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1 Introduction

Accurately forecasting the real price of oil is important due to the fact that the oil price
affects various economic activities and thus the economic outlook worldwide. The oil
price influences natural resource development, the manufacturing industry as well as oil
importing and exporting industries. Therefore, it is not surprising that central banks
and governments heavily rely on oil price forecasts to assess the general economic out-
look. Figure 1 depicts the movements of the two types of real oil prices from January
1974 to December 2014. The real oil price has fluctuated dramatically over the last
forty years, especially after the global financial crisis in 2007. Because of the volatile oil
price, forecasting the real price of oil is not easy for forecasters. Given the importance
and difficulty of oil price forecasting, this paper compares the oil price forecasting per-
formance of alternative models with constant and time-varying volatility. In addition,
new forecasting methods are introduced to forecast the oil price. Specifically, the paper
extends the standard time-varying volatility model by allowing for MA components and
volatility in the conditional mean. Another contribution of this paper is that in addition
to the point forecast, density forecasts are used to measure the accuracy of the forecast
performance amongst the different models. The paper also constructs a real-time dataset
of variables required in forecasting the real price of oil using backcasting methods and
extends the real-time oil price series to 2015. Both the real-time and ex-post revised
data are used for the forecasting comparisons.

There is a voluminous literature on forecasting both the real and nominal oil price.
Two strands of forecasting methods of the oil price co-exist: one is regression based
(Baumeister and Kilian, 2011; Baumeister and Kilian, 2012) while the other is survey
based (Chernenko, Schwarz and Wright, 2004; Sanders, Manfredo and Boris, 2008).
When it comes to regression based methods, existing studies on oil price forecasting
mainly use econometric models with constant variance and do not allow for volatil-
ity clustering, which is a prominent feature of oil data (Yea, Zyrenb and Shore, 2004;
Baumeister and Kilian, 2012; Baumeister and Kilian, 2014a). However, the oil price is
highly volatile and subject to dramatic shocks. Figure 2 shows the percentage change in
monthly real U.S. refiners acquisition cost for imports and monthly real WTI price from
January 1974 to December 2014. Both types of oil price exhibit larger swings in both
directions during the half century. The assumption of constant variance cannot capture
these features. Most papers in the literature forecast the volatility of the oil price using
two classes of time-varying volatility models. One is the general autoregressive condi-
tional heteroscedastic (GARCH) model and its variants (Sadorsky, 2005; Kang, Kang
and Yoon, 2009; Mason and Wilmot, 2014), while the other is the stochastic volatility
(SV) model (Vo, 2009; Larsson and Nossman, 2011). However, forecasting of the real oil
price itself using time-varying volatility is rare. This paper aims to fill this gap by using
both GARCH and SV models to forecast the real oil price and compares the forecasting
results with those from constant volatility models.



Real U.S refiners acquisition cost for imports.
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Figure 1: The two types of ex-post revised oil prices from January 1974 to December
2014.

Chan (2013) shows that moving average (MA) stochastic volatility models provide better
out of sample forecast performance than standard variants which only include stochastic
volatility for U.S. inflation. This paper investigates the potential forecasting improve-
ment for the real oil price by adding the Chan (2013) MA components to both the SV
and GARCH models. When it comes to the stochastic volatility in mean (SVM) model
as developed by Koopman and Uspensky (2002), volatility is added to both the con-
ditional mean and the conditional variance. The feature of the volatility entering the
conditional mean as a covariate may be important for improving the accuracy of real oil
price forecasts since volatility clustering is a prominent feature in the real oil price data.
However, the SVM model has not been used to date to forecast the real oil price. This
paper tests the forecast performance of the SVM model for the real-time oil price.

Most of the papers forecasting the real oil price compare alternative models based on
point forecasts and measure the accuracy of the point forecasts using the mean square
forecast error (MSFE), which assesses the ability of different models to correctly predict
the central tendency (Yu, Wang, and Lai, 2008; Alquist, Kilian and Vigfusson, 2011;
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Figure 2: The two types of ex-post revised oil prices from January 1974 to December
2014.

Baumeister and Kilian, 2012; Baumeister and Kilian, 2014a). However, many recent
papers forecasting macroeconomic and financial market data compute the predictive
likelihoods as the density forecast to assess and compare the forecast performance of
models (Geweke and Amisano, 2011; Chan, 2013; Chan, 2017). Using predictive likeli-
hoods is the most natural way to assess and compare the forecast performance of models
in a Bayesian approach (Geweke and Amisano, 2011). This paper follows this literature
and also uses the predictive likelihood as an alternative forecast evaluation metric to the
MSFE to evaluate and compare the forecasting performance of alternative models.

Two sorts of oil price data are used in literature on oil price forecasting. One is ex-
post revised data (Knestch, 2007; Alquist, Kilian and Vigfusson, 2011) and the other is
real-time data (Baumeister and Kilian, 2012; Baumeister and Kilian, 2015). Economic
activity is determined by real time data. However, many forecasts of the oil price and
hence the macroeconomy are formed using ex-post revised data due to the unavailability
of real-time oil price data (Fair and Shiller, 1990; Baumeister and Kilian, 2012). A real
time oil price series as constructed by Baumeister and Kilian (2012) exists from 1974 to
2010. However, the time series is not publicly available. Following the real-time oil price



construction process proposed by Baumeister and Kilian (2012), the real time data in
this paper is constructed and extended to February 2015.

The Point and density forecast performance of eight models of the oil price are compared
relative to the random walk. The models used here are three commonly used constant
volatility models, including the Random Walk (RW) model, the autoregressive (AR)
model, and the autoregressive-moving-average (ARMA) model; the remaining five mod-
els account for time-varying volatility, including stochastic volatility with a stationary
AR process, stochastic volatility with an ARMA Process, stochastic volatility in mean
with constant parameters, the standard GARCH model, and the GARCH model with
moving average innovations.

The results show that for the forecasts using real time data, the time-varying volatility
models dominate their counterparts with constant volatility, in terms of point forecasting
at the longer horizon and density forecasting at all horizons. In addition, the moving av-
erage component provides a substantial improvement to the point and density forecasting
performance for both types of time-varying models while the stochastic volatility in mean
model is superfluous for forecasting oil prices. The main results for the ex-post data are
slightly different to those using the real-time data. The results using the ex-post data
provide strong evidence that including time-varying volatility consistently improves the
accuracy of point forecasts relative to models with constant volatility at all horizons.

The paper proceeds as follows. Section 2 describes the process of collecting and con-
structing the real-time and ex-post oil datasets. Section 3 introduces the constant volatil-
ity and time-varying volatility models. Section 4 gives an overview of the forecast metrics
and compares not only the point but also the density forecasting performance of candi-
date models for both the real-time and the ex-post real oil prices. Lastly, a conclusion
is given in Section 5.

2 Data

Although the real oil price is one of the most important variables in model-based macroe-
conomic projections generated by private industry forecasters, central banks, and inter-
national institutions, most forecasting studies are done on the basis of the ex-post revised
oil prices (Morana, 2001; Knetsch, 2007). One reason for this is that real-time datasets of
variables required in forecasting the real price of oil are not readily available and are not
easily constructed (Baumeister and Kilian, 2012). However, macroeconomic forecasts
are affected by the use of real-time data (Fair and Shiller, 1990). Stark and Croushore
(2002) find that the use of real-time macroeconomic data may positively affect forecast
performance. Therefore, in recent years, there has been increased interest in real-time
forecasts of the real oil price at least for horizons up to one or two years. Baumeister



and Kilian (2012) construct a monthly real-time dataset by using backcasting and now-
casting techniques over the period 1974 to 2010 then compare the forecasting results
with those based on ex-post revised data. In a later paper they then analyse the forecast
performance using the real-time real oil price through forecast scenarios (Baumeister
and Kilian, 2014b), and product spreads (Baumeister, Kilian and Zhou, 2015). These
three papers discuss the process of constructing the real-time dataset for the real oil
price. However, the authors do not share the real-time dataset of the variables required
for forecasting the oil price with the public. This paper follows the construction process
of Baumeister and Kilian (2012) to extend the data to February 2015. This section
documents the process of constructing the real-time data and then also describes the
ex-post data.

2.1 The construction of the real-time oil price data

Two types of oil price series are collected and analysed. The monthly averages of the
West Texas Intermediate (WTI) spot price is obtained from the database of the Federal
Reserve Bank of St. Louis and the Energy Information Administration (EIA) database.
The WTI spot price was collected by the Federal Reserve Bank of St.Louis until July
2013 when it was discontinued. This paper uses the monthly WTT prices until July 2013
from the FRED database. Data after July 2013 is obtained from the EIA. The WTI
spot price of crude oil is available in real time and is not subject to data revisions.

An alternative oil price series to the WTI is the monthly U.S. refiners’ acquisition cost
for crude oil imports which is also collected for analysis in this paper. According to
Baumeister, Kilian and Zhou (2015), the U.S. refiners’ acquisition cost for crude oil
imports is a better proxy than the WTI price for the global price of crude oil that is
published by the Monthly Energy Review of the EIA. However unlike the WTTI price,
the U.S. refiners’ acquisition cost for crude oil imports is not available in real-time and
is available with a delay and subject to revisions.

This paper first constructs the real-time dataset of the monthly U.S. refiners’ acquisition
cost for crude oil imports consisting of monthly vintages from 1994.2 through 2015.2,
each covering data extending back to 1974.1. Issues of the Monthly Energy Review
are only available from January 1993 in the EIA database. Each vintage as reported
by the EIA only includes data for a maximum of 3 years. For example, the 1993.1
issue includes data as far back as 1991.1, which means that the pre-1991.1 data for all
vintages needs to be approximated. As data moves from one Monthly Energy Review
to the next, some of the earlier observations cease to be reported. Following the real-
time dataset construction process used by Baumeister and Kilian (2012), a backcasting
approach is introduced to fill the gaps. Specifically, the pre-1991.1 data for all vintages
are approximated using the ex-post revised data. What’s more, the gaps in the current
vintages due to the fact that the earlier observations are no longer reported after 3 years



are filled with the most recent data from earlier vintages. See Baumeister and Kilian
(2012) for a more detailed discussion of backcasting.

There are some missing observations in the real-time variables owing to the fact that the
monthly U.S. refiners’ acquisition cost for crude oil imports becomes available only with a
delay. For example, the vintages from 1994.2 to 2005.7 report observations for up to t—3,
and vintages from 2005.8 to 2015.2 report observations up to t—2.! Baumeister and Kilian
(2012) use nowcasting to fill the gaps. However, in many studies of forecasting with real-
time macroeconomic variables (Stark and Croushore, 2002; Clark and Ravazzolo, 2014),
researchers use real-time data with a delay to examine the forecasting performance of
models instead of extrapolating the missing real-time observations by nowcasting. The
reason why these studies do not use nowcasting is that the missing real-time observations
are extrapolated using a growth rate of a related macroeconomics time series and the
extrapolated results may not be accurate. The extrapolated time series may affect
the accuracy of the forecasting performance. This paper follows the studies of Stark
and Croushore (2002) and Clark and Ravazzolo (2014) and uses real-time U.S. refiners’
acquisition costs for crude oil imports with a lag to compare forecasting performance.

The real price of oil is constructed by deflating the nominal price of oil by the U.S.
consumer price index. Real-time data for the seasonally adjusted monthly U.S. con-
sumer price index for all urban consumers are obtain from the Real-time Data Set for
Macroeconomists complied by the Federal Reserve Bank of Philadelphia and the Eco-
nomic Indicators published by the Council of Economic Advisers.? The real-time CPI
data is also available with a lag. In vintage ¢, the available data runs through period
t—1.

As discussed by Romer and Romer (2000), Stark and Croushore (2002) and Clark and
Ravazzolo (2014), a key question in real-time forecasting exercise is, which vintage of
data should be used to represent the ‘actual’ true data from which forecasting errors
are calculated? This paper follows Stark and Croushore (2002) and Baumeister and
Kilian (2012) and uses the final release of the real oil price data as the ‘actual’ data in
evaluating forecasting accuracy.

For the real-time U.S. refiners’ acquisition cost for imports variable, forecasts are eval-
uated from 1993.12 to 2014.12, which requires real-time data vintages from 1994.2 to
2015.2, each covering data extending back to 1974.1. The simulation exercise begins
with vintage 1994.2, and the parameters of the forecasting model are estimated using
the sample 1974.1-1993.11. The paper computes the forecast horizons ranging from 1

!Usually when moving from one vintage to the next, the later vintage contains additional
observations. However, there are no new observations available in vintage 1994.5 and vintage
2006.9

?Vintages for 1998.11 to 2015.2 are obtained from Federal Reserve Bank of Philadelphia. The
pre-1998.11 vintages are obtained from the Economic Indicators published by the Council of
Economic Advisers



to 12 months ahead outside the estimation window. Then it repeats the above step in
a rolling procedure, going forward one month each step, adding one more observation
to the sample used for estimation.® When the time ¢ — 3 information is actually in-
corporated into the models used for forecasting at ¢, the 1-month-ahead forecast is the
month t — 2 forecast, while the 3-month-ahead forecast is the month ¢ forecast. For the
real-time WTI price, the forecasts are evaluated from 1994.2 to 2015.2, which also re-
quires real-time data vintages from 1994.2 to 2015.2, each covering data extending back
to 1974.1.

2.2 Ex-post revised data

The most recent data set available at the time of the study is to April 2015. The paper
discards the last 4 months of data since the most recent data is still preliminary and
may be revised in the following months (Baumeister and Kilian, 2012). The remaining
data for 1974.1 — 2014.12 as reported in vintage 2015.4 are treated as the ex-post revised
data when evaluating the forecasting accuracy of the candidate models. The evaluation
window is 1994.1 to 2014.12. The ex-post revised monthly U.S. refiners’ acquisition cost
for imports is constructed from the latest available data, and the data downloaded from
the data set of the EIA. The ex-post revised seasonally adjusted CPI data is downloaded
from Federal Reserve Bank of Philadelphia. As for the real-time oil data, the ex-post
real price of oil is constructed by deflating the nominal price of oil by the U.S. consumer
price index.

3 The forecasting models

Random walk (RW) and standard AR and ARMA models with constant volatility are
easy to use for forecasting (Baumeister and Kilian, 2012; Alquist, Kilian and Vigfusson,
2011). However, a voluminous literature has demonstrated that the volatility of a wide
variety of energy series tends to change over time (Narayan and Narayan, 2007; Kang,
Kang and Yoon, 2009; Larsson and Nossman, 2011). Allowing for time-variation in
the volatility of energy data is important for energy data estimation and forecasting.
Therefore, in addition to the standard RW, AR and ARMA models, this paper con-
siders the forecasting performance of models with two classes of time-varying volatility
specifications: GARCH models and stochastic volatility models. This section discusses
the forecasting models and provides an overview of the Bayesian estimation methods
used. The three constant volatility models are discussed in section 3.1, and the five

3For vintage 2005.8, the EIA added two more observations instead of one. But for vintage
1994.5 and vintage 2006.9, there are no more new observations



time-varying volatility models are discussed in section 3.2. The three constant volatility
models and the five time-varying volatility models are summarized in Table 1.

3.1 Constant volatility models

Constant volatility models are widely used to forecast energy prices and are described
in this section. The first model is a random walk model, which is denoted as RW:

Yt = Yy—1 + U, ug ~ N((),UZ)' (1)

In equation (1), y; is the oil prices, and wu; is the error term which is an independent
and identically normally distributed random variable with mean E(u;) = 0 and variance
var(u;) = o?. The RW model is the benchmark model for the analysis.

The second model is an Autoregressive model with p lags:

Yt = Po+ Bryi—1 + ... + BpYt—p + us, uy ~ N(0, 02)~ (2)

In equation (2), the y; and u; are the same as in the equation (1). [y is a constant
intercept and the scalar parameters (5; capture the magnitudes of effects of the lagged
oil prices y;—;,7=1,2,...,p,.

According to Baumeister and Kilian (2012), an AR model with p = 12 is common in the
literature on oil market regression-based models, so this value is utilized in this model.
In addition, the condition that the roots of the characteristic polynomial associated with
the AR coefficients all lie inside the unit circle is imposed, so that the AR process is
stationary. This model is denoted as AR.

Finally, the third constant volatility model is the autoregressive moving average model:

Yt = Bo + Brys—1 + & (3)
§t = ug + U1, Uy NN(O,UQ)- (4)

In equation (3), the error term &; follows a first-order moving average process and the

y+ and u; are the same as in equation (1).

This model is denoted as ARMA and has a lag order of 1 in both the AR and MA
components.



3.2 Time-varying volatility models

In this subsection, two classes of time-varying volatility models are discussed: One is
the stochastic volatility model firstly introduced by Taylor (1994) while the other is the
generalized autoregressive conditional heteroskedasticity (GARCH) model (Bollerslev,
1986) that is an extension of the pioneering work done on ARCH models by Engle
(1982).

3.2.1 Stochastic volatility models

The first specification for the time varying volatility models is the autoregressive model
with stochastic volatility:

Y = Bo + Biyi—1 + ... + BpYi—p + s, w, ~ N(0,eM), (5)

for t = 1,2,...,T. The state h; is the log-volatility and is assumed to evolve according
to a stationary process:

he = pn + n(he_1 — pp) + €, el ~N(0,07), (6)

for t = 2,...,T. Here the paper assumes that |¢,| < 1 and the states are initialized with
2
ag
hi ~ N (un, ﬁ)
In equation (5), the term u; is an independent and identically normally distributed ran-
dom variable with mean F(u; = 0) and variance var(u;) = e"*. In addition, the volatility
process is described by a stationary autoregressive process of order one, given in equation
(6). The parameter |¢,| < 1 (for stationarity) measures the volatility persistence and

the error variance 0,21 is the volatility of the log-volatility h;. This model is denoted as
AR-SV.

The second specification is the stochastic volatility in mean model developed by Koop-
man and Uspensky (2002). In this model, volatility enters the conditional mean equation
and the volatility appears in both the conditional mean and the conditional variance
equations:

Yt = Bo + Bryi—1 + - + Bpyie—p + ae™ 4 uy, up ~ N(0,eM), (7)

where u; has the same stochastic volatility specification as before. This model is denoted
as AR-SVM. In equation (7), the exponential of log-volatility enters the conditional mean
of the observation equation (7) as an additional explanatory variable and the scalar
parameter a captures the magnitude of the volatility feedback.

10



The third specification is the moving average stochastic volatility model by Chan (2013).
This model includes both the moving average and stochastic volatility components:

Y = Bo + Brye—1 + &, (8)
& = up + YU, ug ~ N(0, eht% (9)

where ug = 0 and |¢| < 1. The error term &; follows a first-order moving average process.
The term u; is an independent and identically normally distributed random variable with
mean E(u;) = 0 and variance var(u;) = e*. Again the log-volatility h; is assumed to
follow an AR (1) process as in equation (6). This version of the stochastic volatility
model is denoted as ARMA-SV.

3.2.2 GARCH Models

This subsection introduces two types of GARCH models. While volatility is a random
variable in stochastic volatility models, the time-varying conditional variance in GARCH
models is a deterministic function of past observations and past variances.

The first is the autoregressive model with GARCH (1,1) errors. In this setting, the

conditional variance Ut2 is a linear function of the squared past shock u?_l and the past

variance o7 _;:
Yt = /BO + 51yt—1 + ...+ ﬁpyt—p + uy, Uy ~ N(()? Ut2) (10)
of = ag + anug_y + 707y, (11)

where ag > 0,27 > 0 and v > 0 ensure a positive conditional variance and 0(2) =uy=0
is assumed for convenience. The model is referred to as the AR-GARCH model.

The second model combines an autoregressive-moving-average model with GARCH(1,1)
erTors:

yr = Bo + Brye—1 + & (12)
§e = ug + Pug1, ug ~N(0,07). (13)

The condition for invertibility is imposed, i.e., [t)| < 1. The variance o? follows the
same GARCH process as above. This version of the GARCH model is referred to as
ARMA-GARCH model.

4 Empirical forecasting results

The objective of the paper is to forecast the level of the real price of oil rather than
the log oil price since policymakers are more concerned about the real price (Hamilton,

11



Table 1: List of models

Model Equation Variance
Constant volatility models
RW Yt = Yy—1 T U, up ~N(0,6%) (1)
AR Yyt = Bo + B1ys—1 + ... + /prt—p + ug, Uy ~ N(Ov 02) (2)
Yt = Bo + Bryt—1 + &, (3)
ARMA
& = up + up—1, ug ~N(0,0%)  (4)
Time-varying volatility models
(1) Stochastic volatility models
AR-SV Yt = Bo + Bryi—1 + o + Bpyi—p + U, up ~N(0,e")  (5)
he = pn + dn(hu—1 — pn) + €, el ~N(0,07) (6)
AR.SVM ye = Bo+ Biye—1 + ... + prt;p + ael + uy, u}tl ~ N(0, eh‘z‘) (7)
he = pn + dn(he—1 — pn) + €t e ~N(0,0%) (8)
yt = Bo + Brye—1 + &, (9)
ARMA-SV
& = up +Yus_a, ug ~ N(0, eht) (10)
ht = pn + ¢h(ht—1 - Mh) + 67151’ Eh ~ N(07 0'}21) (11)
(2) GARCH models
AR.CARCH yt2= Bo + Blyt; + . +25pyt7p + ug, up ~N(0,07)  (12)
op = oo+ oui_y +Y0i_q, (13)
yr = Po + brye—1 + &, (14)
ARMA-GARCH
§t = ut + Yup—, up ~N(0,07)  (15)
0? = oo+ a1ui_| + 024, (16)

12



1996; Alquist, Kilian and Vigfusson, 2011). Following Baumeister and Kilian (2012), the
regression models in the paper are specified in logs, and the forecasts are transformed
back to the level form. The forecast horizons are 1, 3, 6, 9 and 12 months. The paper
broadly sets similar priors for both the constant and time-varying volatility models.
Specifically, it chooses the same prior for common parameters. All priors are proper but
relatively non-informative. The details of the Bayesian estimation methods are included
in the appendix. The following subsections introduce the forecast evaluation metrics
and show the forecasting results for the real-time and for the ex-post revised data.

4.1 Forecast evaluation metrics

A recursive out of sample forecasting scheme is used to evaluate the performance of the
models listed in Table 1 for forecasting both the real-time and ex-post revised oil price
at various horizons. Both point and density k-step-ahead iterated forecasts, with k =
1, 3, 6, 9, 12, are computed to measure the forecast performance. The accuracy of the
point forecast is measured by the mean square forecasting errors (MSFE), while the
accuracy of density forecast is measured by the sum of the predictive likelihood. It is
worth mentioning that the predictive likelihood motivated and described by Geweke and
Amisano (2010) and Geweke and Amisano (2011) is commonly viewed as the broadest
measure of forecasting.

Given data up to time ¢, which is denoted as y;.,, the MCMC sampler described in
the appendix is implemented to obtain the posterior draws. Then the predictive mean
E(yt+k|y1.) s computed as the point forecast and the predictive density p(yrik|yi..) as
the density forecast. In the next step, the forecast moves one period ahead and the
exercise is repeated in a rolling procedure, going forward one month by adding one more
observation to the sample used for estimation. These forecasts are then evaluated for
t = tog,...,T — k where tg is 1993.12 for the real-time data and 1994.1 for the ex-post
revised data.

According to Geweke and Amisano (2010) and Chan (2013), in practice, neither the
predictive mean E(y;1x|y;.;) nor the predictive density p(y:+x|y;..) can be analytically
computed. Instead, predictive simulation is used to obtain them. To be more precise,
for each MCMC iteration, given the model parameters and states (up to time t), future
states from time ¢+ 1 until ¢4k can be simulated using the relevant transition equations.
Meanwhile, future errors ug ~ /\/’(0,05), us ~N(0,e) for s=t+1,....,t +k—1 can
be simulated. As mentioned earlier, the regression models in the paper are specified
in logs and the forecasts are exponentiated. Therefore, given these draws, y.x follows
the log normal distribution instead of the normal distribution and the point and density
forecasting for y, 1 can be easily calculated at each MCMC iteration. These forecasts are
then averaged over all the posterior draws to produce estimates for the predictive mean
E(yt4x|y1..) and the predictive density p(yi+k|y1..). The procedure then moves forward
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to use data at t+1 and the process is repeated recursively to obtain E(yii14k|y1.041)
and p(ys+14£[¥1.11), and so forth.

To measure the accuracy of the point forecasts, the root mean squared forecast error
(MSFE) is used, and is defined as

T—k

tZ; (y150+k - E(Z/t+k|}’1;t))2
=to

MSFFE =

T—k—ty+1 ’

where y7, ;. denotes the observed outcome of y;, that is known at time ¢ + k. For this
metric, a smaller value indicates better forecast performance.

The metric used to evaluate the density forecasts p(yix|y;.¢) is the log predictive like-
lihood p(y7, ,|y1.+). This is the predictive density for y;i) formed at time t using the
data from period 1,...,¢, evaluated at the realization y? ;. The value of the predictive
likelihood will be large if the actual observation y7, , is likely under the density forecast.
The sum of log predictive likelihoods is used to evaluate the density forecasts:

T—k

Z Llogp(ye+k = Y aly1:e)-
t=to

For this metric, a larger value indicates better forecast performance.

4.2 Real-time forecasting results

Tables 2 and 3 summarize the results of the real-time forecasts based on the MSFE for
the two oil price series: the real U.S. refiners’ acquisition cost for imports, and the real
WTTI price. The forecast horizons are 1 month, 3 months, 6 months, 9 months and 12
months. In order to facilitate the comparison between different models, the results are
reported in terms of the relative MSFE, i.e., the ratio between the MSFE of a specific
model and the MSFE of the benchmark model. If the relative MSFE is lower than unity,
the forecasts of that given model will be on average more accurate than those generated
by the benchmark.

Overall, the ARMA models with time-varying volatility consistently outperform the
RW and AR models at all forecast horizons for both types of the real oil price data.
For example, the MSFEs for ARMA-SV and ARMA-GARCH are less than 95% of the
value for RW at all forecast horizons. However, the improvements by adding the MA
components in the constant volatility model does not exist at the long horizons. The
ARMA model only improves on the RW baseline at short horizons. For example, for
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Table 2: Recursive MSFE ratio for forecasts of the monthly real U.S. refiners’ acquisition cost
for imports relative to the RW using real-time data

Forecast horizon

Model

k=1 k=3 k=6 k=9 k=12

Constant volatility models
RW 1 1 1 1 1
AR 0.942 0.943 1.027 1.148 1.224
ARMA 0.945 0.910 0.935 0.993 1.047
Time-varying volatility models

AR-SV 0.961 0.948 1.019 1.099 1.102
AR-SVM 0.959 0.948 1.004 1.057 1.048
ARMA-SV 0.923 0.912 0.928 0.932 0.927
AR-GARCH 0.923 0.905 0.961 1.020 1.019

ARMA-GARCH 0.949 0.938 0.940 0.927 0.913

Table 3: Recursive MSFE ratio for forecasts of the monthly real WTI price relative to the RW
using real-time data

Forecast horizon

Model

k=1 k=3 k=6 k=9 k=12

Constant volatility models
RW 1 1 1 1 1
AR 0.924 0.966 1.013 1.089 1.153
ARMA 0.927 0.962 0.968 1.003 1.040
Time-varying volatility models

AR-SV 0.919 0.968 1.032 1.082 1.088
ARSV-M 0.934 0.993 1.060 1.037 1.038
ARMA-SV 0.897 0.936 0.947 0.953 0.960
AR-GARCH 0.944 0.998 1.044 1.093 1.101

ARMA-GARCH 0.893 0.932 0938 0.934 0.928

the real U.S. refiners’ acquisition cost for imports, the ratio of the ARMA MSFE to
the RW MSFE is 0.961 at the 1-month-ahead horizon, while the corresponding ratio is
1.047 at the 12-months-ahead horizon. Comparing the ARMA models with the RW and
AR models shows that the MA component typically yields consistent improvements in
forecast accuracy.
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The results in Tables 2 and 3 also indicate that all AR models with and without time-
varying volatility produce lower MSFEs than the RW forecast at short horizons (1-
month-ahead and 3-month-ahead) for both types of the real oil price. The magnitude of
the forecast accuracy gains is typically somewhat small, and the AR models reduce the
MSFE by less than 10% at the short horizons. However, none of the AR specifications,
even with time-varying volatility, yields any consistent advantages over the RW baseline.
For longer horizon forecasts (k > 6), forecasts from the AR models are slightly less
accurate than the RW model forecast.

Among the AR models, it is of interest to note that the specifications with time-varying
volatility perform slightly better than the corresponding models with constant volatility
at the longer-horizon forecast periods. These results show that including time-varying
volatility in conditional variances yields gains in longer-horizon period forecast accu-
racy. However, including stochastic volatility in mean does not have much effect on the
MSFE-based point accuracy. Specifically, compared to the AR-SV models, the extension
improves forecast accuracy by a small amount in the case of real U.S. refiners’ acquisition
cost for imports but slightly reduces it at the shorter horizons for the real WTT price. In
terms of the ARMA models, the model with stochastic volatility yields point forecasts
that are in general more accurate than forecasts from the counterpart with constant
variance.

As mentioned earlier, there are two classes of time-varying volatility models, namely
GARCH models and SV models. The paper also investigates the performance of these
two types of models in terms of the real-time oil prices point forecast. Comparing the
AR-SV with the AR-GARCH, and the ARMA-SV with the ARMA-GARCH show that
the SV models are more accurate in some cases and reduce accuracy in others. For
example, the forecast performance of the AR-SV specification for the real WTI price is
better than the forecast performance of the AR-GARCH model, while the performance
of the AR-SV models in the real U.S. refiners’ acquisition cost for imports is worse
than their counterpart. However, compared to the forecasting performance of GARCH
models, the improvements and reductions of forecasting performance using SV models
are not considerable.

The second method to assess the accuracy of the models is to look at the entire predictive
density. The results of the density forecasts for the two types of real-time oil price data
are presented in Tables 4 and 5 respectively. To simplify the process of comparison,
the sum of the log predictive likelihoods of a given model are computed, from which
the corresponding RW baseline value is subtracted. Therefore, entries greater than zero
indicate that forecasts from the indicated model are more accurate than forecasts from
the associated baseline model.

Overall, the results in Tables 4 and 5 indicate that the specifications with constant

volatility are always worse than the benchmark model for density forecasting at all
horizons for both types of real-time oil price. Specifically, for both the ARMA and AR
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models with constant volatility, all the relative sum of log predictive likelihood values are
negative and far from zero. Moreover, the models that allow for time-varying variance
yield density forecasts that, in general, significantly improve the accuracy of the density
forecast relative to the RW baseline models and the models with constant volatility. The
conclusion is that including time-varying volatility in AR models and ARMA models
yields sizeable gains in density accuracy as measured by the sum of the log predictive
likelihood.

Table 4: Sum of log predictive likelihood for forecasts of the monthly real U.S. refiners’ acquisi-
tion cost for imports relative to the RW using real-time data

Forecast horizon

Model

k=1 k=3 k=6 k=9 k=12

Constant volatility models
RwW 0 0 0 0 0
AR -156.81 -162.68 -149.36 -172.48 -173.48
ARMA -148.05 -140.97 -120.48 -147.99 -147.65
Time-varying volatility models

AR-SV 6.11 38.99 48.17 14.61 2.49
AR-SVM 15.32 43.36 51.50 17.06 1.88
ARMA-SV 23.21 47.84 58.79 31.05 17.25
AR-GARCH 8.69 33.96 37.89 1.69 -14.21
ARMA-GARCH -14.12  30.96 43.93 17.76 6.83

Among the models with time-varying volatility, only the ARMA-SV model offers con-
sistent advantages over the RW baseline model at all horizons for the two real-time oil
price series. The ARMA-GARCH is the other specification that always dominates the
baseline in the real WTT price forecasts. To further investigate the relevance of the MA
component, this paper compares the AR model with the ARMA, the AR-SV with the
ARMA-SV, the AR-GARCH with the ARMA-GARCH. All classes of models, models
with the MA component show considerable improvement in the density forecasting accu-
racy. For example, the ARMA-SV model dominates the AR-SV model in forecasting the
real WTTI price at all horizons with the sum of the log predictive likelihoods increasing
by factors as much as 10.81 at horizon 1, 19.55 at horizon 3, 35.91 at horizon 6, 14.52
at horizon 9 and 4.38 at horizon 12.

The AR-SV and ARSV-M specifications dominate the RW, with the exception of the
real WTTI price at longer horizons. Compared to the AR-SV model, the ARSV-M model
improves the density forecast accuracy in some cases particularly for the real U.S. refin-
ers’ acquisition price at shorter horizons but reduces the accuracy in others, including
for the real WTI price. The comparison shows that accounting for stochastic volatility in
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Table 5: Sum of log predictive likelihood for forecasts of the monthly real WTT price relative to
the RW using real-time data

Forecast horizon

Model

k=1 k=3 k=6 k=9 k=12

Constant volatility models
RwW 0 0 0 0 0
AR -158.75 -157.00 -133.68 -148.24 -150.34
ARMA -149.95 -153.21 -128.63 -145.97 -144.32
Time-varying volatility models

AR-SV 5.21 15.16 31.42 5.45 -5.02
ARSV-M -0.69 10.75 25.90 3.15 -10.55
ARMA-SV 10.81 19.55 34.91 14.52 4.38
AR-GARCH 5.82 11.60 28.26 3.35 -9.27

ARMA-GARCH 11.34 16.79 32.77 15.51 6.29

mean is not important for real-time oil prices forecasting. In addition, the SV specifica-
tions are usually more accurate than the corresponding GARCH models, except in a few
cases (For example, for WTT price forecasting, the ARMA-GARCH model performances
slightly better than the ARMA-SV model for k = 9, 12).

4.3 Forecasting results for ex-post revised data

Many existing studies used the ex-post revised data to forecast the oil prices. For
convenience of comparison with other studies, this paper also includes the forecasting
performance of models using the ex-post revised data. The results in Tables 6 and 7
are the counterparts of the real-time analysis in Tables 2 and 3. Meanwhile, the results
in Tables 8 and 9 are the counterparts of the real-time analysis in Tables 4 and 5. All
real-time data is replaced by the ex-post revised data. The evaluation window is from
1994.1 to 2014.12. According to Baumeister and Kilian (2012), virtually all data are
revised half a year after the first publication and the data for the last few months of the
available sample are excluded for forecasting the oil prices. Therefore, the paper treats
the data up to 2014.12 in the 2015.4 vintage as the proxy for ex-post revised data.

The point forecasting results are broadly similar to those for the real-time data. The
best two models are the ARMA-GARCH and the ARMA-SV models, and these models
are the only two that dominate the RW baseline at all forecast horizons for both oil
price series. In addition to the best forecasting performance using the real-time data,

18



Table 6: Recursive MSFE ratio for forecasts of the monthly real U.S refiners’ acquisition cost
for imports relative to the RW using ex-post revised data

Forecast horizon

Model

k=1 k=3 k=6 k=9 k=12

Constant volatility models
RW 1 1 1 1 1
AR 0.796 0.930 1.047 1.166 1.257
ARMA 0.826 0.929 0.965 1.011 1.059
Time-varying volatility models

AR-SV 0.792 0.921 1.031 1.111 1.124
ARSV-M 0.784 0.888 0.999 1.055 1.026
ARMA-SV 0.795 0.903 0.941 0.952 0.946
AR-GARCH 0.773 0.876 0.974 1.039 1.043

ARMA-GARCH 0.798 0.927 0.941 0.934 0.910

Table 7: Recursive MSFE ratio for forecasts of the monthly real WTT relative to the RW using
ex-post revised data

Forecast horizon

Model

k=1 k=3 k=6 k=9 k=12

Constant volatility models
RW 1 1 1 1 1
AR 0.933 0.971 1.029 1.104 1.170
ARMA 0.918 0.951 0.960 1.001 1.049
Time-varying volatility models

AR-SV 0.927 0.974 1.040 1.091 1.099
ARSVM 0.936 0.977 1.018 1.101 1.155
ARMA-SV 0.902 0.939 0.949 0.957 0.967
AR-GARCH 0.951 0.999 1.051 1.100 1.110

ARMA-GARCH 0.898 0.931 0.937 0.935 0.933

the ARMA model with time-varying volatility improves forecasting accuracy for the ex-
post revised data as well. In addition, the AR models with and without volatility are
more accurate than the RW baseline at the shorter horizons only. However, unlike the
case for forecasting using the real-time data, the results for forecasting using the ex-

19



post revised data provide more evidence that including stochastic volatility consistently
improves, often dramatically, the accuracy of point forecasts relative to models with
constant volatility at all horizons. Specifically, the ARMA-SV model and the AR-SV
model usually dominate their counterparts with constant variance. When it comes to
the GARCH class of time-varying volatility models, these are usually more accurate than
the specifications with constant volatility, except for the forecasts of the real WTI at
shorter forecasting horizons.

Among the models with time-varying volatility, the AR-SVM model yields consistent
improvement relative to the AR-SV model in forecasting the monthly real U.S . refiners’
acquisition cost for imports. Hoverer, the AR-SVM model is always worse than AR-SV
in monthly real WTI forecasting. In addition, for the point forecasting of the ex-post
revised data, SV models is better than the GARCH models in some cases and is worse
in some other cases. For example, AR-SV always dominates AR-GARCH in forecasting
monthly real WTI while AR-SV is dominated by AR-GARCH in forecasting monthly
real U.S. refiners’ acquisition cost.

For the case of forecasting using the ex-post data, the results for the density forecasting
are broadly similar to the results for the case using the real-time data. The AR and the
ARMA models with constant volatility perform considerably worse than the baseline
model for the two oil price series. When it comes to the time-varying volatility models
compared to the RW model, the models with time-varying volatility improve the density
accuracy in most cases. Among the models with time-varying volatility, the ARMA-
SV model is still the best model in terms of density forecasting for the ex-post data
series. The second best model is the ARMA-GARCH in most cases. The results also
indicate that in general the forecast performance of SV models is better than the forecast
performance of GARCH models.

5 Conclusion

The previous literature generates real-time forecasts for the real price of oil using con-
stant volatility models, but does not allow for volatility clustering, which is a prominent
feature in oil data. This paper fills the gap by comparing the forecasting performance
of a variety of models with constant and time-varying volatility, including the AR and
ARMA specifications for real oil prices. The set of models includes those based on con-
stant volatility, AR stochastic volatility, ARMA stochastic volatility, stochastic volatility
in mean with constant parameters, standard GARCH and GARCH with MA innova-
tions. Specifically, this paper has highlighted the importance of MA components and
stochastic volatility in mean for forecasting the oil price, which translates into better
forecast performance in some domestic macroeconomics aggregates as well (Chan, 2013;
Chan, 2017). While many studies measure the forecasting performance of the oil price on
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Table 8: Sum of log predictive likelihood for forecasts of the monthly real U.S refiners’ acquisition
cost for imports relative to the RW using ex-post revised data

Forecast horizon

Model

k=1 k=3 k=6 k=9 k=12

Constant volatility models
RwW 0 0 0 0 0
AR -160.69 -166.22 -146.66 -166.90 -172.16
ARMA -152.20 -144.36 -117.60 -141.54 -145.35
Time-varying volatility models

AR-SV 20.37 36.72 49.75 17.39 1.20
AR-SVM 26.56 40.23 52.13 19.63 1.15
ARMA-SV 31.02 43.09 59.36 34.63 16.56
AR-GARCH 21.18 34.28 41.21 6.94 -12.97

ARMA-GARCH 12.41 35.14 47.88 24.94 10.46

Table 9: Sum of log predictive likelihood for forecasts of the monthly real WTT price relative to
the RW using ex-post revised data

Forecast horizon

Model

k=1 k=3 k=6 k=9 k=12

Constant volatility models
RwW 0 0 0 0 0
AR -161.98 -162.00 -140.60 -152.50 -153.33
ARMA -152.91 -158.38 -135.19 -150.35 -147.62
Time-varying volatility models

AR-SV 3.22 16.15 29.38 5.08 -4.75
AR-SVM -1.02 9.50 21.47 0.62 -14.24
ARMA-SV 8.95 19.83 33.20 14.58 4.27
AR-GARCH 3.69 12.82 27.25 3.11 -9.36
ARMA-GARCH 7.30 18.94 32.84 15.75 5.98

the basis of the accuracy of point forecasts, this paper has also compared and evaluated
the Bayesian predictive distribution from alternative models to compare the forecasting
performance. Additionally, the importance of real-time forecasting is well recognized
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in the literature (Croushore 2011, Baumeister and Kilian 2012). In recent years, there
have been some studies generating real-time forecasts for the real price of oil, which is
widely considered one of the key global macroeconomic indicators. However, there is no
readily available real-time dataset for the variables required to forecast the real price of
oil. This paper constructed a real-time dataset for the real oil price using backcasting
by following the construction process that was introduced by Baumeister and Kilian
(2012) and updated the real-time dataset for the real oil price until 2015. The paper
examined both the real-time and ex-post revised oil data including the real U.S. refiners’
acquisition cost for imports and real WTI price.

The results indicate that for both real-time and ex-post data, models with time-varying
volatility dominate their counterparts with alternative volatility specifications in terms
of point forecasting to a smaller degree in a longer horizon period and density forecasting
to a large degree at all horizons. Among the models with time-varying volatility, the
SV models perform better than the counterpart GARCH models, particularly in density
forecasting. In addition, the model with stochastic volatility in mean does not show
considerable improvement in the point and density forecasting accuracy compared to
the standard SV model. Overall, the stochastic volatility models with moving average
innovations are the best models for both real-time data and ex-post revised oil prices
data point and density forecasting.
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Appendix A

This section outlines the methods for estimating SV models including AR-SV, AR-SVM,

ARMA-SV and the GARCH models including the AR-GARCH model, ARMA-GARCH
model, which are introduced in Subsection 3.2.

Stochastic volatility models

This subsection firstly restates the AR-SV model. This model is an autoregressive model
with SV errors. The conditional variance of y; is Var(y:|h;) = €, and the state h; is
often called the log-volatility.

Yy = Bo + Bryi—1 + ... + BpYs—p + Us, u ~ N(0,eM),

hy = ph + ¢h(ht*1 - :uh) + 5?7 51}51 ~ N(O7Jf2L)7

where |¢p,| < 1 and the states are initialized with hy ~ N (up, 02 /(1—¢p)). The stochastic
volatility model is an example of non-linear state space models in which the measurement
equation is non-linear in the state. The joint conditional density of the state h =
(h1, ha,...ht) given the model parameters and the data is high-dimensional and non-
standard, while the the conditional density of the states of a linear Gaussian state
space model is Gaussian. Chan and Hsiao (2014) use the auxiliary mixture sampler
to estimate the stochastic volatility model. The nonlinear stochastic volatility model
is approximated using a mixture of linear Gaussian models, where the latter models is
standard. More specifically, given the mixture component indicator s = (s, ..., s7)’, the
Gaussian approximation of the conditional posterior distribution p(hly, B, s, tin, ¢n, 03)
can be obtained. Bayesian analysis can be performed using a sample from the joint
posterior distribution p(h, s, up, ¢n, 0%, Bly). Posterior draws can be obtained via a Gibb
sampler or M-H process that cycles through the conditional posterior distributions of
the parameters. Refers to Chan and Hsiao (2014) for the estimation details.

The second SV specification is AR-SVM model, where the volatility appears in both the
conditional mean and the conditional variance equations.

Y = Bo + B1yi—1 + - + Bpyi—p + ae™ 4wy, up ~N(0,e™),
he = pn + on(he—1 — ) + €l el ~N(0,07),

where |¢p| < 1 and the states are initialized with hy ~ N (up,02/(1 — ¢3)). For the
stochastic volatility models, an important step is to jointly sample the log-volatility
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h and the conditional density p(hly, 8, a, un, th,a,%) needs to be sampled. Unlike the
auxiliary mixture sampler used in AR-SV model, for the ARMA-SV model this paper
uses the accept-reject Metropolis-Hasting algorithm described in Chan (2017) to sample

p(hly, B, pin, dn, o3).

One of the key ingredients to implement the accept-reject Metropolis-Hasting algorithm
is finding an appropriate proposal density which can approximate the target density
p(hly, B, a, p, d)h,a%) well. The basic idea is to approximate the target density using
a Gaussian density. The target density can be represented as p(hl|y, 8, «, un, ¢p, O'}QL) x
p(yl, B, o, h)p(h|pn, ¢n, o7), and the latter density p(h|us, ¢p,o7) is Gaussian.

The log likelihood p(y|, 3, a, h) is not Gaussian in h and needs to be approximated by
a Gaussian density in h. To approx1mate p(y|B, . h) by a Gaussian density in h, this
paper expands logp(y|53, o, h) = Zt 1 logp(ye| B, e, hy) around the point h, which is the
mode of p(hly, B, «, i, ¢n, o2), by a second-order Taylor expansion:

~ ~ 1 ~ ~ 1 ~
logp(y|6, @, B) ~ logp(y|3, 0, 1) + (h — Y~ (h — B)'G(h — h) = — (WGh — 20 (F+ Gh)) + ez,

where ¢g is a constant and independent of h, f = (f1, fo,...fr) and G = diag (G1, ...G7)
with

0

fi= an, =~ logp(yt| B, a, ht)‘ht =hy,
62

Gy = athogp(thﬂ hi)lp, i

where G is the negative Hessian of the log-density evaluated at h. Finally combining
the p(h|up, ¢n,07) and the Gaussian approximation of p(y|3, @, h), the Gaussian den-
sity p(hly, 8, o, pn, dn, U,zl) can be obtained as the proposal density in the accept-reject
Metropolis-Hasting algorithm. Refers to Chan (2017) for the estimation details.

The ARMA-SV model allows the errors in the measurement equation for following an
MA(1)process

yr = Bo + Brye—1 + &,
ét:ut—i_lbut—h Ut NN(O)eht)7
he = wn + ¢h(ht*1 - Mh) + 5?7 5? ~ N(O>Jf2L)>

where ug = 0, 1| < 1, [¢n| < 1 and the states are initialized with hy ~ N (up, 02 /(1 —
Pn))-

This paper defines y = H,(y — x3), where y = [y1,v2,...,yr), ¢+ = [L,y—1], x =
(@1, %2, ...,x7], B = [Bo, 1] and H, is a T' x T lower triangular matrix with ones on the
main diagonal, ¢ on first lower diagonal
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1 0 0 0 0]
e 1 0 0 0
H,= [0 ¢ 1 0 0
00 0 ... ¢ 1

Then (y|53, ¢, h) follows the multivariate normal distribution with (y|53, ¢, h) ~ N (0, Sy),
where Sy = diag(e,...e"T). Hence, the auxiliary mixture sampler discussed in ARSV
model can be directly applied to sample from p(hly, 3, @, fin, ¢n, 7). Refers to Chan
(2013) for the estimation details.

GARCH models

Firstly, this subsection restates the AR-GARCH model. This model is an autoregressive
model with GARCH (1,1) errors. The conditional variance o7 is a linear function of the
squared past shock and the past variance,

2
Yt = Bo + Biye—1 + ... + BpYi—p + us, ug ~ N(0,0%),
2 2 2
Ut = Q) + Oélutil + 70't717
where ag > 0,27 > 0 and v > 0 ensure a positive conditional variance and 0(2) =uy=0
for convenience.

For the GARCH models, the paper samples the joint posterior distribution of the pa-
rameters using the approach suggested by Nakatsuma (1999). For example, for the
AR-GARCH model, the recursive nature of the variance equation does not allow for
conjugacy between the likelihood function. Therefore, the paper relies on the Metropolis-
Hasting (M-H) algorithm to draw sample from the joint posterior distribution.

In order to express the likelihood, define the vectory = (y1,...,yr)", ¢ = (Yt—1, -, Yt—12),
x = (r1,...,27)", w = (u1, ..., ur)’. The likelihood function in matrix notation is:

ply16,0,7) o [S]7 expl— 5y — xB)S ™ (y — x5)] (14

with ¥ = diag(hq,...hr). Since the full conditional density is unknown analytically,
parameters 3 , a and v are sampled from three proposal densities. The proposal density
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to sample the p x 1 vector 3 is obtained by combining the likelihood function (14) and
the prior density p(8) ~ N (ug,Xg) by the use Bayes update:

ps(B1B, .7, y) ~ N(@3, Sp),

with

SRR SN
W = (xS + 25 ug),
where the T x T diagonal matrix ¥ = diag(hi(B,,7),...,h7(3,a,7)) and f is the

previous draw of 8 in the M-H sampler. A candidate 8* is sampled from this proposal
density and accepted with probability:

p(b’f|a777y)p5(5\ﬂ~*7amy) )
p(Blay,y)ps(B*18,0,7,y)

min (
In terms of parameters o and 7, these densities are obtained by noting that the GARCH(1,1)
models can be written as an ARMA(1,1) model for y?. The conditional variance can be
expressed as

u% =ap+ (a1 + ’Y)Ut271 — Ywi—1 + Wy,

by defining w; = u? — hy.
According to Nakatsuma (2000), the variable w; which is a martingale difference process
with a conditional mean of zero and a conditional variance of Qh?, can be approximated

by a variable z; which is normally distributed with a mean zero and a variance of 2h2.
Then an auxiliary model is generated:

2y = u? — Qg — (041 + V)U?A + Y21, (15)

by noting that z; is a function of parameters «, 5, v. By defining the T" x 1 vector
z = (21,...,2r)" as well as the T' x T matrix: A = diag(2h?,...,2h3), it can approximate
the likelihood function from the auxiliary model (15) as:

1
p(y18, @, 7) o (detA) "% exp(—52/A ). (16)
This likelihood function is used to construct the proposal density for parameter o and

.
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Defines v; = y? for notational convenience. To generate vector a, Nakatsuma (2000)
uses the recursive transformation, initially proposed by Chib and Greenbe (1994), to
express the function z; in (15) as a linear function of a 2 x 1 vector a. However, instead
of recursive transformations, this paper rewrites the function (15) as the linear function
of

Hz = Hv — éa, (17)

where v = (vq,...,vr)’, § is a T x 2 matrix:

1 0
_ 1 um
0= . )
1 vr

and H is a T' x T' lower diagonal matrix with ones on the main diagonal

1 00 ... 0 O
LR
0 00 ... 1
By pre-multiplying (17) by H 1,
Z =v —da, (18)
where § = H~'5. Therefore the approximate likelihood function of parameter « is

expressed as follows:
1
p(y|5, o, 7y) o (detA)_% exp[—i(v —da) A" (v = da)].

The proposal density to sample vector « is obtained by combining this likelihood function
and the prior density p(a) ~ N (uq,Xq), by the usual Bayes update:

—

pa(a|d7 /67 77Y) ~ NQ(@: EO&))
with: . )
So  =8ATo+3.0,
Ug = i;(Eaua + &'Av),

where the T x T diagonal matrix A = diag(2h3(&, B,7), ..., 2h%(&, B,7)) and @& is the
previous draw of « in the M-H sampler. A candidate o* is sampled from this proposal
density and accepted with probability
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p(*|8,7,¥)pa (&la*,8,7,y) 1)
p(&lB,7,y)pale*|a,B,y,y) * 7/

min (
As mentioned in Nakatsuma (2000), the function in (15) can be expressed as a linear
function of parameter o but cannot be expressed as a linear function of . To solve this
problem, z;(7) is linearised by a first order Taylor expansion at point 4, which is the
previous draw in the M-H sampler

2(7) = 2(3) + g‘ﬁw % (v 4).

Furthermore, the paper defines the following: vy = z(¥) + V47 and V; = —%—‘3]72@.

Therefore z; = v, — yV,. By differentiating (15) with respect to ~, the V; can be
computed by the following recursion: V; = y? ;| — z_1(7) + V;_17 with Vo = 0. By
defining v = (v4,...,vp) and V = (V4,...V7)’, the term with exponential in (16) can
be approximated by z = v — V. This generates the approximate likelihood function
for parameter

P(y1B,a,7) o (deth)~F expl—5 (v =y VYA~ (v =7 V)] (19)

The proposal density to sample 7 can be obtained by combining the prior density p(y) ~
N (uy, 2,) and the approximate likelihood:

py ~N(uy, %),
—~_1 ~
S, =VAT'Vv+sh
=S, (VA v+ S ),

where the T'x T diagonal matrix = diag(2h3(83, a,7), ..., 2h(B, , 7). A candidate v* is
sampled from this proposal density and accepted with probability:

p(’Y* |a7/87y)p"/(:§/"y*»a7ﬁ7y) 1)

min (5 g )

The ARMA-GARCH model is a model which combines an autoregressive-moving-average
model with GARCH innovations

Yt = Bo + Prye—1 + &,

§t = u + Yug—1, w ~N(0,07),
under which the condition for invertibility is imposed, i.e., [1/| < 1. The variance o?
follows the same GARCH process as above.

The basic sampler remains the same. For the additional parameter v, the generation of
1) is similar to v by using the first-order Taylor expansion.
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