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1. Introduction 
Dynamic Stochastic General Equilibrium (DSGE) models are the workhorses of modern 

macroeconomics. A large literature has empirically estimated linearized DSGE models using 

likelihood-based methods (e.g., Kim (2000), Otrok (2001), Ireland (2004)). Linearized models 

cannot capture the effect of big shocks, or the role of risk for economic behavior—non-linear

model solutions are needed for studying these phenomena. This paper presents a simple and fast 

maximum likelihood estimation method for non-linear DSGE models that are solved using 

second- (or higher-) order Taylor approximations (e.g., Sims (2000), Kollmann (2002), Schmitt-

Grohé and Uribe (2004), Lombardo and Sutherland (2007)). Those approximations provide the 

most tractable and widely used non-linear solution technique for medium- and large-scale DSGE 

models (Kollmann et al. (2011)). Thus, it is important to develop efficient methods for taking 

higher-order approximated models to data.   

The estimation method discussed here requires that the number of observed variables 

(used for estimation) equals the number of exogenous shocks in the DSGE model. Exogenous 

innovations are extracted recursively by inverting the observation equation, which allows easy 

computation of the sample likelihood. A challenge for this approach is that, in higher-order 

approximated models, the decision rule (solution) for endogenous variables depends on powers 

of exogenous innovations--multiple exogenous innovations are thus consistent with the data. To 

overcome this problem, I posit a modified higher-order decision rule in which powers of 

exogenous innovations are replaced by their unconditional expected value. This allows 

straightforward observation equation inversion. A numerical example suggests that the 

estimation method here provides accurate parameter estimates, even for models with strong 

curvature and big shocks. 1

Other likelihood-based estimation methods for non-linear DSGE models use particle 

filters or deterministic filters to infer exogenous shocks. The estimation method here is much 

simpler and faster; it can thus be applied to larger models. 2

1Observation equation inversion is an intuitive and popular statistical technique (e.g., Guerrieri and Iacoviello 
(2014), Deák et al. (2015)), but has so far not been used to estimate higher-order approximated DSGE models. The 
paper here shows how this can be accomplished. 
2 Particle filters (PFs) use Monte Carlo methods to infer latent states (An and Schorfheide (2007)), and are thus 
computationally slow. Deterministic filters (DFs) are much faster than PFs, as DFs do not use Monte Carlos; instead 
updating rules akin to the standard Kalman filter are employed; this requires computation of  conditional moments 
of the state vector (e.g., Kollmann (2015)). The method here is fastest as it does not involve computing moments of 
states. In contrast to the method here, PFs and DFs can be used when there are less observables than shocks. 
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2. Model and estimation method 
Standard DSGE models can be expressed as:  

1 1( , , ) 0,t t t tE G                                                       (1)                         

where 2: n m nG R R  is a function, and t  is an nx1 vector of endogenous and exogenous 

variables known at date t; 2
1 (0, )t N  is an mx1 vector of innovations to exogenous variables; 

 is a scalar indexing shock size. The model solution is a ‘decision rule’ 1 1( , , ),t t tF X

where tX  is a vector of state variables (predetermined endogenous variables and exogenous 

variables), i.e. ,t tX  where  is a matrix that picks the state variables among the elements 

of .t The decision rule has to satisfy 11( , ) 0( , , ), .t t t tt tE G F Following Sims (2000) 

and Schmitt-Grohé and Uribe (2004), this paper focuses on second-order accurate model 

solutions, namely on second-order Taylor approximations of the decision rule around a 

deterministic steady state, i.e. around  0  and a vector  such that 0 ( , ,0).G

The paper presents an estimation method for second-order approximated models. It is 

straightforward to extend the estimation method to models that are approximated to a higher

order--see Appendix.   

Second-order accurate solution and pruning 

Let ,t t t tx X X  (with )X  denote deviations of ,t tX  from steady state. The 

second-order accurate model solution has the form   
2

1 0 1 2 1 11 12 1 22 1 1,t t t t t t t t tF F x F F x x F x F ,t tx                     (2) 

where   denotes the Kronecker product. 0 1 2 11 12 22, , , , ,F F F F F F  are vectors/matrices that are 

functions of structural parameters. The first-order accurate (linearized) model solution is:  
(1) (1)

1 1 2 1t t tF x F , with (1) (1).t tx                                                (3) 

The superscript (1) denotes variables solved to first-order accuracy. I assume that the eigenvalues 

of 1F  are strictly inside the unit circle, i.e. that the linearized model is stable.  

I use the ‘pruning’ scheme of Kim et al. (2008), under which t tx x  and 1t tx  are 

replaced by (1) (1)
t tx x  and (1)

1,t tx respectively, in (2):

2 (1) (1) (1)
1 0 1 2 1 11 12 1 22 1 1.t t t t t t t t tF F x F F x x F x F                                (4) 
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Note that (1) (1)
t t t tx x x x  and (1)

1 1t t t tx x  hold, up to second-order accuracy. Thus, (4) is a 

valid second-order accurate solution. The justification for pruning is that (2) has spurious steady 

states (not present in the original model); some of those steady states mark transitions to unstable 

behavior. Large shocks can thus trigger explosive trajectories. Pruning eliminates this problem. 

Stability of the first-order solution (3) ensures that the pruned second-order solution is stable. 

Pruning is thus essential for applied work based on second-order approximated models. 

 The estimation method below uses data on 1t  to extract the exogenous innovation 1.t

As 1t  depends on squares of 1,t  multiple innovations are consistent with given data. To 

allow observation equation inversion, I replace the term 1 1t t  in (4) by its expected value 

1 1( ).t tE 3  This produces the ‘modified’ decision rule

2 (1) (1) (1)
1 0 1 2 1 11 12 1 22 1 1( )t t t t t t t t tF F x F F x x F x F E                     (5) 

that is linear in 1,t  but non-linear in lagged state variables. The subsequent discussion assumes 

that (5) is the true data generating process (DGP).4

 

Observation equation inversion 

The estimation method here requires that the number of observables equals the number of 

exogenous innovations, m.  Assume that the econometrician observes a vector 1tz  comprising m

elements of the vector 1.t  Thus, the observation equation is 1 1,t tz Q where Q  is an mxn

matrix. Substituting (5) into the observation equation gives 1 1t t t tz , where 

2 (1) (1)
0 1 11 22 1 1( ( ))t t t t t tQ F F x F x x F E  and t  is an  xm m  matrix such that 

(1)
1 2 1 12 1( ).t t t t tQ F F x  Provided t  is non-singular, we thus have:

1
1 1( )t t t tz .                                                         (6) 

 

 

3I thank Chris Sims for suggesting this approach. Dropping the term 22 1 1t tF from (4) also permits observation 
equation inversion and produces very similar estimation results.    
4For the illustrative DSGE model below, (4) and (5) are virtually indistinguishable: feeding the same sequence of 
innovations { } into (4) and (5) produces almost identical time series { }. Using (5) to extract the exogenous 
innovations (see below) from the time series generated by (4) and (5) yields very similar parameter estimates. Thus, 
even if the true DGP is (4), one obtains reliable estimates by positing (5) for observation equation inversion.    
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Sample likelihood  

Given the initial states (1)
0 0,x x  and data 1{ }T

t tz  one can recursively extract the exogenous 

innovations 1{ }T
t t  using (3),(5),(6).  The log likelihood of the data (conditional on (1)

0 0,x x )  is:

(1) 2 2 11
1 0 0 12 2 2 1

ln ({ } | , ) ln(2 ) ln | | { ' ( ) ln | |TT mT T
t t t t tt

L z x x .            (7) 

Structural model parameters (and initial states) can be estimated by maximizing this function.  

 

3. Illustration 
The method is tested for a basic Real Business Cycle (RBC) model. Assume a representative 

household who maximizes date t lifetime utility tV  given by 1 11 1
11 1 ,t t t t t t tV C N EV

where tC  and tN are consumption and hours worked. , 0  are risk aversion and the inverse of 

labor supply elasticity. t  is the subjective discount factor between t and t+1. , 0t t  are 

preference shocks. The resource/technology constraints are ,t t t tC I G Y

1
1, (1 ) , 0 , 1. , , , ,t t t t t t t t t t t tY K N K K I Y K I G    denote GDP, capital, investment, and 

exogenous government purchases and productivity. The exogenous variables follow 

1 ,ln( ) ln( ) ,t t t 1 ,ln( / ) ln( / ) ,t G t G tG G G G 1 ,ln( ) ln( ) ,t t t 1 ,ln( ) ln( ) ,t t t

where , , , ,, , ,t G t t t are normal white noises with standard deviations , , , .Gs s s s As 

conventional in (quarterly) models, I set G 0.99.0.99, 0.25, 0.3, 0.025,

The steady state government purchases/GDP ratio is / 0.2.G Y= Risk aversion is set at a high 

value, 10,  to generate strong curvature and permit non-negligible differences between first- 

and second-order model approximations.  

I normalize 1.  One model variant assumes standard deviations Gs s s 1%,s 0.025%

(‘small shocks’ variant) as in typical RBC models. The relative size of the shocks ensures that 

each shock accounts for a non-negligible share of the variance of GDP (see Appendix). I also 

consider a ‘big shocks’ variant in which shocks are 5 times larger: Gs s s 5%,s 0.125%. I 

solve the model using DYNARE.  
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For each model variant, I generated 30 simulation runs of 100 periods.5 For each run, I 

estimated 10 model parameters by maximizing the likelihood function (7): the risk aversion 

coefficient ( ),  labor supply parameter ( )  and autocorrelations and standard deviations of the 

exogenous variables. As the model has four exogenous shocks, four observables are needed for 

estimation. GDP, consumption, investment and hours worked are used as observables.

In computing the sample likelihood, I assume that initial states (1)
0 0,x x  equal their 

unconditional mean. Although true initial states (in a given sample) differ from the assumed 

initial states, the recursively extracted exogenous innovations converge to the true innovations 

after a few periods. I thus use the first 10 periods of each simulation run as a training sample (the 

first 10 periods are dropped from the likelihood function).  

One evaluation of the likelihood takes merely 0.014 seconds on a personal computer 

(Intel i7-7700K processor). This allows rapid maximization of the likelihood.  

The Table reports the median, mean and standard deviation of the estimated model 

parameters across the 30 simulation runs, for the ‘small shocks’ model variant (Columns (1)-(3)) 

and for the ‘big shocks’ variant (Cols. (4)-(6)). Most model parameters are tightly estimated: the 

median and mean parameter estimates (across runs) are close to true parameter values, and the 

standard deviations of the parameter estimates are generally small.  

 
 
 
 
 
 
 
 
 
 
 
 
 

5To eliminate the influence of initial conditions, the model was simulated over 5100 periods; the first 5000 periods 
were discarded.  
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Monte Carlo: parameter estimates for second-order approximated RBC model  
 

 Model variant Model variant  
Parameter with ‘small  shocks’ with ‘big shocks’  
 (1) (2) (3) (4) (5) (6)   
 

         Median   Mean Std         Median Mean Std  
         10.18  12.01 5.11 10.08 10.29 1.65  
 0.27 0.59 0.79 0.22 0.32 0.26  
 0.99 0.99 0.002 0.99 0.99 0.002  

G  0.99 0.98 0.02 0.98 0.98 0.01  
 0.99 0.99 0.01 0.99 0.99 0.01  
 0.97 0.93 0.09 0.99 0.96 0.07  

s (%) 1.00 1.00 0.07 4.94 4.99 0.45  

Gs (%) 0.99 1.00 0.08 5.04 5.09 0.48  
s (%) 1.02 1.28 0.73 4.99 5.16 1.17  
s (%) 0.027 0.059 0.069 0.12 0.16 0.13  

Note: The Table summarizes parameters estimates across 30 simulation runs (T=100). Cols. 
labelled ‘Median’, ‘Mean’ and ‘Std’ report the median, mean and standard deviation of estimated 
parameters (see left-most column) across the 30 runs. Cols. labelled (1)-(3) [(4)-(6)]: ‘small shocks’ 
[‘big shocks’] model variant.  The true parameter values are: 10, 0.25, 0.99.G

True standard deviations of exogenous innovations in ‘small shocks’  variant: 

Gs s s 1%,s 0.025%.  ’Big shocks’ variant: Gs s s 5%, 0.125%.
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Appendix  
 
Part A. of this Appendix provides supplementary information for the second-order approximated 

RBC model discussed in the main text. Part B. shows how third-order approximated DSGE 

models can be estimated using observation equation inversion.

 

 

A. Supplementary information for the second-order approximated RBC model 
 Comparison between decision rule (4) and modified decision rule (5) 

Table a1 documents that the decision rule (4) and the modified decision rule (5) are (essentially) 

indistinguishable. An identical sequence of random exogenous innovations of length T=500,000 

was fed into (4) and into (5). Table a1 shows that the resulting time series of endogenous 

variables are almost perfectly correlated across (4) and (5), and that they have (essentially) the 

same standard deviation. This holds both for levels and for first differences of logged simulated 

endogenous variables.

 

 Standard deviations of first- and second-order approximated models 

Table a2 reports predicted standard deviations of first- and second-order approximated variables 

(log levels and log first differences). The Table documents that each of the four types of 

exogenous shocks accounts for a sizable share of the variance of GDP (see Panel (a), Col. (1)). In 

the ‘small shocks’ model variant, the first- and second-order approximated models produce 

almost identical standard deviations of endogenous variables (see Panel (a)). In the ‘big shocks’ 

model variant, by contrast, the second-order approximated variables are more volatile than the 

first-order approximated variables; this is, especially, the case for GDP, investment and hours 

worked (see Panel (b)).  
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Table a1.   Second-order approximated RBC model: correlations across time series 
generated by decision rule (4) [ ] and time series generated by the ‘modified’ 
decision rule (5) [ mod ] 
 

 Y C I N K  
  

 (1) (2) (3) (4) (5)  

(a) Model variant with ‘small shocks’ ( 1%, 0.025%)G  
Correlations between  and mod  
Levels      1.0000 1.0000 1.0000 1.0000 1.0000    
First differences 1.0000 1.0000 0.9999 1.0000 1.0000 

Relative standard deviations: std( )/std( mod ) 
Levels      1.0000 1.0000 1.0000 1.0000 1.0000   
First differences 1.0000 1.0000 1.0000 1.0000 1.0000 

Relative standard deviation of difference between decision rules: std( - mod )/std( mod ) 
Levels 0.0006 0.0001 0.0030 0.0003 0.0001    
First differences 0.0039 0.0012 0.0168 0.0033 0.0020 
 
(b) Model variant with ‘big shocks’ ( 5%, 0.125%)G  
Correlations between  and mod  
Levels      1.0000 1.0000 0.9999 1.0000 1.0000   
First differences 0.9998 1.0000 0.9967 0.9999 0.9999 

Relative standard deviations: std( )/std( mod ) 
Levels      1.0000 1.0000 0.9999 1.0000 1.0000    
First differences 1.0000 1.0000 0.9994 1.0000 1.0000    

Relative standard deviation of difference between decision rules: std( - mod )/std( mod ) 
Levels 0.0027 0.0005 0.0147 0.0014 0.0007 
First differences 0.0192 0.0061 0.0818 0.0164 0.0101 

Note: Correlations of simulated time series (of variables listed above Cols. (1)-(5)) generated by the 
decision rule (4) and by the ‘modified’ decision rule (5) are reported, as well as the relative standard 
deviation of these two sets of time series. These statistics are reported for variables in log levels, and for 
variables in log first differences. Y: GDP; C: consumption; I: gross investment; N: hours worked; K: capital 
stock. Correlations greater than 0.99995 are reported as 1.0000.   Reported statistics are based on one 
sequence of T=500,000 random exogenous innovations that was fed into (4) and (5).  
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Table a2.  RBC model: predicted standard deviations (in %). Comparison between 
1st order and 2nd order accurate model solutions 
 

 Y C I N K  
  

 (1) (2) (3) (4) (5)  

(a) Model variant with ‘small shocks’ ( 1%, 0.025%)G  
Variables in levels  
1st order, all shocks      3.34 1.57 10.43 9.68 7.59 
1st order, just shock 2.07 1.36 6.20 9.32 4.52 
1st order, just G shock 1.66 0.08 1.50 1.97 1.08 
1st order, just shock 1.14 0.75 3.43 0.96 2.49 
1st order, just shock 1.66 0.21 7.51 1.61 5.48 

2nd order, all shocks      3.34 1.57 10.43 9.68 7.59 
 

First-differenced variables  
1st order, all shocks       0.67  0.17  2.60 1.13 0.18     
2nd order, all shocks      0.67 0.17 2.60 0.13 0.18   

(b) Model variant with ‘big shocks’ ( 5%, 0.125%)G  
Variables in levels  
1st order, all shocks     16.72 7.83 52.14 48.39 37.95 
2nd order, all shocks    17.11 7.83 52.97 48.67 38.21 
 

First-differenced variables  
1st order, all shocks   3.33  0.86 12.98 5.66 0.91    
2nd order, all shocks      3.41 0.87 13.37 5.77 0.92 

Note: Standard deviations (in %) of simulated variables (listed above Cols. (1)-(5)) are shown for the RBC 
model. Rows labeled ‘1st order’ and ‘2nd order’ show standard deviations predicted by the first-  and second-
order accurate model solutions, respectively. The statistics are reported for variables in log levels, and for 
variables in log first differences.  Y: GDP; C: consumption; I: gross investment; N: hours worked; K: capital 
stock. All statistics are computed using one simulation run of 500,000 periods. 
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B. Tractable Likelihood-Based Estimation of Third-Order Approximated 
DSGE Models  
The technique described in the main text can also be used for likelihood estimation of DSGE 

models that are approximated to an order that is higher than the second order. This is illustrated 

here for third-order approximated models.  

The third-order accurate model solution of the DSGE model (1) is given by:  
2 2 2

1 0 1 1 2 2 1 11 12 1 22 1 1( ) ( ) ...t t t t t t t t tF F F x F F F x x F x F

111 112 1 122 1 1 222 1 1 1,t t t t t t t t t t t tF x x x F x x F x F  with .t tx        (B.1)

1 2 111 112 122 222, , , , ,F F F F F F are matrices that are functions of the structural model parameters        

0 1 2 11 12 22( , , , , ,F F F F F F  are identical to the corresponding coefficients in the second-order accurate 

model solution; see (2)). 

 ‘Pruning’ is also essential for applied work based on third-order approximated models-- 

the ‘un-pruned’ system (B.1) can exhibit explosive dynamics, in response to big shocks (see 

discussion in main text). To apply the logic of pruning to equation (B.1), note that the following 

conditions hold up to third-order accuracy:
2 2 (1),t tx x (2) (1) (2) (2) (1)( ),t t t t t t tx x x x x x x (2)

1 1,t t t tx x

(1) (1) (1),t t t t t tx x x x x x (1) (1)
1 1,t t t t t tx x x x (1)

1 1 1 1,t t t t t tx x 6         (B.2) 

where the superscript (i) denotes variables solved to ith accuracy and ( ) ( ).i i
t tx The Dynare 

toolbox (Adjemian et al. (2014)) implements a pruned version of the third-order solution  in 

which product terms in equation (B.1) are replaced by their third-order accurate equivalents 

stated in (B.2):  
2 2 (1) 2 (2) (1) (1) (2) (1) (2)

1 0 1 1 2 2 1 11 12 1 22 1 1( ) { ( )} ...t t t t t t t t t t t t tF F x F x F F F x x x x x F x F
(1) (1) (1) (1) (1) (1)

111 112 1 122 1 1 222 1 1 1.t t t t t t t t t t t tF x x x F x x F x F              (B.3) 

(This pruned third-order solution was also proposed by Kollmann (2004).) The dynamics of the 

first- and second-order approximated quantities is governed by (3) and (4) in the main text, 

restated here for convenience:

6For variable ta  we can write (1) (2)
t ta a R  and (2) (3),t ta a R  where ( )nR contains terms of order n or higher in 

deviations from the steady state. The product t ta b  can thus be expressed as 
(1) (2) (1) (3) (1) (2) (1) (3) (1) (2) (2) (1) (1) (4)( )( ) ( ) ;t t t t t t t t t t t t ta b a a a R b b b R a b a a b R  hence, (3) (1) (2) (2) (1) (1)( ) ( ) .t t t t t t ta b a b a a b  (Note that 

(2) (1) (2),t ta a R and hence  (2) (1) (2) (1) (4)( )( ) .)t t t ta a b b R   The same logic shows that (3) (1) (1) (1)( ) .t t t t t ta b c a b c
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(1) (1)
1 1 2 1,t t tF x F (2) 2 (2) (1) (1) (1)

1 0 1 2 1 11 12 1 22 1 1t t t t t t t t tF F x F F x x F x F .          (B.4)

The moving average representation of the third-order pruned solution (B.3) depends on first-, 

second and third-order terms in exogenous innovations ( ), but not on higher-order terms. The 

third-order pruned system (B.3) is stationary if the first-order system is stationary.  

 To allow observation equation inversion, I replace squares and cubes of 1t  in (B.3) by 

their expected values. This gives the ‘modified’ decision rule 
2 2 (1) 2 (2) (1) (1) (2) (1) (2)

1 0 1 1 2 2 1 11 12 1 22 1 1( ) { ( )} ( ) ...t t t t t t t t t t t t tF F x F x F F F x x x x x F x F E
(1) (1) (1) (1) (1) (1)

111 112 1 122 1 1( ).t t t t t t t t tF x x x F x x F x E                                (B.5) 

Note that 1 1 1( ) 0,t t tE  because 1t  is normally distributed. The subsequent discussion 

assumes that (B.5) is the true data generating process.

Assume that the econometrician observes a vector 1tz  comprising m elements of the 

vector 1t  (recall that m is the number of exogenous innovations). Thus, the observation 

equation is 1 1,t tz Q where Q  is an mxn selection matrix. Substitution of equation (B.5) into 

the observation equation gives 1 1t t t tz , where

2 2 (1) (2) (1) (1) (2) (1) (1) (1) (1) (1)
0 1 1 11 22 1 1 111 122 1 1[ { ( )} ( ) ( )]t t t t t t t t t t t t t t t tQ F F x F x F x x x x x F E F x x x F x E

and t  is an  xm m  matrix such that 2 (2) (1) (1)
1 2 2 1 12 1 112 1[( ) ].t t t t t t t tQ F F F x F x x

Provided t  is non-singular, we thus have: 

1
1 1( )t t t tz .                                                        (B.6) 

Given the initial states (1) (2)
0 0 0, ,x x x  and data 1{ }T

t tz  one can recursively extract the 

innovations 1{ }T
t t  using (B.4),(B.5) and (B.6). The log likelihood of the data (conditional on 

(1) (2)
0 0 0, ,x x x )  is:

(1) (2) 2 2 11
1 0 0 0 12 2 2 1

ln ({ } | , , ) ln(2 ) ln | | { ' ( ) ln | |TT mT T
t t t t tt

L z x x x .        (B.7) 

Structural model parameters (and the initial states) can be estimated by maximizing this function.  

Illustration: RBC model, approximated to third-order 

I compute a third-order approximation of the RBC model described in the main text. Both the 

‘small shocks’ variant of that model, and the ‘big shocks’ variant are considered. Table b1 

documents that decision rule (B.3) and the modified decision rule (B.5) are (essentially) 
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indistinguishable. An identical sequence of random exogenous innovations of length T=500,000 

was fed into (B.3) and into (B.5). Table b1 shows that the resulting time series of endogenous 

variables are almost perfectly correlated across (B.3) and (B.5), and that they have (essentially) 

the same standard deviations. This holds both for levels and for first differences of logged 

simulated endogenous variables.  

Table b2 reports predicted standard deviations of first-, second- and third-order 

approximated variables (log levels and log first differences). In the ‘big shocks’ RBC model 

variant, GDP, investment and capital are noticeably more volatile under a third-order 

approximation than under first- or second-order approximations (see Panel (b)).   

Finally, I estimate the model parameters using simulated time series, by maximizing the 

likelihood function (B.7). As for the Monte Carlo described in the main text, I generated 30 

simulation runs of 100 periods each.7 In computing the sample likelihood, I assume that the 

initial states (1) (2)
0 0 0, ,x x x  equal their unconditional mean. The first 10 periods in each simulation 

run are used as a training sample. Table b3 reports the median, mean and standard deviation of 

the estimated model parameters across the 30 simulation runs, for the ‘small shocks’ model 

variant (Columns (1)-(3)) and for the ‘big shocks’ variant (Cols. (4)-(6)). As for the second-order 

accurate model discussed in the main text, most model parameters are tightly estimated.  

 
 
 
 
References 
Adjemian, S., H. Bastani, M. Juillard, F. Mihoubi, G. Perendia, J. Pfeifer, M. Ratto, S. Villemot,  

2014. Dynare: reference manual, Version 4.4.3., Working Paper, CEPREMAP.

Kollmann, R., 2004. Solving Non-Linear Rational Expectations Models: Approximations Based 

on Taylor Expansions, WP, University of Paris XII.  

7To eliminate the influence of initial conditions, the model was simulated over 5100 periods; the first 5000 periods 
were discarded.  



15

Table b1. Third-order approximated RBC model: correlations across time series generated 
by decision rule (B.3) [ ] and time series generated by ‘modified’ decision rule (B.5) [ mod ] 
 

 Y C I N K  
  

 (1) (2) (3) (4) (5)  

(a) Model variant with ‘small shocks’ ( 1%, 0.025%)G  
Correlations between  and modnon  
Levels      1.0000 1.0000 1.0000 1.0000 1.0000    
First differences 1.0000 1.0000 0.9999 1.0000 1.0000 

Relative standard deviations: std( )/std( mod ) 
Levels      1.0000 1.0000 1.0000 1.0000 1.0000   
First differences 1.0000 1.0000 0.9996 1.0000 1.0000 

Relative standard deviation of difference between decision rules: std( - mod )/std( mod ) 
Levels 0.0006 0.0001 0.0030 0.0003 0.0001    
First differences 0.0039 0.0012 0.0169 0.0033 0.0020 
 
(b) Model variant with ‘big shocks’ ( 5%, 0.125%)G  
Correlations between  and modnon  
Levels      1.0000 1.0000 0.9999 1.0000 1.0000   
First differences 0.9998 1.0000 0.9961 0.9999 1.0000 

Relative standard deviations: std( )/std( mod ) 
Levels      1.0000 1.0000 0.9994 1.0000 1.0000    
First differences 0.9998 1.0000 0.9910 1.0000 1.0000    

Relative standard deviation of difference between decision rules: std( - mod )/std( mod ) 
Levels 0.0024 0.0005 0.0155 0.0015 0.0007 
First differences 0.0179 0.0065 0.0896 0.0168 0.0101 

Note: Correlations of simulated time series (of variables listed above Cols. (1)-(5)) generated by decision 
rule (B.3) and by the ‘modified’ decision rule (B.5) are reported, as well as the relative standard deviation 
of these two sets of time series. The statistics are reported for log levels and for log first differences of 
endogenous variables. Y: GDP; C: consumption; I: gross investment; N: hours worked; K: capital stock. 
Correlations greater than 0.99995 are reported as 1.0000.   Reported statistics are based on one simulation 
run of 500,000 periods.  
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Table b2.  RBC model: predicted standard deviations (in %). Comparison between 
1st order, 2nd order and 3rd order accurate model solutions 
 

 Y C I N K  
  

 (1) (2) (3) (4) (5)  
(a) Model variant with ‘small shocks’ ( 1%, 0.025%)G  
Variables in levels  
1st order        3.34 1.57 10.43 9.68 7.59 
2nd order       3.34 1.57 10.43 9.68 7.59 
3rd order      3.36 1.57 10.48 9.67 7.62 

 

First-differenced variables  
1st order       0.67  0.17  2.60 1.13 0.18     
2nd order      0.67 0.17 2.60 1.13 0.18   
3rd order       0.67 0.17 2.61 1.13 0.18    

(b) Model variant with ‘big shocks’ ( 5%, 0.125%)G  
Variables in levels  
1st order      16.72 7.83 52.14 48.39 37.95 
2nd order     17.11 7.83 52.97 48.67 38.21 
3rd order   19.70 7.83 59.36 47.90 42.86  
 

First-differenced variables  
1st order   3.33  0.86 12.98 5.66 0.91    
2nd order       3.41 0.87 13.37 5.77 0.92 
3rd order       3.80 0.85 14.46 5.87 0.96 

Note: Standard deviations (in %) of simulated variables (listed above Cols. (1)-(5))  are shown for the RBC 
model. Rows labeled ‘1st order’, ‘2nd order’ and ‘3rd order’ show standard deviations predicted by the first-,   
second- and third- order accurate model solutions, respectively. The statistics are reported for log levels and 
for log first differences of endogenous variables. Y: GDP; C: consumption; I: gross investment; N: hours 
worked; K: capital stock. All statistics are computed using one simulation run of 500,000 periods. 
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Table b3. Monte Carlo: parameter estimates for third-order approximated RBC model  
 

 Model variant Model variant  
Parameter with ‘small  shocks’ with ‘big shocks’  
 (1) (2) (3) (4) (5) (6)   
 

         Median   Mean Std         Median Mean Std  
         10.67  11.17 2.74 10.95 12.42 3.89  
 0.31 0.43 0.47 0.45 0.69 0.69  
 0.99 0.99 0.003 0.99 0.99 0.003  

G  0.98 0.98 0.01 0.98 0.98 0.03  
 0.99 0.99 0.01 0.99 0.98 0.01  
 0.96 0.95 0.05 0.98 0.96 0.05  

s (%) 0.99 1.00 0.07 4.97 4.97 0.34  

Gs (%) 0.98 0.98 0.09 4.77 4.88 0.59  
s (%) 0.97 1.13 0.40 5.34 6.86 3.24  
s (%) 0.035 0.042 0.025 0.18 0.19 0.09  

Note: The Table summarizes parameters estimates across 30 simulation runs of 100 periods. Cols. 
labelled ‘Median’, ‘Mean’ and ‘Std’ report the median, mean and standard deviation of estimated 
parameters (listed in left-most column) across the 30 runs. Cols. labelled (1)-(3): ‘small shocks’ 
model variant. Cols. (4)-(6): ‘big shocks’ model variant.   
 The true parameter values are: 10, 0.25, 0.99.G True standard 

deviations of exogenous innovations in ‘small shocks’ model variant: Gs s s 1%, s 0.025%.

’Big shocks’ variant: Gs s s 5%, 0.125%.


