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1 Introduction

Economic time series are typically analysed in seasonally adjusted form. That is, (estim-

ated) seasonality is removed prior to undertaking substantive analysis of economic questions.

Seasonal adjustment is based on the unobserved component approach, of which the key as-

sumption is that the components (typically trend, cycle and seasonal) are mutually uncorrel-

ated. However, a growing recent literature strongly suggests that the trend and cycle can be

correlated; see Morley, Nelson and Zivot (2003), MNZ hereafter, Dungey, Jacobs, Tian and

van Norden (2015) and others. While this has important implications for economic analyses

that employ detrended data, the consequences of the uncorrelated assumption for seasonal-

ity are much more pervasive. Building on MNZ and the literature that indicates, on both

economic and statistical and economic grounds, that cyclical and seasonal components may

be correlated (including Cecchetti and Kashyap, 1996, Matas-Mir and Osborn, 2004), this

paper extends the trend-cycle decomposition literature for economic time series to include the

seasonal component.

The behaviour of series in the immediate aftermath of the Great Recession has provided

an impetus for economists to examine seasonality and its treatment through seasonal adjust-

ment. The zero correlation assumption is fundamental to seasonal adjustment because the

resulting seasonally adjusted series can then be analysed without concern about the ‘noise’

of seasonality. However, Wright (2013) concludes that official seasonal adjustment distorted

US employment data during the downturn of the Great Recession. Further, in commenting

on Wright’s (2013) paper, Stock (2013) questions the component independence assumption

embedded in seasonal adjustment and advocates more work on the “important but neglected

topic” of seasonality. In practice, experts in seasonal adjustment within the US Bureau of

the Census and other official statistical agencies recognise that extraction of the seasonal

component is particularly difficult during recessions (Evans and Tiller, 2013, Lytras and Bell,

2013) and that special treatment may be required. More fundamentally, however, these

considerations question the assumption that seasonality evolves independently of the other

characteristics of economic time series.
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Following the tradition that dates back to at least Grether and Nerlove (1970) and Engle

(1978), and also underlines the structural time series approach used by Harvey (1990) and

Durbin and Koopman (2012), our approach is to consider an unobserved component (UC)

model in which the individual time series components are specified as being both economically

meaningful and often employed in empirical analyses. However, rather than maintaining the

uncorrelated components assumption, we follow MNZ and allow non-zero correlation between

the innovations to the components in order to investigate the implications for quarterly time

series. More specifically, we investigate whether the underlying parameters are identified

when the zero correlation assumption is relaxed, and examine the practical implications for

the trend and cycle components of allowing nonzero correlations for the key macroeconomic

time series of UK household consumption and US non-farm payroll employment.

Our analysis is based on the UC trend-cycle model employed by MNZ and widely used

by macroeconomists because it captures the key characteristics believed to be typical of im-

portant ‘real-world’ series. To this we add a stochastic seasonal component, also modelled in

typical fashion, and then examine whether the parameters are identified when a general cross-

correlation structure is permitted. In related work, McElroy and Maravall (2014) examine

identification from a more statistical perspective, but the model they consider does not in-

clude a stationary cyclical component of the form often posited by macroeconomists. Indeed,

as shown by MNZ, such a cyclical component, represented by a model with AR order p ≥ 2,

is required for the two components of a trend-cycle model to be identified in the presence of

cross-correlated innovations. Our analysis can be seen as an extension of MNZ that views

seasonality as an integral part of the dynamic evolution of the macroeconomy.

We show that adding this seasonal component to the standard trend-cycle quarterly spe-

cification leads to hidden linear dependencies between the autocovariances of the model.

Although the model apparently has sufficient nonzero autocovariances for estimation of all

parameters, it fails to satisfy the rank condition. Consequently, the model is under identified,

and additional restrictions are required for identification. Nevertheless, it is emphasised that

the usual uncorrelated innovation assumption is not the only solution to the identification
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problem: only a single restriction is required and the over-identification assumptions of the

uncorrelated model can be tested. Simulations illustrate the implications of estimation for

both the unidentified and a correctly identified model.

The applications to UK household consumption and US non-farm payroll employment

reject the conventional uncorrelated innovation assumption. However, echoing to some extent

the findings of Wright (2013), we show that the correlation assumption imposed has substan-

tial implications for the estimated trend and cycle components in the period after the Great

Recession. For the case of US non-farm payroll employment, imposition of uncorrelated com-

ponents implies a substantially deeper recession (interpreted as negative cycle values) than

assuming a zero correlation for trend and seasonal innovations only or assuming perfect negat-

ive correlation for the trend-cycle innovations, the latter being the implicit assumption made

in the Beveridge-Nelson trend-cycle decomposition (Beveridge and Nelson, 1981; Anderson,

Low and Snyder, 2006). Indeed, the preferred statistical model for both series is a form of

the Single Source of Error (SSE) model, where a common shock drives all components (Ord,

Koehler and Snyder 1997; De Livera, Hyndman and Snyder 2011). However, the estimated

trend and cycle properties for UK consumption are not plausible in economic terms.

The remainder of this paper is structured as follows. Section 2 presents the UC model

we study with uncorrelated and correlated innovations. Section 3 and Section 4 discuss

identification and simulation results, respectively. Section 5 presents empirical results for

real UK household consumption and US employment, while Section 6 offers some concluding

remarks.

2 The Model

As noted in the Introduction, a growing literature provides empirical evidence that the trend

(permanent) and cycle (transient) components of economic time series are correlated. As dis-

cussed by Weber (2011), the economic rationale for such correlation can include real business

cycle theories, nominal rigidities, hysteresis, policy responses to temporary shocks, and so

on. Estimates of the correlation between the innovations of the trend and cycle for output
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or related series (such as employment) are negative and relatively close to −1; for example,

MNZ, Sinclair (2010), Weber (2011), Dungey et al. (2015).

Due to the prevalent use of seasonally adjusted data, there is not a large existing liter-

ature concerning correlation of the seasonal with other components. Nevertheless, Barsky

and Miron (1989) and Beaulieu, MacKie-Mason and Miron (1992) observe that seasonal and

business cycles have common characteristics, while other studies find that seasonal patterns

change with the stage of the business cycle (Canova and Ghysels 1994; Cecchetti and Kashyap

1996; Krane and Wascher 1999; Matas-Mir and Osborn 2004) and/or the trend (Koopman

and Lee 2009). In particular, Cecchetti and Kashyap (1996) observe that seasonal cycles in

production are less marked in business cycle booms, implying negative correlation between

these components. As noted by Proietti (2006) negative correlations lead to higher weights on

future observations in the Kalman smoother, resulting in relatively large revisions to filtered

estimates; see also Dungey et al. (2015).

To reflect these findings, the model employed in our analysis is designed to be sufficiently

general to capture potential correlations across component innovations, while also being of

a form recognized by economists as capturing the essential features of macroeconomic time

series.

2.1 Component specification

The UC model we consider is designed to be of a form that a macroeconomist might employ

when taking account of seasonality alongside trend and cycle components in a quarterly time

series. Therefore, the observed seasonal series yt, t = 1, 2, ... consists of a trend τt, a cycle ct

and a seasonal st component, with

yt = τt + ct + st. (1)
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Each of these components has a natural interpretation. Following many previous studies, the

trend and cycle components are given by

τt = τt−1 + β + ηt (2)

φ(L)ct = εt (3)

where the pth order autoregressive (AR) polynomial φ(L) = 1−φ1L− . . .−φpL
p (L being the

usual lag operator) has all roots strictly outside the unit circle. The random walk with drift

specification for the trend, as in (2), is widely adopted in macroeconomics, while a pure AR,

as in (3), is also typical for economic analysis. The AR order is often specified as p = 2, as in

Clark (1987), Sinclair (2010) and the empirical application of MNZ; p ≥ 2 allows the process

for ct to exhibit cyclic properties in the sense of a spectral peak at a business cycle frequency.

However, p > 2 is rarely used in practice for quarterly seasonal macroeconomic time series,

in order to keep the lags of the seasonal specification distinct from those of the cycle.

As widely applied in the UC literature, seasonality is represented in the so-called ‘dummy

variable’ form,

S(L)st = ωt, (4)

where (for quarterly data) S(L) = 1 + L + L2 + L3 is the annual summation operator for

quarterly data; see Harvey (1989). The moving annual sum implied by S(L) with stochastic

ωt permits seasonality to evolve over time, with the speed of this evolution dictated by the

variance of the shock σ2
s ; σ

2
s = 0 leads to deterministic seasonality that is constant over time.

Wright (2013) estimates a special case of the model given by (1) to (4) with white noise cycle,

φ(L) = 1, and uncorrelated innovations for monthly US employment, using this to illustrate

the statistical uncertainty surrounding seasonally adjusted values.

In may be noted that the components ct and/or st are sometimes specified in a trigono-

metric form in the UC literature, with each then driven by two innovation processes which

are assumed to be mutually uncorrelated. The use of such a specification would further com-

plicate matters once correlation is allowed across components, and hence the simpler forms
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above are adopted in our analysis.

With τt, ct and st as in (2)-(4), the innovation vector vt = (ηt, εt, ωt)
′ has covariance

matrix

Q ≡ E[vtv
′
t] =

⎡
⎢⎢⎢⎢⎣

σ2
τ στc στs

στc σ2
c σcs

στs σcs σ2
s

⎤
⎥⎥⎥⎥⎦ (5)

which is positive semi-definite. The standard assumption in the UC approach is uncorrelated

innovations, namely the special case of diagonal Q. However, following MNZ, recent interest

in macroeconomics has focused around nonseasonal models which allow the trend-cycle cor-

relation to be nonzero.

At the other extreme from diagonal Q, the single source of error (SSE) model assumes

the innovations that drive the components are perfectly correlated. Although the usual for-

mulation of the SSE model, as in Ord, Koehler and Snyder (1997), specifies the measurement

equation analogous to (1) with an idiosyncratic error and lagged rather than current com-

ponent contributions, Anderson, Low and Snyder (2006) show that the perfectly correlated

trend-cycle model employed by Beveridge and Nelson (1981) can be written in conventional

SSE form.1 For the model of (1), an SSE formulation has

vt =

⎡
⎢⎢⎢⎢⎣

kτ

kc

ks

⎤
⎥⎥⎥⎥⎦ vt, (6)

with vt ∼ i.i.d.(0, 1) so that the disturbances of (2)-(4) are each written as a scalar multiple

of a single shock. Hence the component disturbances are perfectly correlated with covariance

matrix

Q =

⎡
⎢⎢⎢⎢⎣

k2τ kτkc kτks

kτkc k2c kcks

kτks kcks k2s

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

σ2
τ στc στs

στc σ2
c σcs

στs σcs σ2
s

⎤
⎥⎥⎥⎥⎦ . (7)

Employing the trend-cycle model of (2) and (3), with the latter sometimes including a
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moving average, MNZ and a number of subsequent studies (including the ones cited in the

introduction) discuss identification and empirically compare the implications for GDP of the

correlation assumptions made in the traditional UC approach, the BN decomposition and

with an estimated innovation correlation. However, these studies do not consider seasonality.

The properties of the model can be established through the univariate ARMA representa-

tion. Due to the zero frequency unit root in (2) and the seasonal unit roots in (4), the process

of (1) to (4) is stationary and invertible after annual differencing (Δ4 = 1−L4). The reduced

form of the model is therefore

φ(L)Δ4yt = φ(L)S(L)β + φ(L)S(L)ηt +Δ4 εt + φ(L)Δωt. (8)

Analogously to MNZ, and using standard results on the sum of the moving average terms on

the right-hand side of (8), the reduced form ARMA(p, q) specification for Δ4yt is

φ(L)Δ4yt = δ + θ(L)ut, (9)

where δ = φ(L)S(L)β, θ(L) is a qth order polynomial in L with q ≤ max(p+ 3, 4) and ut is

a white noise disturbance with constant variance. Further details on the derivation of (9) can

be found in the Technical Appendix, while the order q is discussed in the next section for the

cases of interest to us.

3 Identification

Before attempting to estimate the UC model of the preceding section allowing a general cor-

relation structure for the disturbances, it must first be established that the model is identified.

As for any ARMA(p, q) process, the autocovariances γk of Δ4yt at lag k satisfy

γk = φ1γk−1 + . . .+ φpγk−p, k > q (10)
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which identifies the AR coefficients of (3). Hence, the autocovariances of the MA component

of (9) for k = 0, ..., q must contain sufficient information to identify the parameters of (5).

More specifically, defining σ = [σ2
τ , σ

2
c , σ

2
s , στc, στs, σcs]

′ to contain the unique elements of the

covariance matrix Q and also defining the vector of autocovariances γ = [γ0, . . . , γq]
′, yields

the system

γ = Aσ (11)

where A is a (q + 1)× (q + 1) matrix of constants. Identification of the six parameters of (5)

requires A to be of rank 6.

This section discusses this identification from a theoretical perspective, considering first

the case where the cycle is white noise (p = 0), before turning to p = 2; the implications of

an AR(1) cycle are considered as a special case of the latter.

3.1 White noise cycle

With ct in (1) white noise, the model considered is the quarterly analogue of the basic struc-

tural model examined by McElroy and Maravall (2014) for monthly data with, in their nota-

tion, d = 1. A simple ‘counting’ check shows that the model where the cycle is white noise

(p = 0) cannot be identified, as q < 5 and the nonzero autocovariances are insufficient in

number to identify the six parameters of Q. Nevertheless, this case serves to illustrate some

general features of identification which apply also in the more general AR cycle examined

below.

For p = 0, the stochastic component on the right-hand side of (9) is

zt = S(L)ηt +Δ4 εt +Δωt

= ηt + ...+ ηt−3 + εt − εt−4 + ωt − ωt−1.

As shown in the Technical Appendix, except in the special case where σ2
c = −(στc + σcs), zt
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is MA(4) so that γk = 0 for k > 4 and the matrix A of (11) is

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 2 2 2 0 2

3 0 −1 0 −1 −1

2 0 0 0 0 0

1 0 0 0 1 1

0 −1 0 −1 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (12)

Although the model is not identified overall, nevertheless two variance parameters of Q can be

obtained irrespective of any covariance assumptions. Specifically, the variances of the trend

and seasonal innovations are given by

σ2
τ = 0.5γ2

σ2
s = 2γ2 − γ1 − γ3.

This extends the trend-cycle case examined by MNZ, who note that the variance of the trend

innovations can similarly be identified when the cycle is white noise, although the individual

terms in σ2
c + στc cannot.

2

Noting that σ2
c and στc never separately enter A of (12), it could be presumed that σ2

c+στc

and the four other distinct parameters of Q will be identified. This is, however, not the case,

since the rows of A are linearly dependent, with

γ0 = −2γ1 + 6γ2 − 2γ3 − 2γ4.

Hence the system contains only four linearly independent equations, rather than five. Con-

sequently it is not possible to identify either στs or σcs without further information. However,

a single linear restriction on στs and/or σcs allows identification of σ2
τ , σ

2
s , (σ

2
c +στc), στs and

σcs, with a further restriction required to separate σ2
c and στc.

This discussion underlines the importance for identification of the traditional uncorrelated

disturbance of the UC model. It also shows the crucial role played by the uncorrelated in-
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novation assumption in the illustrative model used by Wright (2013). Nevertheless, because

there are four linearly independent nonzero γk and three unknown variances, uncorrelated

innovations lead to the presence of an over-identifying restriction; hence some testing is pos-

sible. More explicitly, for the case under consideration, the single over-identifying restriction

embodied in the uncorrelated innovation assumption could be interpreted as either στs = 0

or σcs = 0, depending on the a priori views of the researcher. Consequently, although cycle

parameters σ2
c and στc cannot be separated, the assumption implicit in seasonal adjustment

that seasonality is uncorrelated with other components can be tested even when the cycle is

white noise only.

3.2 AR(2) cycle

As noted in Section 2, and due to the stationary cycles it can imply, the case p = 2 is of great

empirical interest to macroeconomists. However, it is not examined by McElroy and Maravall

(2014). Note first that p = 2 implies q ≤ 5 in (9) and, again unless σ2
c = −(στc+σcs), q is equal

to its upper limit (see the Technical Appendix). Consequently, the ‘counting’ requirement is

fulfilled and the autocovariances of the right-hand side of (9) may potentially provide sufficient

information to just identify the parameters of (5). Hence we check the rank condition.

For this AR(2) case, the MA of the right-hand side of (8) is

zt = [1 + (1− φ1)L+ (1− φ1 − φ2)L
2 + (1− φ1 − φ2)L

3 − (φ1 + φ2)L
4 − φ2L

5]ηt

+[1− L4]εt + [1− (1 + φ1)L+ (φ1 − φ2)L
2 + φ2L

3]ωt. (13)
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The matrix of interest, namely A of (11) is then given by

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2(2B − 3D + φ2) 2 2(B +D − φ2) 2C 2φ1(1− φ2) 2

3B − 6D + 2φ2 0 −B − 2D + 3φ2 2φ2 −B −C

2(B − 2D) 0 D − 3φ2 0 0 0

B − 2D − φ2 0 φ2 −φ2 B + φ2 C

−(D + φ2) −1 0 −C −φ1(1− φ2) −1

−φ2 0 0 −φ2 −φ2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(14)

in which

B = 1 + φ2
1 + φ2

2

C = 1 + φ1 + φ2

D = φ1 + φ2 − φ1φ2.

Once again, further details on the derivation of (14) can be found in the Technical Appendix.

Straightforward row operations applied to (14) show that

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ0 + 2γ4

γ1 + γ3 + γ5

γ2

γ3 − γ5

γ4

γ5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4(B − 2D) 0 2(B +D − φ2) 0 0 0

4(B − 2D) 0 −(B + 2D − 4φ2) 0 0 0

2(B − 2D) 0 D − 3φ2 0 0 0

B − 2D 0 φ2 0 B + 2φ2 C

−(D + φ2) −1 0 −C −φ1(1− φ2) −1

−φ2 0 0 −φ2 −φ2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ2
τ

σ2
c

σ2
s

στc

στs

σcs

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(15)

The system of (15) exhibits three characteristics that are important for identification when

φ2 �= 0. Firstly, the first three equations show that the variance parameters σ2
τ and σ2

s are

over-identified, since there are three pieces of information (γ0 + 2γ4, γ1 + γ3 + γ5 and γ2)

available for these two parameters. Secondly, since further row operations can be used to

reduce any one of these first three rows of A to contain only zeros, the rank condition for all
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parameters in σ to be identified is not satisfied; the matrix A has rank less than 6. In terms

of the original parameters, it can be seen that the linear dependence is

[2γ2 − γ1 − γ3 − γ5] =
[1 + φ2

1 + φ2
2 + 4φ1 − 6φ2 − 4φ1φ2]

2[1 + φ2
1 + φ2

2 + 2φ2]
[γ0 + 2γ4 − 2γ2].

The third characteristic of (15) is that (when φ2 �= 0) its rank is five when any one of the

last three columns is deleted. Therefore, a priori specification of the value of any one of

the innovation correlations στc, στs or σcs is sufficient for the remaining elements of Q to be

identified.

As an aside, the crucial role played by p > 1 is evident in (14), since φ2 = 0 yields an A

in (14) whose final row contains only zeros, implying the rank is at most 5 and the model

as a whole is not identified. Indeed, combined with the nature of the first three rows, it can

be seen that the rank is 4; the situation is then similar to the case of a white noise cycle,

considered in the preceding subsection.

To summarize, some properties of the individual components in the general correlated

trend-cycle-seasonal model of (1) to (5) can be obtained from observations on yt, but a de-

composition for quarterly data cannot be achieved without at least one further restriction.

To be more specific, with an AR(2) cycle, one covariance restriction is required for estimates

to be obtained for the remaining parameters; should the AR cycle order have p < 2, then

two restrictions are required. Although the specification of such restrictions may appear to

be problematic, it should be recalled that the usual uncorrelated innovation model is more

restrictive and although the over-identifying restriction(s) of that model can be tested, such

a test is rarely conducted in practice.

4 Simulations

A simulation study is undertaken to examine the empirical implications of the identification

issues discussed in the previous section. The data generating process (DGP) is given by (1) to

(5) with p = 2, in which case one covariance restriction is required for identification. We set
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φ1 = 1.35 and φ2 = −0.5 in the AR process for the ct, implying stationary cyclical variation

with a periodicity of 21 quarters. For the covariance matrix, we set innovation standard

deviations as στ = 1.24, σc = 0.75, σs = 0.1 and, using an obvious notation for correlations,

ρτc = −0.85, ρτs = 0 and ρcs = −0.3; hence the covariances are στc = −0.85 × στ × σc =

−0.7905, στs = 0, and σcs = −0.3 × σc × σs = −0.0225. The covariance parameter values

for the trend and cycle components (including correlation) are close to those estimated by

MNZ for US GDP, while σs is chosen to be smaller than for these other components as

seasonality is usually observed to evolve relatively slowly over time. A negative cycle-seasonal

correlation is implied by the economic arguments and empirical findings of Cecchetti and

Kashyap (1996). Finally, the trend-seasonal correlation is set to zero3, and hence (from the

discussion of subsection 3.2) all parameters are (theoretically) identified when this restriction

is imposed in estimation.

Maximum likelihood estimation uses GAUSS software4 with constraints on the AR estim-

ates of −1 < φ̂1 + φ̂2 < 1 for stationarity and the estimated covariance matrix Q̂ positive

definite. The sample size is 300 observations, corresponding to 75 years of quarterly data,

and 1000 replications are performed.

Figure 1 provides results for σc, ρτc, ρτs and ρcs in the form of histograms, both when

estimating a general covariance matrix (left-hand column) and imposing ρτs = 0 (right-hand

column). Results are not shown for στ , σs, φ1, and φ2 as the analysis of Section 3 shows that

these are identified irrespective of the correlation assumption and it may be noted that the

general shapes of the histograms for these parameters are similar across the two cases.

With no restriction, it is seen that the largest mass for ρ̂τc is concentrated around −1,

implying (spurious) perfect negative correlation between trend and cycle, with ρ̂cs displaying

a similar tendency to bunch at this lower bound. Although Wada (2012) considers a misspe-

cified nonstationary trend-cycle model for a stationary data generating process, he also finds

spurious perfect negative estimated correlation for the innovations. Perhaps surprisingly, the

histogram for ρ̂τs is, at least superficially, relatively well behaved, while that for σ̂c is fairly

flat across a range of possible values from 0.1 to 0.8.
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Figure 1: Simulation results of the estimated parameters in the UC model

-0.5 0 0.5 1 1.5 2 2.5
0

50

100

150

200

-0.5 0 0.5 1 1.5 2 2.5
0

50

100

150

200

-1 -0.5 0 0.5 1
0

100

200

300

-1 -0.5 0 0.5 1
0

100

200

300

-1 -0.5 0 0.5 1
0

50

100

150

200

-1 -0.5 0 0.5 1
0

50

100

150

200

-1 -0.5 0 0.5 1
0

50

100

150

Notes. The panels of the figure show histograms for selected parameters of a UC model, estimated with

an unrestricted covariance matrix (left-hand column) and imposing the true restriction ρτs = 0 (right-hand

column). See the text for other parameter values of the DGP. The sample size is 300 and 1000 replications are

performed.
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Imposing the true restriction ρτs = 0 in estimation, the right-hand panel of Figure 1 no

longer shows a large mass of ρ̂τc or ρ̂cs values close to −1. In particular, these histograms

are now more bell-shaped. However, interestingly, σ̂c largely retains its properties from the

unidentified case.5

The results in this section show that identification requires careful consideration in the cor-

related trend-cycle-seasonal model. Hidden dependence between the autocovariances renders

the correlations unidentified in the plausible model we study, frequently resulting in spuri-

ous perfect negative correlations in estimation. Consequently, a perfect estimated correlation

needs to be interpreted with care. However, when it is known that one correlation is zero (and

hence the model is identified), imposition of this restriction yields estimators with satisfactory

properties.

5 Applications

In this section the trend-cycle-seasonal unobserved component model is applied to two import-

ant quarterly macroeconomic time series, namely real UK household consumption expenditure

and US non-farm employment.6 In order to make direct comparisons with the results of MNZ

and other studies that examine trend-cycle decompositions in a UC framework for the US

economy, we would have liked to examine US GDP. Unfortunately, however, that series is not

available in a seasonally unadjusted form.7

The model applied is again given by (1) to (5) with p = 2. As discussed in Section 3,

the parameters of the specification with uncorrelated components is over-identified, but at

least one restriction is required for identification when a more general covariance structure is

permitted. In each case we examine the uncorrelated component model together with other

specifications. However, for ease of interpretation, the estimated model is parameterised in

terms of correlations (ρτc, ρτs, ρcs) and standard deviations rather than the corresponding

covariances and variances. Estimation is undertaken by constrained Maximum likelihood

in GAUSS using the CMLMT procedure, with any correlation parameters estimated being

initialised at zero.
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5.1 UK household consumption expenditure

The characteristics of seasonal UK consumption expenditure have provided an important

impetus for understanding the long-run properties of economic time series and stimulated some

of the early literature on unit roots and cointegration; see, in particular Davidson, Hendry,

Srba and Yeo (1978) and Hylleberg, Engle, Granger and Yoo (1990). In line with those

studies, we analyse real seasonally unadjusted UK household final consumption expenditure

imposing both zero frequency and seasonal unit roots, but adopt the UC framework in order

to examine the possibility that the component disturbances may be correlated. The available

quarterly data starts in 1955Q1 and our analysis extends from that date to 2016Q4. As usual,

the logarithmic transformation is applied prior to further analysis, with the log values also

multiplied by 100 to facilitate interpretation of fluctuations in terms of percentage movements.

Table 1 provides results for a range of estimated models8, while Figure 2 provides the

data (top graph in each column) and estimated components for selected cases. Consider first

the conventional uncorrelated UC model. This yields a relatively smooth estimated trend,

which is seen in Figure 2 and also shown by in the relatively small value of σ̂τ for this model

in Table 1. However, the estimated cyclical component exhibits relatively large fluctuations

over the latter part of the series, being more than 8% above trend in 2005 and declining to

nearly 10% below trend at the end of the sample. On the other hand, seasonal fluctuations

decline in magnitude over time. Since seasonality evolves only slowly over time, largely the

same quarterly pattern repeats each year, with consumption being highest in the Christmas

quarter and lowest in the first quarter.

As discussed in Section 3, if the cycle component is white noise or AR(1), then the uncor-

related UC model has a single overidentifying restriction, whereas with an AR(2) cycle the

model imposes two more restrictions than required for (exact) identification. In the former

case, separation of στc and σ2
c requires the value of ρτc to be specified a priori, in addition

to ρτs or ρcs. Although the estimated AR(2) coefficient, φ̂2 is not significant (at the usual

levels) for the uncorrelated UC model in Table 1, it becomes highly significant when only one

of the trend correlations (ρτc or ρτs) is specified as zero.
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Table 1: Estimation Results for UK Household Consumption

Restriction(s) Imposed
Parameter All ρij = 0 ρτc = 0 ρτs = 0 ρcs = 0 ρcs = −0.99

στ 0.0936
(0.4370)

0.5959
(0.2634)

0.7904
(0.1545)

1.5581
(0.3801)

1.0895
(0.2153)

σc 1.0634
(0.1167)

0.5112
(0.1880)

0.3221
(0.0994)

0.7690
(0.7306)

1.2524
(0.1471)

σs 0.4808
(0.0573)

0.5278
(0.0614)

0.5361
(0.0600)

0.5096
(0.0602)

0.5022
(0.0492)

ρτc 0
(NA)

0
(NA)

−0.0260
(0.0762)

−0.8035
(0.1558)

−1.0000
(0.0002)

ρτs 0
(NA)

0.4174
(0.3978)

0
(NA)

−0.1676
(0.1311)

0.9901
(0.0213)

ρcs 0
(NA)

−0.9087
(0.1827)

−0.9996
(0.0020)

0
(NA)

−0.99
(NA)

μ 0.6867
(0.0275)

0.6875
(0.0456)

0.6833
(0.0541)

0.6739
(0.0992)

0.7439
(0.0142)

φ1 1.0877
(0.1369)

1.6022
(0.1609)

1.7611
(0.1019)

1.1167
(0.4086)

1.4740
(0.0111)

φ2 −0.1026
(0.1379)

−0.6103
(0.1605)

−0.7684
(0.1017)

−0.2666
(0.4069)

−0.4850
(0.0113)

Log Lik. −473.110 −467.248 −467.620 −471.541 −459.917
2(LL− LL0) 11.724 10.998 3.138 15.528

p-value 0.0028 0.0041 0.2083 0.0004

Notes: Values in parentheses are standard errors; NA indicated not applicable, as the parameter value is

specified a priori ; 2(LL − LL0) gives twice the difference between value of the log likelihood and that of the

corresponding restricted model (the uncorrelated UC model for all except the final model estimated) denoted

LL0; for the final model the corresponding restricted model the correlation ρcs is restricted to −0.99, ρτc and

ρτs to zero; p-value is computed by comparing 2(LL− LL0) to a χ2
2 distribution.
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Also, both models that impose a single trend correlation restriction yield increases in the

log likelihood that are significant at 0.5% (according to an asymptotic χ2 distribution with 2

degrees of freedom) compared with the uncorrelated UC baseline model. Indeed, these two

models are similar in practice, since neither ρτc nor ρτs is significant when one is specified as

nonzero and the other estimated. Hence these models yield effectively the same log likelihood

value and imply that the correlation between the cycle and seasonal disturbances is very

strong and negative. Due to their similarity (including estimated component series) only the

case with ρτs = 0 is included in Figure 2 (second column). Also note that the model specified

with ρcs = 0 as the single restriction in Table 1 is statistically dominated by others, since its

log likelihood improves only marginally on the uncorrelated UC model.

Compared with the uncorrelated UC model, the model with ρτs = 0 has a more volatile

trend (compare the estimates of στ in Table 1 and the extent to which the trend series

track the data in Figure 2), while the cycle is very substantially less volatile. Overall, the

implied dates of so-called growth cycle recessions (that is, periods with negative estimated

cycle values in relation to the trend) do not generally change markedly in comparison with the

uncorrelated UC case, although the cycles are typically more marked for the uncorrelated UC

model. Nevertheless, the 1990s recession is barely discernible for the correlated component

model, but cycle values more than 2% below trend are estimated for the uncorrelated UC

model.

In the light of the ρ̂cs values obtained from other models, the final model of Table 1 specifies

ρcs = −0.99, rather than imposing any zero restriction. In statistical terms, the results are

impressive, with the log likelihood showing an increase that is significant at 0.001% compared

with the corresponding restricted model (namely with ρτc = ρτs = 0 and ρcs = −0.99).

Further, the estimates imply that a version of the single source of error (SSE) model, in

which all component disturbance correlations are ±1, is supported by the data. Despite

this statistical support, Figure 2 shows that the estimated trend and cycle components are

not plausible in economic terms, with consumption below trend and the cycle taking large

negative values over much of the period since the 1960s. This may imply that the individual
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Figure 2: Estimated trend, cycle and seasonal components in UK consumption
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Notes. The first column shows estimated trend, cycle and seasonal components in U.K. consumption for the
uncorrelated UC model, in the second column we impose ρτs = 0, and in the third ρcs = −0.99. The estimated
seasonal components in the bottom row vary by the quarter, which at times results in different intensity colors.
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trend, cycle and seasonal components are so inter-linked for this series that a decomposition

is economically meaningless for this series. Such a view is compatible with the conclusion of

Osborn, Chui, Smith and Birchenhall (1988) that UK consumption is periodically integrated,

implying an inherent connection between long-run unit root and intra-year seasonal dynamics.

Despite the different estimated disturbance correlations seen in Table 1, it is notable that

both σ̂s and the extracted seasonal component time series change relatively little across all

models examined. In that sense, seasonality is robust to the UC specification and seasonal

adjustment might be considered appropriate. However, the model in Table 1 where seasonality

is largely uncorrelated with the other components (as ρcs = 0 is imposed and ρ̂τs is small)

is statistically dominated by other specifications. From a slightly different perspective, the

presence of correlations across the components will imply that seasonality contains information

relevant for trend and cycle estimation.

5.2 US non-farm payroll employment

US employment data are available seasonally unadjusted from 1948 and we analyse quarterly

data over 1948Q1 to 2016Q1. Results are reported in Table 2 for models embodying differ-

ing correlation assumptions, with the conventional uncorrelated UC model again providing

a baseline. Since the AR(2) coefficient is significant, the uncorrelated UC specification im-

poses two overidentifying restrictions. Only a single correlation restriction is required for

identification and we choose ρτs = 0 in view of previous literature which provides evidence of

trend-cycle and cycle-seasonal correlations for output and related series (discussed above). In

common with UK consumption examined in the previous subsection, the additional restric-

tions imposed by the conventional model are strongly rejected by an asymptotic log likelihood

test.

It is interesting that, as for UK consumption in the preceding subsection, the imposition

of ρτs = 0 leads to an estimated correlation lying at the −1 boundary and the other being

numerically small and statistically insignificant. However, for employment it is the trend-cycle

correlation which is estimated at the −1 boundary, rather than the cycle-seasonal correlation.
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Table 2: Quarterly US Non-farm Payroll Employment: Estimation Results

Restriction(s) Imposed
Parameter All ρij = 0 ρτs = 0 ρτc = −0.99

στ 0.0156
(0.0297)

1.1896
(0.6015)

0.7531
(0.1399)

σc 0.5440
(0.0396)

1.5076
(0.7538)

0.9751
(0.1863)

σs 0.1557
(0.0169)

0.1465
(0.0260)

0.1113
(0.0141)

ρτc 0
(NA)

−1.0000
(0.0001)

−0.99
(NA)

ρτs 0
(NA)

0
(NA)

0.9995
(0.0180)

ρsc 0
(NA)

−0.0065
(0.0168)

−0.9914
(0.1755)

μ 0.4611
(0.0264)

0.4817
(0.0078)

0.4830
(0.0100)

φ1 1.6292
(0.0596)

1.3823
(0.1999)

1.5351
(0.0916)

φ2 −0.6360
(0.0600)

−0.3926
(0.2022)

−0.5449
(0.0924)

Log Lik. −321.420 −313.582 −301.796
2(LL− LL0) 15.676 26.588

p-value 0.0004 < 0.00001

Notes: Values in parentheses are standard errors; NA indicated not applicable, as the parameter value is

specified a priori ; 2(LL − LL0) gives twice the difference between value of the log likelihood and that of the

corresponding restricted model (the uncorrelated UC model for all except the final model estimated) denoted

LL0; for the final model the corresponding restricted model the correlation ρτc is restricted to −0.99, ρτs and

ρcs to zero; the p-value is computed by comparing 2(LL− LL0) to a χ2
2 distribution.
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This difference could be associated with the strength and nature of the seasonality in the

two series, which is relatively less marked for the employment series (see Figure 3). The final

model in Table 2 then imposes a trend-cycle innovation correlation of −0.99, with the results

again pointing to an SSE specification being preferred from the statistical perspective over

the other specifications. Also as for UK consumption in Table 1, the estimate of σs is fairly

robust across estimated models, but those for στ and σc (especially the former) are not.

Figure 3 displays the estimated components for the three models of Table 2. It is notable

that the uncorrelated UCmodel implies that employment is predominately above trend over an

extended period until the Great Recession, with the level subsequently below trend. However,

imposing ρτs = 0 indicates that the estimated trend largely coincides with observed levels

since 2010. The model based on ρτc = −0.99 is intermediate between these two cases, with

the recent employment gap being smaller than implied by the uncorrelated UC model. In

other words, the restrictions imposed on the disturbance correlations in the UC model has

substantive implications for trend estimates and consequently for estimates of the employment

gap, echoing the findings of MNZ, Morley and Piger (2012), and others.

This is seen more clearly in Figure 4, which shows the time series of estimated cycles for

the models of Table 2. In general, the timing of employment gap recessions (that is, negative

estimated cycle values) differ relatively little across the three specifications, although it is

notable that the model with the single restriction ρτs = 0 is the only one which detects a

recession in the mid-1970s and this specification also differs from the others in dating the Great

Recession to start in 2009Q4, one year later than the other specifications. Assumptions made

about the disturbance correlations, however, have more striking implications for the amplitude

of cyclical movements. In particular, the uncorrelated UC model estimates employment to

have been stuck at 8% below trend over an extended period from around 2010, whereas the

assumption that trend and seasonal disturbances are uncorrelated (but with ρ̂τc = −1) puts

the gap at little more than 1% and the SSE model finds this to be 5-6 percent. The extent

of these differences imply that employment gaps extracted from UC models should be used

with great care in policy making.
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Figure 3: Estimated trend, cycle and seasonal components in U.S. employment
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Notes. The first column shows estimated trend, cycle and seasonal components in U.S. employment for the
uncorrelated UC model, in the second column we impose ρτs = 0, and in the third ρτc = −0.99. The estimated
seasonal components in the bottom row vary by the quarter, which at times results in different intensity colors.
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Figure 4: Estimated cycles in U.S. employment
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Notes: Solid line: estimated cycle from the zero correlations model; dashed line: estimated cycle from the

model with ρτs = 0: dotted line: estimated cycle from the model with ρτc = −0.99.

It should be noted that these nontrivially different implications are not only a consequence

of the trend-cycle correlation (examined by MNZ and others), but also depend on the as-

sumption made about whether seasonality is uncorrelated with the other components. Hence

even though the estimated seasonal components for US employment are very similar across

specifications (and hence all models would result in very similar seasonally adjusted values),

correlations of the seasonal component with the trend and cycle components can substantially

alter the apparent characteristics of these other components. For example, policy prescrip-

tions adopted for the US economy could be very different for employment believed to be 8%

below trend compared with 1%.

Finally, the model that is central in the paper consists of a random walk with drift spe-

cification for the trend, a stationary AR(2) process for the cycle and seasonality in dummy
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variable form. Although the specification has been used frequently in empirical UC models of

e.g. US output, extensions covering the great recession should consider smoother definitions

of the trend components, like an I(2) process, the Hodrick-Prescott filter or the alternative

recently suggested by Hamilton (2017), which affects all components. We hope to explore this

line of research in future work.

6 Conclusion

This paper argues that seasonality is an inherent feature of the dynamic evolution of macroe-

conomic time series and, as such, should be considered by economists alongside trend and cycle

characteristics As discussed by Wright (2013), the sharp downturn associated with the Great

Recession has highlighted the importance of the treatment of seasonality and its mistreatment

can have important economic implications for analysis of the trend-cycle components.

We therefore extend the unobserved components specification widely used by macroe-

conomists for quarterly data to also take account of stochastic seasonality. Since distinct

streams of previous literature argue on economic and statistical grounds that, on the one

hand, innovations to trend and cycle components may be correlated and, on the other, that

seasonal and cycle components are related, our general model permits possible nonzero cor-

relations across the innovations for all three components. However, our analysis shows that

identification is not a straightforward extension of the trend-cycle case, due to the presence

of linear dependencies between the autocovariances in the companion reduced-form ARIMA

model. Simulations show estimation of the resulting under-identified model often leads to

spurious perfect negative innovation correlations, but imposing the true zero correlation of

the data generating process improves estimation.

Although the general correlated unobserved components model is under-identified, never-

theless the conventional uncorrelated UC model is over-identified. Therefore, the commonly-

made assumption of uncorrelated innovations is testable. As a minimum, the sensitivity of

extracted trend and cycle components to the correlation assumption can be established.
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In our applications we examine the role of the correlation assumption for UK quarterly

household consumption since 1955 and US quarterly non-farm payroll employment since 1948,

finding that the correlation assumption is, indeed, strongly rejected by the data. Imposition

of a zero correlation assumption between trend and seasonal innovations leads to an estimated

cycle-seasonal correlation of −1 for UK household consumption and an estimated trend-cycle

correlation of −1 for the US employment series. The latter outcome is largely in line with

(albeit a little stronger than) that found by researchers considering correlated trend-cycle

models for seasonally adjusted output data. Interestingly, imposition of the restrictions then

effectively yields a single source of error model for both series, in which all three components

are driven by a single shock. Put differently, with a perfect negative correlation between

cycle and seasonal for UK household consumption or trend and cycle innovations for US

employment, the seasonal innovations are also found to be perfectly correlated with the trend

and cycle innovations in quarterly employment. Although such perfect correlation may be

partly a consequence of estimates ‘piling up’ at boundary values, the improvements in fit over

the uncorrelated UC model are very substantial.

An important aspects of our analysis of employment concerns the sensitivity of the trend

and cycle estimates to the effective assumption made about seasonality. Although the estim-

ates of the (filtered) seasonal components are very similar across the three models examined,

the trend and cycle estimates are somewhat different in the period following the Great Re-

cession. In particular, the uncorrelated UC model implies a much deeper recession (the cycle

values being −8 percent or more from mid-2010) compared with the model whose perfectly

correlated trend-cycle innovations are uncorrelated with seasonal innovations (cycle values

around −1 percent). The (effective) single source of error model implies that the seasonal

component has information about the trend-cycle components, with a post-recession trend

intermediate between these other models and a recession with of depth 5 to 6 percent.

One underlying message of our analysis is that if seasonality is correlated with other com-

ponents of economic time series, then component extraction is statistically difficult. Neverthe-

less, imposing the conventional uncorrelated component assumption will not only be invalid
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when such correlation is present, but ignoring seasonality through the use of seasonally adjus-

ted data will throw away important information about the trend and cycle characteristics of

primary interest to macroeconomists. An alternative might be to use the seasonal adjustment

method without revisions of Abeln and Jacobs (2016).

Technical appendix

A Reduced Form Specification

As explained in the main text, the model examined for quarterly time series data consists of

a trend τt, a cycle ct and a seasonal st component, with

yt = τt + ct + st (A.1)

and

τt = τt−1 + β + ηt (A.2)

φ(L)ct = εt (A.3)

S(L)st = ωt (A.4)

where the pth order autoregressive (AR) polynomial φ(L) = 1−φ1L− . . .−φpL
p (L being the

usual lag operator) has all roots strictly outside the unit circle and S(L) = 1 + L + L2 + L3

is the annual summation operator for quarterly data. In practice, we consider p = 0, 1 or 2.

The paper analyses the implications for identification of relaxing the usual assumption

that the innovations in (A.2) to (A.4) are uncorrelated. Therefore, the paper considers a

general positive semi-definite covariance matrix for the innovation vector vt = (ηt, εt, ωt)
′,

namely where

Q ≡ E[vtv
′
t] =

⎡
⎢⎢⎢⎢⎣

σ2
τ στc στs

στc σ2
c σcs

στs σcs σ2
s

⎤
⎥⎥⎥⎥⎦ . (A.5)
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The assumption for the trend in (A.2) is that this process has a single zero frequency unit

root, while S(L) implies that the seasonal component (4) has unit roots at the annual and

semi-annual frequencies. Using the usual notation for differences together with the identity

Δ4 = (1−L)(1 +L+L2 +L3) = ΔS(L), the process for yt in (A.1) is seen to require annual

differencing (Δ4 = 1− L4) to render it stationary. Applying that transformation throughout

(A.1) leads to

Δ4yt = S(L)β + S(L)ηt +Δ4φ
−1(L)εt +Δωt

and hence

φ(L)Δ4yt = φ(L)S(L)β + φ(L)S(L)ηt +Δ4 εt + φ(L)Δωt. (A.6)

To obtain the reduced form ARIMA specification implied by (A.6), the left-hand side

is clearly an AR(p) in Δ4yt, while the right-hand side has constant δ = φ(L)S(L)β and a

moving average (MA) disturbance that arises from the sum

zt = φ(L)S(L)ηt +Δ4 εt + φ(L)Δωt

= (1− φ1L− ...− φpL
p)(1 + L+ L2 + L3)ηt + (1− L4)εt

+(1− φ1L− ...− φpL
p)(1− L)ωt. (A.7)

Note that the maximum lags on the trend, cycle and seasonal disturbances in (A.7) are p+3,

4 and p + 1, respectively. Therefore, the maximum lag for which zt can have a non-zero

autocovariance is max(p+3, 4) which implies that zt has a representation as an MA process.

This is discussed by Lütkepohl (1984) in the context of aggregating the components of a vector

MA process, and hence zt = θ(L)ut is MA(q) where

q ≤ max(p+ 3, 4) (A.8)

and ut is a white noise process. The variance of ut and the individual MA coefficients in

θ(L) depend in a non-trivial way on the properties of the individual component processes; see

Hamilton (1994, pp.102-107) for examples in the context of two uncorrelated MA processes.

29



To summarise, the reduced form representation of the UC model consisting of (1) to (A.4)

in which the covariance matrix of the component disturbances has the general form of (A.5)

is

φ(L)Δ4yt = δ + θ(L)ut, (A.9)

which is equation (9) of the main text. Hence Δ4yt is ARMA(p, q), with AR polynomial φ(L)

from the cycle component and MA order q satisfying (A.8).

B Identification

In the text we write the autocovariances of zt of (A.7) as

γ = Aσ (B.1)

where γ = [γ0, . . . , γq]
′, σ = [σ2

τ , σ
2
c , σ

2
s , στc, στs, σcs]

′ and A is a (q + 1)× (q + 1) matrix.

B.1 White noise cycle

For p = 0, (A.7) and (A.8) become

zt = S(L)ηt +Δ4 εt +Δωt

= ηt + ...+ ηt−3 + εt − εt−4 + ωt − ωt−1

and

q ≤ 4.
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The non-zero autocovariances of zt are then given by

γ0 = 4σ2
τ + 2σ2

c + 2σ2
s + 2στc + 2σcs

γ1 = 3σ2
τ − σ2

s − στs − σcs

γ2 = 2σ2
τ (B.2)

γ3 = σ2
τ + στs + σcs

γ4 = −σ2
c − στc − σcs.

Note that q = 4 except for the special case σ2
c = −(στc + σcs). Expression (12) of the main

text provides A of (11) for the matrix representation of the system (B.2).

B.2 AR(2) cycle

For p = 2, (A.7) and (A.8) become

zt = [1 + (1− φ1)L+ (1− φ1 − φ2)L
2 + (1− φ1 − φ2)L

3 − (φ1 + φ2)L
4 − φ2L

5]ηt

+[1− L4]εt + [1− (1 + φ1)L+ (φ1 − φ2)L
2 + φ2L

3]ωt. (B.3)

and

q ≤ 5.
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It is straightforward but somewhat tedious to show for this case that zt has autocovariances

γ0 = 2[2 + 2φ2
1 + 2φ2

2 − 3φ1 − 2φ2 + 3φ1φ2]σ
2
τ + 2σ2

c + 2[1 + φ2
1 + φ2

2 + φ1

−φ1φ2]σ
2
s + 2[1 + φ1 + φ2]στc + 2φ1(1− φ2)στs + 2σcs

γ1 = [3 + 3φ2
1 + 3φ2

2 − 6φ1 − 4φ2 + 6φ1φ2]σ
2
τ − [1 + φ2

1 + φ2
2 + 2φ1 − φ2 − 2φ1φ2]σ

2
s

+2φ2στc − [1 + φ2
1 + φ2

2]στs − [1 + φ1 + φ2]σcs

γ2 = 2[1 + φ2
1 + φ2

2 − 2φ1 − 2φ2 + 2φ1φ2]σ
2
τ + [φ1 − 2φ2 − φ1φ2]σ

2
s (B.4)

γ3 = [1 + φ2
1 + φ2

2 − 2φ1 − 3φ2 + 2φ1φ2]σ
2
τ + φ2σ

2
s − φ2στc

+[1 + φ2
1 + φ2

2 + φ2]στs + [1 + φ1 + φ2]σcs

γ4 = −[φ1 + 2φ2 − φ1φ2]σ
2
τ − σ2

c − [1 + φ1 + φ2]στc − φ1[1− φ2]στs − σcs

γ5 = −φ2σ
2
τ − φ2στc − φ2στs.

Analogously to p = 0 above, q ≤ max(p + 3, 4) takes its maximum value (now 5) except for

the special case σ2
c = −(στc + σcs). Thus, in general, zt is MA(5).

To simplify the expressions in (B.4) a little, in the text we define

B = 1 + φ2
1 + φ2

2

C = 1 + φ1 + φ2

D = φ1 + φ2 − φ1φ2.
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Hence the system of autocovariances can be written as

γ0 = 2[2B − 3D + φ2]σ
2
τ + 2σ2

c + 2[B +D − φ2]σ
2
s + 2Cστc + 2φ1(1− φ2)στs + 2σcs

γ1 = [3B − 6D + 2φ2]σ
2
τ − [B + 2D − 3φ2]σ

2
s + 2φ2στc −Bστs − Cσcs

γ2 = 2[B − 2D]σ2
τ + [D − 3φ2]σ

2
s (B.5)

γ3 = [B − 2D − φ2]σ
2
τ + φ2σ

2
s − φ2στc + [B + φ2]στs + Cσcs

γ4 = −[D + φ2]σ
2
τ − σ2

c − Cστc − φ1[1− φ2]στs − σcs

γ5 = −φ2σ
2
τ − φ2στc − φ2στs.

Expression (14) of the main text provides the matrix A of (11) for this system of equations.

Notes

1More fundamentally, Anderson and Moore (1979, pp.230-234) show that any UC model has a SSE rep-

resentation. However, the components of such an implied SSE representation may not have forms that are

plausible to economists. In contrast, we begin from widely used component specifications.

2Although not explicitly drawn out, McElroy and Maravall (2014) effectively also come to this conclusion

for the same model as we examine here.

3Note we could also specify a DGP with zero ρτc or ρcs, but ρτs = 0 appears the most plausible in that

previous analyses have found evidence of nonzero trend-cycle and cycle-seasonal correlations.

4Parameter estimates are retained only if the estimation ends as “normal convergence” and the number of

iterations does not exceed 1000.

5More detailed simulation analysis than possible here would be required to establish how the distribution

of this estimator is affected by the imposition of covariance restrictions for other realistic sets of parameter

values.

6UK household final consumption expenditure is a chained volume measure, reference year 2013, published

by the Office for National Statistics (series ABPB, not seasonally adjusted) in the United Kingdom Economic

Accounts time series dataset. US non-farm payroll employment is obtained form the Bureau of Labor Statistics

(series ID CEU0000000001 on their webpage) with the monthly series converted to quarterly by taking the

final month of each quarter.

7To quote Wright (2013, p.79) “amazingly, the Bureau of Economic Analysis stopped releasing NSA GDP

data some years ago, as a cost-cutting measure.”
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8Although standard errors are included for all estimated parameters, these may be unreliable when the

estimated values lie close to a boundary of the permissable range, including for correlation estimates close to

±1.
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