
| T H E A U S T R A L I A N N A T I O N A L U N I V E R S I T Y

Crawford School of Public Policy

CAMA
Centre for Applied Macroeconomic Analysis

Decreasing substitutability between clean and dirty 
energy

CAMA Working Paper 72/2019
September 2019

Anthony Wiskich
Centre for Applied Macroeconomic Analysis, ANU

Abstract
A review of the literature indicates a decreasing long-run elasticity of substitution 
between clean and dirty inputs as the share of clean inputs rises. In the power sector, 
which is the largest contributor to greenhouse gas emissions, integrating intermittent 
clean energy supply becomes increasingly difficult as the clean share rises. This paper 
describes a simple structural model of electricity generation which: demonstrates how 
the elasticity falls as the clean share rises; can replicate the range of results from the 
electricity literature; considers the effects of storage, and; facilitates estimation of a 
suitable production function. A bimodal production function with two elasticity regimes -
an elasticity above 8 up to a 50 to 70 per cent clean share and an elasticity below 3 
beyond this share – can replicate results well from the structural model.



| T H E  A U S T R A L I A N  N A T I O N A L  U N I V E R S I T Y

Keywords

Elasticity of substitution, climate change, energy, electricity, production function

JEL Classification

O33, Q40, Q41, Q42

Address for correspondence: 

(E) cama.admin@anu.edu.au

ISSN 2206-0332

The Centre for Applied Macroeconomic Analysis in the Crawford School of Public Policy has been 
established to build strong links between professional macroeconomists. It provides a forum for quality 
macroeconomic research and discussion of policy issues between academia, government and the private 
sector.
The Crawford School of Public Policy is the Australian National University’s public policy school, 
serving and influencing Australia, Asia and the Pacific through advanced policy research, graduate and 
executive education, and policy impact.



1 
 

Decreasing substitutability between clean and dirty energy 

By ANTHONY WISKICH* 

A review of the literature indicates a decreasing long-run elasticity 

of substitution between clean and dirty inputs as the share of clean 

inputs rises. In the power sector, which is the largest contributor to 

greenhouse gas emissions, integrating intermittent clean energy 

supply becomes increasingly difficult as the clean share rises. This 

paper describes a simple structural model of electricity generation 

which: demonstrates how the elasticity falls as the clean share rises; 

can replicate the range of results from the electricity literature; 

considers the effects of storage; and facilitates estimation of a 

suitable production function. A bimodal production function with two 

elasticity regimes - an elasticity above 8 up to a 50 to 70 per cent 

clean share and an elasticity below 3 beyond this share – can 

replicate results well from the structural model. (JEL O33, Q40, Q41, 

Q42) 
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production function. 

 
* Wiskich: Centre for Applied Macroeconomic Analysis (CAMA), Crawford School of Public Policy, ANU College of 

Asia & the Pacific, Australian National University, J.G Crawford Building No. 132, Canberra, ACT 2601 Australia (e-

mail: tony.wiskich@anu.edu.au). Acknowledgements. I thank Warwick McKibbin, David Stern, Frank Jotzo and Chris 

Wokker for helpful suggestions. 

The treatment of energy varies between structural macroeconomic models. Some 

recent literature includes a simple representation of energy through an isoelastic 
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function of clean and dirty inputs.1 Such an approach assumes a constant elasticity 

of substitution between clean and dirty inputs across a broad range of clean input 

shares. Other models include greater sectoral detail, implying a changing effective 

elasticity between clean and dirty aggregates.2  

This paper focusses on how the elasticity between clean and dirty inputs may 

vary with different clean energy shares, with a focus on the electricity sector, and 

how this variation can be incorporated into macroeconomic models. Empirical 

estimates of the elasticity of substitution between clean and dirty energy include: 

an elasticity of 2 for electricity and 3 for nonenergy industries (Papageorgiou, 

Saam, & Schulte, 2017); 1.6 between fossil-fuel and renewable energy (Lanzi & 

Sue Wing, 2011); 1 or less for the interfuel substitution between coal, oil and 

electricity in industries other than electricity generation (Stern, 2012); and around 

0.5 for the electricity sector (Pelli, 2012). In contrast, the elasticity of substitution 

between clean and dirty inputs used in integrated assessment and macroeconomic 

models are sometimes much higher and generally lie between 10 and 1.3 An 

argument for using an elasticity as high as 10 is the perceived high substitutability 

between clean and dirty inputs in electricity generation and between fuel and 

electricity inputs in vehicles (Greaker & Heggedal, 2012). 

But how appropriate is an isoelastic function between clean and dirty inputs, and 

is a high elasticity of around 10 reasonable? Unfortunately, few economies have 

high shares of clean energy that can help determine how the elasticity between clean 

and dirty inputs might change as the share of clean energy rises. Regions that do 

have high clean shares generally take advantage of endowments that may not be 

transferable to other countries, such as hydro resources. Thus, a lack of data points 

 
1 For example, Acemoglu, Aghion, Bursztyn, and Hemous (2012). 
2 For example, Golosov, Hassler, Krusell, and Tsyvinski (2014) differentiate between fuel inputs coal, gas/oil and 

renewables. 
3 For example see Lanzi and Sue Wing (2011) and Acemoglu et al. (2012). 
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makes estimating an elasticity for high clean shares a challenge. Therefore this 

paper builds a structural model of electricity using the well-defined nature of supply 

substitution in this market, which is then used to calibrate and test various 

production functions. 

Two types of literature are surveyed for substitutability estimates at different 

clean shares: an empirical macro study; and structural electricity papers which rely 

on empirically-based regional models of electricity. Both approaches are 

conjectural, as they consider anticipated behaviour under high clean shares, but 

provide the best available guidance for such shares. Results from structural 

electricity models are used by both private and public sector agents and regulators, 

reflecting the complex but precisely defined nature of the electricity market 

including supply substitution. The electricity sector is a large source of emissions 

and energy use and offers the greatest opportunity for substitution between dirty 

and clean energy. Both types of literature identify a common trend: a decreasing 

elasticity between clean and dirty inputs as the share of clean energy rises.  

To understand why a decreasing elasticity may apply, at least in the electricity 

sector, I briefly describe the characteristics of an electricity market. Electricity is 

not easily storable and demand varies hour by hour and day by day, resulting in a 

load duration curve (LDC) which reflects this variation in aggregate demand. The 

variation increases the total costs of supply, and the optimal supply consists of a 

mix of technologies with different fixed and variable cost ratios. New investment 

in clean generation is dominated by the variable renewable energy (VRE) sources 

wind and solar that increase the variation in demand that must be met by 

dispatchable generation: one part of the integration costs associated with VRE. At 

low clean shares the cost is relatively low, implying a high elasticity between clean 

and dirty generation. As the clean share increases, the utilisation rates of 

dispatchable generation decrease and curtailment of intermittent generation occurs, 

further increasing costs, so the elasticity falls.  
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After discussing evidence of a decreasing elasticity as the clean share rises in the 

literature, this paper describes a simple structural electricity model, building on 

Wiskich (2014), that replicates this key feature. Deriving and calibrating a 

parsimonious model using a stylised structural model has the advantage that 

changes in elasticity can be identified clearly, which can assist with empirical 

estimation. I discuss the impact of storage, or demand management, which the 

electricity literature highlights as an important determinant of substitutability 

between clean and dirty inputs as it counteracts some effects of intermittency. Of 

course, electricity generation differs vastly between regions and over time. For 

example, the availability of wind and solar resources, and the correlation of these 

sources with peak demand, varies between regions. Thus, I consider a variety of 

parameter choices.  

Due to the lack of data for high clean shares, the performance of potential 

production functions incorporating clean and dirty inputs are measured against 

results from this structural model. This method also allows comparison of results 

assuming different parameter settings. Three production functions with a 

decreasing elasticity of substitution, as well as an isoelastic function, are tested to 

see how well they perform in replicating results from this structural model. Four 

parameter settings in the structural model are used for these tests, corresponding to 

low and high storage prices and guaranteed VRE supply percentages.4 

Previous studies that use a production function with a changing elasticity of 

substitution generally have a parameterised continuous path of variation in the 

elasticity. I discuss two such approaches: one that uses the Variable Elasticity of 

Substitution (VES) function, introduced by Sato and Hoffman (1968) and Revankar 

(1971); and another that uses a couple of isoelastic nests with different elasticities, 

combining in a Leontief function. Motivated by inspection of the model output, I 

 
4 For VRE capacity W, a guaranteed supply per centage of m means that the minimum supply of VRE is mW. 
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include a third production function that allows for a step-change in the elasticity of 

substitution as the share of clean inputs increases. A similar production function is 

described in Antony (2009) and builds on Jones (2003). An isoelastic function is 

also applied for comparison. 

All three functions can better replicate results from my structural model than an 

isoelastic function. My preferred approach is the bimodal one: as well as doing a 

good job of emulating the results from the structural energy model, a step change 

is simple to implement and to conceptualise and is therefore suitable to a range of 

macroeconomic models. The bimodal approach provides a parsimonious 

alternative to the inclusion of a detailed bottom-up model, or a constant elasticity 

of substitution (CES) nesting structure. 5 

Estimation of the bimodal function suggests an elasticity of over 8 up to a switch 

point of around 50 to 70 per cent clean share, with an elasticity between 1 and 3 

beyond this share. While this high elasticity partially supports the use of such an 

elasticity in previous modelling,6 the implication of a switch to a much lower 

elasticity is an interesting research question. Using a stylised way of modelling 

storage, I explain the implications for the bimodal production function. The key 

finding is that storage can be modelled via an increase in the switch point, extending 

the highly elastic part of the production function to cover a greater share of clean 

inputs, as well as an increase in the share parameter. 

This paper contributes to the literature on energy elasticities by drawing out the 

implication of a decreasing elasticity between clean and dirty inputs from an 

empirical macro study and regional models of electricity. The structural electricity 

model developed in this paper is transparent and generates results broadly 

consistent with the electricity literature. The use of a bimodal isoelastic production 

 
5 See Ueckerdt et al. (2015) for a discussion of the various methods of incorporating variable generation into long-term 

energy-economy models. 
6 Such as AABH and Greaker and Heggedal (2012). 
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function, or indeed the VES and dual isoelastic nest production functions, in an 

energy context is novel. Estimation of the elasticity of substitution between clean 

and dirty inputs from a range of outputs from a structural model is also novel and 

worthy of further investigation using empirically-based structural energy models. 

The bimodal nature of the production function enables consideration of a key 

impact of storage or demand responsiveness; an increase in the switch point share. 

By capturing an important characteristic of energy supply in a simple way, this 

paper can promote additional insights from the use of macroeconomic models in 

climate change and energy analysis.  

While this paper discusses reasons why a decreasing long-run elasticity of 

substitution applies, a limitation is that capital life is not considered. Although it is 

normal to omit capital adjustment considerations when focussing on long-run 

effects, the capital stock in the energy sector is long-lived. Existing capital stocks 

would tend to increase substitutability over time as the capital stock adjusts. 

Mattauch, Creutzig, and Edenhofer (2015) investigate an increasing elasticity of 

substitution as a proxy for the temporal consideration of a gradual increase in 

energy infrastructure. In contrast, the decreasing substitutability in the production 

functions in this paper is linked with the share of clean energy and reflects long-run 

considerations of supply and demand. 

Section 1 infers elasticities from the literature sources described previously. 

Section 2 describes a simple structural model which, in section 3, is used to estimate 

different production functions and examine dependence on storage. Section 4 

concludes.  

I. Inferred elasticities from the literature 

Two types of literature are examined in this section. The first uses a recently 

published paper that derives a distribution of productivity gaps between clean and 
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dirty technologies by using patent and industry sector data. I have been unable to 

find other comparable literature that can complement these results. The second 

considers results from empirically-based regional structural electricity models that 

are able to extrapolate system costs at high clean energy shares. Both methods have 

limited application to deriving a macro elasticity of substitution for various reasons, 

most obviously as they each focus on (separate) parts of the energy system. The 

goal of this section is simply to identify a common theme to changes in elasticity 

as the clean share increases, and present a range of estimates. 

Industry sector data 

Acemoglu, Akcigit, Hanley, and Kerr (2016), hereafter AAHK, derive a 

distribution of productivity gaps between clean and dirty technologies, shown in 

Figure 1. For each SIC3 industry, AAHK sum patents made by clean and dirty firms 

during the period 1975-2004, and use this data to derive the initial distributions of 

an endogenous growth model in which clean and dirty technologies compete in 

production. A negative productivity gap indicates that clean energy leads dirty 

energy, which occurs in 9 per cent of cases according to the data. I approximate the 

data by fitting the distribution  

 

 

where  and  are chosen so that the sum of densities in the interval [0,60] equals 

the sum of densities in the data, and the square of errors in the same interval is 

minimised. Results are  and the fitted line matches the 

data well as Figure 1 shows.7 

 
7 The fitted line is only shown for positive values, which are relevant in determining substitution as clean prices fall 

relative to dirty prices. 
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FIGURE 1: DENSITY OF FIRMS BY INITIAL PRODUCTIVITY GAPS 

 

To infer an elasticity from the distribution, I use the most straightforward method 

possible and assume that productivity changes uniformly across industries. Thus, if 

the productivity of clean energy increases by 10 per cent, this increase occurs across 

all industries so that the distribution shown in Figure 1 retains the same shape and 

shifts to the left. I use a standard assumption that each industry uses whichever 

technology (clean or dirty) has greater productivity. If the clean price falls by the 

same extent as the productivity increase, the elasticity can be inferred. Using the 

fitted data, the amount of clean energy is the integral of the density function to the 

left of the origin. For a ratio of clean to dirty energy  , which begins at 0.1, the 

elasticity is given by 

 

 

where  is the innovation step size as estimated by AAHK to be 1.063. Thus, if 

clean productivity increases by one step, the profile shown in Figure 1 shifts to the 
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left by one unit, raising the clean share, and the price of clean technology decreases 

by 6 per cent relative to dirty technology. While this method abstracts from the 

approach used by AAHK, which includes more complex dynamics of innovation, 

it provides an indication of the profile of elasticity as the share of clean inputs 

increases. Using this method, Figure 1 also shows the implied profile if the 

elasticity is a constant, with a value 15 chosen so that the starting density is similar 

to the data. Comparison between this isoelastic profile and the data implies the 

inferred elasticity is higher than 15 for a low clean share and then falls as the share 

increases. The elasticity profile calculated from (2), shown in Figure 2, verifies this 

decrease. 

 

 
FIGURE 2: INFERRED ELASTICITY VERSUS SHARE OF CLEAN ENERGY 

 

1.2 Results from regional electricity models 

A number of papers use structural electricity models, typically calibrated to a 

region, to discuss the costs of integrating VRE (clean) inputs into the residual 

(dirty) system. Such costs vary with the share of VRE and can be used to infer an 

indicative elasticity of substitution. As a function of the clean to dirty ratio , 
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integration costs ) can be added to the levelised cost of electricity (LCOE) to 

create a metric called the system LCOE of VRE ( ): 

. 

 

An optimal quantity of VRE generation occurs when the system LCOE of VRE 

equals the LCOE of the conventional (non-VRE) system: 

 

 

Ueckerdt, Hirth, Luderer, and Edenhofer (2013), hereafter UHLE, outline this 

approach and define total integration costs (  as the extra cost in the residual 

system imposed by VRE. However, this definition excludes curtailment costs8, 

defined as excess VRE generation that is wasted times the price . To 

understand this exclusion, note that if a unit of VRE is added and (in the extreme 

case) all of its output is curtailed, the residual system is unaffected. Like UHLE and 

other papers, I wish to include the costs of curtailment as an integration cost, and 

therefore I add curtailment costs  to the definition of integration costs, and 

marginal integration costs ( , as follows: 

 

 

 

Thus, integration costs are the extra costs of the residual system over a 

conventional one, plus curtailment costs. Curtailment costs vary not only with the 

 
8 Although curtailment costs are excluded in the definition in UHLE’s methodology section, they are included as an 

integration cost in their results. 
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VRE share, but also with the price of VRE. This complicates the conceptual 

framework, as ideally we would be able to define integration costs relative to the 

price of a conventional system and independently of the VRE price. Total costs 

 are the sum of non-curtailed VRE costs , curtailment costs and residual 

costs, and using (4) can be written as the sum of VRE costs, integration costs and 

conventional system costs: 

 

 

Optimality implies that the quantity of VRE generation minimises total costs: 

 

 

As  we have  and marginal integration costs 

are the difference between the average price of a conventional system minus the 

price of VRE, consistent with (3): 

 

 

For a positive price , (7) indicates that the integration cost is 

bounded above by the conventional price under optimal conditions when no climate 

externality is considered. However, the cost as defined in (4) is not bounded from 

above under suboptimal conditions, such as setting a predetermined VRE share, 

which is the method used in the literature discussed below.  
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As the price of clean energy changes with respect to dirty (conventional) energy, 

the degree to which clean inputs change depends on how integration costs vary with 

the clean input share. Consider a fixed price for dirty and a shift in clean price , 

induced by technological change or policy such as a renewable subsidy. For (3) to 

hold, the clean share adjusts by  until the change in integration cost  

balances  assuming that changing the clean share does not in itself influence the 

price of clean energy supply.9 As integration costs are a function of the price of 

VRE at high clean shares, due to curtailment, an inferred elasticity only applies for 

this price and thus should only be taken as indicative. Given a profile of integration 

costs with the share of VRE, this indicative elasticity can be inferred using  

 

 

Hirth, Ueckerdt, and Edenhofer (2015), hereafter HUE, report wind profile costs, 

which they find is the dominant component of integration costs. Profile costs relate 

to the impact of timing of generation on the market value and reflect the opportunity 

costs of matching VRE generation and load profiles through storage. HUE survey 

30 publications and their long-term estimate of how profiles costs10 increase with 

the clean share is shown in the first panel of Figure 3. The data is limited to wind 

generation shares up to 40 per cent and, as they show the line of best fit, is naturally 

linear. Other studies can complement and extend this data as they consider higher 

VRE shares and other renewable technologies. 

 
9 I therefore ignore the fact that  will likely be a decreasing function of , as the most productive VRE sites 

are used first, which would mean that the inferred elasticity is an overestimate. 
10 Profile costs are shown as a ratio of the average electricity price of 70 €/MWh used by HUE. 
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UHLE report profile costs for wind and solar technologies. They also find that 

profile costs make up the bulk of integration costs, particularly for high clean 

shares. As optimal policy could include both technologies, I construct a combined 

“profile” cost: I take the solar profile costs from UHLE and add the extra cost of 

solar as a ratio of wind LCOE, which shifts the line up by just over 0.2.11 UHLE 

present a clear profile of costs up to a 40 per cent wind share and 25 per cent solar 

share. To extend the range of profile costs further, I extrapolate the wind profile 

cost up to a 50 per cent share. By assuming profile costs are independent of each 

other and using the AEO solar/wind cost ratio, a combined “profile” cost of both 

wind and solar can be derived.12 Costs are shown in the second panel of Figure 3. 

Elliston, Riesz, and MacGill (2016), hereafter ERM, report average energy cost 

profiles for different shares of renewable energy up until a 100 per cent share, for 

a low and high gas price. After inputting average prices from the ERM paper, I 

adjust data points to ensure that the slope of the average price is non-decreasing 

with the clean share. This adjustment ensures that the calculated marginal cost 

(discussed below) is non-decreasing with the share of clean energy, so that the share 

increases as the renewable price falls and the inferred elasticity is positive. The 

resulting average costs for both gas price scenarios, after smoothing, are shown in 

the third panel of Figure 3. 
 

 
11 UHLE report that solar system LCOE costs start for zero penetration at double the cost of wind. Capital costs have 

changed significantly in recent years and costs are projected to continue to decline. Projected capacity-weighted system 
LCOE costs for new generation resources entering service in 2022 are 48 $/MWh and 59.1 $/MWh for wind (onshore) and 
solar respectively (Annual Energy Outlook 2018). These costs imply solar LCOE costs 23 per cent higher than wind. 

12 The combined costs have been smoothed. 
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FIGURE 3: COST ESTIMATES FROM THE LITERATURE 

Notes: All costs are in units of the average cost of the conventional system ( . 

 

The HUE and UHLE data discussed above are marginal integration costs, while 

the reported ERM data are average costs. The average costs are based on constant 

prices, and the increase in the average price with renewable share may be due to 

both a higher LCOE price for clean energy over dirty energy, and to integration 

costs: . Thus, if integration costs are zero, the 

slope of the average cost simply reflects a higher price of clean energy. I assume 

integration costs are close to zero when the clean share is zero and hence 

approximate the difference in LCOE prices ( ) by the slope of 

the average price at zero clean share.  

All integration costs are combined in the first panel of Figure 4. While there is a 

significant range of estimates, the gradients tend to increase at high (above 50 per 

cent) clean energy shares, where this data exists. Elasticity estimates are shown in 
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the second panel of Figure 4, based on (8). Although there is a considerable 

variation between papers, elasticities tend to decrease as the clean share increases. 

 

 
FIGURE 4: COMBINED INTEGRATION COST ESTIMATES AND INFERRED ELASTICITIES 

Notes: Integration costs are in units of the average cost of the conventional system ( . 

 

A key reason for the decreasing elasticity is the increasing rate of curtailment 

with the share of VRE. Curtailment can be reduced using storage technology, 

demand-side measures and integration between regions with different temporal 

VRE characteristics. The studies above include assumptions of storage options that 

help balance supply and demand. For example, ERM find that pumped storage 

hydro and concentrating solar thermal help reduce costs at high clean shares. 

Therefore, consideration of storage at high clean shares is important for any 

structural model. 
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II. A simple structural electricity model 

This section develops a structural model to enable estimation of an appropriate 

production function between clean and dirty energy inputs. The model also 

describes how this function changes with the price or availability of storage. 

Structural Model 

The market is structured to minimise the total cost of meeting demand. Two high-

level types of generation exist: dirty which is dispatchable; and clean which is 

intermittent or variable, as in wind or solar which generate according to weather 

conditions.  

Dirty dispatchable generation—A stylised linear load duration demand curve 

(LDC) reflects how total system demand varies with time: 

. Production consists of three types of dirty dispatchable generation - base, 

intermediate and peak - as used in Wiskich (2014) and Ueckerdt et al. (2015). Each 

technology is characterised by a fixed and variable cost. Given fixed costs 

 and variable costs , the cost of production given capacity 

factor  is the sum of fixed costs and variable cost:  I assume that ‘peak 

and intermediate’, and ‘intermediate and base’ total generation costs are the same 

at capacity factors  and  respectively: 

 

 

 

The generation of each type is shown in the shaded areas in Figure 5. Peak 

capacity is only used a small proportion of the time; when the capacity factor is low 

and the fixed cost dominates the total cost. Intermediate capacity is used around 
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half of the time on average and base capacity is used almost all the time. Total fixed 

costs are  and total variable costs are 

. 

 

 
FIGURE 5: LOAD DURATION ASSUMPTION WITH BASE, INTERMEDIATE AND PEAK GENERATION 

 

Clean variable generation—Intermittency of clean generation lowers and changes 

the shape of the residual LDC (RLDC) faced by dispatchable generation, as shown 

in Figure 6. The derivation of (5) is broadly based on International Energy Agency 

(2012) and generalises an approach that I have previously used (Wiskich, 2014). 

The key assumption is a uniform distribution of variable generation with a 

minimum supply proportion of , as explained in (10) below. Ueckerdt et al. 

(2015) also use a RLDC approach but assume the quadrilateral shape shrinks and 

distorts in such a way to match the variable generation supply and demand data. 

 

Duration 

1 

2 
Load 

Peak generation 

Intermediate generation 

Base generation 

X1 X2 
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FIGURE 6: RESIDUAL LOAD DURATION CURVE 

 

The key effects of intermittent generation include; reduced utilisation of base and 

peak generation, and increased/decreased capacity of peak/base generation. The 

RLDC (10) describes the effect of intermittent generation which varies uniformly 

between  (  and . Let  then we have 

 

 

 

 

 

Duration 

1 

2 

1-  

Load 

1-  

2-  
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Consider the case where  so clean generation consistently generates  

units of electricity. Thus  and the RLDC is simply the LDC straight line 

lowered by  Variability of generation between  and  implies different 

functions  and  for the peak load and minimum load areas of the curve, with 

 corresponding to  lowered by the minimum 

intermittent generation  and  corresponding to 

lowered by the maximum intermittent generation . The quadratic forms of  

and  follow from the assumption of a uniform distribution between  and  

which is uncorrelated with aggregate demand. That is, intermittent supply can be 

considered as a random number between  and  for every point in time. When 

clean energy is high enough such that , curtailment occurs as . In 

other words, when maximum intermittent generation occurs at minimum demand, 

excess supply occurs and the excess is assumed to be wasted. 

Electricity model simulations and estimated parameters 

Generation shares of technologies which could be considered as base, 

intermediate and peak vary between regions. These shares can also vary within 

regions over time as prices change: a lower gas price might expand the generation 

share of intermediate, for example. Rather than model one particular region or set 

of fuel prices, it is useful to present results for a range of different configurations. 

Therefore, this paper considers multiple values  and 

 which, in the absence of intermittent generation, correspond to 

peak generation shares of 0.08 per cent, 0.3 per cent and 0.8 per cent and base 

generation shares of 70 per cent, 76 per cent and 81 per cent.  and  are derived 

in two ways: the first by altering fixed costs and the second by altering variable 

costs, leading to 18 simulations as listed in Table 1. Simulation 5a is referred to as 

the central scenario for demonstration purposes below. 
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TABLE 1: ELECTRICITY MODEL SIMULATION PARAMETER ASSUMPTIONS 

 X1, X2, VB, VI, VP FB, FI, FP 
1a 0.05,0.75 0.5,1.17,6.17 1,0.5,0.25 
2a 0.05,0.85 0.5,1.09,6.09 1,0.5,0.25 
3a 0.05,0.95 0.5,1.03,6.03 1,0.5,0.25 
4a 0.1,0.75 0.5,1.17,3.67 1,0.5,0.25 
5a 0.1,0.85 0.5,1.09,3.59 1,0.5,0.25 
6a 0.1,0.95 0.5,1.03,3.53 1,0.5,0.25 
7a 0.15,0.75 0.5,1.17,2.84 1,0.5,0.25 
8a 0.15,0.85 0.5,1.09,2.76 1,0.5,0.25 
9a 0.15,0.95 0.5,1.03,2.7 1,0.5,0.25 
1b 0.05,0.75 0.5,1.09,3.59 1,0.56,0.44 
2b 0.05,0.85 0.5,1.09,3.59 1,0.5,0.38 
3b 0.05,0.95 0.5,1.09,3.59 1,0.44,0.32 
4b 0.1,0.75 0.5,1.09,3.59 1,0.56,0.31 
5b 0.1,0.85 0.5,1.09,3.59 1,0.5,0.25 
6b 0.1,0.95 0.5,1.09,3.59 1,0.44,0.19 
7b 0.15,0.75 0.5,1.09,3.59 1,0.56,0.19 
8b 0.15,0.85 0.5,1.09,3.59 1,0.5,0.13 
9b 0.15,0.95 0.5,1.09,3.59 1,0.44,0.07 

 

For high VRE shares, residual costs tend to be dominated by fixed capacity costs. 

As the maximum load is , each additional unit of  lowers the 

maximum load by  and so residual capacity is reduced by  Thus, integration 

costs at high VRE shares are highly sensitive to . A small value of  close to zero 

would be consistent with the RLDC profile in UHLE, but values in excess of 0.2 

might be appropriate for some regions based on Ueckerdt et al. (2017). Thus, I show 

results for both  and . While no amount of intermittent generation 

can obviate residual generation when  is zero, for  no residual generation 

is required if .13 

Consider LCOEs14 for coal, combined cycle gas turbines and renewables of $70, 

$55 and $50/MWh (IEA 2015). Thus, a reasonable cost estimate for dirty (fossil 

fuel) is $60/MWh, implying a clean to dirty LCOE price ratio of . I 

 
13 This result is in the absence of storage (introduced below) which can reduce the amount of VRE required to obviate 

residual generation substantially.  
14 Without carbon costs. 
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show clean generation shares for a wide range of price ratios from one to 0.3 in 

Figure 7, for all 18 simulations. In dollar terms with a fixed dirty cost of $60/MWh, 

the clean price range is $60/MWh to $18/MWh, or with a fixed clean price of 

$50/MWh, the range of dirty prices (which could reflect a carbon price) are 

$50/MWh to $167/MWh. I assume for the moment that no storage is used. Varying 

fixed costs (simulations 1b-9b) results in a wider spread than varying variable costs 

(simulations 1a-9a), but the general profile of results are similar. 

 

 
 

FIGURE 7: SIMULATION RESULTS FOR RATES OF CLEAN SHARES AS THE PRICE OF CLEAN INPUTS DECREASE, WITHOUT 
STORAGE 

 

As the share of VRE increases, the model considers the reduced utilisation of 

thermal plant capital as well as curtailment, both components of the profile cost. As 

discussed in the previous section, profile costs are the most important integration 

cost of variable generation. Figure 7 suggests a production function between clean 

and dirty energy with two elasticities: a high one up to a certain VRE share 

depending on the value of , and a lower elasticity above this share when 

curtailment begins to dominate.  
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Marginal integration costs are derived based on integration costs calculated in (4) 

and are shown in the first two panels of Figure 8, along with the upper and lower 

bounds from the literature taken from panel 1 of Figure 4. As discussed above, 

integration costs are a function of the clean price due to curtailment. Consistent 

with the literature discussed in the previous section, the integration costs are 

calculated based on a fixed clean price for comparison. I show results for a high 

and a low clean to dirty price ratio of 1 and 0.3, corresponding to the bounds of the 

simulations. Rather than inferring the elasticity from integration costs as described 

in the previous section, I directly use the change in the clean to dirty price ratio 

used in the simulations. A profile of high elasticities for low clean shares and low 

elasticities for high clean shares is shown in panel C.  

Figure 8 demonstrates that the structural model can replicate a decreasing 

elasticity as inferred from the literature, as well as reflecting the range of costs for 

different clean shares. Integration costs at high clean shares are highly dependent 

on the clean price and become very high for both  and  with the high 

clean price. However, the model thus far does not account for storage or demand 

management, which is included in the literature discussed in section 1 and can 

lower marginal costs at high clean shares. 
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FIGURE 8: INTEGRATION COSTS AND INFERRED ELASTICITY FOR ALL SIMULATIONS WITHOUT STORAGE 

Notes: Integration costs are in units of the average cost of the conventional system ( , and are calculated based on 
a fixed clean to dirty price ratio: 1 for Panel A and 0.3 for Panel B. 

 

Storage 

It is convenient to use a stylised15 approach to modelling storage by flattening the 

ends of the RLDC as shown in Figure 9. Storage capacity, represented by area , 

generates  units of power at peak times and requires  units of charging at times 

of lowest demand, thereby reducing and increasing the RLDC at these times. As 

 
15 Future projections for storage technology options include pumped Hydro storage, concentrating solar power and 

electric vehicles and batteries. These storage options have different cost and performance characteristics which are not 
considered in this paper. 
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the areas at each end are equal, there is no loss of charge assumed. The cost of 

storage is proportional to capacity. 

 

 
FIGURE 9: ASSUMPTION OF THE EFFECT OF STORAGE ON THE RLDC 

 

An estimate of the cost of Lithium-Ion storage is $268/MWh,16 which may 

decline to around $100/MWh by 2040 according to the World Energy Outlook 

2017. Consider two storage prices in the model: an infinite price so there is no 

storage, and a price that is double the dirty price ). Given a dirty price of 

$60/MWh, this latter price corresponds to a storage price of $120/MWh. This 

approach, while simplistic, allows investigation of the potential impact of storage 

on the substitutability between clean and dirty energy. Note that the amounts of 

storage, clean and dirty energy are all jointly optimised to minimise total costs. 

Figure 10 shows results when  and . The availability of 

storage (at a fixed price) lowers integration costs and boosts the clean share for a 

given VRE price. 

 
16 https://www.lazard.com/perspective/levelized-cost-of-storage-2017 

Duration 

1-  

S 

S 

Without storage 

With storage 
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FIGURE 10: CLEAN AND STORAGE SHARES AS THE VRE PRICE DECREASES IN THE CENTRAL SCENARIO, FOR  AND 

.  

 

Figure 10 also shows the storage shares when .17 As storage capacity 

increases with the clean share, there is a clear complementarity between storage 

and clean energy. So far I have presented results where the price of storage is fixed 

and the amount of storage is optimised to minimise total costs of generation. In 

Appendix A, I consider different fixed amounts of storage which are available at 

no cost, providing an understanding of the direct effect of storage on the production 

function. The uptake of electric vehicles, which may become a significant source 

of storage, will have other economic drivers, so it is useful to consider such an 

approach in this context. The effect of fixed amounts of storage is similar to the 

effect shown in the second panel of Figure 10. 

 
17 The share is the ratio of storage with total electricity demand, S/1.5. 
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While the described electricity model is transparent, it is still too complex for a 

macroeconomic model. A simpler representation, such as a modification of the CES 

workhorse of many economic models, would be more applicable, and the next 

section discusses some options.  

III. Estimating production functions with a variable elasticity 

This section describes three potential methods of incorporating a decreasing 

elasticity of substitution between clean and dirty energy. The first uses a “bimodal” 

production function with two isoelastic regimes depending on the clean share. The 

second uses the Variable Elasticity of Substitution (VES) function, introduced by 

Sato and Hoffman (1968) and Revankar (1971). The third uses a couple of isoelastic 

nests with different elasticities, combining in a Leontief function. Results are shown 

in Table 2 along with results using an isoelastic function where two parameters are 

estimated; the elasticity and a share parameter which is generally set by the initial 

equilibrium in an application. The goodness of fit is shown as R-squared. 

Estimation is based on results from the structural electricity model, minimising 

the square of errors in the share of clean energy in total energy production across 

all 18 simulations weighted equally. I investigate four scenarios with different 

combinations of storage prices, , and minimum levels of VRE supply, 

. 

Bimodal production function 

The functional form for the bimodal elasticity of substitution production function 

is straightforward and similar to the form suggested by Antony (2009). For a clean 

to dirty input ratio  and switch point  where the elasticity changes from  to 

, the output to dirty input ratio  is given by: 
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Output and its derivative are continuous at the switch point. The second 

derivative is not continuous but is negative at all points, ensuring concavity and 

uniqueness Figure 11 shows clean shares for the central scenario and the estimated 

bimodal function as the clean input price decreases.18 The switch point where the 

elasticity changes corresponds to the discontinuity in slope. A bimodal function 

appears to be a very good approximation in all cases, confirmed by a high R-

squared in Table 2. 

 

 
FIGURE 11: COMPARISON OF THE ESTIMATED BIMODAL FUNCTION (DASHED LINES) WITH STRUCTURAL MODEL RESULTS FOR 

THE CENTRAL SCENARIO 

 

 
18 Note that the function is estimated across all 18 simulations weighted equally, not just the central simulation. 
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Four parameters are estimated: elasticities  and , the switch point  and the 

share parameter . In a modelling exercise, assumptions of initial equilibrium 

generation shares would set the  term, given values for the other parameters, 

similar to estimating an isoelastic function. All scenarios have a high elasticity over 

8 for low clean shares. The availability of cheap storage increases the switch point 

and share parameter, while a minimum level of VRE supply increases all 

parameters.  

Variable Elasticity of Substitution 

The VES specification follows Karagiannis, Palivos, and Papageorgiou (2005). 

For clean ( ) and dirty ( ) inputs, the output to clean input ratio ( ) is given by: 

 

 

 

This function is the most parsimonious of the three variable elasticity approaches, 

with only two parameters estimated:  and . The elasticity of substitution is given 

by  and the clean share is  For a dirty price of one and 

clean price , we have . As the elasticity should decrease as the clean 

share rises (as  increases), the estimated parameter and hence  if 

 Therefore for higher clean prices than this ratio, the clean share is set to zero. 

The VES function fits the data well when , but less so when  where 

the share plateaus at a lower value, as the first panel of Figure 12 shows. The R-

squared is lower than the bimodal case in every simulation. The variation of the 

elasticity with the clean share is shown in the second panel of Figure 12. 
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The VES specification implies the elasticity approaches infinity as the clean share 

approaches zero. This behaviour may not present a challenge for previous 

applications to capital-labour substitutability where shares are roughly balanced, 

but may be difficult to implement for clean-dirty substitutability at low clean shares. 

Although the variation in elasticity with the clean share may be a challenge for 

estimation and conceptualisation, compared with the bimodal approach, the linear 

form of the elasticity with respect to the dirty to clean ratio is straightforward. This 

function may therefore be a good candidate to model clean and dirty 

substitutability, particularly if parsimony and a continuous profile of elasticity are 

desirable. 

 

 

FIGURE 12: COMPARISON OF THE ESTIMATED VES FUNCTION (DASHED LINES) WITH STRUCTURAL MODEL RESULTS FOR THE 
CENTRAL SCENARIO, AND ELASTICITIES OF THE VES FUNCTION 

 

Dual isoelastic nest 

Conceptually, a dual isoelastic nest is similar to the bimodal production function. 

Outputs from two isoelastic production functions, each with clean and dirty inputs, 

combine as inputs in a Leontief (fixed input ratios) production function. Total 
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clean/dirty energy inputs are the sum of these inputs across both isoelastic nests. 

The first nest has a high elasticity and drives a high elasticity for the aggregate 

production function for low clean shares. The second nest has a lower elasticity and 

drives dynamics at high clean shares. When estimated, the Leontief share between 

the nests acts like the switch point in the bimodal production function.  

I estimate five parameters using this method: two elasticities and two weights for 

each nest, and the Leontief share. Unlike the bimodal case, the calibration of 

weights is indeterminate given an initial equilibrium condition as there are two of 

them. The R-squared is comparable to the bimodal case.  

 

 
FIGURE 13: COMPARISON OF THE ESTIMATED DUAL ISOELASTIC NEST FUNCTION (DASHED LINES) WITH STRUCTURAL MODEL 

RESULTS FOR THE CENTRAL SCENARIO 

 

This method has the most estimated parameters and the indeterminacy in 

calibrating shares seems problematic. In addition, the use of two nests is contrived 

as the aggregate elasticity is a combination of elasticities in each nest and input 

shares, making conceptualisation of the model difficult. The strength of this 
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approach is that isoelastic nests are a common, straightforward method of 

incorporating different technologies and/or fuels. 

 
TABLE 2: ESTIMATED BIMODAL PRODUCTION FUNCTION PARAMETERS 

 Parameters Scenario 1 Scenario 2 Scenario 3 Scenario 4 
 Ps     
 m 0 0 0.3 0.3 

Bimodal 

 8.3 10.2 14.9 20.9 
 1.3 1.1 2.1 2.5 

 1.0 (51) 1.4 (59) 1.9 (65) 2.2 (69) 
 0.55 0.65 0.72 0.79 

VES  0.20 0.18 0.11 0.14 
 1.9 2.6 6.4 10.0 

Dual isoelastic nest 

 14.1 17.5 22.5 31.4 
 2.7 2.6 3.8 4.6 

share 0.38 0.47 0.57 0.63 
a1 0.62 0.71 0.76 0.82 
a2 0.27 0.32 0.48 0.55 

Isoelastic  3.8 4.0 7.1 9.8 
 0.46 0.56 0.68 0.76 

R-squared 
Bimodal  94.2 97.3 96.8 98.2 

VES  92.5 94.4 95.9 97.0 
Dual isoelastic nest  94.4 97.2 96.9 98.2 

Isoelastic  85.6 84.4 89.7 90.4 

 

III. Conclusion and discussion 

Two types of literature are discussed in the context of a variable elasticity of 

substitution between clean and dirty energy inputs. The first, a single recently 

published paper, derives a distribution of productivity gaps between clean and dirty 

technologies by using patent and industry sector data. The second considers results 

from empirically-based regional structural electricity models that can extrapolate 

system costs at high clean energy shares. While both methods have limitations in 

inferring a macro elasticity of substitution, they both indicate a decreasing elasticity 

as the clean share increases. 

Key reasons for a declining elasticity have been outlined in the context of the 

electricity sector, aided by a simple structural model. This structural model 

replicates a decreasing elasticity, reflects the range of integration costs reported in 
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the electricity literature, and can incorporate the effects of storage. Three methods 

of incorporating the decreasing elasticity in a macroeconomic model are discussed: 

a “bimodal” production function with two elasticities; a variable elasticity of 

substitution (VES) function; and a couple of isoelastic nests with different 

elasticities, combining in a Leontief function. All methods can fit output from the 

simple structural model better than an isoelastic function. The bimodal function is 

a good candidate as the three key parameters - low and high share elasticities and 

the switch point where the elasticity changes – all have a clear conceptual 

interpretation. Existing models with an isoelastic function could also be easily 

modified to incorporate the bimodal characteristic. 

The good performance of the bimodal approach is in large part due to the nature 

of curtailment of intermittent supply. A high elasticity of above 8 is appropriate up 

until a switch point of around 50 to 70 per cent clean penetration, after which a 

much lower elasticity between 1 and 3 is appropriate. As electricity is just one 

component of energy and thus, lower elasticities are probably appropriate for 

models that combine electricity and non-electricity into a single aggregate. 

Similarly, the switch point of between 50 and 70 per cent suggested by the model 

could be reduced when all energy types are aggregated. However, the model does 

not distinguish between carbon intensities of peak, intermediate and base 

generation. Coal typically fits into the base generation category which is displaced 

first by VRE. This effect would imply a higher switch share in terms of emissions. 

Overall, a high elasticity 3 or above and a low elasticity of below 3 seems 

reasonable at a macro level, with a switch point of roughly 50 per cent. Storage can 

be modelled by increasing the switch point and share parameter as the storage price 

declines or storage capacity increases. 

Several research directions appear fruitful. Apart from the effect of a changing 

elasticity on energy projections and the cost of abatement, a decreasing elasticity 

may have interesting implications for optimal policy. In a related paper I examine 
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some potential implications in a climate model with endogenous technical change 

(Wiskich, 2019). The interaction between a bimodal function and uncertainty in 

environmental damages, including tipping points, may be important, and the switch 

point and long-run elasticity themselves could be modelled under uncertainty. 

Elasticity and other parameter estimates, or the structure of the production function, 

could be refined using more detailed energy models. A more complex sectoral 

analysis would help highlight different effects on coal and gas, for instance, which 

have different emission intensities. 

 

APPENDIX A – FIXED STORAGE CAPACITY 
 

I show simulated results where storage is fixed from zero up to 3% of total 

generation. As is clear from Figure 14, the main effect of adding storage is to 

increase the switch point where the high elasticity reduces. A similar effect would 

apply for regions with a pre-existing Hydro capacity, particularly if pumped storage 

is available. 

 
FIGURE 14: SIMULATED RESULTS FOR DIFFERENT FIXED STORAGE CAPACITIES IN THE CENTRAL SCENARIO WITH  
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