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1 Introduction

For many years the seminal work of Burns and Mitchell (1946) has been an important

structure upon which to develop business cycle analysis. Their work supported the idea

that business cycles varied between 2 and 8 years in length and so one should focus

attention upon such cycles, asking whether any model can produce cycles of that duration.

In 2006, however, a dissenting opinion was expressed by Comin and Gertler (2006), who

said that the focus should be on medium term cycles and not just the business cycle. It

is not entirely clear how these should be defined. In their original paper it was a cycle

between 2 and 200 quarters. Later, Comin et al. (2014) used yearly data and defined the

cycle as between 2 and 50 years, distinguishing a high frequency component between 2

and 8 years, and a medium term component between 8 and 50 years. Many who have

cited the first paper have used the term to refer to cycles between 8 and some number of

years varying from 20 to 50, e.g Drehmann et al. (2012) use 30 years. What is common

to all this work is the length of the upper bound, far greater than the 8 years of the

business cycle. The argument advanced for looking at a medium term cycle was that

these cycles showed very different characteristics to the business cycle, particularly in

terms of volatility. More recently, Beaudry et al. (2019) have argued that one should look

at what we will call a 9/10 cycle; something around 9-10 years, so longer than the 2 to 8

years of the business cycle but shorter than the medium term cycle of Comin and Gertler

(2006). They argue that a 9/10 year cycle can be seen in series such as unemployment

and per capita hours.

In this paper we argue that it is important to recognize that there are two ways in

which cycles have been referred to in the literature - either via turning points in series

or by oscillations in them. Burns and Mitchell and the NBER Business Cycle dates for

recessions and expansions take the first perspective. Much academic work takes the latter.

Because oscillations imply turning points in a series it is possible that the dates of peaks

and troughs (turning points) reflect oscillations, but one has to be careful in drawing

this conclusion, since one can have turning points in a series without a representative

oscillation of interest being present.1 Sargent (1979, p. 240) simulated data from an

AR(1) process and observed that “This illustrates how stochastic difference equations can

generate processes that ‘look like’ they have business cycles even if their spectra do not

1Because all oscillations may be present in a stationary series we need to define what we mean by
a representative oscillation. Consider a white noise series. Because the spectrum is flat there is no
representative (or dominant) oscillation. In the same way, an AR(1) process with a positive AR coefficient
has a maximum of the spectrum at the origin. That oscillation would be of infinite periodicity and
therefore not of interest to business cycle analysis. In the spectral literature a representative oscillation
corresponds to where the spectrum has a maximum in a region away from the origin.
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have peaks.”

Section 3 then turns to how it has been proposed to find a representative cycle.

Finding turning points in the series is a straightforward approach which can be applied

to any series, regardless of whether they are I(0) or I(1). Oscillations are different. To

detect them in an I(0) series non-parametric methods have been used to determine if the

spectrum of the series has a peak at a certain frequency.2 They are difficult to apply when

the data is I(1) – Beaudry et al. (2019) suggest that this may be a reason why a 9/10

cycle would be difficult to find in GDP. Instead, they suggest it could become clearer in

stationary series such as per capita hours and the rate of unemployment, as they regard

these as being I(0). Hence spectral methods might be applied to those series. They do so

and claim to locate a 9/10 cycle. We examine this claim, as well as alternative evidence

they give for a 9/10 cycle that involved finding a dominant oscillation by looking at the

prediction of a recession from a past recession, where the latter are given by NBER dates.

Section 4 moves on to the question of extracting an oscillation from data. This

generally involves filtering. Some of the filters used in the literature are shown to be

inappropriate for the nature of the series being analyzed, specifically whether they are

I(1) or I(0). We show that the argument that medium term cycles provides different

information to that at the business cycle frequency is just an artifact of the degree of

persistence in the data. Arising from the earlier spectral analysis we then ask whether,

even if it exists, any 9/10 cycle in per capita hours is important? We find that the 9/10

cycle explains only 0.9% of the volatility of hours per capita.

Finally, section 5 looks at the use of cycle information for discriminating between

models. First, we ask whether Beaudry et. al.’s criticism of DSGE models such as

Christiano et al. (2014) (CMR) that they fail to replicate the 9/10 cycle in hours per

capita is a reasonable one. Initially, we do this by looking at turning points in the data

and from the CMR model. Then we ask whether the limit cycle models used by Beaudry

et. al. do produce turning point cycles seen in the data, and whether they replicate the

complete spectrum of hours, rather than just a small part of it? Even in their paper it

is clear that the limit cycle model fails to replicate the spectrum and only gives a good

match to a relatively minor part of it. Consequently, we question why one should only

focus on a small part of it. Finally, Comin and Gertler (2006) argued that a model with

2There are alternatives to such non-parametric methods which involve fitting a parametric model and
either using the model to determine the representative oscillation, as in say Harvey and Jaeger (1993), or
providing a rule for locating turning poiints, as in MS models such as Hamilton (1989). Because these
were not used by Beaudry et al. (2019) or by Comin and Gertler (2006) we do not discuss them. We also
work with a single series, as that is what those authors do, although institutions such as the NBER use a
range of series i.e. they find turning points in a number of series and then aggregate them into a single
set of turning points. Harding and Pagan (2016) survey these multivariate approaches.

3



endogenous growth was superior to a standard RBC exogenous growth model when one

looked at the volatility of the medium term cycle in hours, and that this superiority was

not evident in the business cycle oscillations. Hence this constituted an argument for

computing medium term oscillations. We find that this is not correct. As anticipated

above there are some potential issues with the filter used by Comin and Gertler and this

might explain the outcome. Section 6 concludes.

1.1 Finding Turning Points in Univariate Series

In much early work on cycles graphs were presented, and a visual inspection showed peaks

and troughs in the series. These could be characterized by looking at local maxima and

minima in the series. As Garvy (1943) notes, Kondratieff did just this. Kitchin (1923)

was one of the first to be more precise about it, marking out peaks and troughs in the

series he was working with, although it was never entirely clear what his rules for defining

local maxima and minima were.3 Any such definition must involve a window of time in

which one sees a maximum or minimum, but it can’t be too large or one will only locate

the global maxima and minima in a given sample of data.

Burns and Mitchell were very clear about their identification of peaks and troughs

in the levels of series.4 They mentioned a number of factors that were used to decide

on them. Bry and Boschan (1971) developed an algorithm that attempted to make a

precise statement of the general principles set out in Burns and Mitchell’s work, and

found that their resulting turning point algorithm could do well at replicating Burns and

Mitchell’s decisions. A simplified version of the Bry and Boschan (BB) algorithm is the

BBQ program that is an add-on in EViews, Stata, Rats, and other programs such as R.5

It essentially follows Bry and Boschan in using a window to locate a peak and trough

and then applying some censoring rules that relate to the minimal length of upturns and

downturns and the complete cycle. In BB’s original work, and the NBER dating of cycles,

monthly data is used with a window of six months, a minimum duration for upswings

and downswings of 6 months, and a minimum length for a complete cycle of 15 months.

We could write that trio as 6/6/15. In quarterly terms the equivalent would be 2/2/5.6

3There is ambiguity since he sometimes over-rode the actual maxima and minima and replaced them
with the peaks and troughs of what he calls the “virtual” or “ideal” cycle of 3.3 years. So his work seems
to be a mixture of discovery and the imposition of a view about the length of the cycle.

4They always worked with series where some adjustments for seasonality and factors such as strikes
were made.

5The simplifications used are described in Harding and Pagan (2002).
6For example a rule for a peak in a quarterly series yt at time s would be {ys−2, ys−1 < ys > ys+1, ys+2}.

This could be expressed as {0 < Δys,Δ2ys;Δys+1,Δ2ys+2 < 0}, emphasizing it involves the signs of
growth rates.
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Figure 1: Quarterly Per Capita Hours
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Figure 1 shows a plot of the quarterly hours per capita series used by Beaudry et al.

(2019). There are clearly well defined peaks and troughs and so a well defined cycle.

There seem to be 12 major troughs and then some others that are more doubtful to

the eye. This data is over 1947-2017 and there are 270 quarters, thereby pointing to a

cycle (distance between troughs) that is around 23 quarters long on average. How do

we capture this picture with the rules referred to above? A 2/2/5 rule omits many of

the minor turning points that show up as little wobbles in the graph. We can rule out

others by extending it to 3/3/7. But to get anything like 36-40 quarters (9/10 years) as a

cycle we need to use 7/7/15. This produces an average cycle of 40 quarters and involves

troughs at observations which are denoted by the symbol ∗ in Figure 1. Looking at the

figure it might be reasonable to delete those at 18, 60, 78, 131, 154 and 193, but it seems

hard to justify ignoring those at 27, 42 and 110, at least based on any ocular test. So

historically researchers looking at this series would have come up with a conclusion that

the cycle would be between 23 and 27 quarters long.7

7Now neither the NBER nor Burns and Mitchell work with per capita quantities when dating the
business cycle. The use of per capita will mean a lower growth rate in the series and a shorter cycle. The
cycle we get when dating per capita GDP with 2/2/5 is 20 quarters long, so a 5 year cycle. If we use
2/2/5 on per capita hours it is 16 quarters so a 4 year cycle.
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1.2 Discovering Oscillations in Univariate Series

So how did Beaudry et al. (2019) find a 9/10 year cycle in per capita hours? It clearly

does not come from a study of the turning points in the data. Instead they looked for

oscillations using spectral methods. They began with the periodogram which is presented

in Figure 2 (we used their program). Note the big spike near the origin.8 This is because

it is a persistent series. The 10 year oscillation is highlighted in Figure 2.

Figure 2: Periodogram of Per Capita Hours
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Note: for the x-axis 0.5 is equivalent to π at an angular frequency.

Now the graphs they present of spectra only involve frequencies between 1 and 15

years so the large peak near the origin is eliminated. Note that there are also other

peaks before the 10 year cycle. One is at 19 years. So they cut these out by using 15

years as the upper limit in most of their graphs (their figure 11(a) labelled (2,100) being

the exception). After that they smooth the periodogram ordinates using centered 13

point Hamming weights. These are symmetric and have the values 0.0870, 0.1481, 0.3152,

0.5435, 0.7717, 0.9388, 1, 0.9388, 0.7717, 0.5435, 0.3152, 0.1481, 0.0870. Figure 3 does

this, resulting in the large peak near the origin being retained and the little bump at the

10 year frequency. Because the area under the spectrum is the variance of the series, it

suggests that very little of the variance of hours is explained by the 9/10 year oscillation.

We return to that later.

8It is zero at the origin since the data was mean corrected.
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Figure 3: Smoothed Periodogram of Per Capita Hours,
Hamming Kernel, M = 13
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Note: for the x-axis 0.5 is equivalent to π at an angular frequency.

Now consider what the spectrum of an AR(1) with coefficient .92 looks like when

computed in the same way. This is a persistent process but not one with a unit root.

We simulate 270 observations to agree with their sample size.9 Figure 4 gives this. Note

that 9/10 year cycles seem to be in the data, even though they are not, and also how

little power there is near the origin, even though we know that in the true spectrum of an

AR(1) that is where the power is. So a 13 point averaging of the periodogram may not

be enough to describe the spectrum accurately.

An alternative way of computing a spectrum is to average the autocovariances of the

series. Suppose this is done with Parzen kernal weights and M = 80 autocovariances

(they do such an analysis). Figure 5 gives this. Note the peak near the origin and a

few small bumps. The first one is at 33 quarters and the next is at 7 quarters. If only

30 autocovaiances are used, Figure 6 suggests that there is no 9/10 oscillation. So the

method of computing the spectrum is important for even seeing a 9/10 cycle. This is an

example of the fact that, just as the turning point cycle duration depends on the precise

nature of the rule selected, this is also true of spectral methods for finding oscillations.

One always needs to choose a weighting scheme and the number of periodogram ordinates

or autocovariances that are to be used in computing the spectrum, so it is wise to look at

9We follow them in padding this out to 1024 using zeroes.
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Figure 4: Smoothed Periodogram for an AR(1) with ρ = 0.92
Hamming Kernel M = 13

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Frequency

0

10

20

30

40

50

60

70

80

Note: for the x-axis 0.5 is equivalent to π at an angular frequency.

robustness to these choices.

1.3 Using the Probability of Recession to Suggest Cycle Length

Beaudry et. al. first suggest that there is a 9/10 cycle based on an analysis relating to

the prediction of recessions into the future from a recession today. They suggest that one

look at the probability of a recession at t + k given that there is a recession at t. Let

Rt = 1 if there is a recession existing at t and zero otherwise. Then that would tell us

to look at Pr(Rt+k = 1|Rt = 1). However they do not do this. Rather the dependent

variable they use is the event that at time t + k there is a recession somewhere from

t + k − m to t + k + m, where m = 3, 4 or 5. They describe the regression with that

dependent variable as a conditional probability of a recession at t+ k given Rt. To see

the mis-interpretation here set m = 5 and assume that we have a sequence for Rt of

{0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0}. Their constructed variable (called BGPt here) from

this sequence is {0,0,1,1,1,1,1,1,1,1,1,1,1,1,0,0}, so the BGP “recession event” is of much

longer duration than is true of NBER recessions. To get the conditional probability of an

NBER recession we need to set m = 0. Note that the BGP recession event has a sample

mean that is 4 times what R is, and, if we described this as a recession event (which they
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Figure 5: Spectral Density of Per Capita Hours
Parzen Kernel using 89 Autocovariances
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Figure 6: Spectral Density of Per Capita Hours
Parzen Kernel using 30 Autocovariances
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do), then we would be in recession most of the time.

Figure 7 gives the probability of BGPt+k = 1 given Rt = 1 for k = 12,...,59 periods.

It also gives the probability of Rt+k = 1 given Rt = 1.10 Notice that the probability of

the recession event when k = 18 is the maximum. This makes sense, since the average

duration of a turning point cycle was 16-23 quarters. However the conditional probability

is really not very high; the unconditional probability is .14. Of course for the BGP event

the unconditional probability is much higher. But that is an artifact of its definition.11

Figure 7: Probabilities of a Recession
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2 Extracting an Oscillatory Component

A literature has arisen on extracting (rather than discovering) an oscillatory component.

There are a variety of filters that work on the data yt to split it into components so that

yt = yCt + yOt . One of these – yCt – is called the cycle. When yt is I(0), y
O
t would capture

the remaining oscillations, given that all oscillations are present in an I(0) series. If yt is

I(1), then yOt has various names such as “trend” or “permanent”. These filters are all

extracted by using weighted averages of the data. The best known of these filters are

10The NBER dates from 1946 to 2017 for Rt were used by Beaudry et al. for this exercise.
11The same issue comes up in Wright (2006) who constructed BGP type events and then asked whether

spreads could predict them - see section 9.4 of Harding and Pagan (2016).
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from the Band-Pass class associated with Baxter and King (1999) and Christiano and

Fitzgerald (2003).

A general form for the filters is12

yOt =
T∑

j=0

ω±jyt±j

= (
T∑

j=0

ω±j)yt +
T∑

j=1

ω±jΔjyt±j.

Accordingly,

yCt = yt − yOt = (1−
T∑

j=0

ω±j)yt −
T∑

j=1

ω±jΔjyt±j,

so that, if yt is I(1) and yCt is to be a transitory component, then
∑T

j=0 ω±j = 1 must

hold.

Christiano and Fitzgerald (CF) do provide a Band-Pass filter with this summation

property (in EViews it is selected when the series is said to be I(1)), but many of the CF

bandpass filters that are available as routines just use the weights that would be suitable

only for an I(0) series, and so there may be an I(1) component left in what is supposed

to be a transitory component when yt is I(1). To see the impact of using the wrong filter

we simulate data on a pure random walk and then apply two 8-32 quarter bandpass filters

of the CF variety to the series, one of which is appropriate if the series is I(1) and the

other if it is I(0). We simulated 2000 observations and Figure 8 shows the observations

from 1800 to 1960. It is clear that there are differences between the two series which gets

larger as one moves towards the end of the sample. What is also particularly noticeable

is that the turning points are generally different between the series. In fact, applying

BBQ to the correctly filtered estimate yCt (that is assuming yt is I(1)) we get an average

oscillation of 14.6 periods, while it is only 11.9 for the incorrectly filtered one.

An application of Band-Pass filters that has been widely adopted has been Comin

and Gertler (2006), who were were trying to extract “medium-term cycles”. They applied

the Band-Pass filter weights appropriate to an I(0) series to output growth Δyt. Then

they cumulated this to account for the level of output yt as being I(1). It follows that

their filtered cyclical component of Δyt would be
∑T

j=0 ω±jΔyt±j. Cumulating it we

would get
∑T

j=0 ω±jyt±j. This does not impose the restriction that
∑T

j=0 ω±j = 1, because

12The weights here are taken to be constant. Often they vary with time but that does not affect the
argument.
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Figure 8: Correct and incorrect band pass filters
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the filter weights are those appropriate to an I(0) and not an I(1) series. Hence their

extracted medium-term oscillation will include an I(1) component. In contrast Beaudry

et al. use the filter appropriate to an I(1) series to extract medium term cycles from the

per capita hours series, even though they have assumed that it is I(0). So both papers

utilize an incorrect filter to extract an oscillation. Figure 9 shows that the correct filtered

component explains little of the per capita hours series, which we have already concluded

by looking at the spectrum. Indeed it explains only 0.9% of the variance of hours.

3 What Does One Learn from Examining 9/10 and

Medium Term Cycles?

3.1 From the Data

Suppose we perform a band-pass filter data while stipulating that all oscillations between

8 and 30 years are to be used. Call this yMt . This component is a mixture of all the

8-30 year oscillations. Therefore extract components yjt from the series to capture the

oscillations j = 8, 9, 10, ....30 years. Then yMt is just the sum of the yjt (j = 8, 9, ...). This

will mean that the 8− 30 year cycle will tend to have turning points that are closer to

those for the lowest periodicity in the range, as there are more turning points in it, and

12



Figure 9: Comparison of Hours per Capita and an Extracted 9/10 Oscillation
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fewer at the higher end of the scale. Indeed, Comin and Gertler found that their 8-50

year cycle had a time between peaks of 10 years.13

What does one learn from observing (say) the component involving oscillations over

8-30 years rather than that for 2-8 years? Let us call these z1t and z2t respectively. A

principal conclusion has been that var(z1t) > var(z2t). This led Drehmann et al. (2012) to

conclude that “...the cycles of periodicities between 8 and 30 years are more important in

shaping the behaviour of these series than those with shorter duration”, while Comin and

Gertler conclude that “...the medium-term cycle in output is considerably more volatile

than the conventionally measured high-frequency cycle”. To assess the contribution of a

particular oscillation to the variance of a series one can examine the spectral density of

the series at that oscillation. For a mixture this suggests that the area under the spectral

density for oscillations between 8 and 30 years would be a measure of var(z1t), while that

between 2 and 8 years will capture var(z2t).

To look at this more generally we simulate data on a number of processes and then

compute the relative standard deviations of the 8-30 and 2-8 year oscillations. The

band-pass filter used is Christiano and Fitzgerald (2003) appropriate to whether the

series is I(0) or I(1). These results are in Table 1. It is clear that they largely reflect

the amount of persistence in the data being filtered. Why does that happen? To see

this consider Figure 10 which shows the spectrum for a white noise process and for an

13This is also the case if one dates yMt using the BBQ algorithm in EViews.
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AR(1) process of equal variance. So the area under both curves is the same. First, take

the case that the data is just white noise. Then the variance of a 2-8 year oscillation

in quarterly data would be the area under the flat spectrum between the frequencies of
π
4
and π

16
, represented by rectangle B in Figure 10. Hence the base of the rectangle to

capture the area of B is 3π
16
. In contrast, the base of rectangle A corresponding to the 8-30

year oscillation is 11π
24

(it is between π
16

and π
60
). Since the heights of the rectangles are

the same, the variance of the 8-30 year oscillation relative to the 2-8 year one is 0.25, in

Figure 10 A/B, and so the ratio of standard deviations should be 0.5. This is close to

what we observe in the first row of results in Table 1.

Figure 10: Spectrum of an AR(1) and white noise series of equal variance

/60 /16 /4

Angular frequency

AR(1),  = 0.6
iid

D

B

C

A

Notice that the ratio is less than unity. To make it greater than unity (as concluded by

Drehmann et al. (2012) and Comin and Gertler (2006)) we need the series being filtered

to depart from white noise as shown by the sprectrum of the AR(1) in Figure 10. Indeed,

as Table 1 also shows, the more persistent the series the greater this ratio is. In Figure 10

this ratio in the AR(1) case is given by (A+ C)/(B +D). That would be expected since

now there will be a greater area under the spectrum in the 8-30 year frequency (A+ C),

as it becomes more concentrated towards the origin. Once we get to a unit root in the

process we no longer have a spectrum, so the argument cannot be made precise, but the

lead up to the unit root case suggests that greater persistence increases the ratio even

more, which is evident in Table 1. Hence the conclusion about the relative volatilities of
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medium-term and more conventional business cycle frequencies is simply a consequence

of how persistent the series being filtered is.

Table 1: Ratio of Standard Deviations of 8-30 year and 2-8 year Oscillations

Process σ(8,30)
σ(2,8)

White noise 0.49
AR(1),ρ = .6 0.58
AR(1),ρ = .9 1.57
Pure random walk 2.33
Growth ρ = .4 2.49

Aikman et al. (2014) took UK annual data on real bank loans and GDP growth and

seemed to define a medium term component using a lower limit of 8 years and a maximum

of 20. They concluded that “Consistent with the estimated density, shorter term business

cycle frequency fluctuations between 2 and 8 years typically do not account for much of

the overall variation in credit in the 2 to 20-year range.”14 If we do the same exercise as

in Table 1, but now for their ratio, we get the same conclusion - as persistence rises the

ratio of the 2-8 year component falls as a ratio of the 2-20 year component.

3.2 From Model Comparisons

3.2.1 Endogenous Versus Exogenous Technology Model

Extracting oscillations involves a transformation of the data and it may be that the

transformed data could provide useful information when judging the quality of models.

The question is whether we learn anything extra from that transformation. Comin and

Gertler (2006) argued that one did. Specifically, they noted that a model which they

constructed featuring endogenous technology gave a much better explanation of the

volatility of hours over the whole 2-200 quarter oscillation range than RBC models did.

The main exception involved hours. In connection with that they say “The RBC model

generates only about half the volatility of hours that appears in the data at either the high

or medium term frequencies” i.e. the business versus the medium term cycle. Now this

comment suggests that one has not learnt anything new about the quality of the RBC

model from the medium term analysis that wasn’t evident from the higher frequency

(2-32 quarters), since it seems that the volatility of hours cannot be matched there either.

14They supplied the data and programs in a zip file ecoj12113-sup-0002-DataS1. Some of the data
had to be interpolated but this was done using their MATLAB routines. Over a range of sub-periods the
mean and standard deviations for real loan growth in their table 2 match the data that we constructed.
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To look at the comparison of the models further we simulated data from their en-

dogenous technology model as well as the RBC model with a single technology shock,

extracted the 2-200 quarter component (what they term the medium term cycle), and

found that the RBC model produces a higher volatility for hours at that frequency range

than their endogenous technology model. Consequently, if one is judging the quality of

the models by the extent to which they can explain hours volatility, the RBC model seems

better, and it is unclear why their Table 6 shows the opposite. As we noted in section

3 there are issues with the way they filtered the data, but all that is available in their

replication file is the filtered data and not the original, and therefore it is hard to check

why there is a discrepancy.15 Moreover, because the RBC model doesn’t produce a unit

root in hours, it is unclear what the relationship between the volatility of model and data

hours is, since they seem to treat hours as an I(1) variable in the data.

3.2.2 Limit Cycles

Beaudry et al. (2019) have criticized existing models such as Christiano et al. (2014)

(CMR) saying “... in our exploration of different models we have not yet found an

estimated model that produces a peak in the spectral density of hours similar to the one we

find in the data” (p 17). Although we have suggested that there is some doubt about a

9/10 cycle in the data we might enquire into whether the turning point cycle one would

get from Christiano et al’s model for per capita hours matches that in the data. Using a

2/2/5 rule we find that the length of the cycle in per capita hours from the CMR model

is 13 quarters versus the 16 that we get from the actual data. Downturns and upturns

for per capita hours have much the same duration as in the CMR model while, in the

data, upturns are 3 quarters longer. Since CMR use normal shocks this may well explain

the discrepency. Nevertheless, the CMR model simulations seem to agree quite well with

the data in its cycle aspects, and it certainly does not have a 9/10 cycle, as measured by

either turning points or a spectral density.

Beaudry et al. (2019) propose a model that is designed to produce limit cycles of

duration 9-10 years in per capita hours. Simulating data from their model we can compute

the periodogram of per capita hours. Figure 11 shows this. It is clearly quite different to

that of actual per capita hours in figure 2. It is worth looking at the actual peaks and

troughs in their simulated series and the 9/10 cycle extracted from it. As can be seen

from Figure 12 the latter clearly misses much that is in the data.16

15The original data does not seem to be obtainable.
16There are other issues with the limit cycle model. It implies highly skewed simulated hours data

which is not in the data.
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Figure 11: Periodogram of Simulated Hours from the Limit Cycle Model
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Figure 12: Limit Cycle Model
Simulated Hours and an Extracted 9/10 Oscillation

0 50 100 150 200 250
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

9/10 Oscillation
Simulated Hours

17



Figure 13: Spectrum of Simulated Hours from the Limit Cycle Model
Parzen Kernel, M = 89
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Figure 13 shows the spectrum that is comparable to the data in figure 5 and it is clear

they are very different. It is apparent that the limit cycle spectrum matches only a small

part of the data spectrum. So this raises the question of whether it is sensible to match

only part of the spectrum. If we filter the per capita hours data in order to isolate a 9/10

cycle then it explains only 0.9% of the variance of per capita hours. So, unless it can also

reproduce the spectrum away from that oscillation the limit cycle model is missing almost

all the volatility in the series. As Figure 12 shows it can’t. One possibility is that this

failure comes from parameter choices for the limit cycle model. They estimated these by

making a match to the spectrum over the 2-50 quarter cycle range. Would this match

improve when one estimated them from a broader range of the spectral frequencies? Their

figure 11 gives the model spectrum when estimation was done using 2 to 100 quarters,

and it demonstrates quite clearly that there is still a major failure to capture the overall

spectrum. So the question is then why should we judge a model by its ability to replicate

a range of oscillations that are a minor part of the series, and not the part that has the

greatest contribution to the variance? Their argument for ignoring the remainder of the

spectrum is that it ”...reflects largely slow-moving forces (such as demographic change)

unrelated to the business cycle” If one thinks of a basic RBC model where stationary but

persistent technology shocks produce a spectrum that is like an AR(1), then the spectral
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shape does not come from demographic change, and yet RBC models have turning point

cycles like we see in the data. However, they do not have oscillations. One can make the

same point about models in which there are persistent demand shocks. These will produce

spectra like an AR(1) and so they are being ignored as well. It is almost as Beaudry et al

believe that one cannot have a business cycle without an oscillation and the fact that this

is incorrect is one of our primary points. One needs turning points in economic activity

for a business cycle. These may come from a model with oscillations but need not. One

cannot say that if we fail to find oscillations then we are not doing cycle research. Limit

cycles are interesting for their ability to endogenously generate oscillations in series, but

whether they are needed to explain actual cycles in series seems debateable based on the

evidence presented here.

4 Conclusion

The paper has made the case that one needs to distinguish between two views of cycles -

one involving turning points in series and one of oscillations. The former is the view used

historically and which underlies the NBER cycle dates. Oscillations have turning points,

but turning points can exist in a series without there being a representative oscillation of

interest to business cycle analysts. One probably wants to look at both types of cycles and

we have done this throughout the paper. Business cycle analysis should not be restricted

to only looking for oscillations as often these can be of minor importance in explaining

actual outcomes such as the variance of activity, as we show for per capita hours.

The use of cycle and oscillation information to judge the adequacy of models that are

based more on theoretical ideas has a long history, and it can often show weaknesses not

apparent from just studying a few moments of the data. Thus the recent surge of interest

in looking at medium term and 9/10 oscillations rather than the business cycle might

be a promising way of judging models. We did not find that this to be true. Indeed it

seems to us that very little is added by taking these perspectives. It was shown that some

of the cited advantages of looking at medium term cycles are really a product of easily

measured characteristics of the data being filtered, in particular its persistence. We did

look at the application in Comin and Gertler (2006) which argued that the medium term

perspective was important, but did not find this was so. It is possible that this was a

consequence of a difficulty involving the weights used to extract medium-term oscillations

from I(1) series. The limit cycle model developed by Beaudry et al. (2019) seems nice in

theory but it does not seem to represent the data very well. It certainly produces a cycle

of 9-10 years but fails at other frequencies. We have said why we doubt that there is a
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9/10 cycle in the data. Even if it was then it does not seem important, explaining very

little of the volatility of the series, as this depends on the complete spectrum and not a

small part of it.
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