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This paper describes an integrated assessment model with an unknown temperature 
threshold where severe and irreversible climate impacts, called a tipping point, occurs. 
The possibility of tipping leads to the following linked outcomes: a prolonged period of 
peak temperature; a rebound in emissions prior to and during peak temperature; and a 
fall in the optimal carbon tax as a ratio of output prior to and during peak temperature. 
Although tipping can occur in any period where temperature rises to a new maximum, 
the optimal carbon price can be calculated from future temperature outcomes conditional 
on no tipping. Learning that tipping has not occurred lowers the tax. 
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The optimal carbon tax with a tipping climate and peak 

temperature 

By ANTHONY WISKICH* 

This paper describes an integrated assessment model with an 

unknown temperature threshold where severe and irreversible 

climate impacts, called a tipping point, occurs. The possibility of 

tipping leads to the following linked outcomes: a prolonged period of 

peak temperature; a rebound in emissions prior to and during peak 

temperature; and a fall in the optimal carbon tax as a ratio of output 

prior to and during peak temperature. Although tipping can occur in 

any period where temperature rises to a new maximum, the optimal 

carbon price can be calculated from future temperature outcomes 

conditional on no tipping. Learning that tipping has not occurred 

lowers the tax. (JEL H23, O44, Q30, Q40, Q54, Q56, Q58) 
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International agreements have committed nations to limit global warming to 2 

degrees Celsius (OC). Specifying a temperature limit seems a reasonable approach 

in the presence of considerable uncertainty of climate impacts1, particularly as risks 

 
1 A recent review of the subject highlights criticism of Integrated Assessment Models and discusses the merits of using 

models that incorporate uncertainty (Farmer, Hepburn, Mealy, & Teytelboym, 2015). 
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are thought to increase with temperature. Tipping points can capture this risk: a 

tipping point in this paper is defined as an irreversible, permanent switch to a 

climate state with a higher sensitivity to temperature. It may, therefore, seem natural 

that optimal policy would look quite different before and after peak temperature in 

a model with uncertain climate impacts. 

In contrast, the integrated assessment model described by Golosov, Hassler, 

Krusell, and Tsyvinski (2014), hereafter GHKT, implies that the optimal tax is not 

a function of temperature at all. In this framework, the climate sensitivity parameter 

is uncertain and the optimal carbon tax is constant as a proportion of output, 

depending only on the discount rate, the expected damage elasticity and the 

structure of carbon depreciation in the atmosphere. Stochastic values of future 

output, consumption, emissions concentration, technology growth, and population 

do not influence the optimal tax rate. Various extensions of this benchmark model 

have already been made.2 The current paper builds on the GHKT framework and 

introduces a tipping point, which creates an endogenous link between peak 

temperature and optimal policy.  

Many papers have considered such threshold environmental effects, going back 

to Cropper (1976). The current paper adopts tipping characteristics similar to those 

described in D. Lemoine and Traeger (2014), hereafter LT: each threshold 

temperature increase may trigger a tipping point with equal probability; there exists 

a trigger point between the current temperature and an upper bound; and both 

Bayesian learning and non-learning scenarios are considered. The probability of 

tipping in a period is referred to as the hazard rate. Whereas LT and many other 

papers3 that consider endogenous tipping build on the DICE model (Nordhaus, 

2008), this paper builds on the GHKT model, allowing investigation of technology 

 
2For example, Traeger (2015) includes a richer climate model and Epstein-Zin preferences in the GHKT model, 

maintaining the closed-form solution of the optimal carbon tax which remains constant as a proportion of output. 
3 For example, Cai, Judd, and Lontzek (2013). 
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growth and energy substitutability in the optimal policy choice, and simplifying 

analysis and computation as described below.  

Engström and Gars (2016) also build on the GHKT framework which leads to 

constant savings rates and no role for precautionary savings discussed in other 

papers4. However, Engström and Gars (2016) adopt a climate model that does not 

allow temperature to peak and use a simpler energy structure. In the current 

analysis, climate dynamics follow Shine, Fuglestvedt, Hailemariam, and Stuber 

(2005) and peak temperature plays a key role. The separation of coal and oil leads 

to a potential rebound in coal use.  

The existence of a tipping point increases the carbon price in two ways. First, 

expected damages rise from a given temperature increase. This effect dominates 

the literature and is the only effect considered in deterministic studies, or when the 

hazard rate is exogenous as considered by Gerlagh and Liski (2018) in a similar 

analytical climate-economy model. Second, the endogeneity of the hazard rate 

raises the tax, as described by Van der Ploeg (2014) in a partial equilibrium 

framework. Numerical exercises have found that an endogenous hazard rate can 

significantly boost today’s optimal carbon price.5 This paper also finds this result. 

In addition to increasing today’s carbon price, the endogenous hazard rate 

changes the profile of the tax as the component due to endogeneity goes to zero by 

the end of peak temperature. Other studies have found an optimal tax to income 

ratio that varies6, including some that also consider tipping points.7 The current 

 
4 Recent examples include van der Ploeg and de Zeeuw (2019) and van der Ploeg and de Zeeuw (2017). 
5 Lontzek, Cai, Judd, and Lenton (2015) include an endogenous hazard rate in the DICE model with a phased impact 

from tipping. They find today’s optimal carbon price is increased by around 50 to 200 per cent, depending on the probability 
and severity of tipping. LT find a tipping point increases the near-term optimal carbon price by between 25 and 40 per cent, 
with a small component due to endogeneity. In a later paper, they include multiple tipping points in a stochastic dynamic 
version of the DICE model and find this nearly doubles today’s optimal carbon tax (D. Lemoine & Traeger, 2016). 

6 Literature without tipping points include Rezai and Van Der Ploeg (2017), Ploeg and Withagen (2014), Jensen and 
Traeger (2014) and D. Lemoine (2017). 

7 For example Gerlagh and Liski (2018), Lontzek et al. (2015), D. Lemoine and Traeger (2016), Engström and Gars 
(2016) and Cai and Lontzek (2019). 
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paper discusses links between learning and the concavity of future temperature with 

growth in the tax ratio. A novel quantitative outcome relates to the prolonged 

stabilization of peak temperature. 

This paper is the first to show that, taking into account climate inertia, a declining 

optimal carbon price can lead to prolonged stabilisation at peak temperature and a 

rebound in emissions. 8 Such behaviour is similar to the emissions overshooting 

described in D. Lemoine and Rudik (2017), where the emissions path minimises 

costs with a temperature limit. Thus, although a cost-benefit framework is used in 

this paper, the results using this approach share some similar characteristics with a 

cost-minimisation framework due to the combination of the threshold tipping 

framework and the severe damages in a post-tipping world. I explore this similarity 

further in Wiskich (2019b).  

Learning is shown to reduce growth in the optimal carbon tax. Gerlagh and Liski 

(2018) find that the tax ratio can increase without learning and decrease if learning 

occurs, although in their quantitative exercise this is not material before 2100.  

while it may either grow or shrink with learning depending on the concavity of the 

no-tipping temperature profile. While the current paper finds that learning lowers 

the tax in the absence of a tipping event, the tax ratio can increase or decrease 

initially depending on parameter settings. If peak temperature is low and occurs 

soon, the tax ratios will fall in both learning and non-learning scenarios, as 

demonstrated in the numerical examples in this paper. However, for a distant peak 

temperature, the tax ratio will grow if there is no learning and may grow or shrink 

with learning, depending on the concavity of the temperature profile. For a linearly 

increasing temperature profile, the growth in tax ratio with learning will be roughly 

half of the scenario without learning. 

 
8 D. M. Lemoine and Traeger (2012) also report optimal policy that keeps the temperature constant over most of the next 

century, but only when inertia in the climate system is not considered. 
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The framework used in this paper does not exhibit sensitivity to fat-tailed risks 

of catastrophic outcomes (Weitzman, 2009). Due to the threshold tipping 

framework and climate dynamics, the probability of tipping can be reduced to zero 

with a finite tax, depending on historical emissions. In this case, even if expected 

damages from tipping were infinite, the optimal tax would be finite. 

This paper makes some methodological contributions related to the inclusion of 

a tipping point with an endogenous hazard rate into the GHKT model, rather than 

the DICE model. Optimal tax equations are explicitly derived, making the impact 

of endogeneity transparent, and computation is straight forward as the optimal 

carbon price can be calculated with temperature outcomes conditional on tipping 

not occurring. Thus, although the introduction of endogenous tipping means the 

optimal tax becomes dependent on expectations of temperature outcomes and so is 

more complex than the simple form discussed in GHKT, computation is still 

straight forward as only one future outcome is needed to derive the tax.9  

I. Model 

The model modifies the completely characterised model described in GHKT. A 

global representative household has logarithmic preferences over consumption with 

discount rate β, and thus maximises the following: 

 

 

Damages are an exponential function of temperature, as used by Gerlagh and 

Liski (2018), rather than emissions concentration as in GHKT. There is 

 
9 Engström and Gars (2016) also report this result with a simpler energy model. In the current paper, the extraction of oil 

is solved intertemporally but the Cobb-Douglas form implies this dynamic can also be solved with only the no-tipping 
outcome. 
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considerable uncertainty around the form of the damages function, but an 

exponential function of temperature is consistent with some recent evidence 

(Burke, Hsiang, & Miguel, 2015). Final output is a Cobb-Douglas specification of 

capital , sector ‘  labour , oil  and other energy and a multiplicative 

exponential damage function of atmospheric temperature  above pre-industrial, 

as follows: 

 

 

Oil has been separated from other energy (coal and clean) so that a lower 

elasticity of substitution can be applied, reflecting evidence of high substitutability 

between clean and dirty inputs in electricity (Wiskich, 2019a). The Cobb Douglas 

formulation also leads to easier computation under uncertainty as described below.  

Climate dynamics for carbon are taken from Shine et al. (2005) and account for 

climate-system inertia. Temperature dynamics are a function of radiative forcing 

: 

 

 

where  is the heat capacity of the system and  is a climate sensitivity parameter. 

For carbon, radiative forcing and temperature responses at time  after an emissions 

pulse are  
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where  are coefficients which sum to 1,  reflect gas lifetimes in years,  is by 

definition the constant  in years, and  is the radiative forcing due to a 1-kg 

change in carbon dioxide. A standard assumption in the literature, as used by the 

DICE model and GHKT, is that steady-state temperature is a logarithmic function 

of the emissions stock, which is a linear function of dirty energy (emissions flow). 

This paper follows Gerlagh and Liski (2018) and assumes temperature is a linear 

function of dirty energy, consistent with some physical science literature (Allen et 

al., 2009). For temperatures below 3 degrees, the logarithmic function is almost 

linear in any case, shown in Figure 1. The response in temperature to an emissions 

pulse peaks at 20 years in this paper, much shorter than the 60-year peak in the 

climate model of Gerlagh and Liski (2018), although the general response profiles 

are similar.  

 

  
FIGURE 1: TEMPERATURE RESPONSES TO AN EMISSIONS PULSE AND THE NEAR-LINEAR LOGARITHMIC RELATIONSHIP 

BETWEEN EMISSIONS AND TEMPERATURE USED IN DICE 

 

Temperature is a linear function of previous dirty energy use, including historical 

use, as follows: 
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Other energy  is a composite isoelastic function of coal  and clean ,  

 

 

Oil can be extracted at zero cost and is in finite supply , 

 

 

Dirty (fossil) energy , which contributes to carbon emissions, is the sum of 

oil and coal energy. Coal and renewable sectors require only labour in production 

 

 

Oil prices follow a hotelling rule corrected for the carbon tax to GDP ratio  

 

 

Coal and renewable prices are set by wages in sector ‘  as follows: 
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Tipping point, damages and scenarios 

To implement the concept of a tipping point, I use a probability distribution for 

the tipping point threshold’s location that is uniform in temperature, as used by LT. 

I assume that the tipping point has not been reached to date and hence lies between 

the initial temperature  and an upper limit , set at 6OC warming.10 The 

temperature sensitivity of the damages parameter  in (2) incorporates the hazard 

rate as a function of temperature . Due to the assumption of a tipping threshold 

and irreversibility, the expected hazard rate is a simple function of temperature 

conditional on no tipping. Let  be an expectation operator at time  assuming no 

tipping prior to , and let  signify the expectation at time  of variable 

conditional on no tipping prior to period  The probability of severe 

climate sensitivity associated with a post-tipping state at time  is of the 

following form: 

 

 

Two values of the variable s are explored under different scenarios. One scenario 

considers immediate awareness of tipping after crossing the threshold, in which 

case s=t. Another scenario excludes learning, or equivalently assumes delayed 

awareness in the extreme case that it is unknown whether a tipping point has been 

triggered for the entire simulation period, so s=0. These scenarios are named 

Learning and No learning and both scenarios assume immediate impacts from 

tipping. While delayed effects, as considered in Lontzek et al. (2015), could be 

modelled as part of either scenario, assuming immediate impacts is simple and 

 
10 This upper bound temperature is the midpoint used in LT, as they vary bounds between 3OC and 9OC. 



10 
 

allows easy identification of the effects of learning. For comparison, I also show a 

No tipping scenario where there is no learning and a fixed probability of severe 

climate sensitivity, so the tax ratio is constant. I use a probability of 4 per cent which 

roughly corresponds to the prior probability of tipping in the Learning and No 

learning scenarios.  

Due to irreversibility, expectations of the derivative  are non-zero only if 

tipping has not occurred, 

 

 

 

and the following lemma applies, which will be used in the next section. 

 

LEMMA 1: The expected probability of tipping is a function of future temperatures 

conditional on no tipping, and the expected temperature-derivative of the hazard 

rate is non-zero only under no tipping. 

 

GHKT use two estimates of the damage function parameter from Nordhaus 

(2008): one central estimate consistent with a loss of 0.48% of GDP from a 2.5OC 

warming and another consistent with the catastrophic outcome of a 30% loss of 

GDP from warming of 6OC. These numbers calibrate moderate and catastrophic 

parameters  and , with GHKT assuming a fixed probability of of the 

latter. This paper adopts the same derivation of moderate and catastrophic (severe) 

parameters in the tipping framework, so that . Expected 
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damages as a function of temperature are shown in Figure 2. The formulation of 

the damage function lies below the GHKT damage function for low warming, but 

then increases more rapidly as the probability of tipping increases. The damage at 

high temperatures is much greater than DICE-2007, but less than damage functions 

used in other papers.11  

In this paper, climate sensitivity in the severe regime after tipping is high relative 

to the moderate regime. For comparison, LT represent a climate feedback tipping 

point as increasing climate sensitivity to 4OC, 5OC or 6OC rather than the standard 

assumption of 3OC. As damages are assumed to increase with the square of 

temperature increase, the triggering of the tipping point in the LT framework 

therefore increases damages by either 80%, 180% or 300%. In contrast, the tipping 

point from the severe sensitivity in this paper corresponds to over a 30-fold increase 

in damages. 

 

  
FIGURE 2: EXPECTED, SEVERE AND MODERATE DAMAGES COMPARED WITH GHKT 

 
11 For example, Weitzman (2010), Rezai and Van Der Ploeg (2017) and Acemoglu, Aghion, Bursztyn, and Hemous 

(2012). 
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II. Optimal tax 

The Lagrangian maximizes (1) subject to production and temperature constraints 

as follows: 

 

 

 

The optimal condition describing the marginal costs and benefits of producing a 

unit of energy of type i, in terms of final consumption good at time t, is  

 

 

 

The costs in (15.1) include the cost of input use  , the scarcity cost , and the 

marginal externality damage. This last cost is the optimal Pigouvian tax ( ) and 

from (15.2) and (2) is as follows: 
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In the GHKT model  is constant, leading to a constant tax (to output) ratio . 

Gerlagh and Liski (2018) consider an exogenous , so the tax ratio is pre-

determined and independent of temperature outcomes. By assuming an endogenous 

link between the hazard rate and temperature, the tax ratio in this paper is a function 

of expected temperature outcomes. In the event of tipping in the Learning scenario, 

the damage parameter is the constant  and therefore the tax ratio after tipping is 

constant. The expected derivative in (16.2) is  

 

 

Following from lemma 1, this expression can be calculated from future 

temperatures conditional on no tipping. However, oil extraction is a function of 

expectations as (10) describes. The expectation term in (10), , is 

given by 

 

As the tipping tax ratio  is constant,  is determined by the following: 

 

 



14 
 

Although (19) is not amenable to an analytical solution, it is self-contained 

leading to the following lemma. 

 

LEMMA 2: Oil use does not depend on temperature outcomes if tipping occurs.  

 

The combination of lemmas 1 and 2 lead to the following key result. 

 

PROPOSITION 1: The optimal tax ratio can be calculated by temperature outcomes 

conditional on no tipping only: outcomes where tipping occurs are not needed.  

 

Thus, although tipping can happen at any period prior to peak temperature, the 

optimal tax can be determined by a single future outcome where tipping does not 

occur. This result follows from the form of the damages function coupled with key 

assumptions made in the GHKT model that lead to a constant tax ratio: logarithmic 

utility, a multiplicative exponential damage function of temperature which is a 

linear function of energy use, and constant savings rates.12 Computation is 

consequently much simpler, as the tax profile can be determined by one future 

outcome rather than having to handle all possible outcomes as previous studies have 

done.13 Proposition 1 would also hold for other tipping point constructs, such as a 

within-period hazard rate that is a function of current temperature only, as used by 

Gerlagh and Liski (2018).14 

The first component of (17), , is the tax that would apply 

given an exogenous probability profile corresponding to the no-tipping temperature 

 
12 As already noted, GHKT use emissions in place of temperature but the result would still hold in this case. 
13For example, D. Lemoine and Traeger (2014) and Lontzek et al. (2015). 
14 Complexity would increase using this approach as the cumulative hazard rate is path-dependent. 
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outcomes for the scenario.15 The second component is due to the endogeneity of 

the hazard rate and is equal to 

 

 

 

For all scenarios considered in the numerical exercises except Laissez-faire, peak 

temperature starts prior to 2300. A computationally challenging feature of (20) is 

the discontinuity in the derivative of the probability of tipping. To handle this 

discontinuity, a time of onset of peak temperature ( ) is imposed with constraints 

ensuring temperature after period  does not exceed : 

. Equation (15.1) becomes  and the tax becomes 

 

 

 

The multiplier  is  adjusted by the constant consumption rate. If tipping 

has not occurred, taxes following peak temperature are set so that temperature does 

not exceed  and these peak temperature taxes are equal to: 

 
15 This sum is not the optimal tax which would apply in a separate scenario with the same time-dependent hazard rates, 

as the lower tax would lead to higher temperature outcomes. 
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The multipliers are derived from the (numerically determined) taxes needed to 

stabilize temperature: the tax in the period prior to the end of peak temp is given by 

 which gives , the tax in the prior period is 

 which then gives  and so on. The choice of  is 

determined through manual iteration: for a high , peak temperature occurs prior to 

this value, and thus the value of  is manually reduced until it corresponds with 

peak temperature. Any further reduction in  implies the tax in this period is higher 

than would be the case without the upper limit constraint applying (holding the tax 

in all other periods constant), implying suboptimality.  

The main scenario assumes the hazard rate is a linear function of temperature, 

consistent with damages. Convex functions could also be modelled as in Van der 

Ploeg (2014). An advantage of the analytical expression (17) is that it is clear how 

the slope of the hazard rate with respect to temperature, , enters the tax 

equation. In the numerical examples in the next section, the endogenous tax 

component dominates. Therefore, a quadratic function with a much lower initial 

slope should greatly reduce the optimal tax, and this is confirmed with a sensitivity 

in the next section. 

The effects of learning 

To understand what drives changes in the tax ratio initially, consider a prolonged 

period of peak temperature and small temperature changes relative to the upper 

limit such that the probability of tipping is small, . Ignoring the 
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multipliers in (21), and using (12) (17) and (20), the tax ratio prior to peak 

temperature is approximately given by: 

 

 

The absolute growth in initial tax ratios for each scenario  and  

are then 

 

 

 

The first term  is positive and increases with the growth in 

temperature prior to the peak. The second term  is negative and increases 

with the proximity of peak temperature. Thus, if peak temperature is low and occurs 

soon, the tax ratios will fall in both learning and non-learning scenarios, as 

demonstrated in the numerical examples in this paper. However, for a distant peak 

temperature, the tax ratio will grow if there is no learning and may grow or shrink 

with learning, depending on the third term. This third term implies growth in the 

Learning scenario is lower than the No learning scenario. 

 

PROPOSITION 2: For temperatures well below the upper bound, learning that 

tipping has not occurred reduces growth in the optimal carbon tax.  
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The condition that the temperature is well below the upper bound is needed 

because, if tipping has not occurred, the optimal tax approaches infinity as the 

temperature approaches the upper bound. This follows due to the certain existence 

of a threshold below the upper bound and should be considered merely as an 

artefact of this modelling assumption. While an interesting implication is that the 

tax can rise above the optimal post-tipping tax if tipping has not occurred, this 

behaviour is not explored in the numerical examples.  

Consider a distant peak temperature (  approaches infinity) where  

for all  and constant temperature response , then the change in tax rates can be 

approximated by: 

 

 

 

Thus for , the tax ratio for Learning will grow at roughly half the rate of No 

learning, while for a highly concave steady-state emissions profile ( ) the 

Learning tax ratio will shrink.  

 

REMARK 1: Consider a distant peak temperature (  approaches infinity) and 

slowly growing temperature. The No learning tax will grow initially while growth 

in the Learning tax depends on the concavity of temperature profile. For an almost 

linear temperature profile, the Learning tax will grow at roughly half the rate of the 

No learning tax. 
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Catastrophic damages 

Recent literature has suggested that climate policy is highly sensitive to ‘fat-

tailed’ risks of catastrophic outcomes (Weitzman, 2009). As noted in the previous 

section, the framework used in this paper considers a known high climate sensitivity 

in the severe regime after tipping. Consider that the severe climate sensitivity  is 

unknown and moderate damages are zero, and the tipping framework is as already 

described. Uncertainty of  is independent of uncertainty related to the future 

probability of a tipping event. The economic framework used in this paper does not 

exhibit sensitivity to fat-tailed risks, as the key term in the optimal tax equation (17) 

is simply a function of the expectation of  as follows:16 

 

 

Now consider a finite probability of infinite climate sensitivity . If the 

probability of tipping is non-zero, equation (26) indicates that the tax ratio will also 

be infinite, as will the tax level.17 Due to the climate model and tipping framework, 

the probability of tipping is zero in the Learning scenario if the onset of peak 

temperature has occurred, and thus the tax will be finite.  

Consider that an infinite tax in period  leads to zero fossil energy use in that 

period. The temperature may rise or fall in a period with zero emissions, depending 

on the profile of historical emissions according to (6). For the parameter settings in 

 
16 While Weitzman (2009) considers a coefficient of relative risk aversion greater than one, in this paper utility is a 

logarithmic function of consumption. 
17 To consider the behaviour of the tax level as the tax ratio approaches infinity, note that the energy composite 

approaches a finite value if the elasticity of substitution is greater than 1:  if . Assuming an infinite 

tax level and constant oil extraction in (10) leads to zero oil extraction and . Thus output approaches zero with 
 and the tax level also approaches infinity if the probability of tipping is non-zero. 
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this paper, the initial temperature rises in 2020 even if energy use is zero due to the 

recent ramp up in emissions, implying an infinite tax if there is a finite probability 

of infinite damages. However, for later periods the temperature would fall as the 

temperature response from an emissions pulse drops after two decades, as shown 

in Figure 1. Thus from 2030 the optimal tax will be finite as the hazard rate becomes 

zero. More formally, from (6) a decreasing temperature,  leads to the 

following remark as  

 

REMARK 2: If the expected damages from tipping are infinite but tipping has not 

yet occurred, the optimal tax in period  is finite if: 

 

 

Under a No learning scenario, the hazard rate becomes finite permanently if the 

temperature rises above the starting point, which occurs in 2020 even if energy use 

is zero as discussed above. Hence the tax will always be infinite in this scenario if 

the expected damages from tipping are infinite. In the next section, the effects of 

catastrophic damages are further explored by choosing extreme climate sensitivity 

in a post-tipping world. 

III. Numerical examples 

Table 1 shows parameters for the main simulation, taken from GHKT and Shine 

et al. (2005). Historical emissions go back a century and induce initial warming at 

2020 of 1.110C, aligning with the centre of the range of IPCC estimates (IPCC, 

2014). Initial decadal global GDP is set to $800 trillion. Key differences in 

parameter choices between this paper and GHKT are the elasticity of substitution 
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and assumed growth in coal technology. This paper assumes a higher elasticity of 

2, which GHKT consider as a sensitivity, and reduced growth in coal technology, 

reflecting the relative maturity of dirty technology.18 As sensitivities, I investigate 

coal productivity growth at 2 per cent as in GHKT,  a lower elasticity of substitution 

between coal and clean of 1.5, a quadratic probability in temperature, and 

catastrophic damages under tipping.  

Due to the separation of oil and other energy, some parameters are recalibrated 

as follows. Using initial values of energy inputs from GHKT ,  and  

the ratio of renewable to coal is 

 

 

and the ratio of the oil to coal price is 

 

 
TABLE 1: CALIBRATION PARAMETERS 

 
(%/year) 

 
(%/year) 

 
(%/year)       

1.3 1 2 8792 1498 0.5 0.04 0.0215 0.1786 
         
 

 (annual) 
 

(%/decade) X0 (GtC) N      
0.985 100 253.8 1 0.1756 0.1375 0.1858 0.2423 0.2589 

         

T0 (0C)   
1014

      
1.11 0.00160 0.05945 8 0.3 421.09 70.597 21.422 3.4154 

         
Ef(-10:-1) Period 0      

[10,10,10,20,30,40,50,60,80,100] 2020 1.98 4.2    

 
18 Coal technology grows at 1% per annum while clean technology grows at 2 per cent per annum. 
19 These values in GtC/yr are 3.43, 3.75 and 2.3 respectively. 
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Results are described for the two tipping scenarios Learning and No learning, the 

fixed probability of severe damage scenario No tipping, and a Laissez-faire 

scenario where the tax is zero. Projections for the Learning scenario show a future 

path where no tipping occurs, but the optimal tax naturally considers uncertainty 

about the future. After all, we are interested in how a potential tipping point affects 

optimal policy. I also show today’s expected tax path for the Learning scenario in 

figures. 

Main simulation 

As shown in Panel A of Figure 3, the Learning tax ratio starts at about the same 

level as No learning but falls faster, consistent with proposition 2. Ratios in both 

scenarios drop until the end of peak temperature (panel G) and real taxes flatten 

(panel B) coinciding with peak temperature. Following peak temperature, the tax 

grows with income. Today’s expected tax ratio in the Learning scenario is also 

shown, which ends up marginally higher than the No learning tax ratio. 

Endogeneity of the hazard rate makes up the majority of the optimal tax (panels C 

and D). Coal emissions spike with a falling tax ratio (panel E), while oil use is 

almost identical between scenarios (panel F). The benefits of reduced damages on 

consumption and the costs from the distortionary effects on the other energy 

composite  are shown in panel H for the Learning scenario relative to the Laissez-

faire scenario. For simplicity, reduced damages correspond to the difference in 

damage multipliers for moderate climate sensitivity, 

, which excludes the benefits of reduced risks and damages from 

tipping. The tax distortion captures the distortionary effect in the other energy 

composite  holding oil use and capital stock constant. These two effects, in 
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addition to the effect on oil extraction (not shown), contribute to the total change in 

consumption. 

 
FIGURE 3: RESULTS FOR THE MAIN SIMULATION 

Scenarios Learning, No learning and No tipping. E(Learning) is the initial expected tax profile in the Learning scenario. The 
total consumption effect in panel H is the effect of the tax in the Learning scenario relative to a Laissez-faire scenario. 
Reduced damages correspond to the difference in damage multipliers with moderate climate sensitivity, and the tax distortion 
captures the distortionary effect in the other energy composite  holding oil use and capital stock constant.  
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While GHKT find that coal – rather than oil – is the main threat to economic 

welfare, panel F indicates that oil dominates over coal for contribution to peak 

temperature. Amongst other assumptions, this result depends on the substitutability 

of energy and technology growth, discussed in the next section as sensitivities. 

Sensitivities 

Figure 4 shows the results from various sensitivities. The first row shows results 

when coal technology grows by 2 per cent per annum, in line with clean technology. 

The second reduces the elasticity between coal and clean energy to 1.5. The third 

shows results when the probability of tipping is quadratic in temperature change, 

so that  in equation (12). The fourth shows catastrophic 

damages where  is increased by a factor of 10 so that damages reach 30 per cent 

at 2OC warming. Stabilisation of peak temperature occurs in all sensitivities. 

As the technology growth rates for coal and clean energy are the same in the first 

sensitivity, the marginal cost of abatement is flat after oil is depleted. This contrasts 

with the main simulation where the marginal cost of abatement declines 

exogenously, and in previous studies using the DICE model. The comparable 

temperature outcomes between the first sensitivity and the main result indicate that 

the tax is dominant in determining energy inputs, rather than productivity growth.  

As one would expect, outcomes are highly sensitive to the elasticity of 

substitution between coal and clean inputs. A reduction in elasticity to 1.5 increases 

temperature outcomes and the tax. Changing the slope of the hazard rate in the third 

sensitivity eliminates most of the endogenous component of the tax. Catastrophic 

damages lead to very high taxes and a peak temperature in 2030. The drop in the 
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tax is sufficient to dominate the discount rate in the hotelling formula for oil 

extraction (10), leading to peak oil use in 2030 rather than 2020.  

 

 
FIGURE 4 RESULTS FOR THE SENSITIVITIES 
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Table 2 shows some results for the above simulations plus Laissez-faire 

simulations where the tax is zero. Peak temperature does not occur before 2300 for 

the Laissez-faire simulations. 

 
TABLE 2: ALL RESULTS 

Simulations   
 

 
 

  
 

Peak 
onset ( )

Peak 
end  

 
 

 
 

 
 

Main  
Learn 191 24 11.8 2.8 2110 2230 1.28 1.28 1.28 

No learn 213 26.8 12.5 5.1 2110 2160 1.26 1.28 1.24 
No tip 46.3 5.8 5.8 5.8 2120 2120 1.53 1.53 1.42 

Coal growth 
Learn 194 24.4 13.6 3.9 2110 2270 1.28 1.28 1.28 

No learn 216 27.2 14.3 5.1 2110 2190 1.27 1.28 1.26 
No tip 46.3 5.8 5.8 5.8 2140 2140 1.64 1.62 1.55 

Low elasticity 
Learn 212 26.8 20.9 9.1 2130 2420 1.33 1.33 1.33 

No learn 240 30.3 23.8 9.4 2130 2300 1.31 1.33 1.31 
No tip 46.2 5.8 5.8 5.8 2200 2200 1.83 1.71 1.83 

Quadratic 
probability  

Learn 91.3 11.5 7.8 2.5 2120 2220 1.39 1.39 1.39 
No learn 112 14 8.6 3.8 2110 2180 1.35 1.39 1.33 

Catastrophic 
damages 

Learn 842 108 52 3.9 2040 2250 1.15 1.15 1.15 
No learn 837 107 51 4.8 2040 2200 1.15 1.15 1.15 

 

Laissez-faire 

 Main Coal growth Low elasticity 
 
 2.4 3.7 2.6 

 
 3.4 22 4.8 

Scenarios shown are: Learning (Learn), No learning (No learn) and No tipping (No tip). 

 

III. Conclusion 

This paper examines optimal policy where there is an unknown temperature 

threshold of severe and irreversible climate tipping. Most of the initial carbon price 

is due to the endogeneity of the probability of tipping, so using an exogenous 

probability of tipping may materially underestimate the starting optimal tax rate. 

The tax ratio drops prior to and during peak temperature, leading to a prolonged 

stabilisation at peak temperature and a rebound in emissions. 

A decline in the optimal tax ratio merits greater awareness not only for the 

implications for temperature and emissions outcomes, but also for the potential 
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effect on public perceptions of a carbon price. Such a decline may alleviate public 

resistance to a carbon price due to the temporary nature of high tax levels. In 

addition, temperature stabilisation resulting from the decline conceptually links the 

political strategy of setting temperature targets with an optimal tax from an 

integrated assessment framework. 

Without the risk of tipping, or if tipping has already occurred, the optimal carbon 

tax is constant as a ratio of output and independent of expected temperature. When 

there is a chance of tipping, the optimal carbon tax becomes a function of future 

temperature, which is sensitive to the structure of energy and technology growth. 

However, due to the structure of the model, only future temperature outcomes 

without tipping need to be considered in deriving the tax ratio. This makes 

consideration of tipping points easy to incorporate compared with the DICE model, 

as used by previous studies.  

Along with this relative advantage, the model used in this paper allows 

investigation of energy technology growth and energy substitutability on the 

optimal policy choice. The derived explicit tax equations provide general insights 

which future studies can build on and apply. For example, in another paper I use 

these equations to derive the optimal weights between methane (or aerosols 

associated with geoengineering which are also short-lived) and carbon due to 

different decay profiles (Wiskich, 2019b). 
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