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1 Introduction

At the onset of the Covid-19 crisis, some sectors of the US economy (such as retail trade) experienced his-
torically high unemployment rates due to lockdown laws and social restrictions. Yet, other sectors (such
as food/grocery stores) grew employment to meet the surge in demand for their goods and services.
Overall, aggregate employment and real GDP decreased by 11.9% and 8.9%, respectively, over the sec-
ond quarter of 2020, though these figures mask substantial heterogeneity in unemployment and output
growth rates across sectors. Furthermore, sector-specific labor supply shocks induced output shortfalls
in neighboring industries as the production of vital intermediate inputs ground to a halt. Disruptions
along supply chains deepened the contraction, resulting in the sharpest quarterly decline in real GDP on
record (The Wall Street Journal, 2020). Therefore, to understand the macroeconomic impact of Covid-19,
it is important to understand the role of input-output linkages in amplifying the effects of the crisis.

We propose a framework that quantifies the contribution of sector-level supply chains to the decline
in real GDP at the start of the pandemic in the US. We derive three nonparametric production network
measures, which capture “network spillover”, “downstream”, and “feedback” effects of heterogeneous
sectoral shocks. Network spillovers encompass the indirect impact of shocks on real GDP, that is, through
output spillovers to other industries in the network. For example, a shock to industry i is said to have a
significant network spillover if it primarily affects final consumption indirectly through other sectors’ re-
liance on i’s product. Next, downstream effects entail the extent to which sectoral shocks transmit down
supply chains, from suppliers to customers. This measure quantifies the importance of a given sector’s
downstream customers in amplifying shocks. Finally, our measure of feedback effects isolates the role
of second, third, and higher-round effects of an initial sectoral disturbance. Intuitively, feedback occurs
if the shocked sector disrupts industries that it itself relies on for production, creating a propagation
channel back to the shocked sector and reducing output multiple times over.

In line with Baqaee and Farhi (2020a), Guerrieri et al. (forthcoming) and Baqaee and Farhi (2022),
we model Covid-19 disruptions as heterogeneous and sector-specific employment shocks. We focus
on the beginning of the pandemic when government-mandated lockdowns were first implemented to
stem the spread of the virus. Notably, our model-implied GDP decline (−8.70%) matches the observed
GDP growth rate over the second quarter of 2020 (−8.99%), as measured by the Bureau of Economic
Analysis (BEA), allowing for a meaningful decomposition. Our exercise reveals three key findings. First,
network spillovers account for ≈ 72% of the overall decline in GDP, translating to $1.19 trillion of lost
output. Second, employment shocks predominately affected final consumption by propagating down
supply chains: assuming a sector’s output is not used as an intermediate input by any other sector
reduces the aggregate impact of its shock by 77%, on average. Finally, the fall in aggregate output was
largely independent of shocked sectors’ reliance on upstream suppliers. Indeed, assuming no reliance on
intermediate inputs still explains, on average, 95% of a sector’s overall effect on GDP, implying higher-
order feedback is of little importance in explaining the contraction. Together, our findings highlight
key pathways through which sectoral shocks propagate and magnify through production networks,
consequentially affecting aggregate output.
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Our paper is most closely related to the literature that studies the role of input-output linkages as a
driver of aggregate fluctuations. Studies such as Long and Plosser (1983), Horvath (1998), Acemoglu et
al. (2012), Acemoglu et al. (2017), and Baqaee and Farhi (2019) characterize the conditions under which
microeconomic disturbances can propagate through the production network and impact aggregate vari-
ables such as GDP, employment and inflation. We contribute to this literature by showing how to iso-
late specific input-output linkages in the production network to quantify their systemic importance at
the macroeconomic level. We derive our theoretical results in the context of a constant-elasticity-of-
substitution (CES) production network model à la Atalay (2017), Baqaee and Farhi (2019) and Carvalho
et al. (2021), highlighting the assumptions required to implement our framework. We first define a
counterfactual production network that omits specific input-output links in order to isolate the network
spillover, downstream, and feedback effects of shocks. We then characterize the aggregate impact of
shocks in the actual (observed) economy and compare it with the outcome under the counterfactual
network structure. The difference between these two effects underscores the importance of the omitted
linkages. We take Hulten’s (1978) theorem as the starting point of our analysis, which states that labor
income as a share of nominal GDP sufficiently characterizes the first-order impact of labor-augmenting
shocks on real GDP.1 Notably, a sector’s sales as a share of GDP (also known as its Domar weight) suf-
ficiently summarizes all direct and indirect pathways through the network of a given sector to final
demand (Acemoglu et al., 2012). We show that a sector’s labor income share implicitly embodies its
Domar weight, allowing us to isolate the three key network effects which are the central focus of this
paper.

A running theme in the production networks literature is the quantitative importance of input-output
linkages in generating aggregate fluctuations (see, for example, Foerster et al., 2011, di Giovanni et al.,
2014, di Giovanni et al., 2018, Atalay, 2017, Grassi, 2017, Baqaee, 2018, Altinoglu, 2021, and Huo et
al., 2022). In line with this literature, we find input-output linkages amplified the negative impact of
sectoral Covid shocks. Under a counterfactual where shocks cannot propagate through the network,
we find GDP would have only declined by one-quarter of the observed rate (or ≈ -2.25%). This result
underscores the importance of accounting for the production network in multi-sector macroeconomic
models.

Our paper also relates to the literature on the macroeconomic impact of Covid-19. Particularly rele-
vant is Barrot et al. (2021), who study the effects of reductions in labor supply in response to nonessential
business shutdowns and school closures. Using a production network model of the US economy, they
find that labor supply shocks reduce GDP by approximately 30%. We contribute to this literature by
providing an ex-post decomposition of aggregate output, highlighting the specific sectors that amplified
Covid-19 disruptions through input-output linkages. In particular, we find that the most significant con-
tributors to the contraction were food and beverage industries, employment services, accommodation,
and transportation industries. Relatedly, Bonadio et al. (2021) study the impacts of Covid-19 using a

1Baqaee and Farhi (2020b) generalize Hulten’s aggregation theorem to inefficient production network economies. The
authors find that cost-based Domar weights are the correct statistics for aggregating productivity shocks in the presence of
distortions.
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global production network model and calibrated labor supply shocks. The authors find that lifting lock-
downs in the largest economies would have increased the GDP growth of these countries’ smaller trade
partners by up to 2.5%. Our counterfactual analysis in Section 4 quantifies each US sector’s contribution
to real GDP in the absence of downstream (upstream) linkages. We find that shocks to industries such as
apparel, leather, and allied product manufacturing would have decreased GDP by only 13% (88.9%) of
the actual effect had downstream (upstream) sectors not been reliant upon these manufacturing indus-
tries. Crucially, our framework not only identifies the most significant sectors but also provides insight
into why these industries were so influential in shaping aggregate output. Other papers that study the
economics of Covid-19 include Eichenbaum et al. (2020), Guerrieri et al. (forthcoming), Kaplan et al.
(2020), Fornaro and Wolf (2020), Carvalho et al. (2020), Bodenstein et al. (2020), Baqaee and Farhi (2020a),
Baqaee et al. (2020), and Baqaee and Farhi (2022), among others. Our paper complements this literature
by identifying the various network channels that amplified disruptions caused by the pandemic.

The outline of the paper is as follows. In Section 2, we present our three network measures and
discuss their interpretation. In Section 3, we set up the model, characterize the equilibrium and introduce
a variant of Hulten’s theorem that serves as the basis of our empirical application. In Section 4, we
derive the three network effects and highlight their usefulness in an application to Covid-19. Section 5
concludes. Proofs and supplementary results are relegated to the Appendix.

2 Production Network Measures

In this section, we provide intuition for the three measures that deconstruct the aggregate effects of
sector-specific disruptions due to Covid-19. The measures capture i) the spillover effect of the shock, ii)
the downstream propagation effect, and iii) the feedback effects that reverberate through the production
network back to the disrupted sector.

Network Spillovers. Our measure of network spillovers captures the total indirect effect of a labor shock
to sector i on final demand. For example, if a negative shock to i reduces real GDP because many other
industries rely on i (directly or indirectly) for intermediate inputs, then sector i will have a consequential
spillover effect. In other words, GDP is affected not because households directly consume i’s product
but because they consume products that depend upon the supply of good i.

Panels A and B of Figure 1 graphically illustrate our measure of network spillovers. Panel A shows
a complete production network, where all input-output relationships between sectors are observed. Un-
der this network structure, sectoral labor shocks can propagate to any other industry, directly and in-
directly affecting household consumption. By contrast, Panel B shows a “self-sufficient” economy in
which sectors do not rely on one another to produce. In this economy, shocks to sectors 1,2, ...,N im-
pact GDP directly by affecting the final consumption of goods produced by these sectors; propagation to
other industries is not possible under this counterfactual structure. Network spillovers comprise only
the propagation to other sectors, omitting the direct effect of shocks. In this sense, the aggregate im-
pact of output disruptions in the complete production network, less the direct effect captured by the
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Figure 1: Visual Decomposition of a Production Network
Note: The lilac nodes, F, are a composite of factors (including labor), and the red nodes, H, represent the household. Blue (red)
arrows indicate the flow of goods to (away from) producer 1, respectively.

self-sufficient economy, delivers the network spillover effect.

Downstream Effects. Our second construct, the downstream effect, measures the aggregate importance
of a given sector’s downstream customers in amplifying its shock. For example, suppose sector i is a
consequential input supplier to many other sectors of the economy. In that case, a disturbance to i will
propagate down the supply chain, decreasing the output of i’s customers and ultimately contracting
aggregate output. The more significant a sector’s downstream effect, the greater the importance of the
industry as an intermediate input supplier to other producers.

The downstream effect corresponds to the network shown in Panel C of Figure 1, where shocks
cannot propagate to downstream customers. Under this production structure, a disruption to sector
1 only impacts final consumption, not the output of sector 1’s customers. The difference between the
impact on real GDP under the complete production network (Panel A) and the “use-only economy”
(Panel C) delivers the importance of downstream linkages. This difference captures all propagation
effects attributed to sector 1’s role as an input supplier to other industries.2

Feedback Effects. Our third measure, the feedback effect, captures the role of higher-order feedback in
generating aggregate output fluctuations. The intuition is as follows. When sector i uses intermediate
inputs from other sectors, a negative shock to i will propagate throughout the economy and reverberate
back to i via its upstream linkages. This process occurs ad infinitum whenever a shock indirectly impacts
at least one of i’s upstream suppliers. The greater the reliance of i on intermediates from other sectors,
the more significant the feedback effect of the shock to i.

Feedback effects relate to the network shown in Panel D of Figure 1, whereby the upstream linkages
of sector 1 are severed. In this economy, a negative shock to sector 1 cannot propagate back to sector
1 and reduce its output a second time. In this sense, there are no feedback effects under this structure.

2Note that in the economy shown in Panel C of Figure 1 sector 1 uses intermediates from other industries but does not
supply intermediates.
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The impact of a shock in the complete production network economy of Panel A, less the effect of the
same disturbance in the “endowment economy” of Panel D, captures the importance of feedback effects
in amplifying Covid-19 disruptions.3 Put another way, feedback effects capture the role of upstream
input-output linkages in the propagation of shocks.

In the next section, we provide a theoretical framework that allows us to extract these network effects by
comparing the observed economy with a counterfactual economy that omits specific links. The difference
between the aggregate effect of shocks in the actual and counterfactual economies delivers the extent of
network spillovers, downstream, and feedback effects.

3 Model

We outline a general equilibrium model of production networks à la Long and Plosser (1983) and Ace-
moglu et al. (2012) to derive the three network measures discussed in the previous section. To this end,
we first set up the environment and define the equilibrium. Then, building on Hulten’s theorem, we
show how to derive each measure by first defining a counterfactual network structure.

3.1 Environment and Equilibrium

Production. There are N sectors in the economy, each producing one distinct good using capital, labor,
and intermediate goods. Following Wasmer (2006), we assume the existence of employees with either
specific or general skills. In our model, each sector is endowed with a quantity of specific labor LiS and
general labor LiG, where the endowment of each labor type is proportional to the sector’s output. Unlike
specific labor, the importance of general labor in each sector’s production process is constant across all
sectors and is captured by the parameter µG. By contrast, the importance of sector i’s specific labor is
governed by µi, which is a parameter unique to sector i. Output (yi) is produced using labor (LiS, LiG),
intermediate goods ({xi j}N

j=1) and capital (Ki). Producer i’s technology is described by a constant-returns
CES production function of the form

yi =

(
µ

1
θ

i (ziLiS)
θ−1

θ +µ
1
θ

G L
θ−1

θ

iG +ω
1
θ

iKK
θ−1

θ

i +
N

∑
j=1

ω
1
θ

i j x
θ−1

θ

i j

) θ

θ−1

where ωi j is a parameter measuring the importance of sector j’s product in i’s production process. The

term ω
1
θ

iKK
θ−1

θ

i relates to sector i’s capital use. In particular, ωiK captures the intensity with which capital is
used to produce good i. Finally, zi is a sector-specific labor shock, where zi < 1 captures an exogenous re-
duction in sector i’s specific labor endowment due to Covid-19 disruptions. A similar approach to mod-
eling the pandemic is adopted by Baqaee and Farhi (2022) and Guerrieri et al. (forthcoming), although

3Our choice of terminology reflects the idea that under this production structure, producer i is treated as if it were a factor
of production that transforms primary inputs into output but does not itself demand intermediates.

6



these studies do not distinguish between sector-specific and general labor.4 Shocks to sector-specific la-
bor capture the idea that some occupations experienced higher unemployment rates than others at the
onset of the pandemic due to the feasibility of working from home (Dingel and Neiman, 2020). For sim-
plicity, we assume sectors’ endowment of general labor to be fixed exogenously, invariant to Covid-19
disruptions. Therefore, the only perturbation in the model is to sector-specific labor.
The profits earned by sector i are

πi = piyi−wiLiS−wGLiG− rKi−
N

∑
j=1

p jxi j

where wi (wG) is the wage of labor type i (general labor), r is the rental price of capital and p j is the price
of good j. The market-clearing conditions for goods 1≤ i≤ N, and capital are

yi = ci +
N

∑
j=1

x ji and
N

∑
i=1

Ki = K

where ci is the household’s consumption of good i, and K is the aggregate supply of capital (which is
inelastically supplied).

Households. The representative household has CES preferences over final goods and maximizes its
utility U subject to its budget constraint. Formally, the household’s problem is

max
{ci}N

i=1

U =

(
N

∑
i=1

a
1
σ

i c
σ−1

σ

i

) σ

σ−1

subject to
N

∑
i=1

wiLiS +
N

∑
i=1

wGLiG +
N

∑
i=1

rKi =
N

∑
i=1

pici

where ai is a consumption weight and σ is the elasticity of substitution between final goods.

Real GDP. We define changes in real GDP using the Divisia index

d logY =
N

∑
i=1

bid logci

where bi ≡ pici/GDP is the household’s expenditure on good i as a fraction of nominal GDP. Notably,
changes in real GDP and welfare coincide in our model. In what follows, we characterize the impact of
labor shocks on real GDP, which is the central object of our analysis.

Equilibrium. The competitive equilibrium is defined such that producers maximize profits taking
prices as given, the representative household maximizes utility subject to its budget constraint, and
the markets for capital and goods 1≤ i≤ N clear.

4Relatedly, Barrot et al. (2021) compute labor shocks as the number of workers forced into inactivity due to school closures
plus the number of workers in nonessential sectors that could not work from home during the pandemic. However, since our
Covid-19 application is ex-post, we remain agnostic regarding the exact cause of labor supply contractions across sectors.
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3.2 Input-Output Definitions

Before discussing our theoretical results, we introduce some input-output notation. Specifically, we
define the economy’s input-output and Leontief inverse matrices, Domar weights, and sector-specific
labor and final goods expenditure shares, all of which are measured at the initial (pre-shock) equilibrium.

Final expenditure shares. Let b be an N × 1 vector of final expenditure shares, whose ith element is
defined as

bi =
pici

∑
N
j=1 p jc j

.

The numerator is the household’s expenditure on good i, and the denominator is nominal GDP. A given
element bi measures the importance of sector i’s product in the household’s consumption in equilibrium.

Labor expenditure shares. We also define an N × 1 vector of sector-specific labor expenditure shares ΛΛΛ,
with ith element given by

Λi =
wiLiS

piyi
.

The vector ΛΛΛ captures each sector’s expenditure on specific labor as a fraction of its total sales. Notably,
the assumption that LiS is endowed in proportion to i’s size (yi) allows us to isolate the role of the inter-
mediate goods network in shaping real GDP in response to labor shocks.5

Domar weights. We define an N×1 vector of Domar weights (or sales shares) λλλ ≡ [λi], where

λi =
piyi

∑
N
j=1 p jc j

and ∑
N
i=1 λi > 1 when there are intermediates. Domar weights summarize all direct and indirect paths

from sector i to final demand. The network measures discussed in Section 2 can be interpreted as de-
compositions of the Domar weight vector λλλ .

Input-output matrix. Let ωωω ≡ [ωi j] be the economy’s N ×N input-output matrix, which captures all
direct interdependencies between sectors of the economy. The input-output matrix ωωω has a N×N general
equilibrium counterpart, denoted by ΩΩΩ, with a generic element given by

Ωi j =
p jxi j

piyi
.

Notably, Ωi j captures the expenditure by sector i on sector j’s product as a fraction of sector i’s total
revenue and is a measure of the direct exposure of sector i to sector j in terms of revenues/costs (see

5The assumption that LiS/yi is constant across all sectors i can be relaxed without qualitatively bearing on our results in
Section 4.
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Carvalho and Tahbaz-Salehi, 2019, Baqaee and Farhi, 2019 and Baqaee and Farhi, 2020b for a more de-
tailed discussion of the input-output matrix and its properties).

Leontief inverse. Associated with ΩΩΩ is an N×N Leontief inverse matrix ΨΨΨ≡ [Ψi j], defined as

ΨΨΨ≡ (I−ΩΩΩ)−1 = I +ΩΩΩ+ΩΩΩ
2 + ...

The i jth element of the Leontief inverse ΨΨΨ records all direct and indirect linkages connecting sector j to
sector i in equilibrium. Specifically, (ΩΩΩn)i j measures the weighted sum of all paths of length n linking
sector j to sector i through the production network. The Leontief inverse is related to the notion of influ-
ence in Acemoglu et al. (2012), capturing the systemic importance of any given production unit.

From the goods market-clearing condition yi = ci + ∑
N
j=1 x ji, we derive the following identity linking

Domar weights to the Leontief inverse6

λi =
N

∑
j=1

b jΨ ji. (1)

Equation (1) highlights that sector i’s Domar weight captures all the possible ways that final demand is
linked to industry i through the production network. In the following section, we exploit the relationship
between Domar weights and the Leontief inverse in deriving our network measures.

3.3 Theoretical Results

In this subsection, we introduce a variant of Hulten’s (1978) theorem for a sector-specific labor shock
d logzi, which forms the basis of our empirical application.

Theorem 1. The first-order macroeconomic impact of a shock d logzi is given by

d logY
d logzi

= Λiλi (2)

where Λiλi is sector i’s expenditure on specific labor, as a fraction of nominal GDP.

Proof. See Appendix A.

Equation (2) states that i’s specific-labor costs as a share of GDP sufficiently characterize how a labor
shock to i impacts real GDP to a first-order of approximation. This result is a variant of Hulten’s theorem,
which summarizes the impact of a Hicks-neutral productivity shock to a producer on real GDP by that
producer’s nominal sales as a fraction of GDP.

6Multiplying both sides of yi = ci +∑
N
j=1 x ji by pi ·GDP−1, we can write λi = bi +∑

N
j=1 λ jΩ ji. Writing this new equation in

matrix form and solving for the vector of Domar weights, we get λλλ
′ = b′ΨΨΨ, where the ith element is given by equation (1).
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Equation (2) is the natural starting point for our analysis since it characterizes the elasticity of ag-
gregate output with respect to a sector-specific shock d logzi in terms of the economy’s input-output
network. To measure the spillover, downstream, and feedback effects of shocks, we first construct coun-
terfactual production networks that omit specific input-output linkages. Then, we compute each sector’s
Domar weight under the new network structure, allowing us to measure the importance of the omitted
links by comparing the counterfactual Domar weights with the economy’s actual Domar weights. Coun-
terfactual Domar weights are unobservable, and we characterize them in terms of observable statistics
such as intermediate and final good expenditure, allowing their computation. However, before deriving
our network measures, we provide two interim results that enable us to implement our approach. The
first result, Proposition 1, shows that the economy’s sector-specific labor shares {Λi}N

i=1 are independent
of the structure of the production network.

Proposition 1. The economy’s sector-specific labor shares {Λi}N
i=1 are invariant to the structure of the interme-

diate goods network ωωω ,

Λi = Λ̃i = α
θ−1

θ µ
1
θ

i z
θ−1

θ

i

where Λ̃i is the labor share of sector i under the network structure ω̃ωω 6= ωωω , and α is a constant given by

α =
L1S

y1
=

L2S

y2
= ...=

LNS

yN
=

L̃1S

ỹ1
=

L̃2S

ỹ2
= ...=

L̃NS

ỹN

Proof. See Appendix A.

In Proposition 1, tilde variables represent quantities in the counterfactual economy defined by the pro-
duction network ω̃ωω that is different from ωωω . The result highlights that each sector i’s labor expenditure
share depends on the importance of labor in i’s production process µi, i’s initial productivity level zi,
the elasticity of substitution θ , and an economy-wide constant α that is invariant to the structure of the
input-output network.7 Crucially, since we assume µi, zi, and θ to be the same in the economies defined
by ω̃ωω and ω̃ωω , it follows that Λi is not a function of ωωω . Put another way, changes in ωωω will materialize as
changes in the Domar weights {λi}N

i=1 and not in the labor expenditure shares {Λ}N
i=1.

The second key result, Proposition 2, allows us to measure each network effect using observed infor-
mation on final and intermediate goods expenditure.

Proposition 2. For some arbitrary linear transformation of the input-output matrix T (ωωω), the equilibrium
input-output network and final expenditure shares are respectively given by

T (ΩΩΩ) and b.

7For example, suppose ω̃ωω is a null matrix, meaning there are no intermediate goods in the economy. Then, ỹi = c̃i < yi for
all i. Therefore, in the economy characterized by ω̃ωω , each sector’s specific labor endowment is less than or equal to that of an
economy with intermediates, L̃iS ≤ LiS for all i. However, the ratio of specific labor to output is the same in both economies
LiS
yi

= L̃iS
ỹi

for all sectors i. Furthermore, the initial level of real GDP is the same in both economies.
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Proof. See Appendix A.

Proposition 2 states that for any linear transformation of the economy’s input-output matrix ωωω , we can
apply the same transformation to the economy’s equilibrium input-output matrix ΩΩΩ. This result provides
a direct mapping between ωωω and ΩΩΩ, meaning counterfactual Domar weights can always be expressed in
terms of observed equilibrium input-output parameters. To see this, recall that sector i’s Domar weight is
given by λi =∑

N
k=1 bkΨki =∑

N
k=1 bk (I−ΩΩΩ)−1

ki . Proposition 2, therefore, implies that we can always compute
i’s counterfactual Domar weight as λ̃i = ∑

N
k=1 bk (I−T (ΩΩΩ))−1

ki for some counterfactual network defined by
ω̃ωω = T (ωωω). Additionally, the linear transformation has no impact on the final expenditure shares {bi}N

i=1

since these depend solely on the weights in the consumption aggregator {ai}N
i=1.

4 Measuring Network Effects and Application to Covid-19

In this section, we derive our three network measures (discussed in Section 2) that respectively quantify
the importance of network spillovers, downstream propagation, and feedback effects in shaping the
response of real GDP to Covid-19 disruptions. We begin with a description of the data before deriving
each measure and discussing the related empirical results.

4.1 Data

We use 2019 input-output data from the Bureau of Labor Statistics (BLS), which contains inter-industry
data for 205 industries/commodities.8 After dropping government and “special” sectors, we are left with
181 industries (excluding the final demand sector).9 The final expenditure shares (bi’s) are calibrated
using final consumption data in the 2019 use matrix.

Using data from the BLS, we calibrate our model to match each industry’s end-of-period change in
employment between Q1 and Q2 of 2020. Lockdown laws, government-mandated working-from-home
orders, and behavioral responses to the fear of contagion resulted in substantial (and heterogeneous)
changes in the quantity of labor supplied across sectors. For example, the motion picture, video, and
sound recording industries (NAICS 512) experienced a 52% decline in the raw number of employees,
whereas couriers and messengers’ (NAICS 492) employment increased by over 6%.10

For most sectors, employment is measured at the four-digit NAICS level. Where possible, we match
sectors for which we have employment data directly to those in the input-output table. However, in

8BLS input-output data are more disaggregated than the annual BEA input-output tables, which only contain data for 71
industries. Furthermore, we use 2019 input-output data since Covid disruptions likely altered the structure of the intermediate
goods network in the latter half of 2020. Using the 2019 input-output table allows us to accurately capture the system of
intersectoral relationships at the onset of the pandemic.

9These sectors are owner-occupied dwellings, noncomparable imports, scrap, used and secondhand goods, and rest of the
world adjustment.

10We view labor supply contractions as the driving force behind the heterogeneity in sectoral output decline. Richer models
(similar to that of Baqaee and Farhi, 2020a) can also capture how changes in the composition of households’ demand for final
goods affect the aggregate output function. The treatment of unstable final demand is outside the scope of this paper.
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some cases, we do not have data at the same level of disaggregation as the input-output table. To correct
this, we assign the average employment change at the lowest common level of disaggregation. For
example, we do not have employment numbers for agencies, brokerages, and other insurance-related
activities (NAICS 5242), so we assign the average change in employment for the finance and insurance
industry (NAICS 52) as a whole. Finally, labor income shares are calibrated using 2019 BLS KLEMS data.
Again, when there is no data at the four-digit NAICS level, we assign the average share at the lowest
level of disaggregation. This process allows us to estimate labor income shares for all 181 sectors.

4.2 Network Measures and Empirical Results

Aggregation. To provide a benchmark for our decomposition, we use equation (2) to first get an ex-
pression that allows us to estimate the total impact of the shocks on real GDP: ∆ logY = ∑

N
i=1 Λiλi ·∆ logzi.

Plugging sectoral employment growth rates from the BLS into the above expression suggests a quarter
over quarter (Q/Q) real GDP contraction of −8.70%.11 Comparatively, the Q/Q real GDP growth rate
for 2020Q2, as measured by the BEA, was −8.99%.12

Network Measures. We now derive each network measure and present our empirical results. As dis-
cussed above, our approach relies on defining a production network that omits specific input-output
linkages and characterizing the economy’s Domar weights under this counterfactual structure. Compar-
ing the aggregate impact of employment shocks under the counterfactual network with the actual effect
(as measured by d logY

d logzi
= Λiλi) gives a measure of the aggregate importance of the omitted links.

Measure 1: Network Spillovers. As discussed in Section 2, the network spillover effect captures the
total indirect effect of a labor shock to sector i on final demand. To measure network spillovers resulting
from labor shocks, we diagonalize the input-output matrix, defining the counterfactual network as ωωωNS≡
diag(ωωω) and characterize the economy’s Domar weights under ωωωNS. The extent to which the shock to i

affects real GDP in the observed economy (Λiλi), less the impact of the shock under the counterfactual
economy ωωωNS, delivers the network spillover resulting from the shock. Formally, the network spillover
effect of a labor shock to industry i is defined

Network Spilloveri ≡ Λi
(
λi−λ

NS
i
)
·∆ logzi (3)

where λ NS
i is sector i’s Domar weight under the input-output network structure ωωωNS = diag(ωωω). While

the Domar weights {λ NS
i }N

i=1 are unobserved, by applying Proposition 2, these statistics can be con-
structed using observed sector-level input-output and final expenditure data.

11In Table B.1 in Appendix B, we show that the model generates a real GDP decline of 11.75% when we compute the shocks
as average (as opposed to end-of-period) employment changes. Specifically, we first calculate mean employment between
January to March (Q1) and April to June (Q2) and then take the (log) difference between these average employment figures.

12For the same period, the annualized GDP growth rate according to the BEA is −32.9%. Our aggregation equation implies
an annualized real GDP growth rate of −30.5%.
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Remark 1. The Domar weights {λ NS
i }N

i=1 are given by

λ
NS
i =

N

∑
j=1

b j (I−diag(ΩΩΩ))−1
ji .

The above result is a direct consequence of equation (1), which states that an industry’s Domar weight
can be expressed in terms of final expenditure shares and the Leontief inverse. Under ωωωNS, the jith ele-
ment of the Leontief inverse is given by (I−diag(ΩΩΩ))−1

ji , which can be constructed directly from the BLS
input-output data, allowing for the computation of λ NS

i . Notably, as Network Spilloveri tends towards
Λiλi, indirect spillovers increasingly account for the aggregate impact of the labor shock to sector i.

Network Spillovers: Empirical Results. Using equation (3), we first estimate aggregate network spillovers
resulting from the labor shocks to be

N

∑
i=1

Λi(λi−λ
NS
i ) ·∆ logzi ≈ 72%.

Remarkably, nearly three-quarters of the aggregate output decline is attributed to spillover effects. It
is important to note that there is no a priori reason to expect network spillovers to be substantial. The
result reflects the fact that a large volume of intermediate goods is traded between producers in the US;
the aggregate gross output to GDP ratio is approximately 1.8, suggesting intermediate sales are almost
equal to final expenditure.13

Figure 2 shows the top twenty sectors by contribution to the output decline. Each bar measures a sec-
tor’s total effect (as measured by Hulten’s theorem, equation (2)), which is decomposed into the network
spillover and direct effects.14 The most important sectors are food services, accommodation, manufac-
turing, construction, and transportation, all of which (except for construction) experienced employment
declines of more than 10%. A key revelation is the substantial heterogeneity of network spillover effects
across sectors. For example, apparel, leather, and allied product manufacturing industries primarily af-
fect GDP indirectly through the network, recording a network spillover of 96.4%. In contrast, only 13.3%
of wholesale trade’s total effect can be accounted for by its network spillover.

13Our estimate of aggregate network spillovers uses seasonally-adjusted employment series from the BLS. Table B.1 in
Appendix B shows that the result holds for unadjusted sectoral employment data. Model-implied GDP growth is −7.29% and
network spillovers account for (−5.25%/−7.29%) = 72% of the total effect when we use the unadjusted series. Panels B and C
of Table B.1 also report the GDP growth rate and extent of network spillovers in the third and fourth quarters of 2020. Network
spillovers account for 68% and 65% of the total effect in Q3 and Q4, respectively.

14Figure B.1 in Appendix B plots the employment shocks to the same twenty sectors.
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Figure 2: Network Spillover and Direct Effects of Heterogeneous Employment Shocks
Note: Each bar decomposes the total change in GDP growth (associated with a labor shock to the sector listed on the vertical
axis) into its network spillover (red bar) and direct (blue bar) components. Percentages to the right of each bar state the network

spillover effect as a percentage of the total impact, or Λi(λi−λ NS
i )

Λiλi
×100. Only the top 20 sectors (by the total impact on GDP) are

shown.

Measure 2: Downstream Effect. Our second construct, the downstream effect, measures the aggregate
importance of a given sector’s downstream customers in amplifying its shock. The difference between
the impact on real GDP in the observed economy and a counterfactual economy where sector i does not
supply intermediate goods to other industries measures the importance of downstream propagation.
To measure the downstream effect of a shock to i, we define an input-output network ωωωD

(i) = ωωω −ωωω(i)

where ωωω(i) is an N×N matrix with the ith column equal to that of ωωω and zeros elsewhere. We construct N

matrices of this kind, each corresponding to a different sector of the economy. The downstream effect of
a labor shock to sector i is defined

Downstream E f f ecti ≡ Λi
(
λi−λ

D
i
)
·∆ logzi
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Figure 3: Downstream Effects of Employment Shocks
Note: Yellow bars measure the macroeconomic impact of each sector’s shock. Red bars capture the shock’s impact, assuming
intermediates are not supplied to downstream industries, as measured by Λiλ

D
i . Percentages at the end of each bar show the

GDP decline in the absence of downstream linkages as a fraction of the total impact under the “complete production network”
of Figure 1, Panel A.

where λ D
i is sector i’s Domar weight under the input-output network structure ωωωD

(i). By exploiting the
direct mapping between ωωωD

(i) and the corresponding equilibrium input-output matrix
(
ΩΩΩ−ΩΩΩ(i)

)
, the

Domar weights {λ D
i }N

i=1 are computed as in the following remark.

Remark 2. The Domar weights {λ D
i }N

i=1 are given by

λ
D
i =

N

∑
j=1

b j
(
I−
(
ΩΩΩ−ΩΩΩ(i)

))−1
ji .

The Leontief inverse matrix associated with ωωωD
(i) is

(
I−
(
ΩΩΩ−ΩΩΩ(i)

))−1, and (as with our previous mea-
sures) is built from the BLS input-output data. Large downstream effects (which are recorded when
Downstream E f f ecti approaches Λiλi) imply propagation to downstream customer sectors is an increas-
ingly important determinant of real GDP fluctuations.
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Downstream Effect: Empirical Results. Figure 3 highlights the significance of downstream linkages
in propagating sector-specific employment shocks. The yellow bars reflect the percentage change in real
GDP due to sector-specific Covid disruptions over the second quarter of 2020. The red bars estimate the
percentage change in GDP in the absence of downstream linkages. Percentages at the end of each bar
measure the counterfactual GDP decline as a fraction of the total effect. The smaller these percentages
are, the more substantial is the downstream propagation resulting from the sector’s shock. As the figure
shows, for many industries, downstream effects explain a large proportion of the total impact of the em-
ployment shocks. For example, air transportation records a downstream effect of (100%− 47.4%)=52.5%.
Intuitively, if other sectors did not rely on air transportation services, real GDP would have only declined
by less than half of the actual decline. More than 50% of the output reduction is attributed to other in-
dustries’ reliance on air transportation. This striking result underscores the importance of accounting
for the flow of intermediate goods when making quantitative predictions about the welfare effects of
sectoral disturbances. Other industries with substantial downstream effects include the apparel, leather,
and allied product manufacturing sector (96.8%), support activities for mining (90.3%), and transit and
ground passenger transportation (80.9%). On average, omitting the downstream propagation of shocks
reduces a sector’s aggregate impact by 76.7%, attesting to the significance of this channel.

Measure 3: Feedback Effect. Our final construct, the feedback effect, captures the role of higher-order
feedback in generating aggregate output fluctuations. If sector i relies on inputs from other industries
to produce, a labor shock to i propagates throughout the network and reverberates back to i through
its upstream input-output linkages. We call this a feedback effect since the shock has a second-round
impact on i’s output. In the presence of upstream linkages, feedback occurs ad infinitum.

To measure the impact of feedback effects on real GDP, we define an input-output matrix in which
sector i does not depend upon intermediate inputs from any other sector. Formally, we define an input-
output network ωωω

(i)
F = ωωω−ωωω(i) where ωωω(i) is an N×N matrix with the ith row equal to that of ωωω and zeros

elsewhere. There are N matrices of this kind, one for each sector. The feedback effect of a sector-specific
labor shock to sector i is then defined as

Feedback E f f ecti ≡ Λi
(
λi−λ

F
i
)
·∆ logzi (4)

where λ F
i is sector i’s Domar weight under the input-output network structure ωωω

(i)
F . The difference

λi− λ F
i captures the total impact of feedback of a shock to sector i. As with our measure of network

spillovers and downstream effects, the Domar weights {λ F
i }N

i=1 are unobserved and must be constructed
using observed input-output and final expenditure data.

Remark 3. The Domar weights {λ F
i }N

i=1 are given by

λ
F
i =

N

∑
j=1

b j

(
I−
(

ΩΩΩ−ΩΩΩ
(i)
))−1

ji
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Figure 4: Feedback Effects of Employment Shocks
Note: Yellow bars capture the macroeconomic impact of each sector’s shock. Black bars signify the effect of the shock, assuming
no reliance on upstream sectors. Percentages at the end of each bar show the GDP decline in the absence of upstream linkages
as a fraction of the total impact under the “complete production network” of Figure 1, Panel A.

By Proposition 2, the direct mapping between ωωω
(i)
F and the corresponding equilibrium input-output ma-

trix,
(

ΩΩΩ−ΩΩΩ
(i)
)

, implies the Leontief inverse
(

I−
(

ΩΩΩ−ΩΩΩ
(i)
))−1

can again be computed from the BLS
input-output data, thus permitting the measurement of λ F

i . As Feedback E f f ecti approaches Λiλi, real
GDP is increasingly influenced by higher-order feedback in response to the shock to i.

Feedback Effect: Empirical Results. As Figure 4 shows, feedback effects are relatively unimportant in
explaining the aggregate output decline resulting from Covid-19 disruptions. In the figure, the yellow
bars measure each sector’s contribution to the total output decline (similar to Figure 2 and Figure 3),
whereas the black bars capture the counterfactual change in real GDP in the absence of upstream link-
ages. Percentages at the end of each bar express the counterfactual GDP growth rate (without feedback
effects) as a fraction of the total effect. The smaller this percentage, the greater the importance of up-
stream linkages in amplifying the sector’s shock. Figure 4 shows some heterogeneity in feedback effects
across sectors. For example, the apparel, leather, and applied manufacturing sector records a feedback
effect of (100% − 88.9%) = 11.1%, suggesting the industry’s consumption of intermediates from indus-
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tries such as textile mills and textile product mills, and printing and related support activities (among
others) to be crucial for the production of apparel. Other sectors with non-negligible feedback effects
include spectator sports (9.4%), motion picture, video, and sound recording industries (8.9%), employ-
ment services (6.5%), and wholesale trade (4.1%). Overall, however, feedback effects do not appear to be
consequential in explaining the observed output decline. Assuming no reliance on intermediate inputs
still explains, on average, 95% of a sector’s overall effect on GDP.

5 Conclusion

We present a theoretical framework to study the role of the US intermediate goods network in amplifying
Covid-19 disruptions at the onset of the pandemic. We derive three nonparametric network measures
using a CES production network model, which captures “network spillover”, “downstream”, and “feed-
back” effects of heterogeneous sectoral labor shocks. Our quantitative exercise reveals the aggregate in-
direct impact of Covid-19 disruptions (network spillovers) accounts for approximately three-quarters of
the decline in real GDP over the second quarter of 2020. We also find employment shocks predominately
impacted final demand by propagating from upstream suppliers to downstream customers. Nearly 80%
of the aggregate impact of labor shocks is due to such downstream effects. Finally, higher-order feed-
back cannot explain the depth of the contraction in GDP: only 5% of the overall decline is attributed to
second-, third-, and higher-round effects of the employment shocks.

Appendix

Appendix A. Proofs

Proof of Theorem 1. As in Baqaee and Farhi (2020b), throughout the proof we take nominal GDP to
be the numeraire (GDP = 1), implying d logGDP = 0. Since PY = GDP = 1, we have d logY = −d logP =

−∑
N
j=1 b jd log p j.

From the producer’s optimization problem, the first-order condition with respect to xi j, LiS and LiG yield
the following demand functions for intermediate inputs, labor, and capital, respectively: xi j = pθ

i yiωi j p−θ

j ,
LiS = pθ

i yiµizθ−1
i w−θ

i , LiG = pθ
i yiµGw−θ

G , and Ki = pθ
i yiωiKr−θ . Plugging these demand functions into i’s

production function, and solving for p1−θ

i , we get

p1−θ

i = zθ−1
i µiw1−θ

i +µGw1−θ

G +ωiKr1−θ +
N

∑
j=1

ωi j p1−θ

j . (5)

From the demand functions for xi j, LiS, LiG and Ki we derive expressions for Ωi j, Λi, ΛiG and ΩiK :

Ωi j = pθ−1
i ωi j p1−θ

j , Λi = pθ−1
i µizθ−1

i w1−θ

i , ΛiG ≡
wGLiG

piyi
= pθ−1

i µGw1−θ

G , and ΩiK ≡
rKi

piyi
= pθ−1

i ωiKr1−θ .
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Total (log) differentiation of equation (5) therefore yields

d log pi = Λid logwi−Λid logzi +ΛiGd logwG +ΩiKd logr+
N

∑
j=1

Ωi jd log p j

Solving for d log pi, we get

d log pi =
N

∑
m=1

ΨimΛmd logwm−
N

∑
m=1

ΨimΛmd logzm +
N

∑
m=1

ΨimΛmGd logwG +
N

∑
m=1

ΨimΩmKd logr

Noting that d logY =−∑
N
j=1 b jd log p j, we can write

d logY =
N

∑
j=1

N

∑
m=1

b jΨ jmΛmd logzm−
N

∑
j=1

N

∑
m=1

b jΨ jmΛmd logwm

−
N

∑
j=1

N

∑
m=1

b jΨ jmΛmGd logwG−
N

∑
j=1

N

∑
m=1

b jΨ jmΩmKd logr.

Furthermore, since λm = ∑
N
j=1 b jΨ jm, we can rewrite the above expression as

d logY =
N

∑
m=1

λmΛmd logzm−

(
N

∑
m=1

λmΛmd logwm +
N

∑
m=1

λmΛmGd logwG +
N

∑
m=1

λmΩmKd logr

)
.

Since all factor supplies are fixed, and nominal GDP is taken to be the numeraire, we can write the above
equation as

d logY =
N

∑
m=1

λmΛmd logzm

−

(
N

∑
m=1

λmΛmd log(λmΛm)+
N

∑
m=1

λmΛmGd log(λmΛmG)+
N

∑
m=1

λmΩmKd log(λmΩmK)

)
.

Finally, because ∑
N
m=1 λmΛm +∑

N
m=1 λmΛmG +∑

N
m=1 λmΩmK = 1 (because total factor income equals nominal

GDP), the term in parentheses is equal to zero, hence

d logY =
N

∑
m=1

λmΛmd logzm.

�

Proof of Proposition 1. We denote by ωωω the observed input-output matrix, and ω̃ωω the counterfactual
input-output network with omitted linkages. Throughout the proof, a tilde denotes a variable in the
counterfactual economy. The assumption that i’s specific labor is endowed in proportion to its size,
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implies that α = L1S
y1

= L2S
y2

= ... = LNS
yN

= L̃1S
ỹ1

= L̃2S
ỹ2

= ... = L̃NS
ỹN

, where α is a constant. In other words, the
ratio of each sector’s specific-labor endowment to its output is an economy-wide constant invariant to
the underlying input-output structure.

In the proof of Theorem 1, we derived LiS = pθ
i yiµizθ−1

i w−θ

i , which implies α = LiS
yi

= pθ
i µizθ−1

i w−θ

i .
Next, noting that Λi = pθ−1

i µizθ−1
i w1−θ

i , we can express i’s (specific) labor expenditure share as

Λi =
wiLiS

piyi
=

wi

pi
α =

wi

pi
w−θ

i pθ
i µizθ−1

i

Using the result α = pθ
i µizθ−1

i w−θ

i , we can rearrange to solve for wi
pi

to get

wi

pi
= α

− 1
θ µ

1
θ

i z
θ−1

θ

i .

Finally, plugging the above equation into our expression for Λi, gives

Λi = α
θ−1

θ µ
1
θ

i z
θ−1

θ

i .

Since α is a constant, we get Λi = Λ̃i for all i.
�

Proof of Proposition 2. We first show that the vector of final expenditure shares b is invariant to the
underlying input-output structure of the economy.

The Lagrangean associated with the household’s problem is

L=

(
N

∑
i=1

a
1
σ

i c
σ−1

σ

i

) σ

σ−1

+λ

(
N

∑
i=1

wiLiS +
N

∑
i=1

wGLiG +
N

∑
i=1

rKi−
N

∑
i=1

pici

)
where λ is a Lagrange multiplier. The first-order condition with respect to ci implies

ci = GDP ·ai p−σ

i Pσ−1

where P is the CPI price index, defined P≡
(
∑

N
i=1 ai p1−σ

i

) 1
1−σ . Therefore,

bi =
pici

GDP
= ai p1−σ

i Pσ−1.

In the proof of Theorem 1, we derived LiG = pθ
i yiµGw−θ

G . Since general labor is endowed in proportion to
each sector’s size, we get β = LiG

yi
= pθ

i µGw−θ

G , where β is an economy-wide constant. This implies that

output prices at the initial equilibrium are given by pi = β
1
θ µ
− 1

θ

G wG for all i. We can then write the CPI
price index as

P =

(
β

1−σ

θ µ
σ−1

θ

G w1−σ

G

(
N

∑
i=1

ai

)) 1
1−σ

.
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Since ∑
N
i=1 ai = 1, we get

P = pi = β
1
θ µ
− 1

θ

G wG.

Plugging the above expression into bi = ai p1−σ

i Pσ−1 implies that bi = ai for all i. In words, final expendi-
ture shares equal the consumption weights in the household’s utility function, which are assumed to be
exogenous. This result completes the first part of the proof.

We now prove that T (ωωω) = T (ΩΩΩ) where T (·) denotes some arbitrary linear transformation. In the proof
of Theorem 1, we derived an expression for Ωi j in terms of prices and the input-output matrix ωωω . Specif-
ically,

Ωi j = pθ−1
i ωi j p1−θ

j .

Furthermore, since pi = p j = β
1
θ µ
− 1

θ

G wG, we get

Ωi j = ωi j

for all i, j. The above result therefore implies that ΩΩΩ = ωωω , which in turn delivers the result that T (ωωω) =

T (ΩΩΩ).
�
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Appendix B. Supplementary Results

Figure B.1: Employment Growth Rate by Sector, 2020 Q2
Note: The figure shows, for the top 20 sectors, the labor shocks used to calibrate the model. Shocks are computed as the end-
of-period employment change between the second and third quarters of 2020 in the United States, as measured by the BLS.
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Table B.1: Model-Implied Real GDP Growth and Total Network Spillover Effect

Seasonally Adjusted Not Seasonally Adjusted

Real GDP Network Spillover Real GDP Network Spillover
Panel A: Q2 2020

End-of-period -8.70% -6.25% -7.29% -5.25%
Mean employment change -11.75% -8.44% -10.71% -7.72%

Panel B: Q3 2020

End-of-period 2.60% 1.77% 1.85% 1.24%
Mean employment change 5.14% 3.61% 5.48% 3.84%

Panel C: Q4 2020

End-of-period 1.01% 0.66% 1.30% 0.80%
Mean employment change 1.68% 1.13% 1.54% 0.97%

Notes: The table shows the model-implied real GDP growth rate and aggregate network spillover effect using season-
ally adjusted and unadjusted employment series. It also compares the calibration of shocks to end-of-period versus
mean employment changes. The observed real GDP growth rates, according to the BEA, for Q2, Q3 and Q4 of 2020
are, respectively, −8.99%, 7.48% and 0.99%.
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