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Abstract

The paper presents an investigation on how the upward transmission of
demand shocks in the Japanese supply network influences the growth rates
of firms and, consequently, shapes their size distribution. Through an em-
pirical analysis, analytical decomposition of the growth rates’ volatility,
and numerical simulations, we obtain several original results. We find that
the Japanese supply network has a bow-tie structure in which firms located
in the upstream layers display a larger volatility in their growth rates. As
a result, the Gibrat’s law breaks down for upstream firms whereas down-
stream firms are more likely to be located in the power law tail of the size
distribution. This pattern is determined by the amplification of demand
shocks hitting downstream firms, and the magnitude of this amplification
depends on the network structure and on the relative market power of
downstream firms. Finally, we observe that in an almost perfectly hier-
archical network, the power-law tail in firm size distribution disappears.
The paper shows that aggregate demand shocks can affect the economy
directly through the reduction in output for downstream firms and indi-
rectly by shaping the firm size distribution.
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1 Introduction

Recent literature has challenged the traditional view that firm-level shocks av-
erage out, and stressed their impact on macroeconomic volatility due to the
presence of input-output links among sectors (Acemoglu et al., 2012) and to
the shape of the firm size distribution (Gabaix, 2011). These papers have orig-
inated a new approach to the study of business cycles which focuses on micro-
level shocks. However, the connection between the two factors determining the
macroeconomic effects of firm-level shocks (supply network and firm size distri-
bution) has so far received relatively little attention.

Power law tails emerge as a consequence of the Gibrat law, which states that
growth rates are independent from the firm’s size. Accordingly, the fact that
a power law tail only emerges for very large firms implies that the Gibrat law
breaks down for small and medium firms. In order to investigate the breakdown
of the Gibrat law, we must consider that firms’ growth rates are mutually de-
pendent since firms are connected in the supply and commercial credit network.
As a consequence, a causal chain among the firm size distribution, firms’ growth
rates, and supply network emerges: the structure of the network determines the
mechanism of transmission of shocks within the credit network, which in turn
affects the growth of firms and the firm size distribution.

The present paper investigates whether the observed breakdown of the Gibrat
law in Japan for small and medium firms depends on the structure of the net-
work and on the position of the firms in the supply network. We analyze how
demand volatility can be passed by downstream firms to their suppliers, gen-
erating higher volatility in the growth rates of the latter and, consequently,
limiting their growth. In order to quantify the relative sensitivity of each firm
to, respectively, final demand and demand of intermediate inputs, we introduce
in economic network modeling the Hodge potential, which can be interpreted
as a synthetic indicator of the relative position of a node within the network,
given a particular network structure.

We first present an empirical analysis of the Japanese supply network in order
to identify its structure and study the connection between the position of firms in
the network and the distribution of growth rates. We then use a parsimonious
computational model to reproduce the empirical evidence, analyze the shock
transmission, and gain insights into the mutual interdependence between the
network structure and the firm size distribution.

The empirical analysis reveals that the Japanese supply network has a bow-
tie structure and that the Gibrat’s law breaks down for upstream firms whereas
downstream firms are more likely to be located in the power law tail of the size
distribution. The theoretical model explains this pattern as the result of the
amplification in the supply chain of demand shocks hitting downstream firms,
generating higher volatility in the growth rates of upstream firms. The extent
of the amplification depends on two main factors. The first is the network
structure, since the amplification of aggregate demand shocks is larger in bow-
tie networks than in perfectly hierarchical ones. The second factor is the relative
market power of upstream firms, which appears to have an inverse relationship
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with the variance of their growth rates. The network structure emerges as the
main factor affecting the transmission of shocks and, consequently, the shape of
the firm size distribution. In the extreme case of an almost perfectly hierarchical
network, the power-law tail in firm size distribution disappears.

Our analysis provides three main contributions to the literature. First, the
paper offers a novel investigation into the emergence of power law tails in the
firm size distribution by discussing the role of the supply network and the in-
terdependence of firms’ growth rates. This investigation contributes to and
connects the two distinct streams of research that have analyzed the macroeco-
nomic impact of firm-level shocks as dependent on the supply network, on the
one hand, and on the firm size distribution, on the other hand. To the best of
our knowledge, the only existing study on the interdependence between supply
network and firm size distribution is Herskovic et al. (2020) for the US.

The second most relevant contribution is the introduction in economics of
the Hodge potential, which can be interpreted as a synthetic indicator of the
relative position of a firm within the network. In brief, it quantifies the dif-
ference between (direct and indirect) outbound and inbound links as a single
number, providing an alternative to the influence vector proposed by Acemoglu
et al. (2012). Third, while the transmission of supply-side shocks has been ex-
tensively investigated, we add a new perspective by considering demand shocks
and focusing on the upstream transmission. In particular, we consider that the
transmission of shocks does not only depend on the technological relationship
embedded in the production function, but also on the position in the network,
the relative market power, and the relative sizes on the node.

The remainder of the paper is structured as follows. Section 2 provides an
overview of the existing literature immediately related to this paper. Section 3
presents the characteristics of the Japanese supply network, showing some basic
stylized facts. Section 4 introduces the model. Section 5 proposes a simple
analytical treatment of the relationship between aggregate shocks and volatility
in the different components of the network. Section 6 details the structure of
the simulations and presents the results. Finally, section 7 concludes.

2 Related literature

Acemoglu et al. (2012) show that microeconomic shocks, in the presence of
input and output linkages, do not average out and their transmission through
the supply network can originate aggregate fluctuations. As a consequence, the
study of the network structure is fundamental to properly model the volatility of
aggregate output. They demonstrate that business cycles can be originated not
only by exogenous macro-level factors, but also by idiosyncratic small shocks
at the firm level. They identify an influence vector which quantifies, for each
sector, the relative weight of its value added, which proxies the centrality of the
sector in the transmission of shocks. Accordingly, the productive structure of
the economy and, in particular, the input/output links across sectors and firms
are crucial in spreading microeconomic shocks to the entire system.
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Along the same lines, Carvalho and Gabaix (2013) introduce the concept of
fundamental volatility, defined as the volatility associated only to microeconomic
shocks, and show that aggregate volatility tracks fundamental volatility. The
idea that firm-level fluctuations do not average out was originally put forward
by Gabaix (2011). Rather than on input-output linkages, he focuses on the firm
size distribution and demonstrates that, when firms are power-law distributed,
the micro-level volatility is amplified and can generate aggregate fluctuations.1

In this paper we mostly abstract from the macroeconomic implications of the
firm size distribution and primarily examine the reverse causality, from macro-
shocks to the distributions of growth rates and size.

Within the literature stemmed from these contributions, Acemoglu et al.
(2017) investigates the connection between the distribution of sectoral shocks
and the tail risk in the distribution of macroeconomic fluctuations. Baqaee and
Farhi (2019) use the Domar weights derivatives to estimate the second-order
nonlinear effects of microeconomic shocks (depending on elasticities of substi-
tution, network linkages, returns to scale, and the extent of factor reallocation)
of sectoral shocks. They find that the macroeconomic outcomes of microeco-
nomic shocks are asymmetric, as nonlinearities amplify the impact of negative
sectoral shocks and mitigate the impact of positive sectoral shocks. Closer to
the present paper is Dhyne et al. (2019), who use firm-level data to quantify the
distortions arising from the existence of markup charged by suppliers (assumed
to be dependent by their shares of inputs for each buyer).

Our perspective differs from the cited literature, as our primary interest
is the firm size distribution, and how it is affected by firm-level shock on the
demand side in a supply network. We follow an approach similar to Dhyne
et al. (2019) to model market power in a monopolistically competitive network,
stripping down the unnecessary details and enriching the analysis by adding
the network effect, quantified by the Hodge potential, to the market share as a
determinant of firms’ markups. This modeling approach allows us to evaluate
the role of macro-factors (the network structure) and micro-factors (the position
of the single firm within the network) in the transmission of shocks and their
final effect on the firm size distribution.

Empirical and theoretical literature have established a connection between
the Gibrat law of proportionate effects and power law distribution, showing
that the emergence of a power law or Zipf’s law in firm size is the consequence
of the independence of firms’ growth rates from their size.2 However, as it is
known from recent literature (see Aoyama et al., 2010, 2017; Fujiwara, 2020,
for example) and as we examine in this paper, Gibrat and Zipf’s laws break
down for small and medium firms. The Zipf’s law is dominated by “a few
giants” comprising a considerable fraction of the total size of the economy,

1This result is challenged by Dosi et al. (2019), who propose a demand-based granular
hypothesis as an alternative to the original supply-side one.

2See Bottazzi and Secchi (2003, 2006); Gabaix (1999); Hall (1987); Ijiri and Simon (1977);
Luttmer (2007, 2011); Rossi-Hansberg and Wright (2007a,b); Simon (1955, 1960); Steindl
(1965) among others, and, more relevant for the target of this paper, Aoyama et al. (2010,
2017); Delli Gatti et al. (2005); Fujiwara (2020); Malevergne et al. (2013).
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while equally important are the “many dwarfs”, including small and medium
firms, the number of which is much larger than that the number of giants. In
addition, firms are connected with each other in a giant network with supplier
and customer links. Typically, those small and medium firms are suppliers to
large firms (see Aoyama et al., 2010, 2017; Fujiwara, Y. and Aoyama, H., 2010;
Fujiwara, 2020, and references therein).

As a consequence, the growth rates of firms are not mutually independent,
since firms are connected in the supply network and idiosyncratic shocks are
transmitted through the networks links. We build on this fact and on the
demonstrated connection between the Gibrat law and the power law distribution
to investigate how the supply network, by determining the interactions between
firms’ growth rates, has an effect on the Gibrat law (and consequently on the firm
size distribution). More specifically, we analyze whether and why the breakdown
of the Gibrat law depends on the relative position of a firm in the network.

Our paper presents a mechanism for the generation of heavy tails in firm
size distribution alternative to the shocks in productivity already investigated
by the literature (see Aoki and Nirei, 2017; Hopenhayn, 1992; Luttmer, 2007,
for example). Carvalho and Grassi (2019) connect this stream of research with
the granular hypothesis by modeling the feedback from the macroeconomy to
the firm size distribution and deriving the Pareto distribution in steady state as
the result of firms’ microeconomic optimizing decisions. Our approach relates to
this literature by further exploring the dependence between firms’ growth and
firm size, and innovates, first, by focusing primarily on demand-side shocks, in
addition to productivity shocks, and, second, by studying the interdependence
of growth rates that arise when firms are mutually connected in the supply
network.

Herskovic et al. (2020) share our paper’s emphasis on demand shocks in
shaping the firm size distribution. Studying the US supply network, they find
that firms’ growth is negatively correlated with the volatility of sales. They
stress the role of demand shocks and their upward transmission, showing that
firms with a more concentrated customer base experience higher volatility. Our
paper presents several points of departure from Herskovic et al. (2020). First,
the availability of network data for Japan dispenses us from assuming a par-
ticular network structure. Rather, we replicate the bow-tie structure of the
Japanese supply network and let the connection between this structure and the
firms size distribution endogenously emerge. Second, studying the actual net-
work structure and link distribution, we verify that, for Japan, the dynamics
of firms’ size depend on their position in the network and on the structure of
the network, rather than on the number of connections. As a consequence, the
analysis makes use of the Hodge potential, which represents a further innova-
tion. Finally, given the issues in calculating the moments in distributions with
power-law tails, we use a multi-agent computational model to reproduce the
full micro-distribution, neatly connecting the emergence of the power law tail
as a consequence of the Gibrat law (and its breakdown for small firms), and
we are able to endogenously generate firms’ growth (which is an exogenously
predetermined process in Herskovic et al., 2020).
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3 Firm size, firm growth, and production net-
work of firms

Preliminarily, let us summarize two stylized facts on firm-size and growth.
It is well known that there are empirical laws about the distribution for firm-

size and the dynamics for firm’s growth. First, denoting by P (x) the probability
to observe that a firm’s size is greater than x, one observes the so-called Zipf’s
law, i.e.

P (x) ∼ x−µ (1)

for several orders of magnitude in the regime of large firms, where µ is numeri-
cally close to 1 (see Aoyama et al., 2010; Axtell, 2001, for example).

Second, firm’s growth rates are on average independent from its size (see
Sutton, 1997, for a readable review). Such a property is known as Gibrat’s law
of proportionate effect. Denote by xt the firm’s size, being measured typically
by sales, profits, number of employees and so forth, at time t. As explained in
the following, we will employ annual data, so t denoted a specific year and t+ 1
is the subsequent one. Let us define the growth rate

Gt :=
xt
xt−1

, (2)

and its logarithmic variable

gt := log10Gt = log10 xt − log10 xt−1. (3)

Then Gibrat’s law states that gt is statistically independent of the initial size
xt−1. The statistical independence has been verified in the regime of large firms.

These stylized facts concern the stochastic dynamics of firms in an ensemble
of firms inside an economy. Models for the dynamics have been studied in a
huge literature (see footnote 2)

However, it should be emphasized that these laws are valid for large firms,
as we actually observe by employing a large dataset that (1) covers all the
regime of firm-size including small and medium firms as well as large ones, and
that (2) contains information of production network, namely supplier-customer
relationships among the firms.

3.1 Dataset of firms and production network in Japan

For the study on the validity and breakdown of Zipf’s law on firm-size distribu-
tion and Gibrat’s law on firm’s growth, it would be ideal to have an exhaustive
data set on all the regimes of firm-size, not only large firms such as listed firms
but also small and medium firms, at a nationwide scale. We employ such large-
scale dataset based on a survey regularly and persistently conducted by one
of the leading credit research agencies in Tokyo, Tokyo Shoko Research, Inc.,
which covers mostly all the active firms in Japan. This is nearly exhaustive
in the sense that if a firm A is active as a supplier or as a customer of other
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firms, such a firm is included in the dataset as far as the other firms need credit
information about the firm A, however small it is.

We employ the dataset at two successive years of 2015 and 2016, with a
number of firms of more than a million, which covers most of the active firms in
Japan. For firm-size xt, we use annual sales as a proxy and define its growth-rate
gt as in (3), where t refers to the year 2016, and t− 1 to 2015.

Figure 1 shows the distribution of firm-size for each of the years in all the
regimes from 105 Yen to 1013 Yen, roughly corresponding to 103 to 1011 in
USD/Euro of annual sales. One can see that, on one hand, in the regime of
large firms, say larger than 109 Yen, the distribution obeys a Zipf’s law as in
(1). Noting that the distribution in the figure is a complementary cumulative
density function (CDF) and that (1) is written in the form of CDF, one can
immediately see that the power-law exponent µ is close to 1. On the other
hand, for the regime of small and medium firms (sales smaller than 109 Yen),
there is a deviation from Zipf’s law as shown in the CDF.

In addition, the dataset includes the production network or supplier-customer
relationships among the firms based on another survery conducted by the credit
research agency (see Aoyama et al., 2010, 2017; Fujiwara, Y. and Aoyama, H.,
2010, for more details). If firm A sells goods and services to firm B, we define
the supplier-customer link from A to B, A → B. The number of suppliers fi
of firm A is that of in-coming links fi → A or in-degree, while the number of
customers fi of firm A is that of out-going links A→ fi or out-degree.

Figure 2 shows the distribution of in and out degrees, or the number of
suppliers and customers, respectively, of each firm. Being similar to the firm-size
distribution in the regime of large degrees, the distribution obeys a power-law
as in (1). There is a strong correlation between the firm-size and the degrees, as
one can naturally expect, for larger firms possess a larger number of suppliers
and customers Fujiwara, Y. and Aoyama, H. (2010); Aoyama et al. (2010, 2017).

Now, by employing this dataset, let us turn our attention to Zipf and Gibrat’s
laws and their validty and breakdown depending on the firm-size in the next
section.

3.2 Zipf and Gibrat’s laws and firm-size

It is straightforward to empirically study the dynamics of the firms’ size. Fig-
ure 3 is a scatter plot for the firm size xt−1 at time t − 1 and xt at time t. As
one can see, the growth rate has a peak around gt = 0, because many firms are
concentrated along the diagonal 45-degree line. Nevertheless, a fraction of firms
can have large positive growth-rate or small negative growth rates.

In order to examine the statistical dependence of the growth-rate gt on the
initial firm-size xt−1, let us divide xt−1 into different groups or bins, and cal-
culate the distributions of gt in the different bins. Figure 4 shows the following
results:

• For the regime of large firms, Gibrat’s law holds, because the conditional
distribution for gt given the initial size xt−1, p(gt|xt−1) does not depend
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on xt−1 as shown in Figure 4 (a). Here the bins are given by

109 × [100.5(n−1), 100.5·n] Yen for n = 1, 2, 3, 4 (4)

• For the regime of small and medium firms, Gibrat’s law breaks down, i.e.
p(gt|xt−1) depends on xt−1 as shown in Figure 4 (b), where the bins are
given by

106 × [100.5(n−1), 100.5·n] Yen for n = 1, 2, . . . , 6 (5)

• Comparing Figure 4 with the distribution of firms-size in Figure 1, one can
see that the boundary between the validity and breakdown of Gibrat’s law
corresponds to where the distribution deviates from the Zipf’s law around
109 Yen.

To quantify the statistical dependence of firm’s growth on size, we calculate
standard deviations from the PDF’s in Figures 4 (a) and (b) at each bins given
by (4) and (5) to obtain the result in Figure 5. To summarize, one can see that
Gibrat’s law holds for large firms, but breaks down for small and medium firms.

3.3 Production network of firms

The production network or supplier-customer relationships in our dataset has
information about the flow of goods and services from upstream firms to down-
stream firms. We apply the well-known analysis of “bow-tie” structure (Broder
et al., 2000), first by focusing on the connectivity, and then by using the so-called
Hodge decomposition.

In general, a network can be represented as a graph G = (V,E), where V
and E are the set of vertices and edges, respectively. Let us denote the number
of vertices by |V | and edges by |E|. In our case, a vertex is a firm, and an
edge is a link emanating from supplier to customer. First, one can decompose
G into weakly connected components (WCC), i.e. connected components when
regarded as an undirected graph. In our case, we found that there exists a
giant WCC with |V | = 1, 066, 037 and |E| = 4, 974, 802. In what follows, we
focus on the giant WCC, which can be decomposed further into the following
components:

GWCC : Giant weakly connected component: the largest connected compo-
nent when viewed as an undirected graph. An undirected path exists for
an arbitrary pair of firms in the component.

GSCC : Giant strongly connected component: the largest connected com-
ponent when viewed as a directed graph. A directed path exists for an
arbitrary pair of firms in the component.

IN : The firms from which the GSCC is reached via a directed path.

OUT : The firms that are reachable from the GSCC via a directed path.

TE : “Tendrils”, which include the rest of the GWCC.
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It follows from the definitions that

GWCC = GSCC + IN + OUT + TE (6)

Figure 6 depicts the result of bow-tie structure. In (6), GWCC is decom-
posed into GSCC (49.73%), IN (20.63%), OUT (26.16%), and TE (3.47%) with
percentages in parentheses being the fraction in terms of the number of firms
contained in each component. GSCC occupies nearly the half of the entire set
of firms as a “core”, presumably circulating goods and services mutually among
them. IN is the portion supplying to the core from the upstream, while OUT is
demanding the products in the downstream side.

It should be remarked that the shortest distance from the GSCC to IN or
OUT is at most 4, implying that the bow-tie does not have elongated shape like
a “bow-tie”, but looks like a “walnut”. 3

3.4 Hodge decomposition

The so-called Hodge decomposition of flow on a network is a mathematical
method of ranking nodes according to its location in terms of upstream and
downstream of the flow (Jiang et al., 2011). The method, also known as
Helmholtz-Hodge-Kodaira decomposition, has been used to find such a struc-
ture in complex networks (see the applications to economic networks in Iyetomi
et al., 2020; Kichikawa et al., 2018).

Let us recapitulate the method briefly only for a binary graph, i.e. without
weight. 4

Consider a directed network G = (V,E) with an adjacency matrix Aij , i.e.

Aij =

{
1 if there is a directed link from node i to node j,

0 otherwise.
(7)

Denote the number of nodes by N = |V |. By assumption, Aii = 0, i.e. Aij is
considered to represent the flow on the network.

Let us define a “net flow” Fij by

Fij = Aij −Aji , (8)

and a “net weight” wij by
wij = Aij +Aji . (9)

It should be remarked that (9) is simply a convention to take into account the
effect of mutual links between i and j; one could multiply (9) by a half or an
arbitrary positive weight, which actually has little change to the result for a
large network.

3See the detailed study on the same Japanese production network’s walnut structure in
Chakraborty et al. (2018).

4See the cited Kichikawa et al. (2018); Iyetomi et al. (2020) for more general cases.
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The Hodge decomposition is given by

Fij = wij(φi − φj) + F
(loop)
ij , (10)

where φi is called a Hodge potential of node i, and F
(loop)
ij is divergence-free by

definition, namely ∑
j

F
(loop)
ij = 0 , (11)

for i = 1, . . . , N . The original flow Fij is decomposed into gradient flow, wij(φi−
φj), and circular flow, F

(loop)
ij .

From (10) and (11), given Fij and wij , one has simultaneous linear equations
to determine φi: ∑

j

Lijφj =
∑
j

Fij , (12)

for i = 1, . . . , N . Here

Lij = δij
∑
k

wik − wij , (13)

and δij is Kronecker delta, i.e. δii = 1 and δij = 0 for i 6= j.
Note that simultaneous linear equations (12) are not independent of each

other. In fact, the summation over i gives zero. This corresponds to the fact
that there is a freedom to change the origin of potential arbitrarily. Let us use
the convention in the following that the average is zero.

One can prove that if the network is weakly connected, as in our case, the
potential can be determined uniquely up to the choice of the origin of the po-
tential.

We apply the method of Hodge decomposition in order to locate an individ-
ual firm i in the upstream and downstream layers of the network by using the
Hodge potential φi. The results are summarized in Figure 7. The figure shows
the distribution for the Hodge potential of firms in each component of GSCC,
IN, OUT and TE (as represented in Figure 6). Recall that the average of all the
potentials is 0 by definition. Larger potential implies that the firm is located
upstream, while smaller potentials correspond to downstream, as one can see
by comparing the histograms for different components. One can see that while
the bow-tie analysis can display the relative locations of those components of
GSCC, IN, OUT, and TE, the Hodge decomposition can reveal the individual
firm’s location in terms of Hodge potential. 5

4 The model

We proposed a stylized agent-based model, which is stock-flow consistent (albeit
with an exogenous foreign sector), to reproduce (in scale) the actual Japanese

5For another application of Hodge decomposition for the same Japanese production net-
work, in particular dependence on industrial sector, see Kichikawa et al. (2018).
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supply network structure as presented in section 3. It is worth remarking that
the initial conditions for all firms, regardless of their position in the network,
are drawn from the same distribution. They follow the same behavioral rules,
have the same production technology, and are subject to the same productivity
shock distribution. The objective is to let the firm size distribution emerges
only as a result of network linkages and interactions. For the same reason, the
model is simplified to avoid any noise on the final results while at the same time
preserving accounting consistency.

Both the intermediate goods market and the final goods market are monopo-
listically competitive. Each firm i is linked to a randomly predetermined subset
of suppliers Ωi and customers Λi. Each firm uses labor, intermediate goods,
and raw material as inputs. Mimicking the actual Japanese supply chain, we
allocate firms in the three network components IN, GSCC, and OUT, in the
same proportions as in the real network. All the components are connected by
fixed supply-customer relationships in the intermediate-goods market, but no
direct links exist between the IN and OUT components.

Raw materials are all imported and the supply of labor is assumed to be
perfectly elastic at the going wage. Firms produce on demand and stock only
the excess of intermediate inputs, not their final products.
We abstract from capital accumulation and use. Since we operate on a very short
time horizon, production factors are assumed to be strictly complementary.6

Accordingly, we use the following Leontieff production function:

Qit = Aitmin(αLit, βHit, γRit) (14)

where A is the total factor productivity which follows a iid stochastic process, L
are the units of labor, H is the bundle of intermediate goods, R is the amount
of raw material purchased on the international market, and α, β, γ > 0. Since
the demand of intermediate products precedes production, firms demand an
amount of intermediate goods based on final demand expectations according to

Hit =
Qeit
Aitβ

(15)

Expectations are assumed to be adaptive such that Qeit = Qit−1. Accordingly,
at the beginning of each period firms’ stocks Hs

it are updated as follows:

Hs
it = Hs

it−1 +Hit (16)

with Hit determined according to (15).
The demand for input j from firm i is

Hijt =
P

(1−η)
jt

(P it )
(1−η)Hit : j ∈ Ωi (17)

6The modeling choice also finds support in the recent meta-analysis by Gechert et al. (2021)
who find a generally low elasticity of substitution between capital and labor.
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where Hij is the amount of the intermediate goods produced by j used by i and
η is the elasticity of substitution across inputs. In order to allocate its demand
for inputs, each firm calculates its price index of intermediate goods as

P it =

∑
j

P
1−η
η

ij


η

1−η

: j ∈ Ωi (18)

Total final demand is given by the share of profit and labor income that is
consumed according to

Ct = (1− σw −mw)w
∑
i

Lit−1 + (1− σπ −mπ)
∑
i

πit−1 (19)

with w is the constant real wage, and σw,m
w, σπ,m

π as the constant propen-
sities to save and to import of workers and profit earners, respectively. The
amount of consumption going to foreign suppliers is considered as constant (and
not as a substitute for domestic products) to simplify the estimation (since in
any case the price of foreign firms would be exogenous). Households determine
their level of demand for good i as

Cit =
P

(1−ε)
it

P
(1−ε)
t

Ct (20)

where

Pt =

(∑
i

P
1−ε
ε

it

) ε
1−ε

(21)

is the final goods price index and ε is the elasticity of substitution for consump-
tion goods.
For the sake of simplicity, each firm has a unique price for both sales to other
firms and to final consumers. Specifically, the price of firm i is optimally set as

Pit =
εit

εit − 1
Fit (22)

where Fit is the average cost and

εit = φiη(1− sHit ) + (1− φi)ε(1− scit) (23)

where sHit and scit are the share of the firm in the intermediate goods market
and in the final goods market, respectively. The Hodge potential φ in (23) is
normalized such that φi ∈ [0; 1]∀i. According to equation (23), the demand
elasticity for a firm is is a weighted average of the price elasticity of the de-
mand of the final consumption goods and of the intermediate inputs markets,
respectively. The weights are given by the market shares, as in Dhyne et al.
(2019), and by the Hodge potential. The main reason of correcting the weghts
for the Hodge potential is in that it accounts for the network structure and the
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relative position of the firm in the network, and thus allows for the inclusion of
the higher order effects that a change in price or in quantity has on revenues
due to possible downstream readjustments. A change in price by a IN firm
will generate readjustments in price and quantities in downstream GSCC firms
and OUT firms, whereas a change by a GSCC firms will trigger changes on a
smaller number of firms. In hierarchical networks, the potential of firms located
upstream (downstream) is relatively higher (lower), while in network closer to
a circular structure, we can expect the distribution of the potential (before
normalization) being more concentrated around 0. In terms of equation (23),
upstream firms in circular networks will give relatively higher consideration to
the price elasticity of final goods because the readjustment in quantities of final
consumers can impact them not only through their downstream customers but
also originate higher order effects by indirectly affecting customers at same or
higher level in the supply chain. Since the elasticity of input substitution can
generally be expected to be lower than the elasticity of substitution among final
goods, a more circular network determines a lower market power for upstream
firms.

The market shares of each firms in the intermediate goods market and in
the final goods market are, respectively,

sHit =
∑
j

Hijt

Hjt
(24)

sCit =
Cit
Ct

=
P

(1−ε)
it

P
(1−ε)
t

(25)

The total demand for firm i is

Qit = Cit +
∑
z

Hzit +Xit : z ∈ Λi (26)

where Xit is the exports, assumed to be composed only of final goods. Final
goods producing firms are assumed to be equally competitive on the domestic
and foreign market, so that the shares of consumption calculated according to
(20) are also the share of exports.

When the amount of intermediate goods required to satisfy the demand
determined in (26) is larger than the firm’s stock, the firm increases the demand
of inputs to each supplier in the same proportion as in (17). This of course may
determine second order adjustments when the suppliers will require quantities
of inputs larger than their stocks.

Following Di Guilmi and Carvalho (2017) in assuming a perfectly elastic
supply of labor at the going wage w, the quantity of labor, of raw material, and
the wage bill are given by, respectively,

Lit = Qit/α (27)

Rit = Qit/γ (28)

Wit = Litw (29)
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Accordingly, the total average costs are

Fit =

Wit +
∑
j

PjtHjt + PftRit

 /Qit (30)

with Pft as the foreign level of price. Profits are calculated as

πit = Qit
εit

εit − 1
(31)

Finally, the stock of intermediate inputs is updated according to

∆Hs
it = Hs

it −
Qit
Aitβ

(32)

5 Demand volatility transmission

In order to provide a simplified analytical representation of upward shock trans-
mission, let us simplify the network by assuming that the final demand X + C
is entirely supplied by OUT firms, which sell only to final consumers. Given the
size of the actual sales flows, the simplification does not substantially affect the
generality of the analysis.

Abstracting from time indexes to simplify notation, let us a consider a generic
GSCC firm whose sales are equal toQS and allocated to OUT firms, other GSCC
firms, and IN firms according to the following shares: sOS , s

S
S , s

I
S , respectively,

with sOS + sSS + sIS = 1. For the sake of simplicity, we assume that these shares
are fixed.

We indicate with QO, QI the average size of a OUT firm and a IN firm,
respectively. Let us consider [d(X + C)− βd(A)] as the average percentage
change in the demand for intermediate inputs by OUT firms, assuming that they
enter symmetrically the final-goods market and considering that the expected
change in the TFP A is the same for all firms. Accordingly the expected growth
QSgS of a generic firm belonging to the GSCC component can be expressed as

QS gS = sOSQO[d(X + C)− βd(A)] + sSSQS [dQS − βd(A)]+

+ sISQI [dQI − βd(A)] (33)

in which the first term on the r.h.s. is the growth depending on the direct
demand by OUT firms, the second term is the demand from other GSCC firms,
and the third term is the demand from IN firms. Considering that the demand
for inputs from other GSCC firms and from IN firms in turn depends on the
change in final demand affecting OUT firms and other GSCC firms, and so on,
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we can expand (33) as follows

gS =
QO
QS

sOS [d(Xt + Ct)− βd(At)] +

+ sSS

{
QO
QS

sOS [d(Xt + Ct)− βd(At)] + sSS
{
sOS [d(Xt + Ct)− βd(At)]

}
+ ...+

+ sSSs
S
I {
QO
QS

sOS [d(Xt + Ct)− βd(At)] + sSS
{
sOS [d(Xt + Ct)− βd(At)]

}
+ ...}

}
+

+ sSSs
S
I

{
QO
QS

sOS [d(Xt + Ct)− βd(At)] + sSS
{
sOS [d(Xt + Ct)− βd(At)]

}
+ ...

}
(34)

which accounts for the feedback effects from IN firms to the other GSCC firms
that are interconnected. More precisely, the first line in (34) quantifies the
variation in sales due to the change in demand from OUT firms that are directly
connected to the GCSS firm. The second and third lines represent the variation
due to the other GSCC firms that are directly connected to the GSCC firm,
which is given by the variation induced by the OUT firms (second line) and by
the IN firms (third line) that are connected to them. Finally, the fourth line is
the variation induced by the demand of IN firms that are direct customers of
the firm.
Collecting the common term and approximating, we can finally write

gS =
QO
QS

sOS [d(Xt + Ct)− βd(At)] {1 + sS2S + sS3S + ...+ sSnS +

+ sSSs
I
Ss
S
I (1 + sS2S + sS3S + ...+ sSnS ) + sISs

S
I (1 + sS2S + sS3S + ...+ sSnS )}

u
QO
QS

sOS [d(Xt + Ct)− βd(At)]
[
1 + sSI s

I
S(1 + sSS)

] 1

1− sSS
(35)

The variance of the growth rates of GSCC firms is then given by

VgS =
[
V (X + C) + β2V (A)

]{(QO
QS

sOS

)[
1 + sSI s

I
S(1 + sSS)

] 1

1− sSS

}2

(36)

=
[
V (X + C) + β2V (A)

]{(QO
QS

sOS

)
ψS

}2

(37)

with ψS ≡
[
1 + sSI s

I
S(1 + sSS)

]
1

1−sSS
. Equation (37) shows that the relationship

between the variance of the final demand V (X + C) and the volatility of sales
for suppliers depends on three factors:

• the relative size of upstream and downstream firms: QO
QS

;

• the volatility of productivity V (A);
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• the structure of the network, which determines the share of inputs ex-
changed among the different clusters of the network and within the GSCC:
sOS , s

S
I , s

I
S , s

S
S .

In order to provide an approximate idea of the relevance of the network struc-

ture, we focus on the term ψS inside the curl brackets since
(
QO
QS
sOS

)
is simply

the weight of relative size effect. Let us consider the extreme case of a perfectly
hierarchical network, in which each component sells its entire production to
the component immediately downstream. It is easy to verify that, in this case,
ψS = 1, since sOS = sSI = 1, sIS = sSS = 0. The variance in this case comes to
depend only on the relative size of firms and on the volatility of productivity.
In contrast, in case of a network in which circular flows are not null, sOS , s

S
I < 1

and sIS , s
S
S > 0. As a consequence, ψS > 1 and the volatility of the final de-

mand is amplified by horizontal and vertical links and feedback effects in case
of bidirectional links.

Finally, assuming away links within the IN portion of the network, it is
trivial to derive the relationship between the variance in growth rates for IN
firms and the variance for GSCC firms, with the following expression

VgI =

(
QS
QI

)2

[V (gs) + V (A)] (38)

We can use the analysis of section 3 to assess the effects of shocks in final
consumption on upstream firms in the case of the Japanese supply network.
We know from the already cited Aoyama et al. (2010, 2017); Fujiwara, Y. and
Aoyama, H. (2010); Fujiwara (2020) that the size of firms is expected to decline
as we move upward in the supply chain, with the largest firms being located
downstream. Accordingly, the expected value of the ratio between the size of

OUT firms and GSCC firms should be bigger than one: E
[
QO
QS

]
> 1 in (37).

The same applies for the ratio QS
QI

in (38).
We also know that, in the case of a perfectly hierarchical network, the Hodge

potentials for IN, GSCC, and OUT firms will be equal to, respectively, φI =
1, φS = 0, φO = −1. Indeed, these are approximatively the values of the medians
as visible in Figure 7. However, the dispersion around the median appears to
be quite large in all three components, with a fraction of OUT and GSCC firms
having a smaller potential than some IN firms. As a consequence, the Japanese
network can be safely described as non-hierarchical and, accordingly, ψS > 1 in
(37). Accordingly, the model predicts that a downstream shock is amplified as
its effects are transmitted upward through the different sections of the supply
network.

6 Simulations

This section explains how the computer simulations for the model presented in
section 4 are implemented and presents the main results.
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6.1 Settings

The simulations are based on the stylized network structure of Figure 6. The
network is static and links are stochastically created at the beginning of the
simulation. The random distribution of connections for each portion of the
network is set to mimic the distribution of the potential in the three groups as
in Figure 7. The distribution of the potential φ (before normalization) over a
single run is visualized in figure 8. We further assume that only OUT firms sell
in the final goods markets (consumption and export).

The productivity coefficients A for each layer are modeled as an AR(1) pro-
cess of the type

Ait = ρAit−1 + νit (39)

with νit ∝ N (0;σA). For the process in (39), we set ρ = 0.9, σA = 0.3.
The exogenous time series are modeled as stationary in the following way: we
detrend the time series of gross export and bilateral exchange rate Yen/USD
and calculate the standard deviations of residuals, identifying them as σx and
σf , respectively; finally, the time series of the two variables are obtained as
additive shocks on the initial values drawn from the distributions N (0;σx) and
N (0;σf ). For both variables, we use St Louis FED data for the period 1991-2008
as reported by the data, to exclude the highly volatile period after the Great
Recession, and, converting in indexes, we estimate σx = 0.0567, σf = 0.0099.

In the simulations, the total number of firms is 2000 and they are allocated
to each cluster to mimic the distribution in the real data: 50% in the SCC, 30%
in the IN component, and 20% in the OUT component.

Initial conditions are equal for all firms. The initial level A0 is drawn from a
uniform distribution with range [2.5; 97.5]. Production in period 1 is equal for
all firms with Qi0 = 0.8.

The remaining parameters are calibrated as follows: sw = 0.1; spi = 0.3;mw =
0.2;mpi = 0.2;α = 1;β = 6; γ = .0000001; η = 1.10; ε = 1.50;w = .4.7 Assum-
ing one simulation period to be equal to a quarter, each simulation is ran for 16
periods, since we aim to replicate the short run change analyzed in the empirical
section.

6.2 Results

The simulations qualitatively replicate the evidence reported in section 3, pro-
viding some insights on the mechanisms that determine the different growth
regimes for the various dimensional classes and position within the network.
Let us first present some results generated by single-run simulations before dis-
cussing in detail the properties of the model as they emerge from Monte Carlo
replications.

7The elasticity of the intermediate inputs is lower than the one for consumption goods
to account for the lower substitutability of inputs, although still elastic. According to the
empirical literature (Atalay, 2017; Baqaee and Farhi, 2020, among others), the elasticity of
substitution is low across industries. Given the scope of the present paper, we abstract from
the distinctions between intra and inter industry connections, averaging out the different
degrees of input substitutability.
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The already introduced Figure 8 shows the histogram of the potential in
a single simulation. The narrower range is an unavoidable consequence of the
lower number of nodes. However, the general structure of the network is com-
parable, with the distribution of the GSCC centered on 0 and the medians of
the IN and OUT equal in absolute value.

The higher degree of dispersion in growth rates for upstream firms is evi-
dent in Figure 9. The plot reports the histogram of the average frequencies of
growth rates over 100 Monte Carlo replications. The tails of the distributions
are considerably fatter for the upper layers of the network, mimicking the pat-
tern observed in Figure 4 for real data. The difference in the levels of volatility
in the growth rates is at the root of the size distribution of firms displayed in Fig-
ure 10, which shows the size distribution in a single replication, distinguishing
firms by their respective network cluster. The results are confirmed by Monte
Carlo replications as displayed by Figure 11. Downstream firms are the largest
and the power-law tail is composed almost exclusively by firms belonging to the
OUT section of the network. GSCC are relatively more frequent in the flatter
section of the distribution, out of the power-law tail, whereas IN firms are the
smallest. It is worth remarking that the initial conditions for firms in all three
clusters are drawn from the same distribution and the size heterogeneity and
the power-law tail emerge in the short span of the simulation.

This set of results confirms the hypothesis that downstream demand shocks
are amplified in the supply chain, leading to the breakdown of the Gibrat’s law
for upstream firms and to the power law tail in the firm size distribution for
downstream firms. Simulating a a sizable export shock (−30%, roughly the size
of the Great Recession shock) in the second last period of the simulation over
100 Monte Carlo replications, the changes in the medians of the distributions of
growth rates for OUT, GSCC, and IN firms are, respectively -0.0373, -0.0944,
and -0.1113. The shock initially hitting OUT firms is clearly amplified and
eventually generates a larger effect for upstream firms. .

We study the role of network structure and market power by means of
counter-factual computational experiments. In particular, we examine the size-
standard deviation relationship in the baseline scenario, in an almost perfectly
hierarchical network, and in a situation in which the elasticity of demand for
intermediate goods and final goods are the same, namely η = ε = 1.5. In the
case of an almost perfectly hierarchical network, IN firms sell only to GSCC
firms, which in turn sell only to OUT firms. The random links in the adjacency
matrix are set up in order to have the (normalized) potentials for all IN, GSCC,
and OUT firms of φI u 1, φS u 0.5, φO u 0. The results are shown in Figure
12. The top-left panel of Figure 12 reproduces the pattern shown in Figure
5, identifying a scaling regime for small firms, and a Gibrat regime for large
firms, in the relationship between firm size and growth volatility. Each dot in
the plot represents the standard deviation in growth rates for each bin of the
firm size distribution. The results in the plot are the average over 100 Monte
Carlo replications. A negative relationship is identifiable for small firms, while
no apparent correlation can be detected for the largest ones. Hence, for largest
firms Gibrat law applies since their rate of growth is independent from their
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size, while the same does not hold for the smallest firms, which are upstream in
the supply chain, as shown in figure 10. In the top-right panel, elasticity in the
intermediate-goods market is higher, implying a relatively smaller market power
of suppliers. Besides the general increase in volatility, the most evident effect
is the reduction of the Gibrat’s range, since only for the top four bins volatil-
ity does not change with size. The general reduction in size compared to the
blue and black distributions depends on macro-effects, since the tighter market
compresses profits and negatively impacts on the final consumption demand.
However, a power-law tail in firm size distribution still exists.

Recalling that the competitiveness of firms is stochastic (being dependent
on the random process for total factor productivity), higher elasticity of sub-
stitution implies expected larger readjustments for upstream firms, as highly
price-sensitive customers redistribute their purchases towards the cheaper sup-
pliers to a larger extent. The numerical simulations are likely to underestimate
the extent of the redistribution of demand, since the network is static. In real-
ity, major demand shocks can lead to the complete substitution of less efficient
suppliers and this effect will be larger the bigger the elasticity of substitution
and the customers’ market power.

In terms of aggregate outcomes, this sort of “upward snowball effect”, as
volatility is transmitted to suppliers, can be, at least partially, averaged out in
national accounting, because intermediate outputs do not enter the calculation
of GDP. However, since the particular mechanism of amplification of shocks
that we identify shapes the firm size distribution, it also indirectly affects the
macroeconomic dynamics because of the granular hypothesis. In other words,
demand shocks can affect the economy directly through the reduction in output
for downstream firms (which is recorded in the GDP) and indirectly by shaping
the firm size distribution and, in particular, altering the size of the power law tail
and, as a consequence, and possibly reducing the applicability of the granular
hypothesis.

The bottom panels in Figure 12 present the result of a conterfactual experi-
ment, in which the model is simulated in an almost perfect hierarchical network.
In this setting, the standard deviation in growth rates appears to be generally
increasing with size. When the elasticity in the intermediate goods market is
higher the relationship is monotonic. Further, looking also at Figure 13, small
firms are no longer necessarily located upstream and, accordingly, the dynamics
of upward transmission of shocks changes. As a result, a clear power-law dis-
tribution in the right tail is no longer evident. It is also worth remarking that
the proportion of GSCC firms among the largest ones in the right tail appears
to be larger if compared with Figure 11. The increase in size illustrated in the
bottom panels of Figure 12 is a consequence of the lower number of links in the
hierarchical network.

To conclude, the network structure appears to affect the firm size distribution
to a larger extent than the relative market power of suppliers/customers in
the supply chain. The consequences of changes in the market power are a
general increase in volatility and a smaller right tail of the distribution, but the
Gibrat law still applies for the largest firms. In contrast, a modification in the
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network structure totally alters the relationship between size and volatility and
the Gibrat law appears to no longer be applicable in any range of the firm size
distribution.

7 Conclusions

The paper proposes an investigation of the transmission of demand shocks in the
Japanese supply network and, in particular, in their role in determining firms’
growth and, as a consequence, their size distribution. Through the analysis
of Japanese data, analytical decomposition of the growth rates’ volatility, and
numerical simulations, we find that: 1) the Japanese supply network has a
bow-tie structure in which firms located in the upstream layers display a larger
volatility in their growth rates; 2) as a consequence, the Gibrat’s law breaks
down for upstream firms whereas downstream firms are more likely to be located
in the power law tail of the size distribution; 3) this pattern is determined by
the amplification of demand shocks hitting downstream firms; 4) the magnitude
of this amplification increases the less hierarchical is the network structure and
the higher is the market power of downstream firms; 5) in an amost perfectly
hierarchical network, the power-law tail in firm size distribution disappears.

The paper provides a primer in the analysis of the implications on the firm
size distribution of the upward transmission of demand shocks. The relevance
of the network structure (and in particular of horizontal and upward links),
of market power, and of relative size of suppliers and customers in the supply
network has important consequences in the transmission of demand shocks and,
potentially, can affect the impact of supply shocks. The relative market power
and the structure of the network are likely to play a role in the modifications of
the supply network that are resulting from the Covid-19 shocks.

Future research can extend the analysis to supply shock and further inves-
tigate the feedback effects between firm size distribution and macroeconomy
(along the lines of Carvalho and Grassi, 2019). The extension could benefit
from a more sophisticated model of the macroeconomy, which can be achieved
by integrating the current model with the one by Di Guilmi and Fujiwara (2020),
allowing for an analysis not only of the real implications of shock transmissions
but also of their nominal effects. Further, the introduction of a dynamic network
in which firms create or destroy links according to some objective function, can
allow for an endogenous network. This extension can introduce another type
of feedback and further help the understanding of the generation of power law
tails in the firm size distribution.
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Figure 1: Complementary CDF (cumulative density function) for firm-size of
sales (in Yen). The regime of large firms obeys the Zipf’s law (1) with µ being
close to 1. There is a deviation from the law in the regime of small and medium
firms, roughly smaller than 109 yen. Two plots correspond to the years of 2015
and 2016.
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Figure 2: Complementary CDF for the degrees of individual firms. In-degree
refers to the number of suppliers of the firm, while out-degree is the number of
customers of it. Data for the year 2015. Similarly to the size, both of the in and
out degrees obey a power-law in the same functional form of (1). Largeer firms
have larger degrees, and vice versa. Similarly for small and medium firms. See
Fujiwara, Y. and Aoyama, H. (2010); Aoyama et al. (2010, 2017) for details.
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Figure 3: Scatter plot for temporal change of individual firm-size for two succes-
sive years of 2015 and 2016. Diagonal 45-degree line correspond to the growth-
rate Gt = 1 or gt = 0 (see (2), (3)).
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(b) For the regime of small and medium firms

Figure 4: Probability density function (PDF) for growth gt in the regimes of
large firms (a) and small and medium firms (b). (a) n = 1, 2, 3, 4 correspond to
different bins of initial firm-size xt−1 to calculate the growth, which are logarith-
mically equal-spaced between 109 and 1011 Yen (see the CDF in Figure 1), i.e.
109×[100.5(n−1), 100.5·n]. Gibrat’s law holds, because the PDF for gt does not de-
pend on xt−1. (b) n = 1, 2, . . . , 6 correspond to bins of 106× [100.5(n−1), 100.5·n]
between 106 and 109 Yen. Gibrat’s law breaks down, because the PDF for gt
depends on xt−1; smaller firms have larger variation in the growth.
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Figure 5: Dependence of standard deviation of growth-rate gt for the firms
binned in different sizes, logarithmically equal-spaced between 106 and 1011

Yen. Standard deviations are calculated from the PDF’s in Figures 4 (a) and
(b). One can see that Gibrat’s law holds for large firms, but breakdown for
small and medium firms.
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Figure 6: Bow-tie structure for the production network. The “core” is located
as a giant strongly connected component (GSCC), which is linked to the IN and
OUT components by in-going links into and outgoing links from the GSCC,
namely ‘upstream” and “downstream”. The remaining part is called “tendrills”
(TE). Percentage in each component represents the ration of the number of
firms included in the component to the total number of firms (1.06 million).

27



 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

F
re

q
u

e
n

cy

Hodge potential

GSCC
IN

OUT
TE

Figure 7: Histogram of the Hodge potential of firms in each component of
GSCC, IN, OUT and TE (see Figure 6). The average of all the potentials is 0
by definition (shown as vertical line). Larger potential implies that the firm is
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Figure 8: Simulations: histogram of the Hodge potential of firms in each com-
ponent of GSCC (red), IN (yellow), OUT (blue).
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line: layer 3. Average over 100 Monte Carlo replications.
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Figure 11: Firm size distribution. Average over 100 Monte Carlo replications.
Black circles: total; blue triangles: OUT, red squares: GSCC, yellow diamonds:
IN.
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Figure 12: Size versus standard deviation of sales for all firms. Upper pan-
els: baseline bow-tie network structure; lower panels: hierarchical network; left
panels: baseline elasticity value: η = 1.1, ε = 1.5; right panels: η = ε = 1.5.
Average over 100 Monte Carlo replications.
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Figure 13: Firm size distribution with hierarchical network. Average over 100
Monte Carlo replications. Black circles: total; blue triangles: OUT, red squares:
GSCC, yellow diamonds: IN.
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