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1 Introduction

Central banks pay particular attention to inflation expectations. A good reason for this preoc-

cupation is inflation expectations contain information about private agents’ beliefs about the

underlying factors driving observed inflation dynamics. We label these factors the inflation

regime. For example, Bernanke (2007) argues that well anchored inflation expectations are nec-

essary for a central bank to stabilize inflation. A problem is since monetary policy makers lack

direct knowledge of inflation expectations, they must infer these expectations from estimates

of the inflation regime. These estimates often rely on realized inflation and combinations of

financial market data, statistical and economic models, and forecast surveys.

This paper estimates inflation regimes from the joint data generating process (DGP) of real-

ized inflation and the inflation predictions of professional forecasters grounded in a nonlinear

state space model (SSM). We tap a sample of inflation predictions from the Survey of Profes-

sional Forecasters (SPF) to extract beliefs its average respondent has about the (in)stability of

the persistence, volatility, and stickiness of inflation. Average SPF inflation predictions are at-

tractive for evaluating the SSM because, as Faust and Wright (2013) and Ang, Bekaert, and Wei

(2007) observe, SPF inflation predictions often dominate model based out of sample forecasts.

This forecasting performance suggests average SPF inflation predictions coupled with realized

inflation harbor useful information to measure inflation expectations.

We study the joint DGP of realized inflation, πt , and average SPF inflation predictions

by linking a Stock and Watson (2007) unobserved components (SW-UC) model of inflation to a

version of the Mankiw and Reis (2002) sticky information (SI) model. The SW-UC model is useful

for evaluating the impact of different types of shocks on inflation and inflation expectations.

First, it decomposes πt into trend inflation, τt , and gap inflation, εt , which restricts the impact

of permanent and transitory shocks on πt . When permanent shocks dominate movements in

πt , the inference is inflationary expectations are not well anchored. The SW-UC model also

inflicts stochastic volatility (SV) on the innovations of τt and εt . Trend and gap SV creates

nonlinearities in inflation dynamics, which produce bursts of volatility in πt . Persistence is not
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often imposed on εt when estimating the SW-UC-SV model. We depart from this assumption by

giving εt drifting persistence in the form of a time-varying parameter first-order autoregression,

or a TVP-AR(1). Drifting gap persistence is another source of nonlinearity in a SW-UC model,

which can exhibit pro- or counter-cyclical changes. We label the extended version of the DGP

of πt as the SW-UC-SV-TVP-AR(1) model.

Coibion and Gorodnichenko (2015) adapt a SI model to a setup in which forecasters update

their rational expectations (RE) information set at a fixed probability 1−λ. Averaging across

forecasters defines the h-step ahead SI inflation prediction, Ftπt+h, h = 1, . . . , H. The result

is the SI inflation prediction evolves as a weighted average of the lagged SI forecast, Ft−1πt+h,

and a RE inflation forecast, Etπt+h, where the weights are λ and 1−λ. The result is the SI law of

motion Ftπt+h = λFt−1πt+h +
(
1−λ)Etπt+h, where Ftπt+h updates at the frequency 1

/(
1−λ)

on average. In this reading, λ reflects the average forecaster’s beliefs about the persistence or

stickiness of the inflation regime.1

We innovate on the Coibion-Gorodnichenko static coefficient SI-law of motion by investing

λ with drift. The result is a nonlinear SI-law of motion Ftπt+h = λtFt−1πt+h +
(
1− λt

)
Etπt+h,

where the TVP-SI parameter, λt , evolves as an exogenous and bounded random walk (RW), λt+1

= λt + σκκt+1, and its innovation is drawn from a truncated normal distribution (TN), κt+1 ∼
TN

(
0, 1; λt+1 ∈

(
0, 1

))
. The SI forecaster’s information set includes the innovation κt when

Ft−1πt+h is updated to Ftπt+h, which implies λt is also part of this information set.

A motivation for placing λt in the SI-law of motion is to uncover evidence about changes

in the beliefs the average SPF participant holds about the inflation regime. Changes in these

beliefs are embedded in observed movements of the average SPF participant’s h-step ahead

inflation prediction, πSPFt,t+h. We relate πSPFt,t+h to Ftπt,t+h by adding a classical measurement

error, ζt,h, to set πSPFt,t+h = Ftπt+h + σζhζh,t , where ζh,t ∼ N (0, 1), h = 1, . . . , H. The πSPFt,t+h

observation equation, SI-law of motion, and RW of λt form the SI-prediction mechanism.

The joint DGP of the SI-prediction mechanism and SW-UC-SV-TVP-AR(1) model maps shocks

1Sims (2003) constructs a dynamic optimizing model built on primitive form of information processing
in which agents react to shifts in the true DGP of the economy by smoothing their forecasts.
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to τt , εt , and SI state variables into movements in πt and πSPFt,t+h.2 Estimates of the joint DGP

provide evidence about drift in λt and its co-movement with the SVs of τt and εt and drift-

ing persistence in εt . If λt exhibits meaningful statistical and economic time variation and it

moves with the SVs or drifting inflation gap persistence, we have evidence shifts in SI inflation

updating are attuned to the hidden factors driving the inflation regime. A contribution of our

paper is to report this evidence.

Another contribution is the sequential Monte Carlo (SMC) methods we use to estimate the

joint DGP of the SI-prediction mechanism and SW-UC-SV-TVP-AR(1) model. These methods con-

sist of the particle learning estimator (PLE) of Storvik (2002) and the particle smoother (PS) of

Lindsten, Bunch, Särkkä, Schön, and Godsill (2016). The PLE and PS rely on a Rao-Blackwellized

auxiliary particle filter (RB-APF). Our joint DGP is susceptible to Rao-Blackwellization because

τt , εt , and the SI state variables form a linear SSM, given realizations of the nonlinear state

variables, which are trend and gap inflation SVs, drifting inflation persistence, and λt+1, and

estimates of the static coefficients of the SI-prediction mechanism and SW-UC-SV-TVP-AR(1)

model. Applying the Kalman filter (KF) produces estimates of the distribution of the condition-

ally linear states that are integrated analytically, which increases the efficiency of the RB-APF.

The RB-APF estimates the nonlinear states by simulation.

We estimate the joint DGP of the SI-prediction mechanism and SW-UC-SV-TVP-AR(1) model

on a quarterly sample from 1968Q 4 to 2017Q 2. The sample matches πt with the GNP or GDP

deflator inflation available to the SPF in real time at date t. The average SPF inflation prediction

is denoted πSPFt,t+h, where H = 5 or h = 1, . . . , 1- to 5-quarter ahead forecast horizons.3

Given only a sample of
{
πt, πSPFt,t+1, . . . , π

SPF
t,t+5

}T
t=1

and our priors, the SSM yields posterior

estimates of the beliefs the average SPF participant has about the hidden factors of the inflation

2Our approach to studying the joint dynamics of πt and πSPFt,t+h builds on Kozicki and Tinsley (2012),
Mertens (2016), and Nason and Smith (2016a, b).

3The SPF contains average predictions of the GNP or GDP deflator for a nowcast and forecasts up to
4-quarters ahead. The surveys are collected at the middle of the quarter, which suggests πSPFt,t+h is not

based on full knowledge of πt . We treat πSPFt,t+h as conditional only on information available through
the end of the previous quarter. This identifies the average SPF nowcast, 1-quarter, . . . , 4-quarter
ahead predictions with πSPFt,t+h, h = 1, 2, . . . , 5. We discuss these timing issues in section 4.1.
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regime. Our estimates of trend inflation are aligned with average SPF inflation predictions,

especially at longer horizons. Gap inflation is more volatile before the Volcker disinflation

than afterwards. There is a spike in gap inflation SV during the 1973–1975 recession while

trend inflation SV displays peaks during the 1981–1982 and 2007–2009 recessions. The drift

in gap inflation persistence is procyclical before the Volcker disinflation, turns counter cyclical

afterwards, disappears by the 2007–2009 recession, and returns to pre-2000 rates by 2014. The

average SPF participant updates SI inflation forecasts frequently from the late 1960s to 1988.

The frequency of SI inflation updating falls from 1990 to 1995 and then steadies until 2007.

During the 2007–2009 recession, SI inflation updating occurs more frequently and drops slowly

afterwards. Thus, movements in the frequency of SI inflation updating displays co-movement

with trend inflation, its SV, and drifting inflation persistence. We conclude the beliefs of the

average member of the SPF are sensitive to the impact of permanent shocks on the conditional

mean of inflation and the Volcker disinflation marks the moment at which the behavior of trend

inflation, its SV, and the cyclicality of the drift in inflation gap persistence changed.

The structure of the paper is as follows. In section 2, we build a SSM of the joint DGP of

πt and πSPFt,t+h, h = 1, . . . , H. Section 3 discusses the SMC methods we engage to estimate the

SSM. Results appear in section 4. Section 5 offers our conclusions.

2 Statistical and Econometric Models

This section describes the statistical and economic models used to estimate the joint dynamics

of πt and πSPFt,t+h, h = 1, . . . ,H. Stock and Watson (2007) is the source of the statistical model to

which we add drifting persistence to εt . The economic model is a SI-prediction mechanism that

has a SI-TVP parameter. Drift in inflation persistence and the frequency of SI inflation updating

create nonlinearities in the state transition dynamics of the SSM. The SI-TVP also interacts with

trend and gap inflation SVs to produce nonlinearites in the impulse structure of the SSM.4

4We relegate to an online appendix construction of a SSM in which persistence in εt is a AR(1) with a
static slope coefficient. The online appendix is available at http://www.elmarmertens.com/.
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2.1 The SW-UC Model

The SW-UC model generatesπt . Stock and Watson (2010), Creal (2012), Shephard (2013), Cogley

and Sargent (2015), and Mertens (2016) have estimated versions of the model in which SV in

innovations to τt and εt is the source of nonlinearity in πt . We add an additional nonlinearity

to the SW-UC-SV model in the form of drift in the persistence of εt created by a TVP-AR(1). We

collect these features into the SW-UC-SV-TVP-AR(1) model

πt = τt + εt + σζ,πζπ,t, ζπ,t ∼ N
(
0, 1

)
, (1.1)

τt+1 = τt + ςη,t+1ηt, ηt ∼ N
(
0, 1

)
, (1.2)

εt+1 = θt+1εt + ςυ,t+1υt, υt ∼ N
(
0, 1

)
, (1.3)

lnς2
,t+1 = lnς2

,t + σξ,t+1, ξ,t+1 ∼ N
(
0, 1

)
,  = η, υ, (1.4)

θt+1 = θt + σφφt+1, φt+1 ∼ N
(
0, 1

)
, (1.5)

where measurement error onπt , ζπ,t , is uncorrelated with τt and εt and the innovations, ηt and

υt , these innovations are afflicted by SV, which evolve as RWs in lnς2
η,t+1 and lnς2

υ,t+1, drifting

persistence in εt+1 is tied to θt+1, restricting the RW of θt+1 ∈
(−1, 1

)
ensures stationarity of

εt+1 at each date t+1, and innovations to the linear state variables, ηt and υt , and innovations

to nonlinear state variables, ξη,t+1, ξυ,t+1, and φt+1, are uncorrelated.

A special case of the SW-UC-SV-TVP-AR(1) model gives a result about forecasting traced to

Muth (1960). Shut down SV, ση = ςη,t and συ = ςυ,t , and eliminate gap inflation persistence, θt

= 0, for all dates t. The result is a fixed coefficient SW-UC model with an IMA
(
1,1

)
reduced form,(

1− L
)
πt =

(
1−�L

)
νt , where the MA1 coefficient � ∈ (−1,1

)
, L is the lag operator, πt−1 =

Lπt , and the one-step ahead forecast error νt = ηt + εt + τt − τt−1|t−1.5 The IMA
(
1,1

)
implies

a RE inflation updating equation, E
{
πt+1

∣∣πt, ση, συ} = (
1 −�)πt + �E

{
πt
∣∣πt−1, ση, συ

}
,

where πt is the date t history of inflation, πt , . . . , π1.

5Stock and Watson (2007), Grassi and Proietti (2010), and Shephard (2013) tie � to the autocovariance
functions (ACFs) of the IMA

(
1,1

)
and fixed coefficient SW-UC model. At lags zero and one, the ACFs

set
(
1+�2

)
σ 2
ν = σ 2

η + 2σ 2
ε and −�σ 2

ν = −σ 2
ε . Substitute for σ 2

ν to find �2 −
(
2+ σ 2

η

/
σ 2
ε

)
� + 1

= 0. The solution is � =
[
1+ 0.5σ 2

η

/
σ 2
ε

]
− ση
σε

√
1+ 0.25σ 2

η

/
σ 2
ε , given � ∈ (−1,1

)
and ση, σε > 0.
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Stock and Watson (2007), Grassi and Prioietti (2010) and Shephard (2013) note the SW-UC-

SV model replaces� with the time-varying local weight�t in the reduced form IMA
(
1,1

)
. The

result is a exponentially weighted moving average (EWMA) updating recursion or smoother

E
{
πt+1

∣∣πππt, ςη,t, ςυ,t} = ∞∑
j=0

μ�,t−j

⎛⎝ j∏
=0

�t−

⎞⎠πt−j, (2)

in which the discount �t adjusts to changes in the latest data, where μ�,t =
(
1−�t

)/
�t .

2.2 The SI-Prediction Mechanism

This section begins by reproducing the SPF observation equation, the nonlinear SI-law of motion,

and the random walk law of motion of λt . These elements form the system of equations

πSPFt,t+h = Ftπt+h + σζ,hζh,t, ζh,t ∼ N
(
0, 1

)
, (3.1)

Ftπt+h = λtFt−1πt+h +
(
1− λt

)
Etπt+h, h = 1, . . . , H, (3.2)

λt+1 = λt + σκκt+1, κt+1 ∼ N
(
0, 1

)
, (3.3)

where Etπt+h is conditional on the average SPF participant’s statistical model of inflation and

λt ∈
(
0, 1

)
for all dates t. Equations (3.1)–(3.3) define the SI-prediction mechanism through

which shocks to λt and movements in other state variables generate fluctuations in πSPFt,t+h.

The SI-law of motion (3.2) implies a EWMA smoother. Iterate (3.2) backwards, substitute

the result into (3.2), and repeat the process many times to produce the SI-EWMA smoother

Ftπt+h =
∞∑
j=0

μλ,t−j

⎛⎝ j∏
=0

λt−

⎞⎠Et−jπt+h, (4)

where the discount rate is the SI-TVP, λt , and μλ,t =
(
1 − λt

)/
λt . The SI-EWMA smoother (4)

nests the RE forecast, limλt−→0 Ftπt+h = Etπt+h, and the pure SI update, limλt−→1 Ftπt+h =∑∞
j=1 μλ,t−j

(∏j
=1 λt−

)
Et−jπt+h. The former limit shuts down SI as λt falls to zero because

the discount on Et−jπt+h increases with j. In this case, SI inflation forecast updates rely only

on Etπt+h period by period. At the other extreme, less weight is placed on Etπt+h and more

on Et−jπt+h, j > 1, as λt rises to one. Thus, Ft−1πt+h summarizes the SI inflation forecast.
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Between these polar cases, shocks to λt alter the discount applied to the history of Etπt+h

in the SI-EWMA smoother (4). This information aids in identifying movements in πSPFt,t+h with

respect to innovations in λt . The EWMA smoother (2) shows a similar relationship exists be-

tween Etπt+h, πt , and the time-varying discount generated by ςη,t , ςυ,t , and θt . This gives us

several sources of information to identify movements in πt and πSPFt,t+h within the joint DGP of

the SI-prediction mechanism and the SW-UC-SV-TVP-AR(1) model.6

2.3 The State Space Model of the Joint DGP

Drift in inflation gap persistence complicates building a SSM for the joint DGP of the SI-prediction

mechanism and SW-UC-SV-TVP-AR(1) model. The SSM rests on the RE and SI term structures

of inflation forecasts for which the latent factors are the RE state variables Xt =
[
τt εt

]′
and SI

analogues FtXt =
[
Ftτt Ftεt

]′
. The problem is the law of iterated expectation (LIE) cannot be

employed to create predictions of Xt+h or FtXt+h because forecasts of θt are needed. Instead,

we construct RE and SI term structures of inflation forecasts in the presence of drifting gap

inflation persistence by invoking the anticipated utility model (AUM).

The RE term structure of inflation forecasts is based on the observation and state equations

of the SW-UC-SV-TVP-AR(1) model. The observation equation (1.1) of the SW-UC-SV-TVP-AR(1)

model links πt to τt , εt , and ζπ,t , which can be rewritten as

πt = δXXt + σζ,πζπ,t, (5.1)

where δX =
[
1 1

]
. The state equations of the SW-UC-SV-TVP-AR(1) model are created by placing

the random walk (1.3) below the TVP-AR(1) (1.3)

Xt+1 = ΘΘΘt+1Xt + ΥΥΥt+1Wt, (5.2)

where ΘΘΘt+1 =

⎡⎢⎢⎣ 1 0

0 θt+1

⎤⎥⎥⎦, ΥΥΥt+1 =

⎡⎢⎢⎣ ςη,t+1 0

0 ςυ,t+1

⎤⎥⎥⎦, and Wt =

⎡⎢⎢⎣ ηt

υt

⎤⎥⎥⎦. The transition dy-

6Krane (2011), Coibion and Gorodnichenko (2012), and Jain (2013) engage forecast revisions to identify
the responses of professional forecasters to disparate shocks, which is an alternative to our approach.
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namics of the state equations (5.2) are nonlinear in ΘΘΘt+1. These nonlinearities rule out applying

the LIE to construct the RE term structure of inflation forecasts.

We appeal to two aspects of the AUM to solve the problem. The AUM resurrects the LIE

by (i) assuming agents are ignorant of the true DGP and (ii) treating the TVPs of the joint DGP

as fixed (locally) at each date t.7 These assumptions are instructions to hold TVPs at their date

t values within RE and SI forecasts that condition on date t information.8

The RE term structure of inflation forecasts is easy to construct under the AUM. First,

generate h-step ahead RE forecasts of Xt by iterating the state equations (5.2) forward, apply

the expectations operator, and invoke the AUM to find EtΘΘΘt+hXt+h = ΘΘΘht|tXt . Next, push the

observation equation (5.1) h-steps ahead and take expectations to obtain the RE term structure

of inflation forecasts under the SW-UC-SV-TVP-AR(1) model and AUM

Etπt+h = δXΘΘΘht|tXt. (6)

The AUM restricts the impact of drifting inflation gap persistence on these RE forecasts by

conditioning θt on date t information.

Next, we show the SI term structure of inflation forecasts is built on the SI-EWMA formula

(4), RE term structure of inflation forecasts (6), and a conjecture about the law of motion of the SI

vector Ft+1Xt+1. The SI-EWMA formula (4) depends on the RE inflation forecasts Et−jπt+h. Since

these RE forecasts are Et−jπt+h = δXΘΘΘh+jt|t Xt−j under the AUM, other RE forecasts are needed to

replace Et−jπt+h in the SI-EWMA smoother (4). Our solution assumes the average member of the

SPF fixes drift in inflation gap persistence at its current value when iterating SI recursions back-

wards. Under this assumption, Et−jπt+h = δXΘΘΘh+jt|t Xt−j in the SI-EWMA smoother (4). The result

is Ftπt+h = δXΘΘΘht|t ∑∞
j=0 μλ,t−j

(∏j
=0 λt−

)ΘΘΘjt|tXt−j . Next, we conjecture the law of motion of

the SI state vector is FtXt+h =
(
1 − λt

)
EtXt+h + λtFt−1Xt+h. An implication is the SI-EWMA

smoother FtXt+h =
∑∞
j=0 μλ,t−j

(∏j
=0 λt−

)
Et−jXt+h. Condition on the date t drift in inflation

7For example, Cogley and Sbordone (2008) employ the AUM model to study the dynamics of trend and
gap inflation within a TVP-new Keynesian Phillips curve.

8The AUM assumptions result in decision making that is consistent with Bayesian forecasting, according
to Cogley and Sargent (2008). They also note Kreps (1998) argues agents engaging in AUM-like behavior
are acting rationally when seeing through to the true model is costly.
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gap persistence on date t information, θt|t , to find FtXt+h =
∑∞
j=0 μλ,t−j

(∏j
=0 λt−

)ΘΘΘh+jt|t Xt−j .

When h = 0, we have FtXt =
∑∞
j=0 μλ,t−j

(∏j
=0 λt−

)ΘΘΘjt|tXt−j . By combining the SI-EWMA

smoothers of Ftπt+h and FtXt , the SI term structure of inflation forecasts is the result

Ftπt+h = δXΘΘΘht|tFtXt. (7)

The online appendix has details about the SI term structure of inflation forecasts (7).

The online appendix also develops state equations for Ft+1Xt+1. Remember the SI-EWMA

smoother of FtXt is
∑∞
j=0 μλ,t−j

(∏j
=0 λt−

)ΘΘΘjt|tXt−j , which by induction gives a law of motion,

FtXt =
(
1 − λt

)
Xt + λtΘΘΘt|tFt−1Xt−1. We create state equations for Ft+1Xt+1 by pushing this

law of motion forward a period and substituting for Xt+1 with the state equations (5.2) of the

SW-UC-SV-TVP-AR(1) model. Stack the latter equations on top of the former to obtain the state

equations of the SSM of the joint DGP

St+1 = AAAt+1St + BBBt+1Wt, (8.1)

where St =

⎡⎢⎢⎣ X′t

FtX′t

⎤⎥⎥⎦, AAAt+1 =

⎡⎢⎢⎣ ΘΘΘt+1 02×2(
1− λt+1

)ΘΘΘt+1 λt+1ΘΘΘt+1

⎤⎥⎥⎦, BBBt+1 =

⎡⎢⎢⎣ ΥΥΥt+1(
1− λt+1

)ΥΥΥt+1

⎤⎥⎥⎦, and

the conditioning time subscript on ΘΘΘt+1 is dropped. The state equations (8.1) show shocks to

λt alter the transition and impulse dynamics only of Ftτt and Ftεt . Changes in θt shift the

transition dynamics of all elements of St while its impulse dynamics react to ςη,t , and ςυ,t .

We complete the SSM by constructing its observation equations. First, replace Ftπt+h in

the SPF measurement equation (3.1) with the SI term structure of inflation forecasts (7) for h

= 1, . . . , H. Place the results below the observation equation (5.1) of the SW-UC-SV-TVP-AR(1)

model to form the SSM’s observation equations

Yt = CCCtSt + DDDUt, (8.2)

where Yt =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

πt

πSPF1,t
...

πSPFH,t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, CCCt =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δX 01×2

01×2 δXΘΘΘt
...

...

01×2 δXΘΘΘH
t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, DDD =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σζ,π 0 . . . 0

0 σζ,1 . . . 0

0 0
. . . 0

0 0 . . . σζ,H

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Ut =
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[
ζπ,t ζ1,t . . . ζH,t

]′
, and ΩΩΩU = DDDDDD′. The SSM integrates Ftπt+h out of the observation

equations (8.2) using the SI term structure of inflation forecasts (7). As a result, Ftεt produces

mean reversion in πSPFt,t+h while permanent movements are tied directly to Ftτt and ΘΘΘt and

indirectly to ςη,t , ςυ,t , λt , and ΘΘΘt . The direct response of πSPFt,t+h to ΘΘΘt is produced by the

observation equations (8.2). Drift in ΘΘΘt also alters transition dynamics in the state equations

(8.1), which generates movements in Ftτt and Ftεt , and hence, πSPFt,t+h.

3 Econometric Methods

We combine a RB-APF algorithm adapted from Lopes and Tsay (2011) with the PLE of Storvik

(2002) to estimate the SSM (8.1) and (8.2); also see Carvalho, Johannes, Lopes, and Polson (2010),

Creal (2012), and Herbst and Schorfheide (2016). The RB-APF and PLE produce filtered estimates

of τt , εt , Ftτt , Ftεt , ςη,t , ςυ,t , λt , and θt . Lindsten, Bunch, Särkkä, Schön, and Godsill (2016)

give instructions for a PS that generates smoothed estimates of these state variables.

3.1 Rao-Blackwellization of a Nonlinear State Space Model

Lopes and Tsay (2011, p. 173) and Creal (2012, section 2.5.7) outline APF algorithms that rely on

the Rao-Blackwellization procedure of Chen and Liu (2000). The first step in Rao-Blackwellizing

the SSM (8.1) and (8.2) gathers the nonlinear state variables in Vt =
[
lnς2

η,t lnς2
υ,t θt λt

]′
. We

generate updates of the nonlinear states by simulating the multivariate RW process

Vt+1 = Vt + ΩΩΩ0.5
E Et+1, (9)

where DE =
[
σ2
η σ2

υ σ
2
φ σ2

κ

]
is the vector of non-zero elements of the diagonal covariance

matrixΩΩΩE and Et+1 =
[
ξη,t+1 ξυ,t+1 φt+1 κt+1

]′
.9 The RB-APF uses the KF to create an analytic

distribution of St using the SSM (8.1) and (8.2), given simulated values ofVt . Analytic integration

endows the RB-APF estimator of the linear state variables with greater numerical efficiency.

9The innovations vector Et+1 ∼ N
(
04×1, I4

)
conditions on θt+1 ∈

(−1, 1
)

and λt+1 ∈
(
0, 1

)
.
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3.2 Priors and Initial Conditions

We posit priors for the static volatility parameters and initial conditions to generate synthetic

samples of linear and nonlinear states using the SSM (8.1) and (8.2) and multivariate RW (9).

The static scale volatility parameters are collected in Ψ = [σ2
η σ2

υ σ2
φ σ2

κ σ2
ζ,π σ2

ζ,1 . . . σ
2
ζ,5

]′
.

Priors on Ψ are grounded in restrictions of the joint DGP of the SI-prediction mechanism and

SW-UC-SV-TVP-AR(1) model while remaining consistent with the PLE of Storvik (2002). The PLE

requires priors for Ψ to have analytic posterior distributions. The posterior distributions serve

as transition equations to update or “learn” about the joint distribution of St and Ψ .

Table 1 lists our priors for the static volatility parameters found in Ψ . We endow these

parameters with inverse gamma (IG) priors. Columns labeled α and β denote the scale and

shape parameters of the IG priors of the elements of Ψ , the mean is 0.5β
/(

0.5α−1
)
, and the

two right most columns display the associated 2.5 and 97.5 percent quantiles, where  = η, υ,

φ, κ, ζπ , ζh, and h = 1, . . . , 5.

Table 1. Inverse Gamma Priors on the Static Coefficients

Ψ =
[
σ 2
η σ 2

υ σ 2
φ σ 2

κ σ 2
ζ,π σ 2

ζ,1 . . . σ 2
ζ,5

]′
Quantiles

Scale Volatility on Innovation to α β Mean 2.5% 97.5%

Trend Inflation SV, lnςη,t+1: σ 2
η 3.0 0.04 0.04 [0.004, 0.186]

Gap Inflation SV, lnςυ,t+1: σ 2
υ 3.0 0.04 0.04 [0.004, 0.186]

TVP-AR1 Coefficient, θt+1: σ 2
φ 3.0 0.01 0.01 [0.001, 0.046]

SI Coefficient, λt+1: σ 2
κ 3.0 0.01 0.01 [0.001, 0.046]

Measurement Error on πt: σ 2
ζ,π 20.0 2.88 0.16 [0.084, 0.300]

Measurement Error on πSPFt,t+h: σ 2
ζ,h 20.0 2.88 0.16 [0.084, 0.300]

Priors on the static volatility coefficients are σ2
 ∼ IG

(
α
2 ,

β
2

)
, where α and β are scale and

shape parameters,  = η, υ, φ, κ, ζπ , ζh, and h = 1, . . . , 5
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Two features are worth discussing about our priors on the scale volatility coefficients of

DE. First, we give σ2
η and σ2

υ prior means equal to 0.04. These prior means are larger than the

prior mean of 0.01 placed on σ2
φ and σ2

κ . Second, our priors on σ2
η , σ2

υ , σ2
φ, and σ2

κ deliver 2.5

and 97.5 percent quantiles that exhibit greater variation in innovations to lnς2
η,t+1 and lnς2

υ,t+1

compared with variation in innovations to θt+1 and λt+1. Nonetheless, the 2.5 and 97.5 percent

quantiles of σ2
ζ,π , σ2

ζ,1, . . . , σ2
ζ,5 reveal our belief that volatility in the measurement errors of

πt and πSPFt,t+h dominate shock volatility in the joint DGP of the SI-prediction mechanism and

SW-UC-SV-TVP-AR(1) model.

Priors on initial conditions of the linear state variables appear in the left two columns of

table 2. We draw τ0 and F0τ0 from normal priors with a mean of two percent, which is about

the mean of GNP deflator inflation on a 1958Q 1 to 1967Q 4 training sample. A variance of 1002

indicates a flat prior over a wide range of values for τ0 and F0τ0. The joint prior of ε0 and F0ε0

is drawn from N
(
02×1,

∖Σ∖Σ∖Σ0
)
, which equates the prior means to zero (i.e., unconditional means).

Prior variances are produced by the ergodic bivariate normal distribution of particle draws of

ςυ,0, θ0, and λ0; see the notes to table 2. We also restrict priors on τ0, ε0, F0τ0, and F0ε0 by

splitting the training sample variance of the first difference of GNP deflator inflation between

trend (one-third) and gap (two-thirds) shocks.

The last two columns of table 2 lists priors on initial conditions of the nonlinear state

variables. We endow priors of lnς2
υ,0 and lnς2

η,0 with normal distributions. Prior means are

calibrated to pre-1968 inflation data similar to Stock and Watson (2007). Uncertainty about

lnς2
υ,0 and lnς2

η,0 is reflected in prior variances of ten. Table 2 shows that θ0 is drawn from

a standard normal, subject to truncation at
(−1, 1

)
, and another truncated normal bounds

λ0 ∈
(
0, 1

)
with (untruncated) mean of 0.5 and a unit variance. These priors are in essence

uninformative about values inside the bounds.
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Table 2. Priors on Initial Conditions of the Linear and Nonlinear States

S0 =
[
τ0 ε0 F0τ0 F0ε0

]′
and V0 =

[
lnς2

η,0 lnς2
υ,0 θ0 λ0

]′
Initial State Prior Distribution Initial State Prior Distribution

τ0: N
(
2.0, 100.02

)
lnς2

η,0: lnN
(
ln 0.2− 5.0, 10.0

)
F0τ0: N

(
2.0, 100.02

)
lnς2

υ,0: lnN
(
ln 0.4− 5.0, 10.0

)
ε0: N

(
0.0, σ 2

ε0

)
θ0: TN

(
0.0, 1.0, −1.0, 1.0

)
F0ε0: N

(
0.0, σ 2

F0ε0

)
λ0: TN

(
0.5, 1.0, 0.0, 1.0

)
The truncated normal distribution is denoted TN, where the first two entries are the mean and
variance of the prior and the last two entries restrict the range of the prior. The priors on ε0

and F0ε0 are drawn jointly from N
(
02×1,

∖Σ∖Σ∖Σ(i)0

)
, where σ2

ε0
and σ2

F0ε0
are diagonal elements of

∖Σ∖Σ∖Σ(i)0 =
∞∑
j=0

⎡⎢⎢⎢⎣
θ(i)0 0

(
1− λ(i)0

)
θ(i)0 λ(i)0 θ(i)0

⎤⎥⎥⎥⎦
j ⎡⎢⎢⎢⎣

ς2, (i)
υ,0 λ(i)0 ς2, (i)

υ,0

λ(i)0 ς2, (i)
υ,0 λ2,(i)

0 ς2,(i)
υ,0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
θ(i)0

(
1− λ(i)0

)
θ(i)0

0 λ(i)0 θ(i)0

⎤⎥⎥⎥⎦
j

,

and λ(i)0 , θ(i)0 , and ς2, (i)
υ,0 are the ith particle draws from priors on the associated initial condi-

tions. If θ(i)0 = 0, the formula computing
∖Σ∖Σ∖Σ(i)0 remains valid.

3.3 The Auxiliary Particle Filter

Section 3.1 applies the RB process to the SSM (8.1) and (8.2). This process increases the numer-

ical efficiency of the estimator of the linear states, St , by shrinking Monte Carlo error. Another

method to improve the efficiency of this estimator is the APF of Pitt and Shephard (1999, 2001).

In this section, we sketch a RB-APF to estimate the linear and nonlinear states that begins from

algorithm 2 of Lopes and Tsay (2011, p.173); also see Creal (2012, section 2.5.7).10 The online

appendix provides a complete exposition of our implementation of the RB-APF.

10We sketch a RB-APF separate from the PLE for clarity, but recognize the RB-APF is integral to the PLE.

13



A RB-APF obtains estimates of the likelihood by running the prediction step of the KF on

the SSM (8.1) and (8.2) particle by particle. At date t, the KF predictive step produces the log

likelihood, ˜l(i)t , and particle weights, ω̂(i)
t = exp

{
˜l(i)t

}/∑M

i exp
{
˜l (i)t

}
, i = 1, . . . , M . Stratified

resampling of
{
ω̂(i)
t

}M
i=1

yields indexes that are used to regroup S
(i)
t−1|t−1, its mean square error

(MSE), ΣΣΣ(i)t−1|t−1, and V
(i)
t ; see steps 3(a) and 3(b) of section A3.1 of the online appendix and

Hol, Schön, and Gustafsson (2006). This step aims to prevent a particle from receiving all the

probability mass as M becomes large. The ensemble of weights
{
ω̂(i)
t

}M
i=1

are also resampled

generating
{
ω̃(i)
t

}M
i=1

; see step 3(d) of section A3.1 of the online appendix. The resampled

particles S
(i)
t−1|t−1, ΣΣΣ(i)t−1|t−1, and V

(i)
t are employed in the entire KF to update

{
S
(i)
t|t, ΣΣΣ

(i)
t|t, ˜l(i)t

}M
i=1

and produce new weightsω(i)
t = exp

{
˜l(i)t

}/∑M

i exp
{
˜l (i)t

}
, i = 1, . . . , M ; see step 3(e) of section

A3.1 of the online appendix. By simulating the multivariate RW (9), the nonlinear states are

updated to V
(i)
t+1 across theM particles. Estimates of St|t , ΣΣΣt|t , and Vt|t rely on the weightsω(i)

t

= ω(i)
t

/
ω̃(i)
t ; see step 4 of section A3.1 of the online appendix.

As already noted, a useful product of the RB-APF is the likelihood of the conditionally

linear SSM (8.1) and (8.2). Since the M particles have been reweighted at every step using

information contained in the likelihood of the KF, the estimate of the date t data density is

P
(
Yt

∣∣∣Y1:t−1; Ψ) ∝ 1
M

M∑
i=1

exp
{
˜l(i)t

}
, t = 1, . . . , T . (10)

Sum the data density (10) over the t = 1, . . . , T observations to compute the log likelihood of

the SSM

L
(Ψ∣∣∣Y1:T

)
=

T∑
t=1

ln

(
P
(
Yt

∣∣∣Y1:t−1; Ψ)). (11)

Section 4 reports estimates of the joint DGP of the SI-prediction mechanism and SW-UC-SV-

TVP-AR(1) model. Its estimated log likelihood is compared with the log likelihood of a joint

DGP estimated conditional on setting θt = 0 or estimating a constant SI parameter, λt = λ.

Thus, we use log likelihood (11) to evaluate competing joint DGPs, but only after marginalizing

Ψ . The next section discusses the PLE used to estimate Ψ .
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3.4 The Particle Learning Estimator

We estimate the joint posterior distribution of St , ΣΣΣt , Vt , and Ψ by embedding the RB-APF in

the PLE of Storvik (2002), given priors on the joint DGP of the SI-prediction mechanism and SW-

UC-SV-TVP-AR(1) model.11 The PLE rests on two insights. First, choosing conjugate priors for Ψ
yields an analytic solution of its posterior distributions. The posterior distribution is recovered

conditional on the states and sample data. The idea is to draw Ψ from particle streams of a

vector of sufficient statistics, Γ (i)t that depend on V
(i)
t , given Y1:t . Since the sufficient statistics

are grounded on the IG priors of Ψ , the mapping to the analytic posterior distributions is a

system of transition equations that simulate M particles to learn about or update from Γ (i)t−1 to

Γ (i)t . The transition equations are appended to the process that draws V
(i)
t to sample Ψ (i) ∼

P
(Ψ∣∣∣Γ (i)t )

, which in essence equates P
(Ψ∣∣∣Y1:t, V

(i)
t

)
to P

(Ψ∣∣∣Γ (i)t )
. We denote the system of

transition equations Γ (i)t = ˜f
(Γ (i)t−1, Y1:t, V

(i)
t , V

(i)
t−1

)
, i = 1, . . . , M .

Second, the PLE marginalizes Ψ out of the posterior of the states produced by the RB-APF.

The idea is to update Γ (i)t at the same time the RB-APF generates S
(i)
t , ΣΣΣ(i)t , and V

(i)
t . Thus, Ψ is

estimated by the PLE jointly with St|t , ΣΣΣt|t , and Vt|t .

As noted, we place IG priors on Ψ to expedite Storvik’s PLE. The priors, which are reviewed

in section 3.2 and table 1, are σ2
 ∼ IG

(
α
2 ,

β
2

)
, where  indexes the elements of Ψ . The

IG priors are useful because the associated posterior distributions are solved analytically. For

example, the posterior distribution of the static volatility coefficient of the RW of θt+1 is σ2(i)
φ ∼

IG

⎛⎝αt
2 ,

β(i)φ,t
2

⎞⎠, where αt = αt−1 + t−1 and β(i)φ,t =
∑t
=1

[
θ(i) −θ(i)−1

]2
. The process generating

β(i)φ,t suggests conditioning the posterior σ2(i)
φ

∣∣∣V(i)t , V(i)t−1 ∼ IG

⎛⎝αt
2 ,

β(i)φ,t
2

⎞⎠, where the shape

parameter β(i)φ,t is a sufficient statistic for σ2
φ.12 We extend the idea of identifying β(i),t as

sufficient statistics to the entire collection of static volatility parameters in Ψ .

11Another method to estimate Ψ is to wrap a Metropolis-Hasting Markov chain Monte Carlo (MCMC)
simulator around a PF. Andrieu, Doucet, and Holenstein (2010) prove the distribution of a MCMC
simulator is independent of the error created by a particle in a SMC algorithm. Hence, a PF gives an
unbiased estimate of the likelihood (11).

12The shape parameter is the numerator of the standard deviation of a random variable distributed IG.
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The online appendix gives procedures to simulate and update β(i)η,t , β
(i)
υ,t , β

(i)
φ,t , and β(i)κ,t

in steps 2 and 3.(a) of the RB-APF algorithm. The algorithm samples σ2(i)
η,t , σ2(i)

υ,t , σ2(i)
φ,t , and

σ2(i)
κ,t from particle streams of sufficient statistics. The law of motion of sufficient statistic β(i),t

matches the transition equation β(i),t = ˜f
(
β(i),t−1, Y1:t, V

(i)
t , V

(i)
t−1

)
, for  = η, υ, φ, and κ.

This leaves us to describe the routines that sample the measurement error scale volatil-

ity parameters, σ2
ζ,π and σ2

ζ,h, h = 1, . . . , 5. Since these variances lack laws of motion that

can be employed to build transition equations, the relevant shape parameters are updated on

information obtained from KF operations of the RB-APF. For example, we sample σ2(i)
ζ,h

∣∣∣Y1:t ∼

IG

⎛⎝αt
2 ,

β(i)ζ,h,t
2

⎞⎠, where updates of β(i)ζ,h,t are calculated using information from step 3.(b) of

the RB-APF; see the online appendix. Thus, updates of the shape parameters of the posterior

distributions of σ2
ζ,π and σ2

ζ,h, which are the sufficient statistics β(i)ζ,π,t and β(i)ζ,h,t , are driven

by the KF prediction error of Yt weighted by the “gain” of these innovations.

We summarize the PLE and the way it interacts with RB-APF with the following algorithm.

1. Before initializing the RB-APF at date 0, draw Ψ (i) = P
(Γ (i)0

)
.

2. Next, carry out steps 1, 2, and 3.(a)–3.(c) of the RB-APF algorithm (that appear in the online

appendix) to obtain the KF predictive likelihood ˜l(i)t ∝ P
(
Yt

∣∣∣S(i)t−1|t−1, ΣΣΣ(i)t−1|t−1, V
(i)
t , Ψ (i))

and calculate the particle weights, ω̂(i)
t .

3. Update the particles Ψ (i), i = 1, . . . , M , using the system of transition equations Γ (i)t =
˜f
(Γ (i)t−1, Y1:t, V

(i)
t , V

(i)
t−1

)
, which guide the evolution of this vector of sufficient statistics.

4. Engage
{
ω̂(i)
t

}M
i=1

to resample
{Γ (i)t }M

i=1
and perform steps 3.(d)–3.(f), 4, and 5 of the

RB-APF (that are listed in the online appendix).

5. Resample Δ(i),t , which are changes to β(i),t ,  = η, υ, φ, and κ, as described in step 3.(d) of

the RB-APF discussed in the online appendix, but “innovations” to β(i)ζ,π,t−1 and β(i)ζ,h,t−1,

Δ(i)ζ,π,t and Δ(i)ζ,h,t , are not resampled.

6. Repeat steps 1 to 5 of the PLE starting at date t = 1 and stopping at date T .
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7. Full sample estimates of the static volatility parameters are computed according to Ψ̂ =∑M
i=1ω

(i)
T Ψ (i)T = ∑M

i=1ω
(i)
T P

(Γ (i)T )
.

By repeating step 5 at dates t = 1, . . . , T−1, the PLE produces information about the content

of Yt for the way the RB-APF “learns” about Ψ .

3.5 A Rao-Blackwellized Particle Smoother

Lindsten, Bunch, Särkkä, Schön, and Godsill (2016) develop an algorithm to compute smoothed

estimates of St and Vt , given Y1:T and Ψ̂ . The algorithm is a forward filter-backward smoother

(FFBS) for SSMs amenable to Rao-Blackwellization. The forward filter is the RB-APF described in

section 3.3 and online appendix. The FFBS applies Rao-Blackwellization methods moving from

date T to date 1 to generate smoothed estimates of Vt conditional on forward filtered particles.

Forward filtering operations are conducted using the SSM (8.1) and (8.2) to produce smoothed

estimates of St , given smoothed estimates of Vt .13 Lindsten, Bunch, Särkkä, Schön, and Godsill

(LBSSG) refer to the entire process as a forward-backward-forward smoother.

The RB-PS operates only on the nonlinear states of the joint DGP of the SI-prediction mech-

anism and SW-UC-SV-TVP-AR(1) model. The problem is, when moving backwards from date t

to date t−1, smoothing Vt can cause its Markov structure to be lost. A reason is marginalizing

the linear states produces a likelihood that depends on V1:t rather than Vt .

LBSSG solve this sampling problem by decomposing the target density P
(
V1:T

∣∣∣Y1:T ; Ψ̂)
into P

(
V1:t

∣∣∣V1:t+1, Y1:T ; Ψ̂)P(Vt+1:T

∣∣∣Y1:T ; Ψ̂). Drawing from P
(
Vt+1:T

∣∣∣Y1:T ; Ψ̂) yields an in-

complete path of the approximate smoothed nonlinear states from date t+1 to date T , which is

denoted Ṽt+1:T . Since these draws are initialized at date T by sampling from the date T filtered

nonlinear states,
{
V
(i)
T

}M
(i)=1

, backward extension to ṼT−1:T is drawn probabilistically from the

cloud
{
V
(i)
1:T−1

}M
(i)=1

. The Rao-Blackwellized particle smoother is repeated for t = T−2, . . . , 1.

13Alternative PS are found in Lopes and Tsay (2011) and Carvalho, Johannes, Lopes, and Polson (2010).
These approaches to smoothing, which build on the PS of Godsill, Doucet, and West (2004), are
applicable to APFs, but not to the RB-APF we employ.
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The aforesaid factorization of P
(
V1:T

∣∣∣Y1:T ; Ψ̂) is also useful because there is information

in P
(
V1:t

∣∣∣V1:t+1, Y1:T ; Ψ̂) about the probabilities (i.e., normalized weights) needed to draw

smoothed nonlinear states. Gaining access to this information is difficult because the condi-

tional density of V1:t is not easy to evaluate.14 LBSSG’s propose simulation methods to perform

the backward filtering implicit in P
(
V1:t

∣∣∣V1:t+1, Y1:T ; Ψ̂). This density can be decomposed into

P
(
V1:t

∣∣∣V1:t+1, Y1:T ; Ψ̂) ∝ P
(
Yt+1:T , Vt+1:T

∣∣∣V1:t, Y1:t ; Ψ̂)P(V1:t

∣∣∣Y1:t ; Ψ̂) ,
where the object of interest is the predictive density P

(
Yt+1:T , Vt+1:T

∣∣∣V1:t, Y1:t ; Ψ̂). LBSSG

show this density equals
∫
P
(
Yt+1:T , Vt+1:T

∣∣∣St, Vt ; Ψ̂)P(St∣∣∣Y1:t, V1:t ; Ψ̂)dSt . Hence, run the

KF forward to obtain estimates of St and ΣΣΣt by drawing from P
(
St

∣∣∣Y1:t, V1:t ; Ψ̂). The mean

and MSE of St are employed in simulations to generate sufficient statistics that approximate

the density of the SSM (8.1) and (8.2), which when normalized are the probabilities of drawing a

path of Ṽ1:T . In a final step that is conditional on the path of Ṽ1:t , the linear states are smoothed

by iterating the KF forward. The upshot is, although St does not enter P
(
V1:t

∣∣∣V1:t+1, Y1:T ; Ψ̂),

the conditionally linear states are relevant for estimating the probability of sampling Ṽ1:T .

Our implementation of LBSSG’s RB-PS is described in the next algorithm.

1. Retrieve a stored ensemble of M particles,
{{

S
(i)
t|t, ΣΣΣ

(i)
t|t, V

(i)
t , ω

(i)
t

}T
t=1

}M
i=1

, created by

running the RB-APF on the SSM (8.1) and (8.2), given the PLE of Ψ , Ψ̂ .

2. Initialize the PS at date T

(a) by drawing Ṽ
(i)
T for each i from the filtered particle draws

{
V
(i)
T

}M
i=1

that have been

resampled using the weights ω(i)
T , and

(b) compute ÕOO
(i)
T =

(
CCC
(i)
T

)′ Ω̂ΩΩ−1
U CCC

(i)
T , S̃(i)T =

(
CCC
(i)
T

)′ Ω̂ΩΩ−1
U YT , and ���(i)T = I +

(
BBB
(i)
T

)′
ÕOO
(i)
T BBB

(i)
T

across M resampled particles, which are used to build sufficient statistics of ST .

14The KF creates an exact predictive density (up to a normalizing constant). However, computing the
density involves iterating the filter forward from dates t = 1, . . . , T−1 to date T across M particle
streams. These calculations are computationally costly, which motivate LBSSG to approximate the
predictive density with simulated sufficient statistics.

18



3. For each particle i = 1, . . . , M , iterate from date t = T−1 to date t = 1 to calculate the

unnormalized weights, W(i)
t = ω(i)

t ¯s(i)t
∣∣∣���(i)t ∣∣∣−0.5

exp
{

1
2ϑ

(i)
t

}
, which generate smoothed

normalized weights, ω̃(i)
t|T =W(i)

t

/∑M
m=1 W(m)

t , where

(a) Pr
(
¯j = i

)
= ω̃(i)

t|T counts the number of instances ˚uffl >∑m
j=1 ω̃

(j)
t|T , ˚uffl ∼ U

(
0, 1

)
, and

m = 1, . . . , M ,

(b) ¯s(i)t ∼ P
(
Ṽt+1

∣∣∣V(i)t ; Ψ̂), which is implemented by ¯s(i)t = exp
{
”v(i)η,t + ”v(i)υ,t

}
× ”v(i)θ,t× ”v(i)λ,t,

”v(i),t = −1
2

⎡⎣ ln ς̃2 (i)
,t+1 − lnς2 (i)

,t

σ̂

⎤⎦2

,  = η, υ,

”v(i)θ,t =
N
(
θ̃t+1, θ

(i)
t , σ̂φ

)
NΔ,θ,t , ”v(i)λ,t =

N
(
λ̃t+1, λ

(i)
t , σ̂φ

)
NΔ,λ,t ,

NΔ,θ,t = Φ
⎛⎝1 − θ(i)t

σ̂φ

⎞⎠− Φ
⎛⎝−1− θ(i)t

σ̂φ

⎞⎠ , NΔ,λ,t = Φ
⎛⎝1− λ(i)t

σ̂κ

⎞⎠− Φ
⎛⎝−λ(i)t
σ̂κ

⎞⎠ ,

Φ(·) is the CDF of the normal distribution,

(c) ���(i)t = I +
(
ΣΣΣ(i)t

)′
ÕOO
(i)
t ΣΣΣ

(i)
t , which depends on the backwards transition equations 15

OOO
(i)
t =

(
AAA
(i)
t+1

)′ [
I − ÕOO(i)t+1ΣΣΣ

(i)
t+1

(
���(i)t+1

)−1 (
ΣΣΣ(i)t+1

)′]
ÕOO
(i)
t+1AAA

(i)
t+1,

ÕOO
(i)
t = OOO

(i)
t +

(
CCC
(i)
t

)′ Ω̂ΩΩ−1
U CCC

(i)
t ,

and

(d) ϑ(i)t =
(
S̃(i)t

)′(
ÕOO
(i)
t

)1
2
(
ÕOO
(i)
t

)1
2 ′
S̃(i)t − 2

(
S̃(i)t

)′
S
(i)
t −

[
ΣΣΣ(i)t

(
S̃(i)t − ÕOO(i)t S

(i)
t

)(
ÕOO
(i)
t

)−1
]2

,

where the backwards laws of motion consist of S̃(i)t = S
(i)
t +

(
CCC
(i)
t

)′ Ω̂ΩΩ−1
U Yt and

S
(i)
t =

(
AAA
(i)
t+1

)′ [
I − ÕOO(i)t+1ΣΣΣ

(i)
t+1

(
���(i)t+1

)−1 (
ΣΣΣ(i)t+1

)′]
S̃(i)t+1.

4. Given the draw ¯j in step 3.(a), add V
¯j
t to Ṽt+1:T to produce the approximate (partially)

smoothed trajectory Ṽt:T =
{
V
¯j
t Ṽt+1:T

}
.

15LBSSG propose a square root KF to ensure numerical stability of the backward filtering operations.
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5. Subsequent to iterating backwards from date T to date 1 for each of theM particle paths,

calculate the distribution of S̃t by running the KF on the SSM (8.1) and (8.2) to produce

P
(
S1:T

∣∣∣Y1:T ; Ψ̂) = ∫
Ṽ1:T

P
(
S1:T

∣∣∣Ṽ(i)1:T , Y1:T ; Ψ̂)dF (Ṽ1:T
)
≈

M∑
i=1

P
(
S1:T

∣∣∣Ṽ(i)1:T ,Y1:T ; Ψ̂) , (12)

which is conditional on the backward filtered smoothed approximate paths of Ṽ1:T .

The density P
(
S1:T

∣∣∣Ṽ(i)1:T , Y1:T ; Ψ̂) is the multivariate normal distribution that results from

running the Kalman smoother (KS) on the SSM (8.1) and (8.2), where the approximation on the

right side of (12) conditions on the M trajectories of Ṽ(i)1:T . We use the disturbance smoothing

algorithm of Durbin and Koopman (2002) to draw S̃1:T from the distribution created by the KS,

given a Ṽ
(i)
t generated by the PS.

4 The Data and Estimates

We present estimates of the joint DGP of the SI-prediction mechanism and SW-UC-SV-TVP-AR(1)

model in this section. These estimates are compared with ones gleaned from joint DGPs that

lack inflation gap persistence, θt = 0 or drift in SI updating λt = λ.16 The goal is to evaluate the

impact of inflation gap persistence or SI on the dynamics of πt and πSPFt,t+h, h = 1, . . . , 5. The

joint DGPs are estimated using a RB-APF, PLE, and PS that engageM = 100,000 particles. These

estimates are used to study (i) comovement of τt and Ftτt with πt , and πSPFt,t+h, (ii) fluctuations

in εt and Ftεt , (iii) the history of ςη,t and ςυ,t since the start of the sample, (iv) movements in

θt and λt over the business cycle, and (v) the contributions of Yt , πt , and πSPFt,t+h to variation in

τt and Ftτt .

4.1 The Data

Our estimates rest on a sample of real time realized inflation, πt , and h-step ahead average

SPF inflation prediction, πSPFt,t+h. We obtain the data from the Real-Time Data Set for Macroe-

16When θt = 0
(
λt = λ

)
, σ 2

φ
(
σ 2
κ
)

is deleted from Ψ . Fixing the frequency of SI updating also adds λ toΨ , where the prior on λ ∼ Beta
(
1, 1

)
.
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conomists (RTDSM), which is compiled by the Federal Reserve Bank (FRB) of Philadelphia.17 The

data consist of observations from 1968Q 4 through 2017Q 2 for real time realized inflation and

average SPF inflation predictions.

Realized inflation is the RTDSM’s quarterly real-time vintages of the GNP and GDP de-

flator.18 These vintages reflect data releases that were publicly available around the middle

of quarter t and most often the publicly available information contains observations through

quarter t−1. We employ these vintages to compute the quarterly difference in the log levels

of real time observations on the GNP or GDP deflator, Pt . The quarterly price level data are

transformed into inflation measured at an annualized rate using πt = 400
[
lnPt − lnPt−1

]
.

Average SPF inflation predictions include a nowcast of the GNP or GDP deflator’s level

and forecasts of these price levels 1-, 2-, 3-, and 4-quarters ahead. These surveys are collected

at quarter t without full knowledge of πt . We comply with this timing protocol by assuming

the average nowcast, 1-quarter, . . . , and 4-quarter ahead predictions, which are denoted πSPFt,t+1,

πSPFt,t+2, . . . , andπSPFt,t+5, are conditional on data available at the end of quarter t−1. These inflation

predictions are the annualized log difference of the average SPF prediction of the deflator’s level

and one lag of the real time realized price level supplied by the RTDSM.

Figure 1 plots πt and four different average SPF inflation predictions. Plots of πt and the

average SPF inflation nowcast, πSPFt,t+1, appear in figure 1(a). Realized inflation is also found

in figure 1(b), but the 1-quarter ahead average SPF inflation prediction, πSPFt,t+2, replaces πSPFt,t+1.

Figure 1(c) displays πt and the 3-quarter ahead average SPF inflation prediction, πSPFt,t+4, and

figure 1(d) has πt and the 4-quarter ahead average SPF inflation prediction, πSPFt,t+5. The panels

depict πt with a dot-dash (red) line and average SPF inflation predictions with a solid (blue) line.

Vertical gray shaded bars denote NBER recession dates.

17The data are available at http://www.philadelphiafed.org/research-and-data/
real-time-center/survey-of-professional-forecasters/.

18The SPF measured the output price level with the implicit GNP deflator before 1992Q 1. From 1992Q 1
to 1996Q 4, the implicit GDP deflator played this role. It was replaced by the chain weighted GDP
deflator from 1997Q 1 to the end of the sample.
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The plots reveal several features of πt and the average SPF inflation predictions. First,

average SPF inflation predictions exhibit less variation than πt throughout the sample. Next,

as h increases, average SPF inflation predictions become smoother and are centered on πt . All

this suggests the average SPF surveys provide useful forecasts of inflation, which is a point

made by Ang, Bekaert, and Wei (2007), Faust and Wright (2013), Mertens (2016), and Nason and

Smith (2016a), among others.

Disparities in the average SPF nowcast to 4-quarter ahead prediction contain information

to identify τt , εt , Ftτt , and Ftεt . For example, the average SPF inflation nowcast peaks close to

10 percent during the 1973–1975 recession and around the double dip recessions of the early

1980s as Figure 1(a) shows. The former peak in inflation falls moving from πSPFt,t+2 to πSPFt,t+5 in

figures 1(b), 1(c), and 1(d). At a 4-quarter ahead horizon, the average SPF inflation prediction

rises steadily from about three percent in the early 1970s to a peak greater than eight percent

around the 1980 recession.19 Our estimates rely on this information, which is a function of the

SPF inflation prediction horizon, to identify persistence, stickiness, and volatility in RE and SI

trend and gap inflation.

4.2 Posterior Estimates of Ψ and Fit of the Joint DGPs

Table 3 lists full sample estimates of Ψ , Ψ̂ , for three joint DGPs. The DGPs combine the SI-

prediction mechanism and SW-UC-SV-TVP-AR(1) model, SI-prediction mechanism and a SW-UC

model in which no persistence, θt = 0, only SV drives gap inflation, and a fixed parameter, λt

= λ, SI-prediction mechanism and the SW-UC-SV-TVP-AR(1) model.

The restrictions on inflation gap persistence and the frequency of SI inflation updating

affect Ψ̂ in several ways. First, innovations to the RW of trend inflation SV are more volatile

than innovations to the RW of gap inflation SV in the DGPs with drifting gap persistence because

σ̂2
η > σ̂2

υ . However, σ̂2
η is larger while σ̂2

υ is smaller in the DGP that estimates θt and λt . In

19Figure 1(d) shows πSPFt,t+5 is missing observations in 1969, 1970, and 1974. The KF is modified to
accommodate the missing observations.
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contrast, σ̂2
η and σ̂2

υ are about equal in the DGP with θt = 0 and close to the calibrated values

Stock and Watson (2007) and Creal (2012) use to estimate the state of the SW-UC-SV model.

Next, there is little variation in estimates of the scale volatility on innovations to the RWs of θt

and λt , σ̂2
φ and σ̂2

κ , across the DGPs in which these parameters appear. The DGPs with drifting

gap persistence produce estimates of the scale volatility on the measurement errors of SPF

inflation predictions, σ̂2
ζ,h, h = 1, . . . , 5, that are quantitatively similar. The converse is true

for estimates of the scale volatility on the measurement errors of πt , σ̂2
ζ,π , because it is nearly

twice as large in the DGP that estimates θt and λt compared with the other two DGPs.

Estimates of log marginal data densities (MDDs) appear at the bottom of table 3 for the

three joint DGPs. Equation (11) is used to calculate L
(Ψ∣∣∣Y1:T

)
, which is the log MDD for a joint

DGP tied to Ψ . Standard errors of the log MDDs are beneath estimates of L
(Ψ∣∣∣Y1:T

)
.20 The

estimates of L
(Ψ∣∣∣Y1:T

)
, indicate the data have, at a minimum, a very strong preference for the

joint DGP of the SI prediction mechanism and SW-UC-SV-TVP-AR(1) model. Hence, the rest of

the paper reports evidence this joint DGP has for the stickiness, persistence, and volatility of

τt , Ft|tτt , εt , and Ft|tεt .

Figure 2 plots the PLE paths of σ̂2
η , σ̂2

υ , σ̂2
φ, and σ̂2

κ consistent with the joint DGP favored

by the data. The scale volatility parameters are plotted with solid (navy blue) lines and 68

and 90 percent uncertainty bands appear as dark and light shading in figures 2(a)–2(d). These

figures show σ̂2
η more than doubles, σ̂2

υ falls by about a third, σ2
φ rises by about a quarter, and

σ2
κ changes little from the start to the end of sample. The PLE path of σ̂2

η drifts up for much of

the sample as seen in figure 2(a). However, the PLE paths of these parameters are smooth from

the 2001 recession to the end of the sample. Also, the 68 percent uncertainty bands are tight

for the most part in figure 2, but the 90 percent uncertainty bands are wider and on occasion

display substantial variation.

20The standard errors are standard deviations of estimates of the log MDDs obtained from rerunning
the PF using different random seeds across the three DGPs. Hence, the approximation error of the PF

is measured by the standard errors of L
(Ψ∣∣∣Y1:T

)
and not the sampling uncertainty of a joint DGP.
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Table 3: Posterior Estimates of the Joint DGPs

of the SI Prediction Mechanism and SW-UC-SV Models

TVP-SI: λt TVP-SI: λt Fixed SI: λt = λ
Parameter TVP-AR(1): θt Gap-SV: θt = 0 TVP-AR(1): θt

σ 2
η 0.423 0.194 0.336[

0.372, 0.481
] [

0.167, 0.226
] [

0.294, 0.385
]

σ 2
υ 0.103 0.193 0.191[

0.090, 0.118
] [

0.163, 0.302
] [

0.168, 0.218
]

σ 2
φ 0.101 – 0.107[

0.089, 0.114
] [

0.095, 0.121
]

σ 2
κ 0.081 0.084 –[

0.071, 0.093
] [

0.038, 0.099
]

σ 2
ζ,π 0.213 0.115 0.115[

0.171, 0.263
] [

0.085, 0.148
] [

0.090, 0.146
]

σ 2
ζ,1 0.148 0.314 0.148[

0.126, 0.173
] [

0.266, 0.371
] [

0.126, 0.175
]

σ 2
ζ,2 0.070 0.093 0.068[

0.059, 0.082
] [

0.079, 0.110
] [

0.057, 0.080
]

σ 2
ζ,3 0.052 0.053 0.052[

0.044, 0.061
] [

0.044, 0.062
] [

0.044, 0.061
]

σ 2
ζ,4 0.046 0.068 0.047[

0.039, 0.055
] [

0.058, 0.080
] [

0.040, 0.55
]

σ 2
ζ,5 0.048 0.098 0.048[

0.040, 0.056
] [

0.083, 0.116
] [

0.041, 0.056
]

L
(Ψ∣∣∣Y1:T

)
−473.132 −669.150 −483.996(

7.068
) (

5.823
) (

6.691
)

The table presents posterior means of the elements of Ψ , which are calculated using the full
sample at date T = 2017Q 2. The values in brackets below the posterior means are 5 and 95
percent quantiles. The model in which the SI parameter is fixed yields the posterior mean
λ̂ = 0.304 with 5 and 95 percent quantiles of 0.250 and 0.360 conditional on the data and

priors. The log MDDs are computed using the formula for L
(Ψ∣∣∣Y1:T

)
described by equation

(11) in section 3.3. Volatility over the log MDDs are measured by standard errors that appear
in parentheses. The estimates of the static scale volatility parameters and log marginal data
densities are created using M = 100,000 particles.
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4.3 Trend and Gap Inflation

Figure 3 containsπt , the average SPF inflation nowcast and 4-quarter ahead inflation prediction,

πSPFt,t+1 and πSPFt,t+5, filtered RE trend inflation, τt|t , filtered SI trend inflation, Ft|tτt , filtered RE

gap inflation, εt|t , and filtered SI gap inflation, Ft|tεt , on the 1968Q 4 to 2017Q 2 sample. Plots

of πSPFt,t+1, Ft|tτt , and its 68 percent uncertainty bands are in figure 3(a). Figure 3(b) is similar,

but replaces πSPFt,t+1 with πSPFt,t+5. In these figures, solid (blue) lines are average SPF inflation

predictions and Ft|tτt is the dotted (black) lines. Figure 3(c) displays τt|t with a dash (green)

line, Ft|tτt with a dotted (black) line, and πt with a dot-dash (red) line. Estimates of RE and SI

gap inflation appear in figure 3(d) as a dashed (green) line, εt|t , and dotted (black) line, Ft|tεt .

Estimates of SI trend inflation are informed by the 1973–1975 recession, inflation surge

of the late 1970s and early 1980s, and Volcker disinflation.21 In 1974Q 4, figure 3(a) displays

a spike in πSPFt,t+1 of nearly 10 percent, but Ft|tτt is only 3.8 percent. At the same time, πSPFt,t+5

is 6.1 percent. The peaks in πSPFt,t+5 and Ft|tτt , which occur a year and a half later, are close to

6.5 percent. The next peaks in πSPFt,t+1 and πSPFt,t+5 are 9.5 in 1979Q 4 and 8.3 percent in 1980Q 1.

However, only in 1981Q 2 does Ft|tτt peak at 7.5 percent. After 1983, πSPFt,t+1, πSPFt,t+5, and Ft|tτt

fall steadily before leveling off in the late 1990s as figures 3(a) and 3(b) show. However, Ft|tτt

often deviates from πSPFt,t+1 between 1983 and 2000. As a result, πSPFt,t+1 often is outside the 68

percent uncertainty bands of Ft|tτt during this period while πSPFt,t+5 falls within the 68 percent

uncertainty bands of Ft|tτt after the Volcker disinflation in figure 3(b).

Figure 3(c) has several interesting features. First, πt is volatile compared with τt|t and

Ft|tτt . Another striking aspect of figure 3(c) is τt|t and Ft|tτt are nearly identical for much of

the sample. This is not true for πt and Ft|tτt
(
or τt|T

)
from 1968Q 4 to 2000. For example, τt|t

and Ft|tτt are less than a third of πt during the first oil price shock. However, Ft|tτt explains

much of the increases in πt and πSPFt,t+1 by the late 1970s and early 1980s. Hence, τt|t and Ft|tτt

respond slowly to the first oil price shock, but the inflation shock of the late 1970s and early

1980s produces quicker responses in τt|t and Ft|tτt . Subsequently, πt is often less than τt|t
21Meltzer (2014, p. 1209) establishes 1986 as the end of the Volcker disinflation.
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and Ft|tτt from 1983 to 2000. Beginning in 2003, τt|t and Ft|tτt are often centered on πt .

The estimates RE and SI trend inflation are a counterpoint to studies in which gap inflation

dominates movements in inflation; see Cogley and Sbordone (2008) among others. For exam-

ple, only after the 1973–1975 recession does τt|t and Ft|tτt become important for explaining

movements in πt . Moreover, our results of trend inflation differ Grassi and Prioietti (2010),

Creal (2012), and Shephard (2013) because our estimates condition on πSPFt,t+h, h = 1, . . . , 5.

We plot εt|t and Ft|tεt|t in figure 3(d). These plots show εt|t and Ft|tεt are nearly insep-

arable for the 1968Q 4–2017Q 2 sample. These estimates of gap inflation rise from less than

one percent in 1968Q 4 to about 3.5 percent in 1970. Thereafter, εt|t and Ft|tεt turn negative

before the 1973–1975 recession, which coincides with the largest spikes in εt|t and Ft|tεt of

nearly nine percent. These spikes are followed by εt|t and Ft|tεt falling to about −2.5 percent

by 1976. From the late 1970s to 1981, εt|t and Ft|tεt range from about zero to 3.7 percent.

There are two more aspects of figure 3(d) worth discussing. First, εt|t and Ft|tεt are less

volatile subsequent to the Volcker disinflation compared with the 1970s. After 1983, (the

absolute values of) εt|t and Ft|tεt are never larger than three percent. Second, εt|t and Ft|tεt are

often negative from 1983 to 2000, which leads the average SPF participant to expect an increase

in future growth in realized inflation. Nelson (2008) explains this prediction is an implication

of the Beveridge and Nelson (1981) decomposition, which is built into the SW-UC-SV-TVP-AR(1)

model of the joint DGP. Hence, the average SPF participant believes the Volcker disinflation

produced only a transitory drop in realized inflation.

Movements in Ft|tεt have parallels in monetary policy. Remember the average SPF par-

ticipant expects mean reversion in πt during the 1973–1975 recession. However, in the late

1970s the average SPF participant believes unit root dynamics dominates πt . An explanation

for this shift in the average SPF participant’s beliefs about the inflation regime is discussed by

Meltzer (2014, pp. 1006–1007). He notes that in the 1970s U.S. monetary policy makers would

not distinguish permanent from transitory shocks. As a result, their responses to the first oil

price shock contributed to unanchored inflation expectations by the late 1970s.
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The Volcker disinflation is another example. After 1983, πt and Ft|tτt begin to fall, but

the drop in πt is steeper as figure 3(c) shows. These plots are consistent with mostly negative

realizations for Ft|tεt from 1983 to 2000 as in figure 3(d). As discussed previously, we assign

these movements in Ft|tτt and Ft|tεt to the average SPF participant expecting a temporary fall

in πt during and after the Volcker disinflation. The assessment agrees with Goodfriend and

King (2005) and Meltzer (2014, p. 1131). They argue households, firms, and investors expected

only a transitory drop in inflation after 1983.

4.4 Trend and Gap Inflation Volatilities

Estimates of filtered and smoothed trend and gap inflation SV appear in figure 4. Figures 4(a)

and 4(c) contain dotted lines, which are ςη,t|t (purple) and ςυ,t|t (teal). Dot-dashed (purple and

teal) lines are ςη,t|T and ςυ,t|T in figures 4(b) and 4(d). These figures also include 90 percent

uncertainty bands, which are thinner solid (black) lines.

Figure 4 makes several points about ςη,t|t , ςυ,t|t , ςη,t|T , and ςυ,t|T . Figures 4(a) shows the

largest peaks in ςη,t|t occur in 1977, 1983, and 2009 while ςυ,t|t is dominated by a spike in

1975 in figure 4(c). Figures 4(b) and 4(d) display peaks in ςη,t|T and ςυ,t|T during the 1981–

1982 recession and in 1975, respectively. Hence, these plots are more evidence shocks to gap

inflation dominate movements in πt and πSPFt,t+h during the 1973–1975 recession, but in the

inflation surge of the late 1970s and early 1980s permanent shocks are more important.

Another revealing feature of figures 4(a) and 4(c) is the behavior of SV around NBER dated

recessions. The filtered SVs, ςη,t|t and ςυ,t|t , often rise during or after a NBER recessions as

depicted in figures 4(a) and 4(c). There are peaks ςη,t|T
(
ςυ,t|T

)
during the 1990–1991 and

2007–2009 (1981–1982, 1990–1991, 2001, and 2007–2009) recessions.

Figure 4(b) and 4(d) are also informative about the long run behavior of ςη,t|T and ςυ,t|T .

These SVs display steady declines for extended periods during the sample. The descent starts

in 1983 for ςη,t|T while this process starts in 1975 for ςυ,t|T .
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Finally, our estimates show ςη,t|T is smaller than ςυ,t|T for the entire sample. These es-

timates differ from Grassi and Prioietti (2010), Stock and Watson (2010), Creal (2012), and

Shephard (2013). These authors report trend SV dominates inflation gap SV from the 1970s

well into the late 1990s. However, Creal and Shephard find that gap inflation SV is greater than

trend SV after 2000.

4.5 Drifting Inflation Gap Persistence

Figures 5(a) and 5(b) display filtered and smoothed estimates of drifting inflation gap persis-

tence, θt|t and θt|T . Dotted and dot-dash (orange) lines denote θt|t and θt|T . Surrounding

θt|t and θt|T are 68 and 90 percent uncertainty bands in the dark and light gray shaded areas.

Figures 5(c) and 5(d) plot the absolute value of smoothed inflation gap persistence,
∣∣θt|T∣∣, and

accumulated changes of this absolute value,
∣∣θt|T∣∣ − ∣∣θ1|T

∣∣. These plots depict
∣∣θt|T∣∣ and∣∣θt|T∣∣ − ∣∣θ1|T

∣∣ with dot-dashed (orange) lines, where the dark and light gray shaded areas are

68 and 90 percent uncertainty bands.

There is co-movement between θt|t and θt|T with NBER dated cycles in figures 5(a) and

5(b). The co-movement is pro-cyclical during the 1969–1970, 1973–1975, and 1980 recessions.

These recessions see peaks in θt|t and θt|T while there are troughs between these recession.

Post-1981, θt|t and θt|T turn counter-cyclical. Filtered and smoothed estimates of drifting

inflation gap persistence peak between the recessions of 1981–1982, 1990–1991, 2001, and

2007–2009 while these recessions see troughs in θt|t and θt|T .

Uncertainty bands of θt|t and θt|T also appear in figures 5(a) and 5(b). The 90 percent

quantiles of θt|T
(
θt|t

)
cover zero in 1971–1972, 1990–1991, and 2006–2014 (1968–1969, 1972–

1973, 1975, 1976–1978, 1983, 1990–1993, and 2003–2014). Hence, we infer there are episodes

in which inflation gap persistence is zero. These results are similar to evidence presented by

Cogley, Primiceri, and Sargent (2010). They find inflation gap persistence drops after 1983.

However, our evidence is tied to pro-cyclical troughs in θt|T before 1983 and to the 2007–2009

recession and its aftermath, which occurs more than 20 years after the Volcker disinflation.
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Another take on the statistical and economic significance of drifting gap inflation persis-

tence appears in figure 5(c). This figure displays the absolute value of θt|T ,
∣∣θt|T∣∣. The plot

of
∣∣θt|T∣∣ gives evidence similar to that found in figure 5(b). There is evidence of a shift in

business cycle behavior of
∣∣θt|T∣∣ around the Volcker disinflation. Drift in the absolute value

of inflation gap persistence also declines steadily from the late 1990s to 2013.

There remains the inference problem that θt|t , θt|T , and
∣∣θt|T∣∣ are not necessarily infor-

mative about the statistical and economic content of changes in drifting inflation gap persis-

tence during the sample. We rectify this problem by plotting accumulating changes in
∣∣θt|T∣∣,∣∣θt|T∣∣ − ∣∣θ1|T

∣∣, in figure 5(d). Figure 5(d) shows these changes have tighter uncertainty bands

compared with the plots in figures 5(a), 5(b), and 5(c). Nonetheless, the path of
∣∣θt|T∣∣ − ∣∣θ1|T

∣∣
continues to show peaks coincide with recessions pre-1981 and troughs occur between these

recessions but the opposite is observed post-1981. Hence, we have evidence that dates a shift

from pro-cyclical to counter-cyclical drifting inflation gap persistence to 1981. This break is

consistent with an argument made by Meltzer (2014, p. 1006 and p. 1207). He contends there

was a shift in U.S. inflation persistence because the Fed changed the way it operated monetary

policy in the 1980s and 1990s compared with the 1970s.

4.6 Time Variation in the Frequency of SI Updating

Figure 6 presents filtered and smoothed estimates of the time variation in the frequency of SI

updating, λt|t and λt|T . These panels plot λt|t and λt|T as dotted (light green) and dot-dashed

(brick) lines. The thin solid (brick) lines denote 90 percent uncertainty bands of λt|T and 90

percent uncertainty bands of λt|t are depicted with light gray areas. Figures 6(b) and 6(d) plot

accumulated changes in λt|T , λt|T − λ1|T . In these panels, dark and light gray areas are 68

and 90 percent uncertainty bands of λt|T − λ1|T . The top row of figure 6 has λt|t , λt|T , and

λt|T − λ1|T estimated using the joint DGP of the SI-prediction mechanism and the SW-UC-SV-

TVP-AR(1) model. Figures 6(c) and 6(d) report similar estimates, but the SW-UC-SV model lacks

persistence in gap inflation, or θt = 0 for all dates t.
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Plots of λt|t and λt|T display a decade long swing from more frequent to less frequent

updating beginning in the late 1980s in figure 6(a). From the late 1960s to the 1988, the

average SPF inflation respondent is estimated to update almost every quarter to changes in

Etπt+h because λt|T varies between 0.01 and 0.35. However, there is uncertainty about these

estimates because the 90 percent confidence bands of λt|T range from 0.01 to 0.60.

Figures 6(a) also shows λt|t and λt|T reach a plateau from 1994 to 2007 before falling

during the 2007–2009 recession. From 1995 to 2008, λt|t and λt|T range between 0.50 and

0.70. The recession of 2007-2009 sees λt|T
(
λt|t

)
dropping to 0.25 (0.35). Subsequently, λt|T(

λt|t
)

recovers to 0.47 (0.60) before 2017Q 2. The filtered and smoothed estimates of λt are

also associated with substantial uncertainty. For example, when λt|T plateaus in the late 1990s,

the five percent quantile is as low as 0.20 and the 95 percent quantile is as high as 0.95. Fur-

thermore, the 90 percent uncertainty bands of λt|t and λt|T remain wide in figure 6(a) as the

sample moves past the recession of 2001, the “considerable” and “extended” period policy

regimes of the Greenspan and Bernanke Feds, the 2007–2009 recession, and unconventional

policy regimes of the Bernanke and Yellen Feds.

There are useful inferences to draw from λt|t and λt|T , even with the uncertainty sur-

rounding these estimates. For example, a low frequency of SI inflation updating by the average

member of the SPF is consistent with the Fed engaging in a policy of “opportunistic disinflation”

during the 1990s as described by Meyer (1996) and Orphanides and Wilcox (2002). Orphanides

and Wilcox quote Vice Chairman Blinder and President Boehne of the FRB-Philadelphia as ad-

vocating the Fed of the mid 1990s should wait for a state of the world in which there is little

cost to monetary policy lowering inflationary expectations rather than to take actions during

periods when the potential for a costly disinflation are large. However, since the joint DGP of

the SI-prediction mechanism and SW-UC-SV-TVP-AR(1) model is the source of estimates of λt|t

and λt|T , these estimates are about the average SPF respondent’s beliefs about changes in the

inflation regime and not evidence about shifts in the monetary policy regime.22

22Information about monetary policy interventions is needed to conduct a monetary policy evaluation
of this kind as studied, for example, by Leeper and Zha (2003).
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There is greater support for statistically and economically important time variation in the

frequency of SI inflation updating in figure 6(b). This figure plots λt|T − λ1|T for the joint DGP

in which there is drift in inflation gap persistence. In this case, the path of λt|T − λ1|T in figure

6(b) is similar to λt|T displayed in figure 6(a) with respect to level and slope. Another interesting

feature of figure 6(b) is the uncertainty bands surrounding λt|T − λ1|T . Figure 6(b) displays 90

percent uncertainty bands of λt|T − λ1|T that are narrower for the entire sample compared

with the analogous confidence bands of λt|T in figure 6(a). These estimates strengthen the case

that changes in the frequency of SI inflation updating by the average member of the SPF are

statistical and economic important.

This message is reinforced by figure 6(d). This figure present estimates of λt|T − λ1|T

conditional on a joint DGP in which there is no persistence in the inflation gap. Given θt is

zero, SI inflation updating is less frequent quarter by quarter as depicted by λt|t and λt|T in

figure 6(c) compared with the estimates found in figure 6(a). Although figure 6(c) suggests

there is useful information about the frequency of SI inflation updating conditional on θt =
0, the plot of λt|T − λ1|T in figure 6(d) indicates otherwise. Figure 6(d) depicts λt|T − λ1|T as

fluctuating around zero with 90 percent uncertainty bands that often contain zero under the

joint DGP in which inflation gap has no persistence.

This section reports estimates of λt|t , λt|T , and λt|T − λ1|T that show SI inflation updating

by the average SPF respondent is statistically and economically significant for the last 48 years.

These results agree with Coibion and Gorodnichenko (2015). Nonetheless, our estimates also

reveal shifts in SI inflation updating during the sample. From the 1969 to 1988, the frequency of

SI inflation updating occurred almost every quarter. The frequency declines to about once every

two to three quarter until 2007, followed by a sharp increase during the 2007–2009 recession.

Afterwards, the frequency drops by 2017Q 2. These shifts in estimates of SI inflation updating

indicate the average SPF participant’s beliefs about the inflation regime changed within a few

years of the end of the Volcker disinflation. The average SPF participant’s beliefs about the

inflation regime also appear to have been altered by the recession of 2007–2009.
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4.7 SPF Inflation Predictions and Trend Inflation Uncertainty

Figure 7 displays conditional volatilities of RE trend inflation, τt , and SI trend inflation, Ftτt .

The plots quantify uncertainty over time in τt and Ftτt conditional on the history of Yt , or

histories of subsets of its elements, smoothed estimates of the nonlinear states, Ṽt|T , and

estimates of the static scale volatility coefficients, Ψ̂ . The measure of the volatility of τt is

Var
(
τt
∣∣Y1:t, Ṽt|T , Ψ̂), where the entire information set runs from the first observation to quarter

t, the smoothed nonlinear states begin at quarter t and end with quarter T , and estimates of the

static scale volatility parameters are full sample. Similar computations are used to produce the

conditional volatility of Ftτt . Thus, the paths of the nonlinear states and parameter estimates

are held fixed across changes in the sample data fed into the KF to produce estimates of the

conditional volatilities of τt and Ftτt .

Figure 7(a) plots the conditional volatilities of τt . The conditional volatilities of Ftτt are

found in figure 7(b). In these figures, the solid (black) line, dashed (blue) line, dotted (red) line,

and dot-dashed (green) line are Var
(
x
∣∣Y1:t, Ṽt|T , Ψ̂), Var

(
x
∣∣π1:t, Ṽt|T , Ψ̂), Var

(
x
∣∣πSPF1:t , Ṽt|T , Ψ̂),

and Var
(
x
∣∣π1:t, πSPF1:t , Ṽt|T , Ψ̂), respectively, where x = τt , Ftτt .

Figures 7(a) and 7(b) reveal πt and πSPFt,t+5 jointly contribute the bulk of the informa-

tion pertinent to estimate τt and Ftτt . The reason is the dot-dashed (green) lines of fig-

ures 7(a) and 7(b) are always near the solid (black) lines. Hence, given only πt and πSPFt,t+5,

Var
(
τt
∣∣πt, πSPF1:t,t+5, Ṽt|T , Ψ̂) and Var

(
Ftτt

∣∣πt, πSPF1:t,t+5, Ṽt|T , Ψ̂) are close to the estimates con-

ditioned on the entire information set, Var
(
τt
∣∣Yt, Ṽt|T , Ψ̂) and Var

(
Ftτt

∣∣Yt, Ṽt|T , Ψ̂). In con-

trast, the dotted (blue) lines are far from the solid (black) and large dot-dashed (green) lines

in the first half of the sample. Hence, prior to the Volcker disinflation, there is insufficient

information in πt alone to estimate τt and Ftτt without also generating more variation in

these estimates compared with estimates conditioning on either Yt or πt and πSPFt,t+5. How-

ever, conditioning only on πSPFt,t+5 produces substantial variation around Ftτt that is manifested

by large differences between plots of Var
(
Ftτt

∣∣πSPF1:t,t+5, Ṽt|T , Ψ̂) and Var
(
Ftτt

∣∣Yt, Ṽt|T , Ψ̂) or

Var
(
Ftτt

∣∣πt, πSPF1:t,t+5, Ṽt|T , Ψ̂) in figure 7(b).

38



F
i
g

u
r

e
7
:

U
n

c
e
r

t
a

i
n

t
y

M
e
a

s
u

r
e

o
f

T
r

e
n

d
I
n

fl
a

t
i
o

n
C

o
n

d
i
t

i
o

n
a

l

o
n

D
i
f
f
e
r

e
n

t
I
n

f
o

r
m

a
t

i
o

n
S
e
t

s
,
1
9

6
8

Q
4

t
o

2
0

1
7
Q

2

(a
) 

V
o
la

ti
li

ty
 o

f 
R

E 
T

re
n

d
 I

n
fl

at
io

n
, 

τ t, C
o
n

d
it

io
n

al
 o

n
 D

if
fe

re
n

t 
In

fo
rm

at
io

n
 S

et
s

1
9
6
8

1
9
7
3

1
9
7
8

1
9
8
3

1
9
8
8

1
9
9
3

1
9
9
8

2
0
0
3

2
0
0
8

2
0
1
3

2
0
1
8

0

0
.2

5

0
.5

0

0
.7

5

1
.0

0

1
.2

5

1
.5

0

1
.7

5

2
.0

0

2
.2

5

F
u
ll

In
fo

rm
at

io
n

S
et

:
Y t

R
ea

li
ze

d
In
.
at

io
n
:
:

t

4-
Q

A
h
ea

d
S
P
F
:
:

S
P

F
t,
5

C
om

b
in

at
io

n
:
:

t
&
:

S
P

F
t,
5

(b
) 

V
o
la

ti
li

ty
 o

f 
SI

 T
re

n
d

 I
n

fl
at

io
n

, F
tτ t, C

o
n

d
it

io
n

al
 o

n
 D

if
fe

re
n

t 
In

fo
rm

at
io

n
 S

et
s

1
9
6
8

1
9
7
3

1
9
7
8

1
9
8
3

1
9
8
8

1
9
9
3

1
9
9
8

2
0
0
3

2
0
0
8

2
0
1
3

2
0
1
8

0

0
.2

5

0
.5

0

0
.7

5

1
.0

0

1
.2

5

1
.5

0

1
.7

5

2
.0

0

2
.2

5

F
u
ll

In
fo

rm
at

io
n

S
et

:
Y t

R
ea

li
ze

d
In
.
at

io
n
:
:

t

4-
Q

A
h
ea

d
S
P
F
:
:

S
P

F
t,
5

C
om

b
in

at
io

n
:
:

t
&
:

S
P

F
t,
5

N
o
te

:
T

h
e

tw
o

p
lo

ts
co

n
ta

in
ve

rt
ic

al
g
ra

y
b

an
d

s
th

at
d

en
o
te

N
B

ER
d

at
ed

re
ce

ss
io

n
s.



In summary, figure 7 shows realized inflation and the 4-quarter ahead average SPF inflation

prediction contain much of the information useful for reducing uncertainty surrounding τt and

Ftτt and, hence, efficiently estimating these measures of trend inflation.

5 Conclusions

This paper studies the joint dynamics of realized inflation and inflation predictions of the Sur-

vey of Professional Forecasters (SPF). The joint data generating process (DGP) mixes a Stock and

Watson (2007) unobserved-components (SW-UC) model with the Coibion and Gorodnichenko

(2015) version of the Mankiw and Reis (2002) sticky information (SI) model. The SW-UC model

with stochastic volatility (SV) in trend and gap inflation is extended to include drift in inflation

gap persistence. The SI law of motion is endowed with drift in the SI inflation updating pa-

rameter. We estimate the joint DGP on a sample of real time realized inflation and averages of

SPF inflation predictions from 1968Q 4 to 2017Q 2. The estimator embeds a Rao-Blackwellized

auxiliary particle filter into the particle learning estimator of Storvik (2002). Smoothed esti-

mates of the state variables are constructed using an algorithm developed by Lindsten, Bunch,

Särkkä, Schön, and Godsill (2016).

Estimates of the joint DGP are summarized as follows. First, longer horizon average SPF

inflation predictions provide useful information for estimating rational expectations (RE) and

SI trend inflation and reducing uncertainty around these estimates. Second, RE and SI gap infla-

tion dominate inflation fluctuations during the first oil price shock. This is reversed during the

late 1970s and early 1980s. Third, trend (gap) inflation SV falls steadily after 1983 (1975). We

also find that inflation gap persistence is pro-cyclical before 1981 and turns counter-cyclical

afterwards. Fifth, changes in the frequency of SI inflation updating are statistically and econom-

ically important. The average SPF participant is often updating SI inflation predictions from the

late 1960s through the late 1980s. Subsequently, the frequency of SI inflation updating falls to

levels associated with estimates reported by Coibion and Gorodnichenko (2015), among others,
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and remains low until the 2007–2009 recession.

Our results fit into a literature represented by, among others, Krane (2011), Mertens (2016),

and Nason and Smith (2016a, b). These authors find the responses of professional forecasters to

permanent shocks are greater than to transitory shocks when revising their predictions, say, of

inflation. In the same way that this research inspired us, we hope this paper stimulates further

research into the ways in which professional forecasters and other economic agents process

information to form beliefs and predictions about future economic outcomes and events.
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A1 Introduction

This appendix contains four sections. Section A2 builds state space models (SSMs)

for the joint data generating process (DGP) of the sticky information (SI) prediction

mechanism conditional on different Stock and Watson-unobserved components (SW-UC)

models with stochastic volatility (SV). A joint DGP conditional on a SW-UC-SV model with

static persistence in gap inflation is developed in section A2.1. Section A2.2 reviews the

SSM of the SI-prediction mechanism and SW-UC-SV-TVP-AR(1) model, which is discussed

in section 2.3 of the paper. Additional information about the Rao-Blackwellized auxiliary

particle filter (RB-APF) of section (3.3) used to estimate the linear and nonlinear state

variables of the joint DGP of the SI-prediction mechanism and the SW-UC-SV-TVP-AR(1)

model is found in section A3. Estimates of the SSMs left out of the paper appear in

section A4. Section A4.1 contains estimates of the SSM that consists of the SI-prediction

mechanism and a SW-UC-SV model with no persistence in gap inflation, θt = 0. When a

static SI parameter, λt = λ is part of the joint DGP, along with the SW-UC-SV-TVP-AR(1)

model, the estimates are found in section A4.2.

A2 SSMs of the Joint DGP

The SSMs have several features in common. The features are h-step ahead rational

expectations (RE) and SI forecasts, Etπt+h and Ftπt+h, are integrated out of the state of

the SSMs. Instead, the state vector consists in part of RE and SI inflation trends and gaps,

τt, εt, Ftτt, and Ftεt. The RE (SI) state variables drive Etπt+h
(
Ftπt+h

)
. Along with these

state variables, the SSMs are constructed using the laws of motion of τt and εt defined by

a SW-UC-SV model, and a conjecture for the laws of motion of Ftτt and Ftεt that reflect

the SI law of motion, which is equation (3.2) of the paper. Another implication of the SSM
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is the RE and SI state variables, τt εt, Ftτt, and Ftεt, are linear conditional on nonlinear

state variables. The nonlinear state variables are the SVs of trend and gap inflation, ςη,t

and ςυ,t, drifting inflation gap persistence, θt, and the SI-TVP parameter, λt, where Vt =[
lnς2

η,t lnς2
υ,t θt λt

]′
. We gather the conditionally linear state variables together in Xt

= [τt εt]′, FtXt = [Ftτt Ftεt]′, and St =
[
X′t FtX′t

]′
. The SSM is completed by connecting

the observables of realized inflation, πt, and the average SPF participant’s h-step ahead

inflation predictions, πSPFt,t+h to St plus the associated measurement errors, ζπ,t and ζh,t,

h = 1, . . . , H. Hence, Etπt+h and Ftπt+h are replaced by the conditionally linear St in

the observation equations of πSPFt,t+h because these forecasts are linear functions of Xt

and FtXt.

A2.1 A SSM of πt and πSPFt,t+h when Persistence in εt+1 Is Fixed

This section constructs a SSM for the joint DGP of the SI-prediction mechanism and a

SW-UC-SV model with θt = θ. Our motivation is to study the joint DGP without the

complication of specifying a TVP-AR(1) for gap inflation. The restriction is gap inflation

evolves as a fixed coefficient AR(1) with SV, where εt+1 = θεt + ςυ,t+1υt and θ ∈ (−1, 1
)
.

In this case, the joint DGP maps into a SSM in which alone λt alters the transition dy-

namics of FtXt.

The SSM of the joint DGP is built on RE and SI term structures of inflation. The

SW-UC-SV model with fixed inflation gap persistence yields a SSM, which is the source

of Etπt+h. We compute Etπt+h using the observation and state equations of this SSM,

which are equation (5.1)

πt = δXXt + σζ,πζπ,t, (A2.1)

and equation (5.2) modified for fixed inflation gap persistence

Xt+1 = ΘΘΘXt + ΥΥΥt+1Wt, (A2.2)
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of the paper, where δX =
[
1 1

]
, ΘΘΘ =

⎡⎢⎢⎣ 1 0

0 θ

⎤⎥⎥⎦, ΥΥΥt+1 =

⎡⎢⎢⎣ ςη,t+1 0

0 ςυ,t+1

⎤⎥⎥⎦ , and Wt =

[
ηt υt

]′
. The RE forecast of πt+h, which is equation (6) of the paper (implied hereafter)

is reproduced here

Etπt+h = δXΘΘΘhXt, h = 1, . . . , H, (A2.3)

Equation (A2.3) is calculated by iterating the observation equation (A2.1) and state equa-

tions A2.2 forward h periods, substituting for Xt+h in the former equation using the

latter, and applying the law of iterated expectations (LIE).

The SI term structure of inflation forecasts has a similar specification

Ftπt+h = δXΘΘΘhFtXt, (A2.4)

which is equation (7). This specification is built on the SI-EWMA smoother (4), the RE

term structure of inflation forecasts (A2.3), and the EWMA smoother of FtXt. Construc-

tion of the latter begins by substituting δXΘΘΘhXt for Etπt+h in the SI-EWMA smoother

(4) to find

Ftπt+h = δXΘΘΘh ∞∑
j=0

μλ,t−jΘΘΘj
⎛⎝ j∏
=0

λt−

⎞⎠Xt−j. (A2.5)

Next, a law of motion for the SI state vector, Ft+1Xt+1, is needed to connect it to the RE

state vector, Xt. Remember the state variables Xt and FtXt contain all the information

needed to construct the RE and SI term structures of inflation forecasts, which are

equations (A2.3) and (A2.4). This information is useful for building a law of motion for

the SI state variable. Since the SI law of motion (3.2) relates Ftπt+h to its own lag and

Etπt+h weighted by λt and
(
1−λt

)
, a law of motion for FtXt+h is found by swapping it,

Ft−1Xt+h, and EtXt+h for Ftπt+h, Ft−1πt+h, and Etπt+h in the SI law of motion (3.2). The

result is the law of motion
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FtXt+h = λtFt−1Xt+h +
(
1− λt

)
EtXt+h. (A2.6)

Backward iteration of the SI law of motion (A2.6) yields the EWMA smoother of FtXt+h

FtXt+h =
∞∑
j=0

μλ,t−j

⎛⎝ j∏
=0

λt−

⎞⎠ΘΘΘh+jXt−j, (A2.7)

where Et−jXt+h = ΘΘΘh+jXt−j . When h = 0,

FtXt =
∞∑
j=0

μλ,t−j

⎛⎝ j∏
=0

λt−

⎞⎠ΘΘΘjXt−j, (A2.8)

which establishes the link between Ftπt+h and FtXt in the SI inflation term structure

(A2.4).

We employ the state equations (A2.2) of Xt+1 and the SI-EWMA smoother (A2.8) to

build state equations for Ft+1Xt+1. By pulling Xt out of the infinite sum of the SI-state

equation EWMA smoother (A2.8), the result is

FtXt =
(
1− λt

)
Xt +

∞∑
j=1

μλ,t−j

⎛⎝ j∏
=0

λt−

⎞⎠ΘΘΘjXt−j. (A2.9)

The infinite sum of equation (A2.9) implies Ft−1Xt−1 =
∑∞
i=0 μλ,t−i−1

(∏i
=0 λt−

)ΘΘΘi+1Xt−i−1

after a change of index, j = i+1. Substitute for the infinite sum in equation (A2.9) with

Ft−1Xt−1 to produce

FtXt =
(
1− λt

)
Xt + λtΘΘΘFt−1Xt−1. (A2.10)

The goal of finding the law of motion is almost complete. Subsequent to leading the law

of motion (A2.10) forward one period and substituting for Xt+1 using the state equations

(A2.2), we have the SI state equations

Ft+1Xt+1 = λt+1ΘΘΘFtXt + (
1− λt+1

)ΘΘΘXt + (
1− λt+1

)ΥΥΥt+1Wt, (A2.11)

of the joint DGP of the SI prediction mechanism and the SW-UC-SV model with fixed

inflation gap persistence. The state equations (A2.2) of Xt+1 are stacked on top of the
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state equations (A2.11) of Ft+1Xt+1 to form

St+1 = AAAΘΘΘ,t+1St + BBBt+1Wt, (A2.12)

whereAAAΘΘΘ,t+1 =

⎡⎢⎢⎣ ΘΘΘ 02×2(
1− λt+1

)ΘΘΘ λt+1ΘΘΘ
⎤⎥⎥⎦, andBBBt+1 =

⎡⎢⎢⎣ ΥΥΥt+1(
1− λt+1

)ΥΥΥt+1

⎤⎥⎥⎦. Thus, the system

of state equations (A2.12) of the joint DGP reveal shocks to λt+1 alone shift the transition

dynamics of Ft+1Xt+1 and its impulse dynamics react to λt+1 and SVs.

The SSM of the joint DGP of the SI prediction mechanism and the SW-UC-SV model

with fixed inflation gap persistence is finished by using equations (A2.1) and (3.1) to

construct the system of observation equations

Yt = CCCΘΘΘSt + DDDUt, (A2.13)

where Yt =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

πt

πSPF1,t

...

πSPFH,t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, CCCΘΘΘ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δX 01×2

01×2 δXΘΘΘ
...

...

01×2 δXΘΘΘH

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, DDD =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σζ,π 0 . . . 0

0 σζ,1 . . . 0

0 0
. . . 0

0 0 . . . σζ,H

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Ut =

[
ζπ,t ζ1,t . . . ζH,t

]′
, and ΩΩΩU = DDDDDD′. The SPF term structure of inflation predictions are

the second through H+1 rows of the observation equations (A2.13). These observation

equations show Ftπt+h is integrated out of the SSM and that the factor loadings on St

are time invariant.

A2.2 The Joint DGP with Drifting Persistence in Gap Inflation

The SSM of the SI-prediction mechanism and SW-UC-SV-TVP-AR(1) model is more diffi-

cult to construct compared with the SSM of the previous section. The difficulty stems

from drifting persistence in gap inflation, which creates a nonlinearity in the transition

dynamics of the state equations (5.2) of the SW-UC-SV-TVP-AR(1) model. This nonlin-
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earity rule outs using the LIE to compute Etπt+h. Instead, the anticipated utility model

(AUM) is employed to solve the problem. Under the AUM assumptions stated in the

paper, the average member of the SPF holds ΘΘΘt+h fixed at its date t realization when

constructing h-step ahead inflation forecasts. For example, combine the AUM and pro-

cedures similar to ones used to construct the RE term structure of inflation (A2.3) under

fixed inflation gap persistence generates the forecasts

Etπt+h = δXΘΘΘht|tXt, (A2.14)

where ΘΘΘt =
⎡⎢⎢⎣ 1 0

0 θt

⎤⎥⎥⎦. The subscript on ΘΘΘt|t is held fixed in the RE term structure

of inflation (A2.14) to reflect information available to evaluate the SW-UC-SV-TVP-AR(1)

model at date t.

The SI term structure of inflation forecasts also has to be calculated to build the

SSM of the joint DGP. Similar to the previous section, the process of computing these

forecasts starts with the law of motion (A2.6) of FtXt+h,
(
1 − λt

)
EtXt+h + λtFt−1Xt+h,

and its EWMA smoother (A2.7),
∑∞
j=0 μλ,t−j

(∏j
=0 λt−

)
Et−jXt+h. Although this law of

motion and smoother are unchanged from the case of θt = θ, drift in inflation gap

persistence matters for constructing the map from Et−jXt+h to FtXt. Similar to the im-

plication of AUM, which holds drifting inflation gap persistence fixed at θt|t to generate

the h-step ahead RE inflation forecast (A2.14), we assume θt is fixed conditional on

the information available to FtXt+h. Thus, iterating the law of motion (A2.6) of FtXt+h

backwards gives

FtXt+h =
∞∑
j=0

μλ,t−j

⎛⎝ j∏
=0

λt−

⎞⎠ΘΘΘh+jt|t Xt−j, (A2.15)

which is implied by the RE term structure of inflation forecasts (A2.14), Et−jπt+h =
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ΘΘΘh+jt|t Xt−j . Next, set h = 0 in the EWMA (A2.15) of FtXt+h to obtain

FtXt =
∞∑
j=0

μλ,t−j

⎛⎝ j∏
=0

λt−

⎞⎠ΘΘΘjt|tXt−j. (A2.16)

Apply the EWMA (A2.16) of FtXt to link the SI-EWMA smoother (4) to the h-step ahead

RE inflation forecast (A2.14) yields

Ftπt+h = δX

∞∑
j=0

μλ,t−j

⎛⎝ j∏
=0

λt−

⎞⎠ΘΘΘh+jt|t Xt−j. (A2.17)

The SI term structure of inflation forecasts

Ftπt+h = δXΘΘΘht|tFtXt, (A2.18)

is an implication of the SI-EWMA smoothers (A2.16) of Ftπt+h and (A2.16) of FtXt.

The SI-EWMA smoother (A2.16) of FtXt also contributes to the state equations of

Ft+1Xt+1. Unwinding the infinite sum of (A2.16) gives the recursion

FtXt =
(
1− λt

)
Xt + λtΘΘΘt|tFt−1Xt−1. (A2.19)

Lead the law of motion (A2.19) of FtXt by one period and substitute for Xt+1 using the

state equations (5.2) to produce

Ft+1Xt+1 =
(
1− λt+1

)ΘΘΘt+1Xt + λt+1ΘΘΘt+1FtXt +
(
1− λt+1

)ΥΥΥt+1Wt, (A2.20)

where we drop the conditioning time subscript on ΘΘΘt+1. Equations (A2.20) duplicate

the bottom two rows of the state equations (8.1). The timing of the conditionally lin-

ear and nonlinear state variables on the right hand side of the state equations (A2.20)

appear nonstandard. However, the timing conventions of these state equations are

consistent with the specification of the hierarchical conditional linear Gaussian (CLG)

model studied by Lindsten, Bunch, Särkkä, Schön, and Godsill (2016). They develop a
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particle smoother for the CLG model that we employ to generate smoothed estimates

of the linear and nonlinear state variables of the SSMs of this and the previous section.

Thus, our use of the Lindsten et al particle smoother is supported by the AUM assump-

tions and the assumption that θt+1 is held fixed at its current realization when iterating

backwards to construct SI-EWMA smoothers.

A3 Econometric Methods

We estimate the SSM (8.1) and (8.2) using Bayesian sequential Monte Carlo (SMC) meth-

ods. The methods combine Rao-Blackwellization (RB) of the SSM with the auxiliary

particle filter (APF) of Pitt and Shephard (1999, 2001) to estimate the linear and nonlin-

ear state variables. Our RB-APF algorithm is adapted from a version outlined by Creal

(2012) and algorithm 2 Lopes and Tsay (2011, p. 173). Estimates of the static scale

volatility coefficients are produced with the particle learning estimator (PLE) of Storvik

(2002); also see Carvalho, Johannes, Lopes, and Polson (2010). The next section gives

details about running the RB-APF that is sketched in section 3.3 of our paper.

A3.1 The RB-APF Algorithm

The RB-APF of section (3.3) produces M filtered estimates of the linear states, St, its

mean square error (MSE), ΣΣΣt, and the nonlinear states, Vt+1. The Kalman filter (KF) is

the source of estimates of St and ΣΣΣt particle by particle while M synthetic samples of

Vt+1 are generated by simulating the multivariate random walk (9). The predictive step

of the KF yields M estimates of the likelihood that are the source of the weights used

to resample the M particles of St, ΣΣΣt, and Vt+1. Conditioning on the resampled St, ΣΣΣt,

and Vt+1, running the KF produces updates of the linear states.
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We carry out the RB-APF algorithm in the following steps.

1. Initialize the filter with i = 1, . . . , M particle draws of V(i)0 sampled from the priors

lnς2 (i)
η,0 ∼ lnN

(
ln
(
ς2
η,0

)
− σ

2
ςη,0

2
, σ 2

ςη,0

)
,

lnς2 (i)
υ,0 ∼ lnN

(
ln
(
ς2
υ,0

)
− σ

2
ςυ,0

2
, σ 2

ςυ,0

)
,

θ(i)0 ∼ TN
(
θ0, σ 2

φ,0, −1.0, 1.0
)
,

and

λ(i)0 ∼ TN
(
λ0, σ 2

κ,0, 0.0, 1.0
)
,

where TN denotes the truncated normal distribution, the prior means ς2
η,0 = 0.2,

ς2
υ,0 = 0.4, θ0 = 0, λ0 = 0.5 and prior variances σ 2

ςη,0 = σ 2
ςυ,0 = 10.0 and σ 2

φ,0 =
σ 2
κ,0 = 1.0 are listed in table 2 and conditional on V

(i)
0 draw S0 ∼ N

(
S
(i)
0|0, ΣΣΣ

(i)
0|0
)
.

2. Next, the multivariate random walk (12), priors on θ0 and λ0, and priors on the

scale volatility coefficients are employed to draw proposals of V(i)1 from V
(i)
0 using

lnς2 (i)
η,1 = lnς2 (i)

η,0 +σ(i)η,1η(i)1 , lnς2 (i)
υ,1 = lnς2 (i)

υ,0 +σ(i)υ,1υ(i)1 , θ(i)1 ∼ TN
(
θ(i)0 , σ

(i)
φ,1, −1.0, 1.0

)
,

and λ(i)1 ∼ TN
(
λ(i)0 , σ

(i)
κ,1, 0.0, 1.0

)
, where η(i)1 and υ(i)1 represent draws from stan-

dard normal distributions, σ(i),1 =
√

β∑tν
k=1Z ′

M,kZM,k
,  = η, υ, φ, and κ, tν = α is a

degrees of freedom correction, α and β are scale and shape parameters of the

inverse gamma (IG) priors displayed in table 1, ZM×tν ∼ N
(
0, I

)
, and i = 1, . . . , M .

3. Repeat the following steps for t = 2, . . . , T , where each step uses the particles V
(i)
t ,

S
(i)
t−1|t−1, and ΣΣΣ(i)t−1|t−1, which are the outcomes of applying the KF, resampling, and

transition equations implied by the priors on the scale volatility coefficients.
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(a) For i = 1, 2, . . . , M , draw new particles V
(i)
t conditional on resampled V

(i)
t−1 and

its law of motion (12) by updating step 2 with σ(i),t =
√√√√ β(i),t∑tν

k=1Z ′
M,kZM,k

and β(i),t

= β(i),t−1 +
(Δ(i),t)2

, where Δ(i)η,t = σ(i)η,tη(i)t , Δ(i)η,t = σ(i)υ,t υ(i)t , Δ(i)φ,t = dTN(i)
φ,t, and

Δ(i)κ,t = dTN(i)
κ,t, the increments dTN(i)

φ,t and dTN(i)
κ,t are associated with updating

θ(i)t−1 and λ(i)t−1 in step 2, β(i),t−1 and Δ(i),t have been resampled, and tν = t − 1

+ α (for t ≥ 2).

(b) At date t, engage the KF predictive step to compute

S
(i)
t|t−1 = AAA

(i)
t S

(i)
t−1|t−1,

ΣΣΣ(i)t|t−1 = AAA
(i)
t ΣΣΣ

(i)
t−1|t−1

(
AAA
(i)
t

)′ + BBB
(i)
t

(
BBB
(i)
t

)′
,

ΩΩΩ(i)
t|t−1 = CCC

(i)
t ΣΣΣ

(i)
t|t−1

(
CCC
(i)
t

)′ + ΩΩΩ(i)U ,

Ỹ
(i)
t = Yt − CCC

(i)
t S

(i)
t|t−1,

˜l(i)t = −1
2

[
ln
∣∣∣ΩΩΩ(i)

t|t−1

∣∣∣ + (
Ỹ
(i)
t

)′ (
ΩΩΩ(i)
t|t−1

)−1
Ỹ
(i)
t

]
,

across the M particles, i = 1, 2, . . . , M .A.1

(c) Compute particle weights ω̂(i)
t = exp

{
˜l(i)t
}

∑M

i=1
exp

{
˜l (i)t

} .

(d) Shuffle the index i=1, . . . , M by drawing from a multinominal distribution

using the pdf of ω̂(i)
t , which is stratified resampling of the particles V

(i)
t , β(i),t,

Δ(i),t, S
(i)
t−1|t−1, and ΣΣΣ(i)t−1|t−1, where  = η, υ, φ, and κ; see Hol, Schön, and

Gustafsson (2006) for details. Also, resample from the ensemble
{
ω̂(i)
t

}N
i=1

to create
{
ω̃(i)
t

}N
i=1

.

A.1There are missing observations in the SPF inflation data that the KF handles using standard methods.
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(e) Given resampled particles
{
V
(i)
t , β

(i)
,t, Δ(i),t, S(i)t−1|t−1, ΣΣΣ

(i)
t−1|t−1

}M
i=1

, run the KF

S
(i)
t|t−1 = AAA

(i)
t S

(i)
t−1|t−1,

ΣΣΣ(i)t|t−1 = AAA
(i)
t ΣΣΣ

(i)
t−1|t−1

(
AAA
(i)
t

)′ + BBB
(i)
t

(
BBB
(i)
t

)′
,

ΩΩΩ(i)
t|t−1 = CCC

(i)
t ΣΣΣ

(i)
t|t−1

(
CCC
(i)
t

)′ + ΩΩΩ(i)U ,

Ỹ
(i)
t = Yt − CCC

(i)
t S

(i)
t|t−1,

KKK
(i)
t = ΣΣΣ(i)t|t−1

(
CCC
(i)
t

)′ (
ΩΩΩ(i)
t|t−1

)−1
,

S
(i)
t|t = AAA

(i)
t S

(i)
t|t−1 + KKK

(i)
t Ỹ

(i)
t ,

ΣΣΣ(i)t|t = ΣΣΣ(i)t|t−1 − ΣΣΣ(i)t|t−1

(
CCC
(i)
t

)′ (
ΩΩΩ(i)
t|t−1

)−1
CCC
(i)
t ΣΣΣ

(i)
t|t−1,

˜l(i)t = −1
2

[
ln
∣∣∣ΩΩΩ(i)

t|t−1

∣∣∣ + (
Ỹ
(i)
t

)′ (
ΩΩΩ(i)
t|t−1

)−1
Ỹ
(i)
t

]
,

ω(i)
t =

exp
{
˜l(i)t
}

∑M

i=1
exp

{
˜l (i)t

} ,

particle by particle to create updates of S
(i)
t|t, ΣΣΣ

(i)
t|t, and ˜l(i)t , and new weights

ω(i)
t , which are used to resample

{
V
(i)
t

}M
i=1

.

(f) Update the nonlinear states,
{
V
(i)
t+1

}M
i=1

, using the multivariate random walk

(12) conditional on the previous period’s resampled nonlinear states,
{
V
(i)
t

}M
i=1

,

the static scale volatility parameters σ 2
η , σ 2

υ , σ 2
φ, and σ 2

κ , and draws from the

standard normal distribution for the innovations ξη,t+1, ξυ,t+1, φt+1, and κt+1.

4. Conditional on Vt, Y1:t, and Ψ , the filtered distribution of Vt+1 is approximated

by the discrete distribution of particles V
(i)
t+1 using the pdf of ω(i)

t , where ω(i)
t =

ω(i)
t

ω̃(i)
t

, and the associated filtered distribution of St is approximated by a mixture of

normals N
(
S
(i)
t|t, ΣΣΣ

(i)
t|t
)
. Thus, the filtered means of St and Vt+1 are approximated by

St|t =
∑M
i=1ω

(i)
t S

(i)
t|t and Vt+1|t+1 =

∑M
i=1ω

(i)
t V

(i)
t+1 while for the mean square error

of St|t the approximation is ΣΣΣt|t =
∑M
i=1ω

(i)
t ΣΣΣ

(i)
t|t.
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5. Store conditional moments S(i)t|t andΣΣΣ(i)t|t and particle draws V(i)t+1 to report estimates

of the joint DGP of the SI-prediction mechanism and SW-UC-SV-TVP-AR(1) model.

The RB-APF algorithm is straightforward to adapt to gap inflation lacking persistence

or to a fixed SI parameter. In the former case, the nonlinear state vector Vt+1 drops

θt and σ 2
φ is deleted from Ψ . Otherwise, the algorithm described above is unchanged.

Fixing the SI parameter, λt = λ, has a larger impact on the RB-APF algorithm. Besides

cutting λt out of Vt+1 and σ 2
κ from Ψ , a prior is needed for λ. The posterior for λ has to

be analytic for the prior to satisfy the demands of the particle learning estimator (PLE).

Another restriction to satisfy is λ ∈ (0, 1
)
. A beta distribution fulfills the requirements

of the PLE and the restriction on λ, given the shape parameters equal one (i.e., a uniform

distribution on the open unit interval). The RB-APF algorithm is further adjusted by

including λ in Ψ , given the beta prior attached to λ.

A4 Additional Results

This section presents estimates of the joint DGPs not discussed in the paper. The esti-

mates are displayed in figures that are similar to ones contained in the paper. However,

figure 1 is not reproduced here because it depicts realized inflation, the SPF nowcast

and 1-, 2-, and 4-quarter ahead SPF inflation predictions.

A4.1 Estimates of the Joint DGP when θt = 0

Estimates of the joint DGP of the SI-prediction mechanism and SW-UC-SV model with

zero or no gap inflation persistence, θt = 0, appear in figures A2–No Gap Persistence,

A3–No Gap Persistence, A4–No Gap Persistence, and A7–No Gap Persistence. This num-

bering matches figures 2, 3, 4, and 7 of the paper. Hence, conditional on θt = 0, this
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section presents estimates of the scale volatility parameters σ 2
η , σ 2

υ , and σ 2
κ in figure

A2–No Gap Persistence, filtered RE and SI trend and gap inflation, τt|t, Ft|tτt, εt|t, and

Ft|tεt, in figure A3–No Gap Persistence, filtered and smoothed trend and gap inflation

SVs, ςη,t|t, Ft|tςη,t, ςυ,t|t, and Ft|tςυ,t, in figure A4–No Gap Persistence, and the volatility

of RE and SI trend inflation, τt and Ftτt, conditional on different information sets in

figure A7–No Gap Persistence.

Restricting εt to have zero persistence in the joint DGP produces four key differ-

ences compared with estimates of the joint DGP when there is drifting persistence in

gap inflation. First, estimates of σ 2
η , σ 2

υ , and σ 2
κ in figure A2–No Gap Persistence are

smooth compared with the estimates found in figures 2(a), 2(b), and 2(d). Second, fig-

ures A3(a) and A3(b)–No Gap Persistence plot τt|t and Ft|tτt that are closer to πSPFt,t+1 and

πSPFt,t+5 than produced by the joint DGP of the SI-prediction mechanism and SW-UC-SV-

TVP-AR(1) model, which are plotted in figures 3(a) and 3(b). The implication is εt|t and

Ft|tεt, which are seldom greater than two percent and are displayed in figure A3(d)-No

Gap Persistence, are less than a third as volatile compared with the estimates of RE and

SI gap inflation shown in figure A3(d). Next, when θt = 0, ςη,t|t and Ft|tςη,t have similar

peaks around the 1973–1975 and 1981–1982 recessions figures A4(a) and A4(b)–No Gap

Persistence. This differs from the peaks in ςη,t|t and Ft|tςη,t that occur during the latter

recession in figures 4(a) and 4(b). Subsequently, ςη,t|t and Ft|tςη,t decline through the

restr of the sample period, except for a small spike around the 2007–2009 recession, in

figures A4(a) and A4(b)–No Gap Persistence. Figures 4(c) and (d) and A4(c) and A4(d)–No

Gap Persistence have qualitatively similar estimates of ςυ,t|t and Ft|tςυ,t in that all these

plots show a peak during the 1973–1975 recession. Lastly, estimates of the volatility of

τt and Ftτt are qualitatively similar in figures 7 and A7–No Gap Persistence. However,

conditioning only on realized inflation, πt, yields lower estimates of the volatility of τt

and Ftτt, given θt = 0, compared with the corresponding estimates in figure 7.
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A4.2 Estimates of the Joint DGP when λt = λ

Fixing the SI parameter generates estimates of the joint DGP that differ only along one

dimension compared with the joint DGP of the SI-prediction mechanism and SW-UC-

SV-TVP-AR(1) model. The difference is the minimal fluctuations of σ 2
η , σ 2

υ , and σ 2
φ

displayed in figure A2–λ̂, which repeats the theme of the plots presented in figure A2-No

Gap Persistence. Otherwise, the joint DGP with λt = λ is responsible for τt|t, Ft|tτt, εt|t,

and Ft|tεt (see figure A3–λ̂), of ςη,t|t, ςη,t|T , ςυ,t|t, and ςυ,t|T (see figure A4–λ̂), of θt|t, θt|T ,∣∣θt|T∣∣, and
∣∣θt|T∣∣ − ∣∣θ1|T

∣∣ (see figure A5–λ̂), and of the volatility of τt and Ftτt against

disparate information sets (see figure A7–λ̂) that give evidence about the stickiness,

persistence, and volatility of πt and πSPFt,t+h that support the results and interpretation

reported by the paper.

This section concludes with a figure that plots the PLE path of λ̂. The PLE path of

λ̂, 68 percent uncertainty bands, and 90 percent uncertainty bands appear in Figure–

λ̂. This figure shows that by the end of the 1973–1975 recession the PLE path of λ̂

displays smaller fluctuations and from 1988 to the end of the sample exhibits almost

no movement settling around 0.30 with 95 percent uncertainty bands ranging from 0.25

to 0.36. The dearth of movement in the PLE path of λ̂, especially after 1988, is a reason

the data prefer the joint DGP of the SI prediction mechanism and SW-UC-SV-TVP-AR(1)

model.
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