
consumption growth is low.7 In term of the earlier decomposition, the key covariance term 

on the right-hand side now becomes 

COVt fJJ-- ---( • Ct 1 ) 
Ct+j' 1rt,t+j 

What we can take away from this analysis is that fiscal or monetary policy induced changes in 

nominal yields must make investors either update their views on average real returns (which 

are directly linked to real consumption growth with this specific stochastic discount factor) 

and average inflation or the comovement between inflation and real consumption growth 

growth. 8 In particular, changes in fiscal and monetary policies could change investors' views 

of the government and thus lead them to update their perceptions of future economic growth 

and/ or future inflation. 

3 A Hitchhiker's Guide to Functional Time Series Meth­

ods 

In this section, we give a high-level overview of the functional time series methodology that we 

use throughout our paper.9 When large amounts of data are available on economic variables 

that are theoretically linked via a functional relationship (such as various nominal yields 

linked via the yield curve), such a functional approach can efficiently exploit this functional 

relationship. 

We assume that observations of the nominal yield curve in a period t can be described 

by a function Yt ( T) defined over an interval I of possible maturities (between three months 

and 30 years in our case) taking real values ( that is, Yt: I ➔ IR). The yield at time t for 

a security that matures in t + T is thus given by Yt ( T) where T is a value taken from the 

set I. We treat the function Yt ( T) as a random variable in a functional space, as it varies 

non-deterministically from one period to the next. To be concise, we will drop the argument 

T from the Yt function unless needed. 

The functional form of the yield curve we use here (Giirkaynak, Sack and Wright , 2007) 

7The risk free real return on a j-period security with log utility is given by [ Et (,e1 c~;j) ]-1
. 

8Even with richer stochastic discount factors such as those derived using Epstein-Zin utility, consumption 
growth is still a key determinant - see for example Campbell (2017). 

9More details are provided in the appendix or in Chang, Hu and Park (2022) and Chang, Park and Pyun 
(2023b). 

8 



allows us to obtain a yield for all values of T between the aforementioned bounds of three 

months to thirty years. We describe in Appendix D how we, in practice, use a grid of values 

to represent the interval I and their corresponding images (yields) for each quarter t. 

So far we have not restricted the yield curve in any way - the function Yt ( T) can take on 

arbitrary value for each maturity Tat any point in time t. We next describe the mild restric­

tion we impose on the function Yt ( T) before turning to a description of a finite-dimensional 

approximation of this function, which we can then exploit in our empirical analysis. 

3.1 Restrictions on the Yield Curve 

In order to econometrically exploit the fact that all yields are linked via the yield curve, we 

will put one mild restriction on the yield curve. We only study yield curves that are in the 

space H = £ 2 (I), the space of square integrable functions. 10 While this space of functions 

is very general (it includes functions that are not continuous, for example), it still imposes 

a surprising amount of regularity. In particular, we can now define a scalar product and a 

norm in H: For f and gin the space H we obtain 

(J,g) = [!(x)g(x)dx and IIJII = ✓u,n. (5) 

In addition to the inner product and the norm, we also can define a tensor11 . 

(J®g)v = (v,g)f (6) 

for all v in H. In Appendix E we show how to use these constructs ( scalar and tensor 

products) to define the expectation function and the covariance operator of random functions 

in H. 

Using results from functional analysis12 we find that the space H is a separable Hilbert 

space. These are spaces that admit a scalar product, such as the one defined above, and 

have countable bases. This means that every yield curve in H can be expressed as the linear 

10The space of all (real) functions ft defined over I such that J1 lf(x)l 2dx < oo. 
11 If H = !Rn, we have f@ g = f g1, i.e., f@ g reduces to the outer product, in contrast to the inner product 

(f, g) = f' g, where f' and g1 are the transposes off and g. Note that (f (g) g )v = (f g')v = ( v' g )f for all v E !Rn 
in this case 

12See for example Folland (1999). 
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combination of countable many functions { Vi}i=l,2,3, ... :13 

00 

Yt = L O:itVi. 
i=l 

(7) 

Since the functions { vi} are independent of t, once they are determined, the yield curve 

Yt is fully characterized by the sequence of real numbers ( 0:1t, 0:2t, ... ) . In other words, the 

yield curve can be analyzed through a sequence of real numbers, and every sequence of real 

numbers can be traced back to a yield curve by combining the basis functions { v1, v2, ... } 

with the sequence (0:1t,0:2t, ... ). 

This approach is different from models of the yield curve that start with focusing on the 

level, slope, and curvature of the yield curve (Diebold and Rudebusch, 2012): We are not 

imposing a particular set of functions to describe the yield curve - instead, we choose basis 

functions that jointly describe most of the fluctuations in the yield curve. 

3.1.1 A Finite Dimensional Representation of the Yield Curve 

The dimension of a space is given by the number of elements in its basis. By this logic, the 

space H is infinite dimensional as the basis { vi}i=l,2,3, ... that we used in (7) has infinitely 

many elements. 

The next step in our approach is to define a finite-dimensional subspace of H. We do this 

by considering only functions resulting from a linear combination of the first m elements of 

the basis { v1, v2, ... , vm}, these functions define the finite-dimensional space Hm (a subspace 

of H). 

The function Yt is not an element of Hm given that we need more than just the first m 

elements of the basis to represent it as we can see in (7). However, we can consider the 

projection of Yt on Hm given by 

m 

Yt = L O:itVi. 
i=l 

This gives us an equation akin to an observation equation in a state space model 

m 

Yt = LO:itVi +wt, 
i=l 

13Note that we have omitted the argument T of the function, but Vi (and Yt) still refers to a function. 
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where Wt = Yt - fit is the approximation error we make by restricting ourselves to Hm. Under 

suitable conditions, this approximation error becomes asymptotically negligible. In what 

follows, we assume that {vi} is an orthonormal basis, i.e. llvill = 1 for all i and (vi,VjJ = 0 

for all i =/- j. Under this assumption, we have 

for all i and t. 

Let us now introduce a mapping from Hm to IR.m 

Hm 3 Yt f----t at= 

This mapping is one-to-one correspondence between Hm and JRm_Therefore, with the basis 

{v1,v2, ... ,vm} and at= (a1t,a2t,···,amt)' we can recover fit through (8). The mapping is 

an isometry between Hm and IR.m, which preserves the norm. 14 As a result, we can study a 

vector autoregression (VAR) for at by least squares, rather than having to work directly in 

a functional space. 

Using functional principal components, whose properties we discuss in Appendix C, we 

determine a basis of functions { vih=l,2,3, ... such that its first m elements generate y~m) = at E 

IR.m a "best" approximation of Yt• Note that we can thus effectively choose a very efficient set 

of basis functions for our purposes rather than restrict ourselves to an a priori chosen basis 

function such as monomials { 1, T, T2, ... } . 

Since functional principal components algorithm depend on the data, and since the sample 

of the yield curve we use vary with the external shock being analyzed, so does the portion of 

the variability explained by these approximations. Our choice of m = 3 explains more than 

90% of the variability of Yt in every case. This principal components analysis ( detailed in the 

appendix) also delivers a time series for the vector of weights at = ( alt a 2t amt)'. 

14We can show that 
m m 

i=l i=l 

where we use the same notation II· II to denote the norm of a function in Hm and the norm of a vector in 
!Rm. 
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Figure 2: Description of the Functional Principal Components 
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Note: The first column describes the time series of weights (o:it) for each component (one in each row). The 

shape of the component is described in the second column. The last column shows the range of effects that 

each component has on the yield curve using the sample mean yield curve (black line) as a benchmark. The 

blue (red) lines in the top/middle/bottom panel signify the yield curves obtained with positive (negative) 

realizations of the first/second/third weight and the associated basis function. 

Figure 2 shows an example of the ait values (left column), the vi's (center column), and 

the range of yield curves generated by time series fluctuations in the a vector, using our yield 

curve data as described in Section 4, and in particular the sample mean as the benchmark 

value that is perturbed by movements in a. 

This vector at cannot be directly interpreted as yields, as the measurement equation 

highlights that only together with the basis functions { v1, v2, ... , Vm} can we recover the 

yield curve. It does, however, serve as the state in our state-space model for the yield 
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curve.15 An important feature of this approach is that for a fixed value of T, the yield Yt(T) 

is a linear combination of the elements of at, which makes construction of impulse responses 

straightforward since we assume a linear law of motion for that vector, as we discuss next. 

3.2 The Dynamics of at and the Identification of Impulse Re­

sponses 

We posit a VAR law of motion for O:t and the instrument for the policy shock of interest 

mt. 16 In particular, we focus on a VAR(l) for the sake of parsimony: 

,t = A,t-1 + Ut, (10) 

where ,t [mt ail'- From an applied perspective, our approach can be thought of as modeling 

observations on the yield curve ( and the instrument) at each point in time t through a state­

space framework with a set of observation equations ( equation 9 and the identity mt = mt) 

that link the yield of an asset with a specific maturity to a set of basis functions that depend 

on the maturity and weights on each basis function, which vary over time, but do not depend 

on maturity. These weights represent ( a subset of) the states in our state-space model, which 

we model as a Vector Autoregression (VAR) as in equation 10. 

We identify the shock of interest by assuming a linear relationship between the forecast 

error Ut and the vector of structural shocks of interest et as 

(11) 

and assume that n is computed via the lower triangular Cholesky decomposition of the co­

variance matrix of Ut so that E(eteD = I, 17 as proposed by Plagborg-Moller and Wolf (2021). 

The policy shock of interest is related to the first element of et, as we discuss below. This 

approach has a number of advantages, even beyond its simplicity. First, it automatically cor-

15The analogy to state space models might be slightly misleading because we first compute the states via 
principal components and then go on to model the law of motion for the estimated states, whereas standard 
applications of state space models often employ a filtering algorithm (think about the Kalman Filter, for 
example) that exploits a posited law of motion for the states when estimating the states. Our approach is 
instead very much reminiscent of the standard two-step approach to linear factor models in standard time 
series analyses (see, for example, Stock and Watson (2016)). The resulting model of the yield curve is still 
in state-space form. 

16We estimate a separate VAR for each instrument because the sample sizes for the different instruments 
are not the same. 

1 7 I denotes the identity matrix. 
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rects for possible autocorrelation of the instrument and dependence of the instrument on past 

yield curve movements (which are generally thought to encode macroeconomic outcomes). 

To see this, it is useful to write the first equation of the set of Equations (10), using Equation 

(11): 
m 

mt= A1,1mt-l + L A1,j+lO!jt + n1,1eL 
j=l 

(12) 

where Ai,j is the element of the matrix A in row i and column j. Following Plagborg­

M0ller and Wolf (2021), it is worthwhile to point out that this identification approach will 

correctly identify normalized impulse responses even if the yield curve itself does not contain 

enough information to identify the shock of interest Et (i.e., non-invertibility) and if there is 

measurement error Wt present in e}, so that e} = 0ct + Wt, where 0 =I- 0 is a parameter that 

influences the strength of identification and Wt is an i.i.d. measurement error. This comes 

at a cost, as we can only identify normalized impulse responses if there is non-invertibility. 

Throughout this paper, we plot impulse responses that increase the first element of et by one 

unit (which is equal to a one standard deviation change in the first element of the one-step 

ahead forecast error Ut)- This has the advantage of giving us some sense of magnitude of the 

effects of the shock is indeed invertible. 

In terms of inference, we use a bootstrap procedure that is detailed in Appendix F . 18 

at and its associated basis functions have a clear interpretation in our application, as we 

highlight in Figure (2), which plots the basis functions (center column) associated with the 

first three elements of at - the basis functions resemble the level, slope, and curvature of the 

yield curve (Diebold and Rudebusch, 2012). Note, however, that we did not impose these 

shapes ex ante. 

4 Yield Curve Data and Instruments 

For the nominal yield curve, we use the data constructed by Giirkaynak, Sack and Wright 

(2007) that can be downloaded from the Board of Governors' website19 . Our sample for 

the yield curve begins in June 1961. We use quarterly data; in particular, we use the curve 

observed the last day of each quarter as our quarterly yield curve. This ensures that shocks 

occurring at any point in a quarter can influence the yield curve in that same quarter. The 

exact sample to determine the response of the yield curve to each policy shock is the largest 

18This bootstrap procedure is valid, as shown by Chang, Park and Pyun (2023b). 
19https://www.federalreserve.gov/ data/nominal-yield-curve.htm 
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