 19.19 29.31 36.81 Total 

30.73 Net spillover -2.16 -6.40 -3.60 12.15 
Panel C: Realized Skewness (RS) 

NSW 63.46 20.70 8.07 22.55 51.33 
QLD 14.78 68.62 2.32 4.98 22.08 
SA 5.38 2.35 72.53 10.85 18.59 
VIC 20.03 6.29 14.35 63.70 40.68 
From others 40.20 29.35 24.74 38.39 Total 

33.17 Net spillover 11.13 -7.27 -6.15 2.29 
Panel D: Realized Kurtosis (RK) 

NSW 63.65 17.59 7.38 19.94 44.92 
QLD 13.30 72.69 1.74 4.70 19.75 
SA 5.89 1.81 74.13 12.14 19.83 
VIC 19.52 5.79 15.03 65.18 40.34 
From others 38.71 25.20 24.15 36.78 Total 

31.21 Net spillover 6.21 -5.45 -4.32 3.56 
Note: This table summarises the electricity market’s spillover effect across Australian markets (NSW, QLD, SA 
and VIC) via the four moments of the electricity return distribution over the period 1st Jan 1999 to 31st Dec 2017.  
The row “From others” summarises the directional spillover from all other markets to one market. The column 
“To others” summarises the directional spillover from one market to all other markets. The cell “Total” shows 
the total spillover among all four markets via each moment. Other columns show the pairwise directional spillover 
between two relevant markets. 
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Between NSW and VIC, we observe that shocks emanating from NSW have a notably 

larger impact on RS spillover (10.65% gap), while shocks emanating from VIC have a stronger 

effect on the RV spillover in the NEM (13.52% gap). A likely explanation for this result is that 

NSW, as the largest regional electricity market in the NEM, has limited peaking capacity at 

times of high demand, while the market is interconnected to VIC and QLD with varied resource 

mix in electricity generation. There are three interconnectors with relatively high capacity 

interconnecting NSW with QLD and VIC. VIC, meanwhile, significantly benefits from low 

cost baseload capacity and has excess capacity relative to its peak demand (AER, 2018). 

Furthermore, VIC is directly physically interconnected with three regional markets (SA, NSW 

and TAS) with four interconnectors, implying that it has access to a more varied energy 

generation mix. Higgs et al. (2015) and Worthington and Higgs (2017) demonstrate the 

important role that energy mix plays in significantly influencing electricity price volatility in 

the NEM. Consistent with our findings, the aggregated interconnector capacity for interregional 

electricity transmission to, and from, VIC is the highest among all regions in the NEM (AEMO, 

2017).  

A shock emanating from SA has the lowest effect on the RR (14.25%) and RS (18.59%) 

spillover effect and a shock stemming from QLD has the lowest impact on the NEM’s RV 

(12.79%) and RK (19.75%) spillover effect. Both SA and QLD maintain direct physical 

interconnection with just one adjoining market, VIC and NSW, respectively. The wholesale 

electricity market structure in QLD in terms of generation market concentration is also more 

concentrated than any other regional electricity market in the NEM (AEMO, 2017). This 

implies that the possibility of a high degree of local generator market power makes QLD 

relatively isolated from other markets in the NEM. Previous studies such as Clements et al. 

(2016) have documented the presence of strategic bidding, and rebidding, in the QLD market. 
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As Apergis et al. (2017b) note, there has also been a high degree of uncertainty associated with 

the development of QLD’s natural gas resources.  

SA has historically been a net importer of electricity, only becoming a net exporter of 

electricity for the first time in 2018. It is rich in renewables, investing heavily in wind 

generation, and only generates around 10% of its electricity from coal. Electricity generation 

from renewables is already de-risked in SA through the renewable energy target, which not 

only offers a price subsidy, but also guarantees market share and sales. Apergis et al. (2017b) 

note that SA’s connection to the NEM network is very limited. Nepal and Foster (2016) also 

show the presence of a significant network constraint in the SA and VIC interconnector. 

Underlying network constraints in the presence of increasing wind penetration in SA explains 

the fact that a shock emanating from SA has the lowest effect on the RR. 

Dynamic analyses of the net spillover from each market to the other markets in the NEM 

for the four realized moments support our empirical findings about the overall spillover effects 

(see Figure 2). Consistent with the results in Apergis et al. (2017a), we find that NSW and VIC 

have played primary roles in transmitting volatility risks in the NEM over time. But, in 

addition, even more so than in the volatility case, these two markets have almost always had 

dominant roles in return, skewness and kurtosis risk transmission in the NEM. 
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Figure 2: Net spillover from one market to other markets  

 

Note: The figure shows the net directional spillover from one market to all other markets via realized return 
(row 1), realized volatility (row 2), realized skewness (row 3) and realized kurtosis (row 4).     

Figure 3 shows how the total spillover index for each of the four realized moments have 

varied over time. It  suggests a significant, and time-varying, spillover effect via each moment. 

These total spillover indices experienced an increase between 2000 and 2002, followed by a 

period of decreasing trend until around mid-2013/early-2014 and then gradually rose again 

until the end of the sample.  

The initial increase in the indices reflects the process of market integration of the NEM 

from 1999, when it started operating as a wholesale spot electricity market (see Apergis et al., 

2017a). After the market became more integrated, the behaviour of the higher moment spillover 

indices may have been driven by the market’s generation capacity. Our conjecture is motivated 

by Clements et al. (2015), who find that the spare capacity of the interconnectors can limit 

transmission of price spikes because excess demand in one region can be matched by spare 
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capacity in neighbourhood regions. As can be seen from Figure 4, the generation capacity of 

the NEM was increasing between 1999 and 2013, then declining from 2014.  

Figure 3: Total spillover effect among markets via each moment 

 
Note: This figure shows total spillover via each moment of Australian electricity price return among VIC, NSW, 
QLD and SA. 

Figure 4: Annual generation capacity of the NEM 

 

Source: Australian Energy Regulator, available at https://www.aer.gov.au/wholesale-markets/wholesale-
statistics/annual-generation-capacity-and-peak-demand-nem.  
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A carbon price was in place in Australia during 2012, but was subsequently abolished in 

2014 in favour of an Emissions Reduction Fund, which is a government funded scheme to 

subsidize agreed actions to reduce emissions, and the Renewable Energy Target (a portfolio 

standard with tradable certificates) (Jotzo and Mazouz, 2015). The Australian Government also 

announced a “Contracts for Closure” approach in 2012 with the intention of providing an 

orderly exit of older, high emission, coal-fired generation plants from the NEM. This scheme 

sought to permanently close around 2000 MW of highly emissions intensive generation 

capacity by 2020 via negotiated payments to particular plant owners from the Federal 

Government (Reisz et al. 20013). The Government received the closure proposals from eligible 

electricity generators in early 2012, but negotiations ceased on 5 September 2012 with the 

announcement that no agreement had been reached due to failed negotiations (Reisz et al. 

2013). As Apergis et al. (2019, p. 140) describe the fallout from the failed negotiation: ‘The 

upshot was that the period 2013-16 left the energy industry with huge uncertainty about what 

is in store, at a time when it [craved] reassurance more than ever’.   

The NEM still significantly relies on coal-based electricity for baseload generation. 

Unlike renewables, coal-fired generation receives no guarantees in terms of market share and 

sales implying that there are no de-risking mechanisms for electricity generated from coal. 

Ageing coal-fired plants in the context of volatile gas prices, falling electricity demand, 

emission reductions targets and the transition to a low-carbon electricity industry have meant 

that the operation of dirty coal-fired plants have always been controversial in the NEM (Reisz, 

2013; Nelson et al. 2015). The average capacity utilization factors for black coal plants also 

fell from 63% to 53% and for brown coal from 79% to 70% between 2007 and 2014, inducing 

surplus capacity (Jotzo and Mazouz, 2015). In recent years, the electricity generation risks from 

coal have been amplified by the 2017 decommissioning of the brown coal fuelled Hazelwood 
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power station in VIC and the proposed 2022 decommissioning announcement of the Liddell 

coal-fired power station in NSW.  

 Our results also highlight that limited interconnector capacity or underlying network 

constraints may hinder the market integration process in the NEM, especially after 2010 with 

the rise of renewables. In this light, increased penetration of renewable electricity in the 

wholesale market will only facilitate market integration to the extent that there are no physical 

constraints in the transmission of electricity cross-borders. This may require improving the 

regulatory framework to prevent regulatory failures of regulated transmission or attracting 

private investment in networks by removing the barriers to merchant transmission and private 

initiatives (Littlechild, 2012).   

5.2 Impact of generation capacity on higher moments’ spillover  

In this section, we examine our conjecture about the effect of the NEM’s generation 

capacity on the dynamic behaviour of the higher moments’ spillover among four regional 

markets (NSW, QLD, SA, and VIC). We collect yearly data on the NEM generation capacity 

from the Australian Energy Regulator from 1999 to 2017. The total dynamic spillovers of 

higher moments among four regional markets are estimated using Eq. (9) and averaged by year 

to obtain the yearly data. We run the following log-log regression: 

log(𝑇𝑆𝑃𝐼!) = 𝛼= + 𝛼& log(𝑇𝑆𝑃𝐼!9&) + 𝛽4 log(𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦!9&) + 𝑣!														(13)      

where TSPI denotes the total spillover effect of each moment, Capacity represents the NEM 

generation capacity. We include the AR(1) term of the logged TSPI to control for its serial 

correlation. As a result, we have four equations, each for one moment of the electricity return 

distribution. We present the estimated results in Table 4. 
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Table 4: Effects of NEM generation capacity on total spillover effects of each moment 

Variables 𝐥𝐨𝐠(𝑻𝑺𝑷𝑰𝒕) of RR 𝐥𝐨𝐠(𝑻𝑺𝑷𝑰𝒕) of RV 𝐥𝐨𝐠(𝑻𝑺𝑷𝑰𝒕) of RS 𝐥𝐨𝐠(𝑻𝑺𝑷𝑰𝒕) of RK 
𝐥𝐨𝐠(𝑻𝑺𝑷𝑰𝒕-𝟏) 0.463** 0.548*** 0.674*** 0.537*** 
 (0.191) (0.147) (0.132) (0.180) 
𝐥𝐨𝐠(𝑪𝒂𝒑𝒂𝒄𝒊𝒕𝒚𝒕-𝟏) -1.688** -1.156** -0.858** -1.02** 
 (0.680) (0.428) (0.332) (0.450) 
Adj-R2 59% 61.36% 70.66% 51.06% 
No. of Obs. 18 18 18 18 

Note: This table shows the estimated coefficients of Eq. (13). Intercepts are omitted. Standard errors are presented 
in parentheses. *** and ** denote that the estimated coefficients are statistically significant at the 1% and 5%level. 
No. of Obs. is the number of observations. 

As expected, the spillover effects of higher moments among regional markets are 

significantly and positively driven by their autoregressive term. An increase of 1% in NEM 

generation capacity decreases the spillover effects among the four regional markets between 

0.9% and 1.7%, depending on the moment of the electricity return distribution. All these 

negative impacts are statistically significant at 5% level. This result is consistent with our 

conjecture, based on the findings in Clements et al. (2015), discussed in section 5.1.   

5.3 Robustness checks 

5.3.1 The NEM with Tasmanian market 

In this subsection, we present a robustness check on the NEM’s spillover effect via each 

realized moment by including TAS in the analysis. As TAS’s electricity data is only available 

from mid-2005, our sample is restricted to the period from 16 May 2005 to 31 December 2017. 

Using the same econometrics methodology as discussed in section 3, we construct a measure 

of overall spillover effect among the five regional markets composing the NEM, based on the 

10-step-ahead FEVD which is presented in Table 5. 
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Table 5: Overall spillover effect (%) among the five regional markets of the NEM via 
each moment: Row (From), column (To) 

  NSW QLD SA VIC TAS To others 
Panel A: Realized Return (RR) 

NSW 71.82 18.46 4.26 14.23 1.56 38.52 
QLD 14.54 73.83 1.22 3.99 0.70 20.45 
SA 2.84 1.06 81.64 8.11 2.19 14.20 
VIC 12.88 4.90 9.32 72.12 3.61 30.70 
TAS 1.03 0.46 2.08 2.90 90.67 6.47 
From others 31.30 24.88 16.88 29.23 8.06 Total 
Net spillover 7.22 -4.43 -2.68 1.48 -1.59 22.07 

Panel B: Realized Volatility (RV) 
NSW 65.12 12.83 4.04 12.15 2.22 31.24 
QLD 8.98 78.41 0.46 1.79 0.16 11.39 
SA 4.99 0.74 71.65 17.51 3.51 26.75 
VIC 18.83 3.49 21.52 68.46 7.75 51.59 
TAS 1.93 0.25 3.46 5.51 85.50 11.15 
From others 34.73 17.31 29.49 36.96 13.63 Total 
Net spillover -3.49 -5.92 -2.74 14.64 -2.48 26.42 

Panel C: Realized Skewness (RS) 
NSW 55.10 21.90 13.51 24.21 1.75 61.38 
QLD 14.87 60.64 4.02 6.85 1.34 27.09 
SA 9.53 4.07 56.85 17.19 1.15 31.94 
VIC 23.54 10.04 23.61 54.07 2.88 60.06 
TAS 0.90 1.23 0.73 1.35 90.56 4.21 
From others 48.84 37.23 41.87 49.61 7.12 Total 
Net spillover 12.54 -10.14 -9.94 10.45 -2.92 36.93 

Panel D: Realized Kurtosis (RK) 
NSW 56.83 21.98 10.30 26.61 0.71 59.60 
QLD 14.15 64.02 2.47 6.40 0.21 23.23 
SA 6.84 2.61 64.54 13.08 0.66 23.20 
VIC 26.04 8.73 19.41 57.03 1.06 55.25 
TAS 0.30 0.05 0.60 0.69 96.49 1.64 
From others 47.33 33.38 32.77 46.78 2.65 Total 
Net spillover 12.27 -10.15 -9.57 8.47 -1.01 32.58 

Note: This table summarises the electricity market’s spillover effect among five Australian regional markets 
(NSW, QLD, SA, VIC and TAS) via the four moments of the electricity return distribution over the period from 
16th May 2005 to 31st Dec 2017.  The row “From others” summarises the directional spillover from all other 
markets to one market. The column “To others” summarises the directional spillover from one market to all other 
markets. The cell “Total” shows the total spillover among all five markets via each moment. Other columns show 
the pairwise directional spillover between two relevant markets. 

Our main findings are robust in that NSW and VIC have played a central role in 

contributing the spillover effect to the NEM electricity market via all four realized moments. 
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TAS, rather than QLD or SA, contributes least to the spillover effect of the NEM for all four 

realized moments. This finding primarily reflects TAS relative isolation as an island state.  

Tasmania has only a 500 MW interconnector (Basslink) arrangement in place, which links the 

TAS regional markets with VIC directly, and the rest of the NEM indirectly. Tasmania is also 

heavily hydro reliant, making it vulnerable to rainfall conditions (Apergis et al., 2019). The 

vulnerability in energy supply security was exposed through a power crisis, which occurred in 

TAS in 2015 when the Basslink interconnector required maintenance together with TAS having 

low water storage. Overall, our results support our earlier conclusion that transmission of the 

higher moment risks can be explained primarily by direct physical interconnections. 

5.3.2 Bi-power variation  

For the electricity market, RV, as calculated from Eq. (2), might contain extreme values 

due to large price spikes experienced in a relatively short period of time. These significant 

discontinuities in the electricity prices can be considered as jumps. As RV consists of two 

components: continuous and jumps, a significant presence of jumps can affect the reliability of 

our volatility spillovers findings. We check the robustness of the NEM’s volatility spillovers 

effect by using a jump-robust volatility estimate, called the bi-power variation (BV) proposed 

by Barndorff-Nielsen and Shephard (2004). Basically, BV consistently measures the 

continuous component of the RV. The BV for each regional market can be constructed from its 

intraday electricity returns as: 

𝐵𝑉! = qr
𝜋
2t#|𝑟",!||𝑟"9&,!|

$

"%&

																																																															(14) 

We then construct the Diebold and Yilmaz (2012) volatility spillover indices within a 

FIVAR model of BV across the four regional markets, NSW, VIC, SA and QLD. We present 

the overall BV spillover effect (%) among these four markets in Table 6. 
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Table 6: Overall BV spillover effect (%) among the four regional markets of the NEM via 
each moment: Row (From), column (To) 

  NSW QLD SA VIC To others 
Bi-power variation (BV) 
NSW 63.92 13.53 6.40 18.41 38.34 
QLD 8.69 76.84 0.72 2.43 11.83 
SA 6.22 0.93 69.94 16.93 24.08 
VIC 22.80 4.38 22.38 66.54 49.56 
From others 37.70 18.83 29.50 37.77 Total 
Net spillover 0.64 -7.00 -5.43 11.79 30.95 

Note: This table summarises the electricity market’s spillover effect among four Australian regional 
markets (NSW, QLD, SA, and VIC) via the BV of the electricity return distribution over the period 
from 16th May 2005 to 31st Dec 2017.  The row “From others” summarises the directional spillover 
from all other markets to one market. The column “To others” summarises the directional spillover 
from one market to all other markets. The cell “Total” shows the total spillover among all four markets 
via each moment. Other columns show the pairwise directional spillover between two relevant markets. 

We find that the volatility spillover results using BV measures (Table 5) are consistent 

with the RV measures in Table 3. NSW and VIC are the largest transmitters of the volatility 

spillover effect in the NEM. Between the two, VIC is larger than NSW by 11.22%, which is 

relatively close to the corresponding figure obtained from the RV measure (i.e., 13.52%). 

5.3.3 Seasonality 

One notable characteristic of the electricity market is that there are often extreme prices 

during the summer months. Therefore, one might be worried that the results for the spillover 

effect may be mainly driven by market behaviour in the summer months. To explore this 

concern, we perform a robustness check in which we control for the summer months. First, we 

create a seasonal dummy variable 𝑆!, which is equal to 1 if in summer months and zero 

otherwise. We then control for the effect of the summer seasonality using the FIVAR with 

exogeneous variable (FIVARX) model, which can be specified as follows:    

𝐴(𝐿)𝐵(𝐿)𝑅! = 𝛽,𝑆! + 𝑢! ,																				𝑡 = 1,2, … , 𝑇																		(15) 

We present the spillover effect among the four regional markets of the NEM (NSW, VIC, 

SA and QLD) after controlling for the summer season in Table 7. 
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Table 7: Overall spillover (%) among four regional markets of the NEM via each moment 
after controlling for the summer season: Row (From), column (To) 

 NSW QLD SA VIC To others 
Panel A: Realized Return 
NSW 69.40 14.09 6.45 22.15 42.69 
QLD 10.31 78.09 1.28 3.69 15.28 
SA 3.93 1.06 78.39 8.80 13.80 
VIC 19.98 4.84 11.09 67.07 35.92 
From others 34.22 20.00 18.83 34.65 Total 
Net spillover 8.47 -4.71 -5.03 1.27 26.92 
Panel B: Realized Volatility 
NSW 63.70 13.18 5.40 15.69 34.27 
QLD 9.43 77.48 0.71 2.43 12.57 
SA 5.97 0.98 72.26 17.78 24.73 
VIC 21.15 4.35 21.98 68.39 47.48 
From others 36.55 18.51 28.10 35.90 Total 
Net spillover -2.27 -5.94 -3.37 11.58 29.76 
Panel C: Realized Skewness 
NSW 64.24 20.07 7.61 22.16 49.84 
QLD 14.42 69.96 2.06 4.63 21.10 
SA 5.12 2.08 73.59 10.67 17.87 
VIC 19.80 5.85 14.06 64.59 39.71 
From others 39.34 27.99 23.73 37.46 Total 
Net spillover 10.50 -6.89 -5.86 2.25 32.13 
Panel D: Realized Kurtosis 
NSW 63.71 17.36 7.37 19.86 44.59 
QLD 13.02 72.93 1.69 4.51 19.22 
SA 6.01 1.82 74.42 12.31 20.14 
VIC 19.55 5.62 15.02 65.28 40.20 
From others 38.58 24.80 24.08 36.68 Total 
Net spillover 6.00 -5.58 -3.94 3.52 31.03 

Note: This table summarises the electricity market’s spillover effect across Australian markets (NSW, QLD, SA 
and VIC) via the four moments of the electricity return distribution over the period 1st Jan 1999 to 31st Dec 2017. 
These spillover effects are obtained after controlling for the summer seasons using FIVARX models as presented 
in Eq. (14). The row “From others” summarises the directional spillover from all other markets to one market. 
The column “To others” summarises the directional spillover from one market to all other markets. The cell 
“Total” shows the total spillover among all four markets via each moment. Other columns show the pairwise 
directional spillover between two relevant markets. 

We find that our main conclusions discussed in section 5.1 hold after controlling for the 

effect of summer. It should be noted that there is a difference in the magnitude of the spillover 

effect. However, we note that these differences are trivial (around 1%). 
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5.4 Implications 

Improving electricity market interconnectedness among separate regional electricity 

markets is important in order to gauge progress towards electricity market integration. The 

creation of competitive, and integrated, electricity markets was one of the foremost objectives 

of electricity market reforms initiated during the early 1990s. Increasing interconnectedness 

has several benefits in terms of greater economic efficiency and improved security of supply. 

However, as “every coin has two sides”, policymakers also need to be aware of the costs of 

electricity market interconnectedness through transmission of higher moment risks. 

Previous studies show that market interconnectedness can facilitate the transmission of 

the volatility risk (e.g., Apergis et al. 2017a; Han et al, 2017; Ignatieva and Truck, 2016; Higgs, 

2009; Worthington et al. 2005; Higgs and Worthington, 2005). Yet, while volatility risk is 

normally regarded as a “standard” risk (since it is related to a standard dispersion from the 

long-run return), the risk of extreme events can be considered extreme risks, or tail risks, 

encountered by markets, as they appear in the tail of the return distribution. Our study presents 

new evidence on the transmission of these extreme risks in the interconnected NEM market.   

Of course, an extreme event, by definition, rarely occurs, but when it happens it can 

cause dramatic destruction and the adverse effect can be made even worse if it spreads across 

markets. This was evident, for example, in the case of Long-Term Capital Management 

(LTCM) in the U.S. stock market.11 In the electricity market, failing to recognise the existence 

of extreme risks, and dampen the transmission of these risks, can cause catastrophic damage to 

the stability of electricity market interconnectedness and possibly even energy security. 

 
11 The LTCM was a hedge fund, whose investment portfolio exhibited excessive tail risks that was overlooked. 
Under adverse effects of extreme events, including the 1997 Asian financial crisis and the 1998 Russian financial 
crisis, the LTCM almost collapsed in 1998 with a loss of US$4.6 billion in less than four months. As many other 
financial institutions had invested in the LTCM, the problem of LTCM (which was rooted by tail risks) had a 
tragic influence on the stability of the whole financial world, which required a launch of a bailout program of 
US$3.6 billion to save the U.S banking system.  
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How to mitigate the transmission of these risks is a complex problem for wholesalers 

and policymakers. The use of electricity derivatives, such as electricity forward and futures 

contracts, can partly help to solve the issue by hedging the risks of price spikes in spot 

electricity markets (see e.g., Kalantzis and Milonas, 2013). Our findings, discussed in section 

5.1 and 5.2, suggest an alternative, and perhaps more direct, solution to mitigate the 

transmission of these risks is to increase transmission capacity.  

Returning to the question we posed at the beginning of this paper of whether there is 

sufficient transmission capacity between the states, our results suggest that the availability of 

additional spare capacity on the interconnectors between the regions would reduce the 

prevalence, and magnitude, of extreme events because generation capacity from nearby states 

could be transmitted to meet the extra demand associated with extreme events. In this sense, 

our results should not be viewed as an argument against having the NEM. The NEM brings 

with it several benefits for the states as discussed above. Rather, it is important for 

policymakers to take steps to mitigate the risks associated with the incidence and magnitude of 

extreme events on market participants. Adding interconnector capacity could help to mitigate 

the potential risks to market participants associated with extreme events and costs associated 

with network constraints such as persistent higher average wholesale prices, power outages and 

barriers to entry for new power generators.   

6. Conclusions 

We study the risk transmission mechanism of the NEM’s interconnectedness via all 

four realized moments of the return distribution, including return, volatility, skewness and 

kurtosis. We find strong evidence of a mixture of short- and long-memory characteristics in 

the four realized moments. To examine the dynamic patterns of risk spillovers, we examine the 

generalized spillover index, proposed by Diebold and Yilzma (2012), within FIVAR systems.  
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Our results show that shocks emanating from NSW and VIC have the largest influence 

on NEM’s risk spillover via all four realized moments. At the other end of the spectrum, shocks 

from SA have the lowest impact on RR and RS spillover, whereas, shocks from QLD have the 

lowest effect on the NEM’s RV and RK spillover. These results can be explained by the 

coverage of the physical interconnectors and existing interconnector capacities. We find that 

not only the standard risk (i.e., volatility) transmits more, but also the spillovers of extreme 

risks (i.e., risk of extreme events captured by skewness and kurtosis) are more pronounced 

when market interconnectedness increases. An important factor influencing the transmission 

of extreme risks is the availability of spare capacity on the interconnectors between the states, 

with spare capacity in nearby states being imported to meet local demand and dampen the 

impact of skewness and kurtosis on market participants. Thus, one way for policymakers to 

mitigate the risk of extreme events would be by investing in additional capacity. 
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Appendix: 

 
Figure A1: Interconnectors in the NEM 

Source: Nepal and Foster (2016) 

Note that Basslink is a merchant interconnector. 


