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1 Introduction

Central banks pay particular attention to inflation expectations. A good reason for this preoc-
cupation is inflation expectations contain information about private agents’ beliefs about the
underlying factors driving observed inflation dynamics. We label these factors the inflation
regime. For example, Bernanke (2007) argues that well anchored inflation expectations are nec-
essary for a central bank to stabilize inflation. A problem is since monetary policy makers lack
direct knowledge of inflation expectations, they must infer these expectations from estimates
of the inflation regime. These estimates often rely on realized inflation and combinations of
financial market data, statistical and economic models, and forecast surveys.

This paper estimates inflation regimes from the joint data generating process (DGP) of real-
ized inflation and the inflation predictions of professional forecasters grounded in a nonlinear
state space model (SSM). We tap a sample of inflation predictions from the Survey of Profes-
sional Forecasters (SPF) to extract beliefs its average respondent has about the (in)stability of
the persistence, volatility, and stickiness of inflation. Average SPF inflation predictions are at-
tractive for evaluating the SSM because, as Faust and Wright (2013) and Ang, Bekaert, and Wei
(2007) observe, SPF inflation predictions often dominate model based out of sample forecasts.
This forecasting performance suggests average SPF inflation predictions coupled with realized
inflation harbor useful information to measure inflation expectations.

We study the joint DGP of realized inflation, 7t;, and average SPF inflation predictions
by linking a Stock and Watson (2007) unobserved components (SW-UC) model of inflation to a
version of the Mankiw and Reis (2002) sticky information (SI) model. The SW-UC model is useful
for evaluating the impact of different types of shocks on inflation and inflation expectations.
First, it decomposes 11 into trend inflation, ¢, and gap inflation, &;, which restricts the impact
of permanent and transitory shocks on ;. When permanent shocks dominate movements in
¢, the inference is inflationary expectations are not well anchored. The SW-UC model also
inflicts stochastic volatility (SV) on the innovations of 7; and &. Trend and gap SV creates

nonlinearities in inflation dynamics, which produce bursts of volatility in ;. Persistence is not



often imposed on &; when estimating the SW-UC-SV model. We depart from this assumption by
giving ¢; drifting persistence in the form of a time-varying parameter first-order autoregression,
or a TVP-AR(1). Drifting gap persistence is another source of nonlinearity in a SW-UC model,
which can exhibit pro- or counter-cyclical changes. We label the extended version of the DGP
of 1y as the SW-UC-SV-TVP-AR(1) model.

Coibion and Gorodnichenko (2015) adapt a SImodel to a setup in which forecasters update
their rational expectations (RE) information set at a fixed probability 1-A. Averaging across
forecasters defines the h-step ahead SI inflation prediction, Fittiip, h = 1, ..., H. The result
is the SI inflation prediction evolves as a weighted average of the lagged SI forecast, F;_1 ¢ p,
and a RE inflation forecast, E; 11, j,, where the weights are A and 1—A. The result is the SI law of
motion Fi1ty p = AFi_ 1T + (1 — A)E¢ 1t 1, Where Fy1ry 4, updates at the frequency 1/(1 —A)
on average. In this reading, A reflects the average forecaster’s beliefs about the persistence or
stickiness of the inflation regime.!

We innovate on the Coibion-Gorodnichenko static coefficient SI-law of motion by investing
A with drift. The result is a nonlinear SI-law of motion F; 1t = AFr— 170 n + (1 — Ap)E¢ o,
where the TVP-SI parameter, A¢, evolves as an exogenous and bounded random walk (RW), Az
= At + OxKi+1, and its innovation is drawn from a truncated normal distribution (TN), K;+1 ~
TN (0, 1; A¢+1 € (0, 1)). The SI forecaster’s information set includes the innovation k; when
Fy 111, is updated to Fy1re4p, which implies A¢ is also part of this information set.

A motivation for placing A; in the SI-law of motion is to uncover evidence about changes
in the beliefs the average SPF participant holds about the inflation regime. Changes in these

beliefs are embedded in observed movements of the average SPF participant’s h-step ahead

inflation prediction, nff fh. We relate Trtsf fh to Frmr r4pn by adding a classical measurement
to set o E, = F h N(,1),h=1 H. The m>PF
error, Crp, to set myy .y = FiTiin + 0g, Cp,t, where Cpp ~ N (0, 1), h = 1, ..., 3. The 1,1,

observation equation, SI-law of motion, and RW of A; form the SI-prediction mechanism.

The joint DGP of the SI-prediction mechanism and SW-UC-SV-TVP-AR(1) model maps shocks

1Sims (2003) constructs a dynamic optimizing model built on primitive form of information processing
in which agents react to shifts in the true DGP of the economy by smoothing their forecasts.



to T+, &, and SI state variables into movements in 77; and Trff fh_z Estimates of the joint DGP
provide evidence about drift in A; and its co-movement with the SVs of 1; and & and drift-
ing persistence in &;. If A; exhibits meaningful statistical and economic time variation and it
moves with the SVs or drifting inflation gap persistence, we have evidence shifts in SI inflation
updating are attuned to the hidden factors driving the inflation regime. A contribution of our
paper is to report this evidence.

Another contribution is the sequential Monte Carlo (SMC) methods we use to estimate the
joint DGP of the SI-prediction mechanism and SW-UC-SV-TVP-AR(1) model. These methods con-
sist of the particle learning estimator (PLE) of Storvik (2002) and the particle smoother (PS) of
Lindsten, Bunch, Sarkké, Schon, and Godsill (2016). The PLE and PS rely on a Rao-Blackwellized
auxiliary particle filter (RB-APF). Our joint DGP is susceptible to Rao-Blackwellization because
T¢, &, and the SI state variables form a linear SSM, given realizations of the nonlinear state
variables, which are trend and gap inflation SVs, drifting inflation persistence, and A1, and
estimates of the static coefficients of the SI-prediction mechanism and SW-UC-SV-TVP-AR(1)
model. Applying the Kalman filter (KF) produces estimates of the distribution of the condition-
ally linear states that are integrated analytically, which increases the efficiency of the RB-APF.
The RB-APF estimates the nonlinear states by simulation.

We estimate the joint DGP of the SI-prediction mechanism and SW-UC-SV-TVP-AR(1) model
on a quarterly sample from 1968Q4 to 2017Q2. The sample matches 1r; with the GNP or GDP

deflator inflation available to the SPF in real time at date t. The average SPF inflation prediction

is denoted Trtsffh, where H{ =5orh =1, ..., 1- to 5-quarter ahead forecast horizons.?
: SPF spr T . : -
Given only a sample of {ﬂt, T pi1s -+ T4 s }tzl and our priors, the SSM yields posterior

estimates of the beliefs the average SPF participant has about the hidden factors of the inflation

20ur approach to studying the joint dynamics of 1y and ngf fh builds on Kozicki and Tinsley (2012),
Mertens (2016), and Nason and Smith (20164, b).

3The SPF contains average predictions of the GNP or GDP deflator for a nowcast and forecasts up to

4-quarters ahead. The surveys are collected at the middle of the quarter, which suggests Trf:f f 5 is not

based on full knowledge of 11;. We treat nff F, as conditional only on information available through
the end of the previous quarter. This identifies the average SPF nowcast, 1-quarter, ..., 4-quarter

ahead predictions with r; 75, ) h = 1,2, ..., 5. We discuss these timing issues in section 4.1.



regime. Our estimates of trend inflation are aligned with average SPF inflation predictions,
especially at longer horizons. Gap inflation is more volatile before the Volcker disinflation
than afterwards. There is a spike in gap inflation SV during the 1973-1975 recession while
trend inflation SV displays peaks during the 1981-1982 and 2007-2009 recessions. The drift
in gap inflation persistence is procyclical before the Volcker disinflation, turns counter cyclical
afterwards, disappears by the 2007-2009 recession, and returns to pre-2000 rates by 2014. The
average SPF participant updates SI inflation forecasts frequently from the late 1960s to 1988.
The frequency of SI inflation updating falls from 1990 to 1995 and then steadies until 2007.
During the 2007-2009 recession, SIinflation updating occurs more frequently and drops slowly
afterwards. Thus, movements in the frequency of SI inflation updating displays co-movement
with trend inflation, its SV, and drifting inflation persistence. We conclude the beliefs of the
average member of the SPF are sensitive to the impact of permanent shocks on the conditional
mean of inflation and the Volcker disinflation marks the moment at which the behavior of trend
inflation, its SV, and the cyclicality of the drift in inflation gap persistence changed.

The structure of the paper is as follows. In section 2, we build a SSM of the joint DGP of

SPF

m and LLra h=1,..., H. Section 3 discusses the SMC methods we engage to estimate the

SSM. Results appear in section 4. Section 5 offers our conclusions.

2 Statistical and Econometric Models

This section describes the statistical and economic models used to estimate the joint dynamics
of 1+ and Trf,ffh, h=1,...,H. Stock and Watson (2007) is the source of the statistical model to
which we add drifting persistence to &;. The economic model is a SI-prediction mechanism that
has a SI-TVP parameter. Drift in inflation persistence and the frequency of SI inflation updating

create nonlinearities in the state transition dynamics of the SSM. The SI-TVP also interacts with

trend and gap inflation SVs to produce nonlinearites in the impulse structure of the SSM.*

4We relegate to an online appendix construction of a SSM in which persistence in & is a AR(1) with a
static slope coefficient. The online appendix is available at http://www.elmarmertens.com/.



2.1 The SW-UC Model

The SW-UC model generates 11;. Stock and Watson (2010), Creal (2012), Shephard (2013), Cogley
and Sargent (2015), and Mertens (2016) have estimated versions of the model in which SV in
innovations to T; and &; is the source of nonlinearity in 71;. We add an additional nonlinearity
to the SW-UC-SV model in the form of drift in the persistence of &; created by a TVP-AR(1). We

collect these features into the SW-UC-SV-TVP-AR(1) model

T = Tt + & + 0¢nCrt,  Cmt ~ N(O, 1), (1.1)

Teyl = Tt + Gnt+1Nt, ne ~ N(0, 1), (1.2)
&t+1 = Or11& + Gut+1U¢, vt ~ N(0, 1), (1.3)
1ng§’t+1 = lngglt + O-fge,t#»l’ Ee,tﬁ»l ~ N(O’ l)a t = n, o, (14)
Ots1 = Ot + 0¢pPr+1, bre1 ~ N(0, 1), (1.5)

where measurement error on ¢, Cr t, is uncorrelated with 1; and & and the innovations, n: and
¢, these innovations are afflicted by SV, which evolve as RWs in In g,zl,t 41 and In gg,t +1, drifting
persistence in &1 is tied to 0;41, restricting the RW of 6;,1 € (-1, 1) ensures stationarity of
&t+1 at each date t+1, and innovations to the linear state variables, n, and v,, and innovations
to nonlinear state variables, &, ;. 1, &, 141, and ¢, , are uncorrelated.

A special case of the SW-UC-SV-TVP-AR(1) model gives a result about forecasting traced to
Muth (1960). Shut down SV, 0y, = G5+ and 0, = Gy, and eliminate gap inflation persistence, 0;
=0, for all dates t. The result is a fixed coefficient SW-UC model with an IMA(1, 1) reduced form,
(1 -L)m = (1 — wL) vy, where the MA1 coefficient @ € (—1,1), L is the lag operator, ;-1 =
L1, and the one-step ahead forecast error v¢ = n¢ + & + Tt — Tt—1)¢-1.> The IMA(1, 1) implies
a RE inflation updating equation, E {rt;,; | 1Tt 0y, 0y} = (1 — w) 1 + @E {m; |71t~ oy, 00},

where 7tt is the date t history of inflation, ¢, ..., .

>Stock and Watson (2007), Grassi and Proietti (2010), and Shephard (2013) tie w to the autocovariance
functions (ACFs) of the IMA(1, 1) and fixed coefficient SW-UC model. At lags zero and one, the ACFs

set (1 +w?) of = 07 + 207 and —woy = —of. Substitute for o7 to find w? — (2 + 0,3/052) w + 1

o
= 0. The solution is @ = [1 + 0.505/052] - ?”,/1 + 0.250%/(752, given @ € (~1,1) and oy, o > 0.
&



Stock and Watson (2007), Grassi and Prioietti (2010) and Shephard (2013) note the SW-UC-
SV model replaces w with the time-varying local weight w; in the reduced form IMA(1, 1). The

result is a exponentially weighted moving average (EWMA) updating recursion or smoother

0 J
E {Tft+1 |, o, Qu,t} = > Ugi-j (n wt—t’) Tt j, (2)
j=0 £=0

in which the discount w; adjusts to changes in the latest data, where pg; = (1 — @;)/@;.

2.2 The SI-Prediction Mechanism

This section begins by reproducing the SPF observation equation, the nonlinear SI-law of motion,

and the random walk law of motion of A;. These elements form the system of equations

W,fffh = FTip + 0z nChyt, Cht ~ N(0, 1), (3.1)
Ftnt+l’l = AtFt*ITrt-i—h + (1 _At)Et-’Tt+ha h = 1) R j‘(, (32)
Aty1 = A¢ + OkKt+l, Ke+1 ~ N(0, 1), (3.3)

where E; 11,5 is conditional on the average SPF participant’s statistical model of inflation and
At € (0, 1) for all dates t. Equations (3.1)-(3.3) define the SI-prediction mechanism through

which shocks to A; and movements in other state variables generate fluctuations in 1} f},.
The SI-law of motion (3.2) implies a EWMA smoother. Iterate (3.2) backwards, substitute

the result into (3.2), and repeat the process many times to produce the SI-FEWMA smoother

00 J
FiTeon = D Hai-j (n Atﬂ) Et_jTt4n, 4)
j=0 £=0

where the discount rate is the SI-TVP, A¢, and gyt = (1 — A¢)/A;. The SI-FEWMA smoother (4)
nests the RE forecast, limy, .o F;+n = EtT1¢4p, and the pure SI update, limy, .1 Fit4p =
Z‘f:l HAt—j (I—[ézl )\t,g> E;_ ¢ p. The former limit shuts down SI as A; falls to zero because
the discount on E;_ ;¢ increases with j. In this case, SI inflation forecast updates rely only
on E; 11, period by period. At the other extreme, less weight is placed on E; 11, ), and more

onE;_jmin, j > 1, as A¢ rises to one. Thus, F; 171, summarizes the SI inflation forecast.

6



Between these polar cases, shocks to A; alter the discount applied to the history of E; 11,5,
in the SI-EWMA smoother (4). This information aids in identifying movements in ngf fh with
respect to innovations in A;. The EWMA smoother (2) shows a similar relationship exists be-
tween E¢ 71, p, ¢, and the time-varying discount generated by ¢, ¢, Gu,t, and 0. This gives us

several sources of information to identify movements in 1r; and r; ¥, within the joint DGP of

the SI-prediction mechanism and the SW-UC-SV-TVP-AR(1) model.®

2.3 The State Space Model of the Joint DGP

Driftin inflation gap persistence complicates building a SSM for the joint DGP of the SI-prediction
mechanism and SW-UC-SV-TVP-AR(1) model. The SSM rests on the RE and SI term structures
of inflation forecasts for which the latent factors are the RE state variables X; = [T¢ et]' and SI
analogues F;X; = [F;T¢ Ftet]’. The problem is the law of iterated expectation (LIE) cannot be
employed to create predictions of X;, or F;X¢,, because forecasts of 0; are needed. Instead,
we construct RE and SI term structures of inflation forecasts in the presence of drifting gap
inflation persistence by invoking the anticipated utility model (AUM).

The RE term structure of inflation forecasts is based on the observation and state equations
of the SW-UC-SV-TVP-AR(1) model. The observation equation (1.1) of the SW-UC-SV-TVP-AR(1)

model links 71 to T, &, and Cr ¢, which can be rewritten as
m = O0xXt + 0¢,nCryts (5.1)

where 8y = [1 1]. The state equations of the SW-UC-SV-TVP-AR(1) model are created by placing
the random walk (1.3) below the TVP-AR(1) (1.3)

Xis1 = Op1 X + Y1 Wy, (5.2)
I 0 Snt+l 0 Nt o
where O, = , Yii1 = ,and Wy = . The transition dy-
0 641 0 Cu,t+1 Ut

6Krane (2011), Coibion and Gorodnichenko (2012), and Jain (2013) engage forecast revisions to identify
the responses of professional forecasters to disparate shocks, which is an alternative to our approach.

7



namics of the state equations (5.2) are nonlinear in ;1. These nonlinearities rule out applying
the LIE to construct the RE term structure of inflation forecasts.

We appeal to two aspects of the AUM to solve the problem. The AUM resurrects the LIE
by (i) assuming agents are ignorant of the true DGP and (ii) treating the TVPs of the joint DGP
as fixed (locally) at each date t.” These assumptions are instructions to hold TVPs at their date
t values within RE and SI forecasts that condition on date t information.?

The RE term structure of inflation forecasts is easy to construct under the AUM. First,
generate h-step ahead RE forecasts of X; by iterating the state equations (5.2) forward, apply
the expectations operator, and invoke the AUM to find E;®, X, ;, = @ﬁtxt. Next, push the
observation equation (5.1) h-steps ahead and take expectations to obtain the RE term structure

of inflation forecasts under the SW-UC-SV-TVP-AR(1) model and AUM

The AUM restricts the impact of drifting inflation gap persistence on these RE forecasts by
conditioning 6; on date t information.

Next, we show the SI term structure of inflation forecasts is built on the SI-EWMA formula
(4), RE term structure of inflation forecasts (6), and a conjecture about the law of motion of the SI
vector Ft41X¢+1. The SI-EEWMA formula (4) depends on the RE inflation forecasts E, _ Tein Since
these RE forecasts are E,_ ;) = 5x®?|jfxt_j under the AUM, other RE forecasts are needed to
replace E, ;) in the SFEWMA smoother (4). Our solution assumes the average member of the

SPF fixes drift in inflation gap persistence at its current value when iterating SI recursions back-

-in the SI-FEWMA smoother (4). The result

wards. Under this assumption, Etijth = 6x®?|?fxtﬁ

is Fymr, = 5956)?” im0 Ha— <H£:0 At_g> @{ltxt_j. Next, we conjecture the law of motion of
the SI state vector is F;X;p = (1 — A¢)E¢X¢rn + ApFr—1X¢pn. An implication is the SI'EEWMA

smoother F; X, = Z;‘O:o Hat—j (Hjé:o At,g) E¢_jX¢+n. Condition on the date t drift in inflation

“For example, Cogley and Sbordone (2008) employ the AUM model to study the dynamics of trend and
gap inflation within a TVP-new Keynesian Phillips curve.

8The AUM assumptions result in decision making thatis consistent with Bayesian forecasting, according
to Cogley and Sargent (2008). They also note Kreps (1998) argues agents engaging in AUM-like behavior
are acting rationally when seeing through to the true model is costly.

8



gap persistence on date t information, 6y¢, to find F;X¢.p = Z;":O Hat—j (HLO At,g) @ﬁ?xt_j.
When h = 0, we have F;X; = Z;’-":O Hat—j (HJé:o At,g) @{ltxt_j. By combining the SI-EWMA

smoothers of F,,,, and F;X;, the SI term structure of inflation forecasts is the result
h
Fimtyp = 0500, F Xy (7)

The online appendix has details about the SI term structure of inflation forecasts (7).
The online appendix also develops state equations for F;.1X;+1. Remember the SFEWMA

smoother of F:X; is Z;’-":O Pag—j (Hé:o At_g) ®{|tx which by induction gives a law of motion,

t—j
FiXr = (1 — A) Xt + Ai®y 1 Fr—1X;—1. We create state equations for F;1X;1; by pushing this
law of motion forward a period and substituting for X;;; with the state equations (5.2) of the
SW-UC-SV-TVP-AR(1) model. Stack the latter equations on top of the former to obtain the state

equations of the SSM of the joint DGP

St+1 = Ar+18¢ + B Wy, (8.1)
X} O11 0252 Yii1
where §; = , Are = , Bty = , and
Fr Xy (1 - )\t+1>®t+1 At+10¢11 (1 - )\t+1>Yt+1

the conditioning time subscript on ;. is dropped. The state equations (8.1) show shocks to
A; alter the transition and impulse dynamics only of F;1; and F;&;. Changes in 6; shift the
transition dynamics of all elements of 8, while its impulse dynamics react to Gp,¢, and Gy t.
We complete the SSM by constructing its observation equations. First, replace F;Tts, ) in
the SPF measurement equation (3.1) with the SI term structure of inflation forecasts (7) for h
=1, ..., H. Place the results below the observation equation (5.1) of the SW-UC-SV-TVP-AR(1)

model to form the SSM’s observation equations

Ye = Ct8t + DUy, (8.2)
U Ox 01x2 ocme 0 ... 0
iy’ O1x2  0xO 0 oz1 ... O
where Y; = ’ , G = _ _ , D = , Up =
: : : 0O 0 . 0
| yai | | 012 5x©7" | | 0 0 ... ogg |




[Cn,t Cit --- §g{,t] , and Qy = DD’. The SSM integrates F;1r;4; out of the observation
equations (8.2) using the SI term structure of inflation forecasts (7). As a result, F;&; produces

mean reversion in Trtsf fh while permanent movements are tied directly to F;1; and @; and

indirectly to gy, Gut, At, and @¢. The direct response of nfffh to O is produced by the
observation equations (8.2). Drift in @; also alters transition dynamics in the state equations

(8.1), which generates movements in F;7; and F;&;, and hence, ntsf f h-

3 Econometric Methods

We combine a RB-APF algorithm adapted from Lopes and Tsay (2011) with the PLE of Storvik
(2002) to estimate the SSM (8.1) and (8.2); also see Carvalho, Johannes, Lopes, and Polson (2010),
Creal (2012), and Herbst and Schorfheide (2016). The RB-APF and PLE produce filtered estimates
of 1¢, &, FrTt, Fr&t, Gnt, Gu,ts At, and ;. Lindsten, Bunch, Sarkkd, Schon, and Godsill (2016)

give instructions for a PS that generates smoothed estimates of these state variables.

3.1 Rao-Blackwellization of a Nonlinear State Space Model

Lopes and Tsay (2011, p. 173) and Creal (2012, section 2.5.7) outline APF algorithms that rely on
the Rao-Blackwellization procedure of Chen and Liu (2000). The first step in Rao-Blackwellizing
the SSM (8.1) and (8.2) gathers the nonlinear state variables in V; = [ln by Ings, 0, At],. We

generate updates of the nonlinear states by simulating the multivariate RW process
Vel = Ve + QF°&4, 9)

where D¢ = [0,? ol (r(% (7,3] is the vector of non-zero elements of the diagonal covariance
matrix Q¢ and €41 = [En,Hl Eut+1 Pra1 Kt+1] .9 The RB-APF uses the KF to create an analytic
distribution of §; using the SSM (8.1) and (8.2), given simulated values of V;. Analytic integration

endows the RB-APF estimator of the linear state variables with greater numerical efficiency.

9The innovations vector ;41 ~ N(04x1, I4) conditions on 0;,1 € (=1, 1) and A¢41 € (0, 1).

10



3.2 Priors and Initial Conditions

We posit priors for the static volatility parameters and initial conditions to generate synthetic
samples of linear and nonlinear states using the SSM (8.1) and (8.2) and multivariate RW (9).
The static scale volatility parameters are collected in ¥ = [03 0f Of OF Ofn OF ... Ué,s],-
Priors on ¥ are grounded in restrictions of the joint DGP of the SI-prediction mechanism and
SW-UC-SV-TVP-AR(1) model while remaining consistent with the PLE of Storvik (2002). The PLE
requires priors for ¥ to have analytic posterior distributions. The posterior distributions serve
as transition equations to update or “learn” about the joint distribution of §; and V.

Table 1 lists our priors for the static volatility parameters found in Y. We endow these
parameters with inverse gamma (JG) priors. Columns labeled «, and S, denote the scale and
shape parameters of the J§ priors of the elements of ¥, the mean is 0.58,/(0.5x, — 1), and the

two right most columns display the associated 2.5 and 97.5 percent quantiles, where £ = n, v,

¢, K, Cr,Cp,and h =1, ...,5.

Table 1. Inverse Gamma Priors on the Static Coefficients

_ 2 2 2 2 2 2 2

Y = [0,7 05 Oy Ox Ofp 07y ... O'C’S]
Quantiles
Scale Volatility on Innovation to oy Ber Mean 2.5% 97.5%

Trend Inflation SV, Ingp¢+1: 05 3.0 0.04 0.04 [0.004, 0.186]
Gap Inflation SV, Ing, ;+1: 07 3.0 0.04 0.04 1[0.004, 0.186]
TVP-AR1 Coefficient, O;41: O'i 3.0 0.01 0.01 [0.001, 0.046]

SI Coefficient, Ay 1: 02 3.0 0.01 0.01 [0.001, 0.046]
Measurement Error on 1r;: Uén 20.0 2.88 0.16 [0.084, 0.300]

Measurement Error on 1t} ;{: (réh 20.0 2.88 0.16 [0.084, 0.300]

B¢

Priors on the static volatility coefficients are af ~ 79 <%, 7), where oy and S are scale and
5

shape parameters, £ = n, v, ¢, Kk, Cr, Cp,and h =1, ...,
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Two features are worth discussing about our priors on the scale volatility coefficients of
De. First, we give U,? and o2 prior means equal to 0.04. These prior means are larger than the
prior mean of 0.01 placed on Oi and o?. Second, our priors on 0, 07, O'i, and o7 deliver 2.5
and 97.5 percent quantiles that exhibit greater variation in innovations to In g;zl,t +1 and In ggyt 41
compared with variation in innovations to 0;,; and A;; ;. Nonetheless, the 2.5 and 97.5 percent
quantiles of af_n, O'é,l, 055 reveal our belief that volatility in the measurement errors of
1Ty and Trf:f f ;, dominate shock volatility in the joint DGP of the SI-prediction mechanism and
SW-UC-SV-TVP-AR(1) model.

Priors on initial conditions of the linear state variables appear in the left two columns of
table 2. We draw 19 and FoTo from normal priors with a mean of two percent, which is about
the mean of GNP deflator inflation on a 1958Q1 to 1967 Q4 training sample. A variance of 1002
indicates a flat prior over a wide range of values for T¢ and FyTo. The joint prior of &g and Fyp&g
is drawn from N (021, X0), which equates the prior means to zero (i.e., unconditional means).
Prior variances are produced by the ergodic bivariate normal distribution of particle draws of
Gu,0, 00, and Ag; see the notes to table 2. We also restrict priors on T, &, FoTo, and Foeo by
splitting the training sample variance of the first difference of GNP deflator inflation between
trend (one-third) and gap (two-thirds) shocks.

The last two columns of table 2 lists priors on initial conditions of the nonlinear state
variables. We endow priors of In gﬁ,o and In g,zl,o with normal distributions. Prior means are
calibrated to pre-1968 inflation data similar to Stock and Watson (2007). Uncertainty about
In gg,o and In g,ZLO is reflected in prior variances of ten. Table 2 shows that 6y is drawn from
a standard normal, subject to truncation at (—1, 1), and another truncated normal bounds

Ao € (0, 1) with (untruncated) mean of 0.5 and a unit variance. These priors are in essence

uninformative about values inside the bounds.
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Table 2. Priors on Initial Conditions of the Linear and Nonlinear States

8() = [T() o FoTo F()Eo], and V() = [lngg,o lngglo 90 2\0],

Initial State Prior Distribution Initial State Prior Distribution
To: N(2.0,100.0?) Ing2y: InN(In0.2 - 5.0, 10.0)
FoTo: N(2.0,100.0?) Ing2p: InN(In0.4 - 5.0, 10.0)
g N(0.0, 02) 0p: TN(0.0, 1.0, 1.0, 1.0)
Fogg: N (0.0, 02,,) Aot TN(0.5, 1.0, 0.0, 1.0)

The truncated normal distribution is denoted TN, where the first two entries are the mean and
variance of the prior and the last two entries restrict the range of the prior. The priors on ¢,

and Fog( are drawn jointly from N <02><1, Xf)i)>, where 0520 and UEO g Are diagonal elements of

J

el o T e e |[o a-a
Y- 2 (D\ (i) (i) p(D) () 2,() 2. 2.3 (i) o (D) ’
— i i i) A3 i) 2, J0) 2,3 i) A(i
=01 (1-2407)6y" Ay’ 6, Ao Soo ADT S0 0 Ao 6

and /\(()i), Qéi), and ggjéi) are the ith particle draws from priors on the associated initial condi-

tions. If Oéi) = 0, the formula computing X(()i) remains valid.

3.3 The Auxiliary Particle Filter

Section 3.1 applies the RB process to the SSM (8.1) and (8.2). This process increases the numer-
ical efficiency of the estimator of the linear states, 8¢, by shrinking Monte Carlo error. Another
method to improve the efficiency of this estimator is the APF of Pitt and Shephard (1999, 2001).
In this section, we sketch a RB-APF to estimate the linear and nonlinear states that begins from
algorithm 2 of Lopes and Tsay (2011, p.173); also see Creal (2012, section 2.5.7).1% The online

appendix provides a complete exposition of our implementation of the RB-APF.

10We sketch a RB-APF separate from the PLE for clarity, but recognize the RB-APF is integral to the PLE.
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A RB-APF obtains estimates of the likelihood by running the prediction step of the KF on
the SSM (8.1) and (8.2) particle by particle. At date t, the KF predictive step produces the log
likelihood, Qt , and particle weights, w(l) = exp{ (i)}/z{w exp {Q ;i)}, i=1,..., M. Stratified
resampling of { e }1 yields indexes that are used to regroup St 1]¢-1» its mean square error
(MSE), Zt 1)t-1» and Vt ; see steps 3(a) and 3(b) of section A3.1 of the online appendix and
Hol, Schon, and Gustafsson (2006). This step aims to prevent a particle from receiving all the
probability mass as M becomes large. The ensemble of weights { (l)}i | are also resampled
generating { (l)}i: > see step 3(d) of section A3.1 of the online appendix. The resampled
particles Sgl—)llt—l’ éi—)l\t—l’ and Vii) are employed in the entire KF to update {Sm Zé‘lz Q(l)} -
and produce new weights w(l) = exp{ ;l)}/zjlw exp {Q ;i) } i=1,..., M;see step 3(e) of sectl(;n
A3.1 of the online appendix. By simulating the multivariate RW (9), the nonlinear states are
updated to vi"jl across the M particles. Estimates of 8¢, ¢, and V¢ ; rely on the weights w(‘)
= wtl)/w(l) see step 4 of section A3.1 of the online appendix.

As already noted, a useful product of the RB-APF is the likelihood of the conditionally
linear SSM (8.1) and (8.2). Since the M particles have been reweighted at every step using

information contained in the likelihood of the KF, the estimate of the date t data density is

P (Ye|Yr1s ¥) o —Ze plli’}, t=1,...,T. (10)

Sum the data density (10) over the t = 1, ..., T observations to compute the log likelihood of
the SSM
T

LY [Yr) = > ln(‘.P (Ye [Yre1; \1/)) (11)

Section 4 reports estimates of the joint DGP of the SI-prediction mechanism and SW-UC-SV-
TVP-AR(1) model. Its estimated log likelihood is compared with the log likelihood of a joint
DGP estimated conditional on setting 8; = 0 or estimating a constant SI parameter, A; = A.
Thus, we use log likelihood (11) to evaluate competing joint DGPs, but only after marginalizing

Y. The next section discusses the PLE used to estimate Y.

14



3.4 The Particle Learning Estimator

We estimate the joint posterior distribution of 8;, X;, V;, and ¥ by embedding the RB-APF in
the PLE of Storvik (2002), given priors on the joint DGP of the SI-prediction mechanism and SW-
UC-SV-TVP-AR(1) model.!! The PLE rests on two insights. First, choosing conjugate priors for ¥
yields an analytic solution of its posterior distributions. The posterior distribution is recovered
conditional on the states and sample data. The idea is to draw ¥ from particle streams of a
vector of sufficient statistics, F(l) that depend on Vii), given Y;.;. Since the sufficient statistics
are grounded on the JG priors of ¥, the mapping to the analytic posterior distributions is a
system of transition equations that simulate M particles to learn about or update from l"t(f)l to
F(i). The transition equations are appended to the process that draws Vii) to sample ¥ ~
(‘I" (l)) which in essence equates P (‘I’)Hl " \7(”) to P (‘I" (l)) We denote the system of
transition equations 1"(‘) 8( (1)1, Ypp, VI, \7(‘) ) i=1,..., M.
Second, the PLE marginalizes ¥ out of the posterior of the states produced by the RB-APF.

'Y at the same time the RB-APF generates S(l) Z?), and V%i). Thus, ¥ is

The idea is to update I}
estimated by the PLE jointly with 8¢, 2¢¢, and Vyj;.

As noted, we place JG priors on ¥ to expedite Storvik’s PLE. The priors, which are reviewed
in section 3.2 and table 1, are (r€ ~ JS (oq; 325 ) where £ indexes the elements of Y. The
JG priors are useful because the associated posterior distributions are solved analytically. For

example, the posterior distribution of the static volatility coefficient of the RW of 0;,1 is O'i(l)

(1)
5 72
9g (‘Xt ﬁz ) where o = &1 + t—1 and B(l) S 1[9(1) 9}‘21] . The process generating

()
; o . o, B
Bg?t suggests conditioning the posterior 02(‘) ‘V(l) (l) ~ 79 ( L ), where the shape

parameter pri is a sufficient statistic for 0¢ 12 We extend the idea of identifying B(el; as

sufficient statistics to the entire collection of static volatility parameters in V.

11 Another method to estimate ¥ is to wrap a Metropolis-Hasting Markov chain Monte Carlo (MCMC)
simulator around a PF. Andrieu, Doucet, and Holenstein (2010) prove the distribution of a MCMC
simulator is independent of the error created by a particle in a SMC algorithm. Hence, a PF gives an
unbiased estimate of the likelihood (11).

12The shape parameter is the numerator of the standard deviation of a random variable distributed JG.
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The online appendix gives procedures to simulate and update Bﬁ,l)t ff)t Bg)t, and Bﬁf)t

in steps 2 and 3.(a) of the RB-APF algorithm. The algorithm samples (I,f(ti), 03?), O'i(;), and

Y from particle streams of sufficient statistics. The law of motion of sufficient statistic B(l)
matches the transition equation B(l) g(ﬁg;_l, Yyt \7,(5‘), \7(” ) for £ = n, v, ¢, and k.

This leaves us to describe the routines that sample the measurement error scale volatil-
ity parameters, O-é,n and Ué,h, h =1, ..., 5. Since these variances lack laws of motion that

can be employed to build transition equations, the relevant shape parameters are updated on

information obtained from KF operations of the RB-APF. For example, we sample o C(l) Y1t ~

(1)
JS ((xt BC ht), where updates of B(Cl,)h,t are calculated using information from step 3.(b) of

the RB-APF; see the online appendix. Thus, updates of the shape parameters of the posterior
distributions of aén and oéh, which are the sufficient statistics B(Ci,)rr,t and B(Ci,)h,t’ are driven
by the KF prediction error of Y; weighted by the “gain” of these innovations.

We summarize the PLE and the way it interacts with RB-APF with the following algorithm.
1. Before initializing the RB-APF at date 0, draw ¥V = U’(l"(gi)).

2. Next, carry out steps 1, 2, and 3.(a)-3.(c) of the RB-APF algorithm (that appear in the online
appendix) to obtain the KF predictive likelihood Q;l) oc J’(’ét | Sgi_)l‘t_l, Zi(fi—)llt—l’ Vii), ‘I’(i))

and calculate the particle weights, w(l).

3. Update the particles ¥V, i = 1, ..., M, using the system of transition equations I" =

%(Ft(l)l, Yo VD,V ) which guide the evolution of this vector of sufficient statistics.

~(i) (M
4. Engage {wt }i: to resample {Ft }izl and perform steps 3.(d)-3.(f), 4, and 5 of the

RB-APF (that are listed in the online appendix).

5. Resample A(eii, which are changes to B(eii, £ =n, v, ¢, and k, as described in step 3.(d) of

the RB-APF discussed in the online appendix, but “innovations” to BC mt—1 and Bg)h’tfl,
Ag’)n’t and A(Ci,)h,t' are not resampled.

6. Repeat steps 1 to 5 of the PLE starting at date t = 1 and stopping at date T.
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7. Full sample estimates of the static volatility parameters are computed according to ¥ =

M (1) (1) M (1) (1)
i-1 wp ¥ = Yis, wr ?<rTl )

By repeating step 5 at dates t = 1, ..., T—1, the PLE produces information about the content

of Y; for the way the RB-APF “learns” about V.

3.5 A Rao-Blackwellized Particle Smoother

Lindsten, Bunch, Sarkka, Schon, and Godsill (2016) develop an algorithm to compute smoothed
estimates of 8; and V;, given Y,.7 and ¥. The algorithm is a forward filter-backward smoother
(FFBS) for SSMs amenable to Rao-Blackwellization. The forward filter is the RB-APF described in
section 3.3 and online appendix. The FFBS applies Rao-Blackwellization methods moving from
date T to date 1 to generate smoothed estimates of V; conditional on forward filtered particles.
Forward filtering operations are conducted using the SSM (8.1) and (8.2) to produce smoothed
estimates of 8¢, given smoothed estimates of V;.!3 Lindsten, Bunch, Sarkka, Schon, and Godsill
(LBSSG) refer to the entire process as a forward-backward-forward smoother.

The RB-PS operates only on the nonlinear states of the joint DGP of the SI-prediction mech-
anism and SW-UC-SV-TVP-AR(1) model. The problem is, when moving backwards from date t
to date t—1, smoothing V; can cause its Markov structure to be lost. A reason is marginalizing
the linear states produces a likelihood that depends on V;.; rather than V;.

LBSSG solve this sampling problem by decomposing the target density P <\71;T ‘ Y113 ‘f’)
into P <V1:t ‘,Vl:t+1, Y113 ‘f’) P <\7t+1;T ‘ Y113 ‘f’). Drawing from P (Vt+1:T ‘ Y13 ‘f’) yields an in-
complete path of the approximate smoothed nonlinear states from date t+1 to date T, which is
denoted \N7t+1;T. Since these draws are initialized at date T by sampling from the date T filtered

(1)

M ~
nonlinear states, {VT } (i)-1’ backward extension to Vr_i.7 is drawn probabilistically from the

; M
cloud {V(ll:)T,l}(i)zl. The Rao-Blackwellized particle smoother is repeated for t = T-2, ..., 1.

13 Alternative PS are found in Lopes and Tsay (2011) and Carvalho, Johannes, Lopes, and Polson (2010).
These approaches to smoothing, which build on the PS of Godsill, Doucet, and West (2004), are
applicable to APFs, but not to the RB-APF we employ.
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The aforesaid factorization of P (VLT ‘ Y1 ‘ff) is also useful because there is information
in P (Vl;t ’VI:t+1, YT ‘f’) about the probabilities (i.e., normalized weights) needed to draw
smoothed nonlinear states. Gaining access to this information is difficult because the condi-
tional density of V;.; is not easy to evaluate.!* LBSSG’s propose simulation methods to perform

the backward filtering implicit in P (\711 | Vit+1, Y1:175 ‘f’). This density can be decomposed into
P (Vie| Viern, Yurs ¥) o« P (Yeorr, Veerr | Vi, Vi ¥) P (Vae [Yrs §),

where the object of interest is the predictive density P <Ht+1;7, Vt+1:T‘V1:t, Yies ‘f’). LBSSG
show this density equals J? (EHl;T, Vi1 ( St, Vi ‘?’) P (St ‘ Yit, Vit ‘f’) dS8¢. Hence, run the
KF forward to obtain estimates of 8; and X; by drawing from P (St )ym, Vit; ‘f’). The mean
and MSE of §; are employed in simulations to generate sufficient statistics that approximate
the density of the SSM (8.1) and (8.2), which when normalized are the probabilities of drawing a
path of \N71;T. In a final step that is conditional on the path of \N71;t, the linear states are smoothed
by iterating the KF forward. The upshot is, although 8; does not enter P (Vl;t ‘Vl;prl, Yit; ‘f’),
the conditionally linear states are relevant for estimating the probability of sampling V1T

Our implementation of LBSSG’s RB-PS is described in the next algorithm.

(i) (i) (D) @ ? M
1. Retrieve a stored ensemble of M particles, {{Sth, Ztllt, vtl , wtl }t 1} , created by
=1)i=1

running the RB-APF on the SSM (8.1) and (8.2), given the PLE of V¥, 7.

2. Initialize the PS at date T
~ (i M
(a) by drawing V(Tl) for each i from the filtered particle draws {V(Tl)}i: . that have been
resampled using the weights w(Ti), and

~ (1 . I A—1 . ~ (i . I A—1 . . I ~ (1 .
(b) compute Oy = (€) @y '€, 8 = (€) @y yr, and B =1 + (8Y) &7 B

across M resampled particles, which are used to build sufficient statistics of St.

14The KF creates an exact predictive density (up to a normalizing constant). However, computing the
density involves iterating the filter forward from dates t = 1, ..., T—1 to date T across M particle
streams. These calculations are computationally costly, which motivate LBSSG to approximate the
predictive density with simulated sufficient statistics.
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3. For each particle i = 1, ..., M, iterate from date t = T—1 to date t = 1 to calculate the

unnormalized weights, Clﬁ(l) = (i)b(i) ‘Ui exp {%92” } which generate smoothed

normalized weights, wHT = (l) / Zm 1th , where

(a) Pr(g’ = i) wﬁ‘)T counts the number of instances w > Z}" 1 wi{}, w~ U0, 1), and

m=1,..., M,
(b) s ~ ( Hl)\?(l) ) which is implemented by " = exp {m}ﬁll)t + ()}x Srxoll,
~2 (1) 2 (1)
Wi 1 Ingy,y —Ingy, 2 - n o
git - 2 O'g y - ’7; L]
o o) (o)
s = ’ (o3 = ’
0.t NA,Q,t At NA,/\,t
Naot = c1>( ~® Ait , Naae = @ —= - —t|,
ffqb O¢ UK Ok

®(-) is the CDF of the normal distribution,

(1) (4 . ... .
© U =1+ (Z (l)) Otl > which depends on the backwards transition equations '3

o~ (aih) [1- 8l (ofh) (512 |8l

~ (1) (1) MO\ A1)
o,” + (e) O, e,

S
Il

and

@) 9£1): <§£l)) (6?)) (6;1)) 5(1) (g?)) Sil)_ |:Z£l)(§§l) 021)5(1))<0£1)) :| ’

where the backwards laws of motion consist of S(l) = S,E_l)

51 = (ai) [1- 6= (o) (262) J5i2.

+ (Gii)), ﬁ;l‘dt and

4. Given the draw 31 in step 3.(a), add \7tal to \N7t +1.7 to produce the approximate (partially)

smoothed trajectory V,.; = {V? \7“”}.

I51BSSG propose a square root KF to ensure numerical stability of the backward filtering operations.
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5. Subsequent to iterating backwards from date T to date 1 for each of the M particle paths,
calculate the distribution of $; by running the KF on the SSM (8.1) and (8.2) to produce

M
P (S1r| Yo ¥) = J%_T?(SI:T\W}, Y15 ) dF (Vir) = ;?(Sl:T‘vﬁ)ﬁyl:T:\/I}), (12)

: i=

which is conditional on the backward filtered smoothed approximate paths of V,.;.

The density P (SLT‘%I;)T, YiT; ‘f’) is the multivariate normal distribution that results from
running the Kalman smoother (KS) on the SSM (8.1) and (8.2), where the approximation on the
right side of (12) conditions on the M trajectories of \~7(11)T We use the disturbance smoothing
algorithm of Durbin and Koopman (2002) to draw §1;T from the distribution created by the KS,

given a \N7§i) generated by the PS.

4 The Data and Estimates

We present estimates of the joint DGP of the SI-prediction mechanism and SW-UC-SV-TVP-AR(1)
model in this section. These estimates are compared with ones gleaned from joint DGPs that
lack inflation gap persistence, 8; = 0 or drift in ST updating A; = A.1® The goal is to evaluate the
impact of inflation gap persistence or SI on the dynamics of m; and 1} [f,, h = 1, ..., 5. The
joint DGPs are estimated using a RB-APF, PLE, and PS that engage M = 100,000 particles. These
estimates are used to study (i) comovement of T; and F; T with 71, and ngf fh, (ii) fluctuations
in & and F; &, (iii) the history of ¢, and ¢Gy,¢ since the start of the sample, (iv) movements in
0; and A over the business cycle, and (v) the contributions of Y;, ¢, and Trtslf f ,, to variation in

T and F;Ty.

4.1 The Data

Our estimates rest on a sample of real time realized inflation, 1, and h-step ahead average

SPF inflation prediction, TrtS}iD fh. We obtain the data from the Real-Time Data Set for Macroe-

16When 0; =0 (A; = A), O'(‘;') (0?) is deleted from Y. Fixing the frequency of SI updating also adds A to
¥, where the prior on A ~ Beta(1, 1).
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conomists (RTDSM), which is compiled by the Federal Reserve Bank (FRB) of Philadelphia.!” The
data consist of observations from 1968 Q4 through 2017Q2 for real time realized inflation and
average SPF inflation predictions.

Realized inflation is the RTDSM’s quarterly real-time vintages of the GNP and GDP de-
flator.!® These vintages reflect data releases that were publicly available around the middle
of quarter £ and most often the publicly available information contains observations through
quarter t—1. We employ these vintages to compute the quarterly difference in the log levels
of real time observations on the GNP or GDP deflator, P;. The quarterly price level data are
transformed into inflation measured at an annualized rate using ¢y = 400[InP; — InP;_1].

Average SPF inflation predictions include a nowcast of the GNP or GDP deflator’s level
and forecasts of these price levels 1-, 2-, 3-, and 4-quarters ahead. These surveys are collected

at quarter t without full knowledge of 71;. We comply with this timing protocol by assuming

the average nowcast, 1-quarter, ..., and 4-quarter ahead predictions, which are denoted Trff f s
Tite,, ..., and 17 {5, are conditional on data available at the end of quarter t—1. These inflation

predictions are the annualized log difference of the average SPF prediction of the deflator’s level
and one lag of the real time realized price level supplied by the RTDSM.

Figure 1 plots 1; and four different average SPF inflation predictions. Plots of 11y and the

average SPF inflation nowcast, ngf F., appear in figure 1(a). Realized inflation is also found

in figure 1(b), but the 1-quarter ahead average SPF inflation prediction, 77 {%,, replaces 1.

Figure 1(c) displays 7; and the 3-quarter ahead average SPF inflation prediction, Trff f4, and

figure 1(d) has 7r; and the 4-quarter ahead average SPF inflation prediction, TrtSf fS. The panels
depict mr; with a dot-dash (red) line and average SPF inflation predictions with a solid (blue) line.

Vertical gray shaded bars denote NBER recession dates.

17The data are available at http://www.philadelphiafed.org/research-and-data/
real-time-center/survey-of-professional-forecasters/.

18The SPF measured the output price level with the implicit GNP deflator before 1992Q1. From 1992Q1
to 1996Q4, the implicit GDP deflator played this role. It was replaced by the chain weighted GDP
deflator from 1997Q1 to the end of the sample.
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The plots reveal several features of 1r; and the average SPF inflation predictions. First,
average SPF inflation predictions exhibit less variation than 1y throughout the sample. Next,
as h increases, average SPF inflation predictions become smoother and are centered on 7r;. All
this suggests the average SPF surveys provide useful forecasts of inflation, which is a point
made by Ang, Bekaert, and Wei (2007), Faust and Wright (2013), Mertens (2016), and Nason and
Smith (2016a), among others.

Disparities in the average SPF nowcast to 4-quarter ahead prediction contain information
to identify 14, &, F;T:, and F;&;. For example, the average SPF inflation nowcast peaks close to
10 percent during the 1973-1975 recession and around the double dip recessions of the early
1980s as Figure 1(a) shows. The former peak in inflation falls moving from 17 {5, to 7174 {5 in
figures 1(b), 1(c), and 1(d). At a 4-quarter ahead horizon, the average SPF inflation prediction
rises steadily from about three percent in the early 1970s to a peak greater than eight percent
around the 1980 recession.!? Our estimates rely on this information, which is a function of the

SPF inflation prediction horizon, to identify persistence, stickiness, and volatility in RE and SI

trend and gap inflation.

4.2 Posterior Estimates of ¥ and Fit of the Joint DGPs

Table 3 lists full sample estimates of V¥, ‘f’, for three joint DGPs. The DGPs combine the SI-
prediction mechanism and SW-UC-SV-TVP-AR(1) model, SI-prediction mechanism and a SW-UC
model in which no persistence, 0; = 0, only SV drives gap inflation, and a fixed parameter, A;
= A, SI-prediction mechanism and the SW-UC-SV-TVP-AR(1) model.

The restrictions on inflation gap persistence and the frequency of SI inflation updating
affect ¥ in several ways. First, innovations to the RW of trend inflation SV are more volatile
than innovations to the RW of gap inflation SV in the DGPs with drifting gap persistence because

G2 > 0. However, G is larger while G is smaller in the DGP that estimates 0; and A;. In

19Figure 1(d) shows TrgffS is missing observations in 1969, 1970, and 1974. The KF is modified to

accommodate the missing observations.
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contrast, &,% and 63 are about equal in the DGP with 0; = 0 and close to the calibrated values
Stock and Watson (2007) and Creal (2012) use to estimate the state of the SW-UC-SV model.
Next, there is little variation in estimates of the scale volatility on innovations to the RWs of 6;
and Ay, 5'(% and G2, across the DGPs in which these parameters appear. The DGPs with drifting
gap persistence produce estimates of the scale volatility on the measurement errors of SPF
inflation predictions, &é,h, h =1, ..., 5, that are quantitatively similar. The converse is true
for estimates of the scale volatility on the measurement errors of 1, 6§,n, because it is nearly
twice as large in the DGP that estimates 0; and A; compared with the other two DGPs.

Estimates of log marginal data densities (MDDs) appear at the bottom of table 3 for the
three joint DGPs. Equation (11) is used to calculate é@(‘l’ ‘ HLT), which is the log MDD for a joint
DGP tied to Y. Standard errors of the log MDDs are beneath estimates of £<‘I’ ‘ Hl;T).ZO The
estimates of £<‘I’ ‘ ym), indicate the data have, at a minimum, a very strong preference for the
joint DGP of the SI prediction mechanism and SW-UC-SV-TVP-AR(1) model. Hence, the rest of
the paper reports evidence this joint DGP has for the stickiness, persistence, and volatility of
Tt, Fr1¢Tt, &, and Fy1&.

Figure 2 plots the PLE paths of 07, 6, 63), and 2 consistent with the joint DGP favored
by the data. The scale volatility parameters are plotted with solid (navy blue) lines and 68
and 90 percent uncertainty bands appear as dark and light shading in figures 2(a)-2(d). These
figures show &% more than doubles, ¢ falls by about a third, Ui rises by about a quarter, and
o2 changes little from the start to the end of sample. The PLE path of 6,% drifts up for much of
the sample as seen in figure 2(a). However, the PLE paths of these parameters are smooth from
the 2001 recession to the end of the sample. Also, the 68 percent uncertainty bands are tight
for the most part in figure 2, but the 90 percent uncertainty bands are wider and on occasion

display substantial variation.

20The standard errors are standard deviations of estimates of the log MDDs obtained from rerunning
the PF using different random seeds across the three DGPs. Hence, the approximation error of the PF

is measured by the standard errors of é€<‘1’ ‘ H1:T) and not the sampling uncertainty of a joint DGP.
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Table 3: Posterior Estimates of the Joint DGPs
of the SI Prediction Mechanism and SW-UC-SV Models

TVP-SI: A, TVP-SI: A, Fixed SI: A; = A
Parameter TVP-AR(1): 0, Gap-SV: 6; =0 TVP-AR(1): 0,
o2 0.423 0.194 0.336
[0.372, 0.481]  [0.167, 0.226]  [0.294, 0.385]
o 0.103 0.193 0.191
[0.090, 0.118]  [0.163, 0.302]  [0.168, 0.218]
o 0.101 - 0.107
[0.089, 0.114] [0.095, 0.121]
o2 0.081 0.084 -
[0.071, 0.093]  [0.038, 0.099]
o 0.213 0.115 0.115
[0.171, 0.263]  [0.085, 0.148]  [0.090, 0.146]
0Z, 0.148 0.314 0.148
[0.126, 0.173]  [0.266, 0.371]  [0.126, 0.175]
oZ, 0.070 0.093 0.068
[0.059, 0.082]  [0.079, 0.110]  [0.057, 0.080]
0f 5 0.052 0.053 0.052
[0.044, 0.061]  [0.044, 0.062]  [0.044, 0.061]
04 0.046 0.068 0.047
[0.039, 0.055]  [0.058, 0.080]  [0.040, 0.55]
0fs 0.048 0.098 0.048
[0.040, 0.056]  [0.083, 0.116]  [0.041, 0.056]
L(¥[vr)  -473.132 ~669.150 ~483.996
(7.068) (5.823) (6.691)

The table presents posterior means of the elements of ¥, which are calculated using the full
sample at date T = 2017Q2. The values in brackets below the posterior means are 5 and 95
percent quantiles. The model in which the SI parameter is fixed yields the posterior mean
A = 0.304 with 5 and 95 percent quantiles of 0.250 and 0.360 conditional on the data and
priors. The log MDDs are computed using the formula for é@(‘{’ ‘ ym) described by equation
(11) in section 3.3. Volatility over the log MDDs are measured by standard errors that appear
in parentheses. The estimates of the static scale volatility parameters and log marginal data
densities are created using M = 100,000 particles.
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4.3 Trend and Gap Inflation

Figure 3 contains 1¢, the average SPF inflation nowcast and 4-quarter ahead inflation prediction,
mitt, and 17115, filtered RE trend inflation, Ty, filtered SI trend inflation, Fy|;;, filtered RE
gap inflation, & ¢, and filtered SI gap inflation, F;|;&¢, on the 1968Q4 to 2017Q2 sample. Plots
of Tr,ff fl, Fy: 11, and its 68 percent uncertainty bands are in figure 3(a). Figure 3(b) is similar,
but replaces 171, with ;{1s. In these figures, solid (blue) lines are average SPF inflation
predictions and F; | T; is the dotted (black) lines. Figure 3(c) displays 7 with a dash (green)
line, F; )T+ with a dotted (black) line, and 11 with a dot-dash (red) line. Estimates of RE and SI
gap inflation appear in figure 3(d) as a dashed (green) line, & ¢, and dotted (black) line, Fy;&;.
Estimates of SI trend inflation are informed by the 1973-1975 recession, inflation surge
of the late 1970s and early 1980s, and Volcker disinflation.?! In 1974Q4, figure 3(a) displays

a spike in 1y}, of nearly 10 percent, but Fy¢T; is only 3.8 percent. At the same time, 715

is 6.1 percent. The peaks in Trff f5 and F; | T¢, which occur a year and a half later, are close to

6.5 percent. The next peaks in 77{7, and 17 {15 are 9.5 in 1979Q4 and 8.3 percent in 1980Q1.

However, only in 1981Q2 does F;|;T; peak at 7.5 percent. After 1983, {1, Tit1s, and Fy T
fall steadily before leveling off in the late 1990s as figures 3(a) and 3(b) show. However, F;; Tt
often deviates from Trf‘f ¥ between 1983 and 2000. As a result, 7'rtS’{J ¥, often is outside the 68
percent uncertainty bands of F;|;7; during this period while ngf fs falls within the 68 percent
uncertainty bands of F;|;T; after the Volcker disinflation in figure 3(b).

Figure 3(c) has several interesting features. First, r; is volatile compared with T and
Ft 7. Another striking aspect of figure 3(c) is T4+ and Fy|; T+ are nearly identical for much of
the sample. This is not true for 1; and F;|; T; (or T¢1) from 1968Q4 to 2000. For example, T¢ /¢
and F;|¢T; are less than a third of 7r; during the first oil price shock. However, F;|;T; explains
much of the increases in 17 and ngfl by the late 1970s and early 1980s. Hence, 7¢; and Fy; Tt

respond slowly to the first oil price shock, but the inflation shock of the late 1970s and early

1980s produces quicker responses in ¢ and F;; T¢. Subsequently, 1t; is often less than T

21Meltzer (2014, p. 1209) establishes 1986 as the end of the Volcker disinflation.
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and F;|; 7t from 1983 to 2000. Beginning in 2003, 7;; and F;; T; are often centered on 7.

The estimates RE and SI trend inflation are a counterpoint to studies in which gap inflation
dominates movements in inflation; see Cogley and Sbordone (2008) among others. For exam-
ple, only after the 1973-1975 recession does T and F;|; T become important for explaining
movements in ;. Moreover, our results of trend inflation differ Grassi and Prioietti (2010),
Creal (2012), and Shephard (2013) because our estimates condition on Trf;ffh, h=1,...,5.

We plot & and Fijs & ¢ in figure 3(d). These plots show &; and Fy ;& are nearly insep-
arable for the 1968Q4-2017Q2 sample. These estimates of gap inflation rise from less than
one percent in 1968Q4 to about 3.5 percent in 1970. Thereafter, & and F; & turn negative
before the 1973-1975 recession, which coincides with the largest spikes in & and F;j;&; of
nearly nine percent. These spikes are followed by &;; and F; ;& falling to about —2.5 percent
by 1976. From the late 1970s to 1981, & and F; ;& range from about zero to 3.7 percent.

There are two more aspects of figure 3(d) worth discussing. First, & and F; ;& are less
volatile subsequent to the Volcker disinflation compared with the 1970s. After 1983, (the
absolute values of) & and F; ;& are never larger than three percent. Second, & and Fy ;& are
often negative from 1983 to 2000, which leads the average SPF participant to expect an increase
in future growth in realized inflation. Nelson (2008) explains this prediction is an implication
of the Beveridge and Nelson (1981) decomposition, which is built into the SW-UC-SV-TVP-AR(1)
model of the joint DGP. Hence, the average SPF participant believes the Volcker disinflation
produced only a transitory drop in realized inflation.

Movements in F;;&; have parallels in monetary policy. Remember the average SPF par-
ticipant expects mean reversion in 7r; during the 1973-1975 recession. However, in the late
1970s the average SPF participant believes unit root dynamics dominates 17;. An explanation
for this shift in the average SPF participant’s beliefs about the inflation regime is discussed by
Meltzer (2014, pp. 1006-1007). He notes that in the 1970s U.S. monetary policy makers would
not distinguish permanent from transitory shocks. As a result, their responses to the first oil

price shock contributed to unanchored inflation expectations by the late 1970s.
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The Volcker disinflation is another example. After 1983, 1 and F;|; T+ begin to fall, but
the drop in 11; is steeper as figure 3(c) shows. These plots are consistent with mostly negative
realizations for Fy & from 1983 to 2000 as in figure 3(d). As discussed previously, we assign
these movements in F;; 7 and Fy ;& to the average SPF participant expecting a temporary fall
in 11; during and after the Volcker disinflation. The assessment agrees with Goodfriend and
King (2005) and Meltzer (2014, p. 1131). They argue households, firms, and investors expected

only a transitory drop in inflation after 1983.

4.4 Trend and Gap Inflation Volatilities

Estimates of filtered and smoothed trend and gap inflation SV appear in figure 4. Figures 4(a)
and 4(c) contain dotted lines, which are ¢, ¢+ (purple) and ¢ ¢t (teal). Dot-dashed (purple and
teal) lines are ¢ ¢7 and ¢y, 7 in figures 4(b) and 4(d). These figures also include 90 percent
uncertainty bands, which are thinner solid (black) lines.

Figure 4 makes several points about Gy t|t, Gu,tit, Sn,t|T, and Gy ¢7. Figures 4(a) shows the
largest peaks in gy ¢ occur in 1977, 1983, and 2009 while ¢, ¢+ is dominated by a spike in
1975 in figure 4(c). Figures 4(b) and 4(d) display peaks in ¢y 7 and ¢y, during the 1981-
1982 recession and in 1975, respectively. Hence, these plots are more evidence shocks to gap
inflation dominate movements in 71+ and ngf fh during the 1973-1975 recession, but in the
inflation surge of the late 1970s and early 1980s permanent shocks are more important.

Another revealing feature of figures 4(a) and 4(c) is the behavior of SV around NBER dated
recessions. The filtered SVs, ¢y )¢+ and Gy ¢j¢, often rise during or after a NBER recessions as
depicted in figures 4(a) and 4(c). There are peaks G, |7 (Go,tj7) during the 1990-1991 and
2007-2009 (1981-1982, 1990-1991, 2001, and 2007-2009) recessions.

Figure 4(b) and 4(d) are also informative about the long run behavior of ¢, ¢t and Gy t|7.
These SVs display steady declines for extended periods during the sample. The descent starts

in 1983 for gy, while this process starts in 1975 for Gy ¢|t.
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Finally, our estimates show ¢, ¢t is smaller than ¢, ¢t for the entire sample. These es-
timates differ from Grassi and Prioietti (2010), Stock and Watson (2010), Creal (2012), and
Shephard (2013). These authors report trend SV dominates inflation gap SV from the 1970s
well into the late 1990s. However, Creal and Shephard find that gap inflation SV is greater than
trend SV after 2000.

4.5 Drifting Inflation Gap Persistence

Figures 5(a) and 5(b) display filtered and smoothed estimates of drifting inflation gap persis-
tence, 0¢; and 6¢ 7. Dotted and dot-dash (orange) lines denote 6;; and 6; 7. Surrounding
011+ and 07 are 68 and 90 percent uncertainty bands in the dark and light gray shaded areas.
Figures 5(c) and 5(d) plot the absolute value of smoothed inflation gap persistence, |0t |, and
accumulated changes of this absolute value, |0 1| — |01/7|. These plots depict |0y 7| and
|Otj7| — | 01)7 | with dot-dashed (orange) lines, where the dark and light gray shaded areas are
68 and 90 percent uncertainty bands.

There is co-movement between 60;; and 0t with NBER dated cycles in figures 5(a) and
5(b). The co-movement is pro-cyclical during the 1969-1970, 1973-1975, and 1980 recessions.
These recessions see peaks in 0;; and 0yt while there are troughs between these recession.
Post-1981, 6¢; and 6y turn counter-cyclical. Filtered and smoothed estimates of drifting
inflation gap persistence peak between the recessions of 1981-1982, 1990-1991, 2001, and
2007-2009 while these recessions see troughs in 6;; and 6y |r.

Uncertainty bands of 6;; and 6t also appear in figures 5(a) and 5(b). The 90 percent
quantiles of 0|1 (6)¢) cover zeroin 1971-1972,1990-1991, and 2006-2014 (1968-1969, 1972-
1973,1975,1976-1978, 1983, 1990-1993, and 2003-2014). Hence, we infer there are episodes
in which inflation gap persistence is zero. These results are similar to evidence presented by
Cogley, Primiceri, and Sargent (2010). They find inflation gap persistence drops after 1983.
However, our evidence is tied to pro-cyclical troughs in 07 before 1983 and to the 2007-2009

recession and its aftermath, which occurs more than 20 years after the Volcker disinflation.
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Another take on the statistical and economic significance of drifting gap inflation persis-
tence appears in figure 5(c). This figure displays the absolute value of 01, |01 |. The plot
of |0y 1| gives evidence similar to that found in figure 5(b). There is evidence of a shift in
business cycle behavior of | 0; 7| around the Volcker disinflation. Drift in the absolute value
of inflation gap persistence also declines steadily from the late 1990s to 2013.

There remains the inference problem that 0;¢, 0¢ 1, and | ;7| are not necessarily infor-
mative about the statistical and economic content of changes in drifting inflation gap persis-
tence during the sample. We rectify this problem by plotting accumulating changes in | 01|,
|O¢7| — | 01i7], in figure 5(d). Figure 5(d) shows these changes have tighter uncertainty bands
compared with the plots in figures 5(a), 5(b), and 5(c). Nonetheless, the path of |0¢1| — | 017 |
continues to show peaks coincide with recessions pre-1981 and troughs occur between these
recessions but the opposite is observed post-1981. Hence, we have evidence that dates a shift
from pro-cyclical to counter-cyclical drifting inflation gap persistence to 1981. This break is
consistent with an argument made by Meltzer (2014, p. 1006 and p.1207). He contends there
was a shift in U.S. inflation persistence because the Fed changed the way it operated monetary

policy in the 1980s and 1990s compared with the 1970s.

4.6 Time Variation in the Frequency of SI Updating

Figure 6 presents filtered and smoothed estimates of the time variation in the frequency of SI
updating, A¢; and Agj7. These panels plot A¢; and Agjr as dotted (light green) and dot-dashed
(brick) lines. The thin solid (brick) lines denote 90 percent uncertainty bands of A7 and 90
percent uncertainty bands of A; are depicted with light gray areas. Figures 6(b) and 6(d) plot
accumulated changes in A7, Ayt — A7j7. In these panels, dark and light gray areas are 68
and 90 percent uncertainty bands of Ay — Aq;7. The top row of figure 6 has As¢, A¢r, and
AyT — A7 estimated using the joint DGP of the SI-prediction mechanism and the SW-UC-SV-
TVP-AR(1) model. Figures 6(c) and 6(d) report similar estimates, but the SW-UC-SV model lacks

persistence in gap inflation, or 8; = 0 for all dates t.
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Plots of A and A7 display a decade long swing from more frequent to less frequent
updating beginning in the late 1980s in figure 6(a). From the late 1960s to the 1988, the
average SPF inflation respondent is estimated to update almost every quarter to changes in
E; ;4 because Aq7 varies between 0.01 and 0.35. However, there is uncertainty about these
estimates because the 90 percent confidence bands of A; ;7 range from 0.01 to 0.60.

Figures 6(a) also shows A¢; and A1 reach a plateau from 1994 to 2007 before falling
during the 2007-2009 recession. From 1995 to 2008, A and Aqr range between 0.50 and
0.70. The recession of 2007-2009 sees A¢j1 (A¢)¢) dropping to 0.25 (0.35). Subsequently, A¢|r
(A¢)¢) recovers to 0.47 (0.60) before 2017Q2. The filtered and smoothed estimates of A; are
also associated with substantial uncertainty. For example, when A1 plateaus in the late 1990s,
the five percent quantile is as low as 0.20 and the 95 percent quantile is as high as 0.95. Fur-
thermore, the 90 percent uncertainty bands of A;; and At remain wide in figure 6(a) as the
sample moves past the recession of 2001, the “considerable” and “extended” period policy
regimes of the Greenspan and Bernanke Feds, the 2007-2009 recession, and unconventional
policy regimes of the Bernanke and Yellen Feds.

There are useful inferences to draw from A and A1, even with the uncertainty sur-
rounding these estimates. For example, a low frequency of SI inflation updating by the average
member of the SPF is consistent with the Fed engaging in a policy of “opportunistic disinflation”
during the 1990s as described by Meyer (1996) and Orphanides and Wilcox (2002). Orphanides
and Wilcox quote Vice Chairman Blinder and President Boehne of the FRB-Philadelphia as ad-
vocating the Fed of the mid 1990s should wait for a state of the world in which there is little
cost to monetary policy lowering inflationary expectations rather than to take actions during
periods when the potential for a costly disinflation are large. However, since the joint DGP of
the SI-prediction mechanism and SW-UC-SV-TVP-AR(1) model is the source of estimates of A
and A, these estimates are about the average SPF respondent’s beliefs about changes in the

inflation regime and not evidence about shifts in the monetary policy regime.22

22Information about monetary policy interventions is needed to conduct a monetary policy evaluation
of this kind as studied, for example, by Leeper and Zha (2003).
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There is greater support for statistically and economically important time variation in the
frequency of SI inflation updating in figure 6(b). This figure plots A;j7 — Aqjr for the joint DGP
in which there is drift in inflation gap persistence. In this case, the path of A7 — A1j7 in figure
6(b) is similar to A1 displayed in figure 6(a) with respect to level and slope. Another interesting
feature of figure 6(b) is the uncertainty bands surrounding A;j7 — A1|7. Figure 6(b) displays 90
percent uncertainty bands of A;7 — Aqjr that are narrower for the entire sample compared
with the analogous confidence bands of A¢|r in figure 6(a). These estimates strengthen the case
that changes in the frequency of SI inflation updating by the average member of the SPF are
statistical and economic important.

This message is reinforced by figure 6(d). This figure present estimates of Ay — Ayt
conditional on a joint DGP in which there is no persistence in the inflation gap. Given 0; is
zero, SI inflation updating is less frequent quarter by quarter as depicted by Ay and A1 in
figure 6(c) compared with the estimates found in figure 6(a). Although figure 6(c) suggests
there is useful information about the frequency of SI inflation updating conditional on 6; =
0, the plot of A¢jr — Aqj7 in figure 6(d) indicates otherwise. Figure 6(d) depicts A¢i7 — A1jr as
fluctuating around zero with 90 percent uncertainty bands that often contain zero under the
joint DGP in which inflation gap has no persistence.

This section reports estimates of A¢|¢, A¢1, and A¢j7 — A7 that show Sl inflation updating
by the average SPF respondent is statistically and economically significant for the last 48 years.
These results agree with Coibion and Gorodnichenko (2015). Nonetheless, our estimates also
reveal shifts in ST inflation updating during the sample. From the 1969 to 1988, the frequency of
SIinflation updating occurred almost every quarter. The frequency declines to about once every
two to three quarter until 2007, followed by a sharp increase during the 2007-2009 recession.
Afterwards, the frequency drops by 2017Q 2. These shifts in estimates of SI inflation updating
indicate the average SPF participant’s beliefs about the inflation regime changed within a few
years of the end of the Volcker disinflation. The average SPF participant’s beliefs about the

inflation regime also appear to have been altered by the recession of 2007-2009.
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4.7 SPF Inflation Predictions and Trend Inflation Uncertainty

Figure 7 displays conditional volatilities of RE trend inflation, T, and SI trend inflation, F;T;.
The plots quantify uncertainty over time in 7; and F;T; conditional on the history of Y;, or
histories of subsets of its elements, smoothed estimates of the nonlinear states, \N7t|T, and
estimates of the static scale volatility coefficients, ¥. The measure of the volatility of T is
var(t¢ | Y1, \A?tm ‘f’), where the entire information set runs from the first observation to quarter
t, the smoothed nonlinear states begin at quarter t and end with quarter T, and estimates of the
static scale volatility parameters are full sample. Similar computations are used to produce the
conditional volatility of F; ;. Thus, the paths of the nonlinear states and parameter estimates
are held fixed across changes in the sample data fed into the KF to produce estimates of the
conditional volatilities of T; and F; T;.

Figure 7(a) plots the conditional volatilities of 7;. The conditional volatilities of F;T; are
found in figure 7(b). In these figures, the solid (black) line, dashed (blue) line, dotted (red) line,
and dot-dashed (green) line are Var(x | Y1, Vei1, ¥), Var(x | i, Vi, ¥), Var(x | w2, V1, ¥),
and Var(x |y, b, Vi 1, ¥), respectively, where x = ¢, F;Ty.

Figures 7(a) and 7(b) reveal 1y and ntsf f. jointly contribute the bulk of the informa-
tion pertinent to estimate T; and F;1;. The reason is the dot-dashed (green) lines of fig-
ures 7(a) and 7(b) are always near the solid (black) lines. Hence, given only 71; and 17115,
Var (e |, okt o, Vyr, ¥) and Var (Fere |1, 5555, Ve, ¥) are close to the estimates con-
ditioned on the entire information set, Var(t; | Y, \N7t|T, ¥) and Var(F; ¢ [Ye, \NMT, ¥). In con-
trast, the dotted (blue) lines are far from the solid (black) and large dot-dashed (green) lines
in the first half of the sample. Hence, prior to the Volcker disinflation, there is insufficient
information in 7r; alone to estimate T1; and F;7; without also generating more variation in

these estimates compared with estimates conditioning on either Y; or m; and 1;1s. How-

ever, conditioning only on Trff F_ produces substantial variation around F;7; that is manifested
by large differences between plots of Var(F;7; | nf:ff+5, \N7t|T, ¥) and Var(F;7; |Yt, \N7t|T, ¥) or

Var(Frte | e, kY, Vi1, ¥) in figure 7(b).
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In summary, figure 7 shows realized inflation and the 4-quarter ahead average SPF inflation
prediction contain much of the information useful for reducing uncertainty surrounding 1; and

F;7; and, hence, efficiently estimating these measures of trend inflation.

5 Conclusions

This paper studies the joint dynamics of realized inflation and inflation predictions of the Sur-
vey of Professional Forecasters (SPF). The joint data generating process (DGP) mixes a Stock and
Watson (2007) unobserved-components (SW-UC) model with the Coibion and Gorodnichenko
(2015) version of the Mankiw and Reis (2002) sticky information (SI) model. The SW-UC model
with stochastic volatility (SV) in trend and gap inflation is extended to include drift in inflation
gap persistence. The SI law of motion is endowed with drift in the SI inflation updating pa-
rameter. We estimate the joint DGP on a sample of real time realized inflation and averages of
SPF inflation predictions from 1968Q4 to 2017Q2. The estimator embeds a Rao-Blackwellized
auxiliary particle filter into the particle learning estimator of Storvik (2002). Smoothed esti-
mates of the state variables are constructed using an algorithm developed by Lindsten, Bunch,
Sarkka, Schon, and Godsill (2016).

Estimates of the joint DGP are summarized as follows. First, longer horizon average SPF
inflation predictions provide useful information for estimating rational expectations (RE) and
SI trend inflation and reducing uncertainty around these estimates. Second, RE and SI gap infla-
tion dominate inflation fluctuations during the first oil price shock. This is reversed during the
late 1970s and early 1980s. Third, trend (gap) inflation SV falls steadily after 1983 (1975). We
also find that inflation gap persistence is pro-cyclical before 1981 and turns counter-cyclical
afterwards. Fifth, changes in the frequency of Sl inflation updating are statistically and econom-
ically important. The average SPF participant is often updating SI inflation predictions from the
late 1960s through the late 1980s. Subsequently, the frequency of SI inflation updating falls to

levels associated with estimates reported by Coibion and Gorodnichenko (2015), among others,
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and remains low until the 2007-2009 recession.

Our results fit into a literature represented by, among others, Krane (2011), Mertens (2016),
and Nason and Smith (2016a, b). These authors find the responses of professional forecasters to
permanent shocks are greater than to transitory shocks when revising their predictions, say, of
inflation. In the same way that this research inspired us, we hope this paper stimulates further
research into the ways in which professional forecasters and other economic agents process

information to form beliefs and predictions about future economic outcomes and events.
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Al Introduction

This appendix contains four sections. Section A2 builds state space models (SSMs)
for the joint data generating process (DGP) of the sticky information (SI) prediction
mechanism conditional on different Stock and Watson-unobserved components (SW-UC)
models with stochastic volatility (SV). A joint DGP conditional on a SW-UC-SV model with
static persistence in gap inflation is developed in section A2.1. Section A2.2 reviews the
SSM of the SI-prediction mechanism and SW-UC-SV-TVP-AR(1) model, which is discussed
in section 2.3 of the paper. Additional information about the Rao-Blackwellized auxiliary
particle filter (RB-APF) of section (3.3) used to estimate the linear and nonlinear state
variables of the joint DGP of the SI-prediction mechanism and the SW-UC-SV-TVP-AR(1)
model is found in section A3. Estimates of the SSMs left out of the paper appear in
section A4. Section A4.1 contains estimates of the SSM that consists of the SI-prediction
mechanism and a SW-UC-SV model with no persistence in gap inflation, 8; = 0. When a
static SI parameter, A; = A is part of the joint DGP, along with the SW-UC-SV-TVP-AR(1)

model, the estimates are found in section A4.2.

A2 SSMs of the Joint DGP

The SSMs have several features in common. The features are h-step ahead rational
expectations (RE) and SI forecasts, E; ;. and F;11¢, 5, are integrated out of the state of
the SSMs. Instead, the state vector consists in part of RE and Sl inflation trends and gaps,
T¢, &, F; Ty, and Fy&;. The RE (SI) state variables drive E; 1ty (F;11:45). Along with these
state variables, the SSMs are constructed using the laws of motion of 1; and &; defined by
a SW-UC-SV model, and a conjecture for the laws of motion of F;T; and F;&; that reflect

the SIlaw of motion, which is equation (3.2) of the paper. Another implication of the SSM
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is the RE and SI state variables, 7; &, F; T, and F;&;, are linear conditional on nonlinear
state variables. The nonlinear state variables are the SVs of trend and gap inflation, G,
and ¢, , drifting inflation gap persistence, 8;, and the SI-TVP parameter, A;, where V; =
[In g,zm In ggyt 0; A;]'. We gather the conditionally linear state variables together in X;
= [1: &), F:X: = [Fi1y Frer]',and 8¢ = [X} F:X;]". The SSMis completed by connecting
the observables of realized inflation, 17¢, and the average SPF participant’s h-step ahead
inflation predictions, Trtsf f 5 to &; plus the associated measurement errors, Cr,; and Cp
h=1,..., H. Hence, E; 1y, and F;11;,,, are replaced by the conditionally linear §; in
SPF

the observation equations of ;. because these forecasts are linear functions of X;

and tht-

A2.1 A SSM of m, and 71} ;{, when Persistence in ¢, Is Fixed

This section constructs a SSM for the joint DGP of the SI-prediction mechanism and a
SW-UC-SV model with 6; = 6. Our motivation is to study the joint DGP without the
complication of specifying a TVP-AR(1) for gap inflation. The restriction is gap inflation
evolves as a fixed coefficient AR(1) with SV, where &1 = 0& + G,r110¢ and 0 € (-1, 1).
In this case, the joint DGP maps into a SSM in which alone A; alters the transition dy-
namics of F;X;.

The SSM of the joint DGP is built on RE and SI term structures of inflation. The
SW-UC-SV model with fixed inflation gap persistence yields a SSM, which is the source
of E; 1ty ;. We compute E; 11,5, using the observation and state equations of this SSM,
which are equation (5.1)

i = O0xXt + O¢nCrit, (A2.1)
and equation (5.2) modified for fixed inflation gap persistence
X1 = OX¢ + Y1 Wy, (A2.2)
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1 0 gr],t+1 0
of the paper, where 6y = [1 1], © = , Y = , and W; =
0 o 0 Cu,t+1
[n: Ut]/. The RE forecast of 11,5, which is equation (6) of the paper (implied hereafter)
is reproduced here

Emin = 6,0"X, h =1,...,7, (A2.3)

Equation (A2.3) is calculated by iterating the observation equation (A2.1) and state equa-
tions A2.2 forward h periods, substituting for X,,, in the former equation using the
latter, and applying the law of iterated expectations (LIE).

The SI term structure of inflation forecasts has a similar specification
Fimtyop = 5x@th-xt, (A2.4)

which is equation (7). This specification is built on the SI-EWMA smoother (4), the RE
term structure of inflation forecasts (A2.3), and the EWMA smoother of F;X;. Construc-
tion of the latter begins by substituting 6,@" X, for E,m, ., in the SFEWMA smoother
(4) to find

© J

Fmty, = 6:0" > iy, ;0 (1‘[ A”}> X (A2.5)

Jj=0 £=0
Next, a law of motion for the SI state vector, F;+1X;,, is needed to connect it to the RE
state vector, X;. Remember the state variables X; and F;X; contain all the information
needed to construct the RE and SI term structures of inflation forecasts, which are
equations (A2.3) and (A2.4). This information is useful for building a law of motion for
the SI state variable. Since the SI law of motion (3.2) relates F;1t;,; to its own lag and
E, 11, ., weighted by A; and (1 — A;), a law of motion for F,;X;. is found by swapping it,
Fi1Xtin, and E; Xy for Femtion, Fro1T0on, and E; 11444, in the SI law of motion (3.2). The

result is the law of motion
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FiXtin = AFraaXeon + (1= Ap)EeXiin. (A2.6)

Backward iteration of the SI law of motion (A2.6) yields the EWMA smoother of F;X;.j,

00 J
FiX¢in = Z M- (H At—l’) eI, (A2.7)
=0 £=0
where E;_jX¢.n = ©"/X;_;. When h = 0,
o0 J
F Xy = Z Mt j (n At#) e’X;_;, (A2.8)
j=0 £=0

which establishes the link between F;1rs,), and F;X; in the SI inflation term structure
(A2.4).

We employ the state equations (A2.2) of X, and the SI-FEWMA smoother (A2.8) to
build state equations for F;.1X;,;. By pulling X; out of the infinite sum of the SI-state

equation EWMA smoother (A2.8), the result is

[e9)

J
FXe = (1= 20X + D> Haej (1_[ At#) e’X,_;. (A2.9)
=0

j=1
The infinite sum of equation (A2.9) implies Fy_1X;-1 = >.;o o Mat—i-1 (H}ZO )\t_g) (S LA W
after a change of index, j = i+1. Substitute for the infinite sum in equation (A2.9) with
F; 1X;_; to produce

FXe = (1 =2)X; + A@OF 1. (A2.10)
The goal of finding the law of motion is almost complete. Subsequent to leading the law
of motion (A2.10) forward one period and substituting for X;,, using the state equations

(A2.2), we have the SI state equations
Fri1Xii1 = A1OF X + (1= Ap1)OX;: + (1 — Aps1) Y Wy, (A2.11)

of the joint DGP of the SI prediction mechanism and the SW-UC-SV model with fixed

inflation gap persistence. The state equations (A2.2) of X, are stacked on top of the
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state equations (A2.11) of F;,1X¢,; to form

St+1 = Aet+18t + BraWy, (A2.12)
@ 02><2 Yt+1
where Ag 141 = ,and By = . Thus, the system
(1-A1)® A0 (1= Aer) Yo

of state equations (A2.12) of the joint DGP reveal shocks to A;.; alone shift the transition
dynamics of F;;;X,,; and its impulse dynamics react to A;.+; and SVs.

The SSM of the joint DGP of the SI prediction mechanism and the SW-UC-SV model
with fixed inflation gap persistence is finished by using equations (A2.1) and (3.1) to

construct the system of observation equations

Y = CeS + DUy, (A2.13)
TT¢ 53( 01><2 (U 0 0
usked 01x2  0xO 0 oz, 0
where Y; = , Cg = , D = , U =
: 0 0o . 0
i 779%1,? | | 012 0% | |0 0 ... ogx |

[z;m Cit --- §g{,t] , and Qy = DD’. The SPF term structure of inflation predictions are
the second through H+1 rows of the observation equations (A2.13). These observation
equations show F; 1ty is integrated out of the SSM and that the factor loadings on §;

are time invariant.

A2.2 The Joint DGP with Drifting Persistence in Gap Inflation

The SSM of the SI-prediction mechanism and SW-UC-SV-TVP-AR(1) model is more diffi-
cult to construct compared with the SSM of the previous section. The difficulty stems
from drifting persistence in gap inflation, which creates a nonlinearity in the transition

dynamics of the state equations (5.2) of the SW-UC-SV-TVP-AR(1) model. This nonlin-
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earity rule outs using the LIE to compute E; ¢, 5. Instead, the anticipated utility model
(AUM) is employed to solve the problem. Under the AUM assumptions stated in the
paper, the average member of the SPF holds @, fixed at its date t realization when
constructing h-step ahead inflation forecasts. For example, combine the AUM and pro-
cedures similar to ones used to construct the RE term structure of inflation (A2.3) under

fixed inflation gap persistence generates the forecasts

E;tn = 6xO),X,, (A2.14)

where ®; = . The subscript on @;; is held fixed in the RE term structure
0 0

of inflation (A2.14) to reflect information available to evaluate the SW-UC-SV-TVP-AR(1)
model at date t.

The SI term structure of inflation forecasts also has to be calculated to build the
SSM of the joint DGP. Similar to the previous section, the process of computing these
forecasts starts with the law of motion (A2.6) of F;X;.n, (1 — A)EeXiin + AFr 1 X,
and its EWMA smoother (A2.7), Z;‘;O Hat— (HLO )\t,g> E;_;X¢in. Although this law of
motion and smoother are unchanged from the case of 0; = 0, drift in inflation gap
persistence matters for constructing the map from E;_;X;., to F;X;. Similar to the im-
plication of AUM, which holds drifting inflation gap persistence fixed at 6;|; to generate
the h-step ahead RE inflation forecast (A2.14), we assume 0, is fixed conditional on
the information available to F;X;.,. Thus, iterating the law of motion (A2.6) of F;X; .
backwards gives

w j ‘
FeXpon = D Hag-j (ﬂ /\t—ﬁ) Gﬁ?xt—j, (A2.15)
j=0 0=0

which is implied by the RE term structure of inflation forecasts (A2.14), E;_jTtn =
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@}17%;_;. Next, set h = 0 in the EWNMA (A2.15) of F;X;. to obtain
© Jj ‘
F Xy = Z Hat—j 1_[ Ai_p @){“xt_j. (A2.16)
j=0 =0

Apply the EWMA (A2.16) of F;X; to link the SI-FEWMA smoother (4) to the h-step ahead
RE inflation forecast (A2.14) yields
o j .
FiTtion = Ox Z M- (l_[ At—ﬂ) QE:th_j- (A2.17)
j=0 £=0

The SI term structure of inflation forecasts

Fimtn = 8,07, FX,, (A2.18)

is an implication of the SI-EWMA smoothers (A2.16) of F;1t:,,, and (A2.16) of F;X;.
The SI-EWMA smoother (A2.16) of F;X; also contributes to the state equations of

Fi11X¢41. Unwinding the infinite sum of (A2.16) gives the recursion

EXy = (1 - At)xt + Ath\tthlxtfl. (A2.19)

Lead the law of motion (A2.19) of F;X; by one period and substitute for X;,; using the

state equations (5.2) to produce

FroaXier = (1= A1)0r1 X + Ap1Op Fr X + (1 — A1) Y Wy, (A2.20)

where we drop the conditioning time subscript on @;,;. Equations (A2.20) duplicate
the bottom two rows of the state equations (8.1). The timing of the conditionally lin-
ear and nonlinear state variables on the right hand side of the state equations (A2.20)
appear nonstandard. However, the timing conventions of these state equations are
consistent with the specification of the hierarchical conditional linear Gaussian (CLG)

model studied by Lindsten, Bunch, Sarkkd, Schon, and Godsill (2016). They develop a
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particle smoother for the CLG model that we employ to generate smoothed estimates
of the linear and nonlinear state variables of the SSMs of this and the previous section.
Thus, our use of the Lindsten et al particle smoother is supported by the AUM assump-
tions and the assumption that 0;., is held fixed at its current realization when iterating

backwards to construct SI-FEWMA smoothers.

A3 Econometric Methods

We estimate the SSM (8.1) and (8.2) using Bayesian sequential Monte Carlo (SMC) meth-
ods. The methods combine Rao-Blackwellization (RB) of the SSM with the auxiliary
particle filter (APF) of Pitt and Shephard (1999, 2001) to estimate the linear and nonlin-
ear state variables. Our RB-APF algorithm is adapted from a version outlined by Creal
(2012) and algorithm 2 Lopes and Tsay (2011, p. 173). Estimates of the static scale
volatility coefficients are produced with the particle learning estimator (PLE) of Storvik
(2002); also see Carvalho, Johannes, Lopes, and Polson (2010). The next section gives

details about running the RB-APF that is sketched in section 3.3 of our paper.

A3.1 The RB-APF Algorithm

The RB-APF of section (3.3) produces M filtered estimates of the linear states, S;, its
mean square error (MSE), X, and the nonlinear states, V;.;. The Kalman filter (KF) is
the source of estimates of 8§; and X; particle by particle while M synthetic samples of
V:.1 are generated by simulating the multivariate random walk (9). The predictive step
of the KF yields M estimates of the likelihood that are the source of the weights used
to resample the M particles of 8¢, X, and V;,;. Conditioning on the resampled S;, X,

and V;, 1, running the KF produces updates of the linear states.
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We carry out the RB-APF algorithm in the following steps.

1. Initialize the filter with i = 1, ..., M particle draws of V(()i) sampled from the priors

o2
Ingy ~ lnN<ln(gf,,0) — g2,7,0, (T,;?nyo),

l

o2
In gZ(‘) lnN<ln(g3’0> - gz”’o, O‘QZU,O) ,

05 ~ TN(0, 05, —1.0,1.0),
and

A~ IN(Xo, 02, 0.0, 1.0),

where TN denotes the truncated normal distribution, the prior means Ef, o= 0.2,

Goo =04, 0p =0, Ay = 0.5 and prior variances (ngn,o =0?

2,0 =100and o, =

02, = 1.0 are listed in table 2 and conditional on V{’ draw 8y ~ N (S(%, Z(%).

2. Next, the multivariate random walk (12), priors on 6, and Ay, and priors on the
scale volatility coefficients are employed to draw proposals of \7?) from V(()i) using

2(1) 2(1) (1) , (D) 2(1) 2(1) (1) ,,@) (1)

Ing " =Ing i + o\ in?, Ing; ¥ =Ing; i’ + ofol”, 0" ~ ‘IN(G(” Tgrs —1.0, 1.0),

and A ~ TN (/\(” o, 0.0, 1.0) where n!” and 0! represent draws from stan-

dard normal distributions, U,fll) = #, {=n,vu, ¢, and Kk, t, = xyis a
PRV AVIVATE

degrees of freedom correction, oty and S, are scale and shape parameters of the

inverse gamma (J§) priors displayed in table 1, Z,;,, ~ N(0,I),andi=1,..., M.

3. Repeat the following steps for t = 2, ..., T, where each step uses the particles \7(”
Sf_)l‘t_ and X ii—)llt—l’ which are the outcomes of applying the KF, resampling, and

transition equations implied by the priors on the scale volatility coefficients.
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(1)

(@) Fori=1,2,..., M, draw new particles \7( 9 conditional on resampled V;”; and
B(l)
its law of motion (12) by updating step 2 with O'élt) = | 55— and B(‘)

=By, ( (”) where A} = oyIni”, AV} = oyflu”, AL = TN, and

Afj)t =dTN ff)t the increments dJTN, (1) ; and dﬂNf{ + are associated with updating

0\”, and A\”, in step 2, B}f;_l and A(” have been resampled, and t, =t — 1

+ oy (for t > 2).

(b) At date t, engage the KF predictive step to compute

(i) (i) o ()

St|t—1 = *At St—llt—li

(i) (i) ¢ (1) @\’ i) (@)’
e = A 2T (‘At ) + B, (Bt > ,

(i) (1) = (1) (1) (l)
Qi = G Xy (et ) + Qy

0= v - el

(i) ~r N T , 1~

Vo= = |mlati |+ (90) (e

across the M particles,i=1,2,..., M.A1
(i)
exp{/
(¢) Compute particle weights w(” = —3r { ‘ }u) .
Zi:1eijle }

(d) Shuffle the index i=1, ..., M by drawing from a multinominal distribution

using the pdf of w(‘) which is stratified resampling of the particles \7§”, B(g‘;i,
Ai};i, Sii_)m_l, and Z;i_)llt_l, where ¢ = n, v, ¢, and k; see Hol, Schon, and
Gustafsson (2006) for details. Also, resample from the ensemble { (”}izl

to create { i‘)}i_l.

A-1There are missing observations in the SPF inflation data that the KF handles using standard methods.
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, M
(e) Given resampled particles { VY B}‘;, é}i, St 1, Z‘E'L_)l‘t_l}izl’ run the KF

(i) (i) o (1)

St\t—l = At 8t—1|t—1a

(i) (i) 5 (1) @\’ (i) (@)
e = A ZiT0 (‘At ) + B, (Bt ) ;

Qifi_l = etl)ztlt 1(e£i)> +

ME) () o (1)
tl = Ht - etl Stlt—l’
, , ~1
(i) (1) (1) (i)

X = t\t 1(63 ) (-Qﬂt—l) J
(1) (1) (1) (1) (l)

Seie = Ap Sy + XY

i i . -1 i i
(1) (1) (1) () (1) (1) (D)
Zt\t = Zt\t—l - - 1(6 > ('Qtlt—l) ¢ Ztlt—l’

;- —;[lntﬂéii_ﬂ + (Nii))'(a;;’g_l)-1~g>],
T <

>eofl 't

: . i - (1) .
particle by particle to create updates of Sﬂi, p) ;fz, and Qtl , and new weights

w}”, which are used to resample {V(l)}l ;

(f) Update the nonlinear states, {Vﬁl}izl, using the multivariate random walk
M

(12) conditional on the previous period’s resampled nonlinear states, {Vi” }izl,

the static scale volatility parameters o7, 07, 03), and o2, and draws from the

standard normal distribution for the innovations & 1+1, Sv,t+1, Pr+1, and K¢ 1.

4. Conditional on V¢, Y1, and ¥, the filtered distribution of V;,; is approximated
by the discrete distribution of particles Vt +1 using the pdf of w(‘) where w(”

wil)

/\/(l) y
t

normals N <8§|‘g, b ﬁ;) Thus, the filtered means of §; and V,,, are approximated by

and the associated filtered distribution of §; is approximated by a mixture of

Sue = 2 w8 and V4 = Sy Vi, while for the mean square error

of 8,, the approximation is X,, = >, w{" /.
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5. Store conditional moments Sifz and X ifz and particle draws Vii)l to report estimates

of the joint DGP of the SI-prediction mechanism and SW-UC-SV-TVP-AR(1) model.

The RB-APF algorithm is straightforward to adapt to gap inflation lacking persistence
or to a fixed SI parameter. In the former case, the nonlinear state vector V;,; drops
0; and O'(% is deleted from Y. Otherwise, the algorithm described above is unchanged.
Fixing the SI parameter, A; = A, has a larger impact on the RB-APF algorithm. Besides
cutting A; out of V1 and o2 from V¥, a prior is needed for A. The posterior for A has to
be analytic for the prior to satisfy the demands of the particle learning estimator (PLE).
Another restriction to satisfy is A € (0, 1). A beta distribution fulfills the requirements
of the PLE and the restriction on A, given the shape parameters equal one (i.e., a uniform
distribution on the open unit interval). The RB-APF algorithm is further adjusted by

including A in ¥, given the beta prior attached to A.

A4 Additional Results

This section presents estimates of the joint DGPs not discussed in the paper. The esti-
mates are displayed in figures that are similar to ones contained in the paper. However,
figure 1 is not reproduced here because it depicts realized inflation, the SPF nowcast

and 1-, 2-, and 4-quarter ahead SPF inflation predictions.

A4.1 Estimates of the Joint DGP when 0; = 0

Estimates of the joint DGP of the SI-prediction mechanism and SW-UC-SV model with
zero or no gap inflation persistence, 0; = 0, appear in figures A2-No Gap Persistence,
A3-No Gap Persistence, A4-No Gap Persistence, and A7-No Gap Persistence. This num-

bering matches figures 2, 3, 4, and 7 of the paper. Hence, conditional on 6; = 0, this
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section presents estimates of the scale volatility parameters o2, o2, and o7 in figure
A2-No Gap Persistence, filtered RE and SI trend and gap inflation, t;, Fi:T:, &, and
Fy i€, in figure A3-No Gap Persistence, filtered and smoothed trend and gap inflation
SVS, Gn.tits FtitGn.ts Guotit, and Fr 1 Gy r, In figure A4-No Gap Persistence, and the volatility
of RE and SI trend inflation, T; and F;T;, conditional on different information sets in
figure A7-No Gap Persistence.

Restricting &; to have zero persistence in the joint DGP produces four key differ-
ences compared with estimates of the joint DGP when there is drifting persistence in
gap inflation. First, estimates of o2, 03 , and U,f in figure A2-No Gap Persistence are
smooth compared with the estimates found in figures 2(a), 2(b), and 2(d). Second, fig-
ures A3(a) and A3(b)-No Gap Persistence plot 1;; and F;; T; that are closer to Trgf fl and
Trf,f f. than produced by the joint DGP of the SI-prediction mechanism and SW-UC-SV-
TVP-AR(1) model, which are plotted in figures 3(a) and 3(b). The implication is &;; and
F 1€, which are seldom greater than two percent and are displayed in figure A3(d)-No
Gap Persistence, are less than a third as volatile compared with the estimates of RE and
SI gap inflation shown in figure A3(d). Next, when 6; = 0, G+ and F;:G,,+ have similar
peaks around the 1973-1975 and 1981-1982 recessions figures A4(a) and A4(b)-No Gap
Persistence. This differs from the peaks in ¢, and F;|;Gy,+ that occur during the latter
recession in figures 4(a) and 4(b). Subsequently, ¢, and F;:G,, decline through the
restr of the sample period, except for a small spike around the 2007-2009 recession, in
figures A4(a) and A4(b)-No Gap Persistence. Figures 4(c) and (d) and A4(c) and A4(d)-No
Gap Persistence have qualitatively similar estimates of ¢, | and F;; G, in that all these
plots show a peak during the 1973-1975 recession. Lastly, estimates of the volatility of
T; and F;T; are qualitatively similar in figures 7 and A7-No Gap Persistence. However,
conditioning only on realized inflation, 71, yields lower estimates of the volatility of T;

and F; 1y, given 0; = 0, compared with the corresponding estimates in figure 7.
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A4.2 Estimates of the Joint DGP when A; = A

Fixing the SI parameter generates estimates of the joint DGP that differ only along one
dimension compared with the joint DGP of the SI-prediction mechanism and SW-UC-
SV-TVP-AR(1) model. The difference is the minimal fluctuations of o2, o2, and (Tj)
displayed in figure AZ—ZA\, which repeats the theme of the plots presented in figure A2-No
Gap Persistence. Otherwise, the joint DGP with A; = A is responsible for 7y, F|:T¢, &1,
and F; ;& (see figure AS—RA\), of Gn.tity Sn,t1 Ty Sutlr, and Gy ¢ 7 (See figure A4—2A\), of 0¢¢, 041,
|6y7|, and |07 | — | 611 (see figure A5-A), and of the volatility of T, and F, T, against
disparate information sets (see figure A7—2A\) that give evidence about the stickiness,
persistence, and volatility of 7, and Trff F, that support the results and interpretation
reported by the paper.

This section concludes with a figure that plots the PLE path of A. The PLE path of
2A\, 68 percent uncertainty bands, and 90 percent uncertainty bands appear in Figure-
A. This figure shows that by the end of the 1973-1975 recession the PLE path of A
displays smaller fluctuations and from 1988 to the end of the sample exhibits almost
no movement settling around 0.30 with 95 percent uncertainty bands ranging from 0.25
to 0.36. The dearth of movement in the PLE path of A, especially after 1988, is a reason
the data prefer the joint DGP of the SI prediction mechanism and SW-UC-SV-TVP-AR(1)

model.
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