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1 Introduction

Time-varying parameter vector autoregressions (TVP-VARs) developed by Cogley and

Sargent (2001, 2005) and Primiceri (2005) have become the workhorse models in empirical

macroeconomics. These models are flexible and can capture many different forms of

structural instabilities and the evolving nonlinear relationships between the dependent

variables. Moreover, they often forecast substantially better than their homoskedastic

or constant-coefficient counterparts.1 In empirical work, however, their applications are

mostly limited to modeling small systems involving only a few variables because of the

computational burden and over-parameterization concerns.

On the other hand, large VARs that use richer information have become increasing popu-

lar due to their better forecast performance and more sensible impulse-response analysis,

as demonstrated in the influential paper by Banbura, Giannone, and Reichlin (2010).2

Since there is a large body of empirical evidence that demonstrates the importance of

accommodating time-varying structures in small systems, there has been much interest

in recent years to build TVP-VARs for large datasets. While there are a few proposals to

build large constant-coefficient VARs with stochastic volatility (see, e.g., Carriero, Clark,

and Marcellino, 2016, 2019; Chan, 2018, 2019; Kastner and Huber, 2018), the literature

on large VARs with time-varying coefficients remains relatively scarce.3

We propose a class of models we call hybrid TVP-VARs—VARs in which some equations

have time-varying coefficients and/or stochastic volatility, whereas others have constant

coefficients and/or homoscedastic errors. More precisely, we develop an efficient Bayesian

shrinkage and sparsification method that automatically decides, for each equation, (i)

1The superior forecast performance of time-varying parameter models is demonstrated in many recent
papers, such as Clark (2011), D’Agostino, Gambetti, and Giannone (2013), Koop and Korobilis (2013),
Clark and Ravazzolo (2014) and Cross and Poon (2016).

2There is now a large and rapidly expanding literature that uses large VARs for forecasting and
structural analysis. Prominent examples include Carriero, Kapetanios, and Marcellino (2009), Koop
(2013), Banbura, Giannone, Modugno, and Reichlin (2013), Carriero, Clark, and Marcellino (2015),
Ellahie and Ricco (2017) and Morley and Wong (2019).

3There are few attempts in this direction. For example, Koop and Korobilis (2013) and Gefang,
Koop, and Poon (2019) propose methods to approximate the posterior distributions of large TVP-VARs.
Banbura and van Vlodrop (2018) and Götz and Hauzenberger (2018) consider a large VAR with only
time-varying intercepts. Eisenstat, Chan, and Strachan (2018) model the time-varying coefficients using
a reduced-rank structure, whereas Huber, Koop, and Onorante (2019) develop a method that first shrinks
the time-varying coefficients, followed by setting the small values to zero.
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whether the VAR coefficients are constant or time-varying, and (ii) whether the errors

are homoscedastic or follow a stochastic volatility specification. Our framework nests

many popular VARs as special cases, ranging from a standard homoscedastic, constant-

coefficient VAR on one end of the spectrum to the flexible but highly parameterized

TVP-VARs of Cogley and Sargent (2001, 2005) and Primiceri (2005) on the other end.

More importantly, our framework also includes many hybrid TVP-VARs in between the

extremes, allowing for a more nuanced modeling approach of the time-varying structures.

To formulate these large hybrid TVP-VARs, we use a reparameterization of the standard

TVP-VAR in Primiceri (2005). Specifically, we rewrite the TVP-VAR in the structural

form in which the time-varying error covariance matrices are diagonal. Hence, we can

treat the structural TVP-VAR as a system of n unrelated TVP regressions and estimate

them one by one. This reduces the dimension of the problem and can substantially

speed up computations. This approach is similar to the equation-by-equation estimation

approach in Carriero, Clark, and Marcellino (2019) that is designed for the reduced-form

parameterization. But since under our parameterization there is no need to obtain the

‘orthogonalized’ shocks at each iteration as in Carriero, Clark, and Marcellino (2019),

the proposed approach is substantially faster. Moreover, under our parameterization the

estimation can be parallelized to further speed up computations.

Next, we adapt the non-centered parameterization of the state space model in Frühwirth-

Schnatter and Wagner (2010) to our structural TVP-VAR representation. Further, for

each equation we introduce two indicator variables, one determines whether the coeffi-

cients are time-varying or constant, while the other decides between stochastic volatility

and constant variance. By treating these indicators as parameters to be estimated, we

allow the data to determine the appropriate time-varying structures, in contrast to typ-

ical setups where time variation is assumed. The proposed approach therefore is not

only flexible—it includes many state-of-the-art models routinely used in applied work as

special cases—it also induces parsimony to ameliorate over-parameterization concerns.

The estimation is done using Markov chain Monte Carlo (MCMC) methods. Hence,

in contrast to many earlier attempts to build large TVP-VARs, our approach is fully

Bayesian and is exact—it simulates from the exact posterior distribution. There are,

however, a few challenges in the estimation. First, the dimension of the model is large

and there are thousands of latent state processes—time-varying coefficients and stochastic
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volatilities—to simulate. To overcome this challenge, in addition to using the equation-

by-equation estimation approach described earlier, we also adopt the precision sampler

of Chan and Jeliazkov (2009) to draw both the time-invariant and time-varying VAR

coefficients, as well as the stochastic volatilities. In our high-dimensional setting the

precision sampler substantially reduces the computational cost compared to conventional

Kalman filter based smoothers. A second challenge in the estimation is that the indicators

and the latent states enter the likelihood multiplicatively. Consequently, it is vital to

sample them jointly; otherwise the Markov chain is likely to get stuck. We develop

algorithms based on the importance sampling estimators for marginal likelihoods of TVP-

VARs in Chan and Eisenstat (2018a,b) to sample the indicators and the latent states

jointly.

Using US datasets of different dimensions, we find evidence that the VAR coefficients and

error variances in some, but not all, equations are time varying. We further illustrate the

usefulness of the proposed hybrid TVP-VARs with a forecasting exercise that involves

20 US quarterly macroeconomic and financial variables. We show that the proposed

hybrid TVP-VARs forecast better than many benchmarks, including the conventional

homoscedastic, constant-coefficient VAR, the constant-coefficient VAR with stochastic

volatility and the full-fledged TVP-VAR where all the VAR coefficients and error variances

are time varying. These results suggest that using a data-driven approach to discover

the time-varying structures—rather than imposing either constant coefficients or time-

varying parameters—is empirically beneficial.

The rest of the paper is organized as follows. We first introduce the proposed framework

in Section 2. In particular, we discuss how we combine a reparameterization of the

reduced-form TVP-VAR and the non-centered parameterization of the state space model

to develop the hybrid TVP-VARs. We then describe the shrinkage priors and the posterior

sampler in Section 3. It is followed by an illustration in Section 4 that fits a small dataset

to check if the proposed methodology can replicate a model comparison exercise. The

empirical application is discussed in detail in Section 5. Lastly, Section 6 concludes and

briefly discusses some future research directions.
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2 Hybrid TVP-VARs

In this section we introduce a class of models we call hybrid time-varying parameter

VARs, under which some equations have time-varying coefficients and stochastic volatility

while coefficients and variances in other equations remain constant. To that end, let

yt = (y1,t, . . . , yn,t)
′ be an n× 1 vector of endogenous variables at time t. The TVP-VAR

of Primiceri (2005) can be reparameterized and written in the following structural form:

Atyt = bt +B1,tyt−1 + · · ·+Bp,tyt−p + εyt , εyt ∼ N (0,Σt), (1)

where bt is an n × 1 vector of time-varying intercepts, B1,t, . . . ,Bp,t are n × n VAR

coefficient matrices, At is an n×n lower triangular matrix with ones on the diagonal and

Σt = diag(exp(h1,t), . . . , exp(hn,t)). The law of motion of the VAR coefficients and log-

volatilites will be specified below. Here we note that since the system in (1) is written in

the structural form, the covariance matrix Σt is diagonal by construction. Consequently,

we can estimate this recursive system equation by equation without loss of efficiency.4

For later reference, we introduce some notations. Let bi,t denote the i-th element of bt

and Bi,j,t be the i-th row of Bj,t. Then, βi,t = (bi,t,Bi,1,t, . . . ,Bi,p,t)
′ is the intercept and

VAR coefficients for the i-th equation. Moreover, let αi,t denote the free elements in the

i-th row of the impact matrix At, i.e., αi,t = (Ai1,t, . . . , Ai(i−1),t)
′. Then, the i-th equation

of the system in (1) can be rewritten as:

yi,t = w̃i,tαi,t + x̃tβi,t + εyi,t, εyi,t ∼ N (0, ehi,t),

where w̃i,t = (−y1,t, . . . ,−yi−1,t) and x̃t = (1,y′
t−1, . . . ,y

′
t−p). Note that yi,t depends on

the contemporaneous variables y1,t, . . . , yi−1,t. But since the system is triangular, when

we perform the change of variables from εyt to yt to obtain the likelihood function, the

density function remains Gaussian.

4Carriero, Clark, and Marcellino (2019) pioneer a similar equation-by-equation estimation approach
for a large reduced-form constant-coefficient VAR with stochastic volatility. The main advantage of the
structural-form representation is that it allows us to rewrite the VAR as n unrelated regressions, and it
leads to a more efficient sampling scheme.
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If we let xi,t = (w̃i,t, x̃t), we can further simplify the i-th equation as:

yi,t = xi,tθi,t + εyi,t, εyi,t ∼ N (0, ehi,t), (2)

where θi,t = (α′
i,t,β

′
i,t)

′ is of dimension kθi = np+ i. Hence, we have rewritten the TVP-

VAR in (1) as n unrelated regressions. Finally, the coefficients and log-volatilities are

assumed to evolve as independent random walks:

θi,t = θi,t−1 + εθi,t, εθi,t ∼ N (0,Σθi), (3)

hi,t = hi,t−1 + εhi,t, εhi,t ∼ N (0, σ2
h,i), (4)

where the initial conditions θi,0 and hi,0 are treated as unknown parameters to be esti-

mated. The system in (2)–(4) specifies a reparameterization of a standard TVP-VAR in

which all equations have time-varying parameters and stochastic volatility.

Next, we introduce a framework that allows the model to determine—in a data-driven

fashion—whether the coefficients in each equation are time varying or constant and

whether the errors are homoskedastic or they follow a stochastic volatility process. For

that purpose, we adapt the non-centered parameterization of Frühwirth-Schnatter and

Wagner (2010) to our hybrid TVP-VARs. More specifically, for i = 1, . . . , n, t = 1, . . . , T,

we consider the following model:

yi,t = xi,tθi,0 + γθ
i xi,tΣ

1
2
θi
θ̃i,t + εyi,t, εyi,t ∼ N (0, ehi,0+γh

i σh,ih̃i,t), (5)

θ̃i,t = θ̃i,t−1 + ε̃θi,t, ε̃θi,t ∼ N (0, Ikθi ), (6)

h̃i,t = h̃i,t−1 + ε̃hi,t, ε̃hi,t ∼ N (0, 1), (7)

where θ̃i,0 = 0 and h̃i,0 = 0, and γθ
i and γh

i are indicator variables that take values of

either 0 or 1.5

The model in (5)-(7) includes a wide variety of popular VAR specifications. For example,

assuming that the indicators all take the value of 1, the above model is just a reparam-

eterization of the TVP-VAR in (2)–(4). To see that, define θi,t = θi,0 + γθ
iΣ

1
2
θi
θ̃i,t and

5It is straightforward to include a few additional indicators to allow for more sophisticated forms of
time variation in coefficients. For example, one can replace γθ

i with two indicators, say, γα
i and γβ

i , which
control the time variation in αi,t and βi,t respectively. The posterior simulator in Section 3.2 can be
modified to handle this case, at the cost of a slight increase of computation time.
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hi,t = hi,0 + γh
i σh,ih̃i,t. Then, (5) reduces to (2). In addition, we have

θi,t − θi,t−1 = Σ
1
2
θi
(θ̃i,t − θ̃i,t−1) = Σ

1
2
θi
ε̃θi,t,

hi,t − hi,t−1 = σh,i(h̃i,t − h̃i,t−1) = σh,iε̃
h
i,t.

Hence, θi,t and hi,t follow the same random walk processes as in (3) and (4), respectively.

We have therefore showed that when γθ
i = γh

i = 1, i = 1, . . . , n, the proposed model

reduces to a TVP-VAR with stochastic volatility.

In the other extreme, when all the indicators are zero, the proposed model becomes a

homoscedastic constant-coefficient VAR in structural form. For the intermediate case

when γθ
i = 0 and γh

i = 1, i = 1, . . . , n, then the proposed model reduces to a constant-

coefficient VAR with stochastic volatility—a structural-form reparameterization of the

specification in Carriero, Clark, and Marcellino (2019). More generally, by allowing the

indicators γθ
i and γh

i to take different values, we could have a VAR in which only some

equations have time-varying coefficients or stochastic volatility.

These indicators are not fixed but are estimated from the data. More precisely, we specify

that each γθ
i follows an independent Bernoulli distribution with success probability P(γθ

i =

1) = pθi , i = 1, . . . , n. Similarly for γh
i : P(γh

i = 1) = phi . These success probabilities pθi

and phi , i = 1, . . . , n, are in turn treated as parameters to be estimated.

In contrast to typical setups where time variation in parameters is assumed (e.g. Cog-

ley and Sargent, 2001, 2005; Primiceri, 2005), here the proposed model puts positive

probabilities in simpler models in which the VAR coefficients are constant or the er-

rors are homoscedastic. The values of the indicators are determined by the data, and

these time-varying features are turned on only when they are warranted. The proposed

model therefore is not only flexible in the sense that it includes a wide variety of spec-

ifications popular in applied work as special cases, it also induces parsimony to combat

over-parameterization concerns.
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3 Priors and Bayesian Estimation

In this section we first describe in detail the priors for the time-invariant parameters. We

then outline the posterior simulator to estimate the model in (5)–(7).

3.1 Priors

For notational convenience, stack yi = (yi,1, . . . , yi,T )
′, θi = (θ′

i,1, . . . ,θ
′
i,T )

′ and hi =

(hi,1, . . . , hi,T )
′ over t = 1, . . . , T , and collect y = {yi}ni=1, θ = {θi}ni=1 and h = {hi}ni=1

over i = 1, . . . , n. Similarly define θ̃i and h̃i. In our model, the time-invariant pa-

rameters are γθ = (γθ
1 , . . . , γ

θ
n)

′, γh = (γh
1 , . . . , γ

h
n)

′, Σθ = {Σθi}ni=1, Σh = {σ2
i,h}ni=1,

θ0 = (θ′
1,0, . . . ,θ

′
n,0)

′, h0 = (h1,0, . . . , hn,0)
′, pθ = (pθ1, . . . , p

θ
n)

′ and ph = (ph1 , . . . , p
h
n)

′.

Below we give the details of the priors on these time-invariant parameters.

Since θ0, the initial conditions for the VAR coefficients, is high-dimensional when n is

large, appropriate shrinkage is crucial. We assume a Minnesota-type prior on θ0 along the

lines in Sims and Zha (1998).6 More specifically, consider θ0 ∼ N (aθ0 ,Vθ0), where the

prior mean θ0 is set to be zero to induce shrinkage and the prior covariance matrix Vθ0

is block-diagonal with Vθ0 = diag(Vθ1,0 , . . . ,Vθn,0)—here Vθi,0
is the prior covariance

matrix for θi,0, i = 1, . . . , n. For each Vθi,0
, we in turn assume it to be diagonal with the

k-th diagonal element (Vθi,0
)kk set to be:

(Vθi,0
)kk =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

κ1

l2
, for the coefficient on the l-th lag of variable i,

κ2s2i
l2s2j

, for the coefficient on the l-th lag of variable j, j �= i,
κ3s2i
s2j

, for the j-th element of αi,

κ4s
2
i , for the intercept,

where s2r denotes the sample variance of the residuals from regressing yr,t on yt−1, . . . ,yt−4,

r = 1, . . . , n. Here the prior covariance matrix Vθ0 depends on four hyperparameters—

κ1, κ2, κ3 and κ4—that control the degree of shrinkage for different types of coefficients.

For simplicity, we set κ3 = 1 and κ4 = 100. These values imply moderate shrinkage for

6See also Doan, Litterman, and Sims (1984), Litterman (1986) and Kadiyala and Karlsson (1997).
For a textbook discussion of the Minnesota prior, see, e.g., Koop and Korobilis (2010), Del Negro and
Schorfheide (2012) and Karlsson (2013).
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the coefficients on the contemporaneous variables and no shrinkage for the intercepts.

The remaining two hyperparameters are κ1 and κ2, which control the overall shrinkage

strength for coefficients on own lags and those on lags of other variables, respectively.

Departing from Sims and Zha (1998), here we allow κ1 and κ2 to be different, as one

might expect that coefficients on lags of other variables would be on average smaller than

those on own lags. Chan (2019) in fact finds empirical evidence in support of this so-

called cross-variable shrinkage. In addition, we treat κ1 and κ2 as unknown parameters

to be estimated rather than fixing them to some subjective values. This is motivated

by a few recent studies, such as Carriero, Clark, and Marcellino (2015) and Giannone,

Lenza, and Primiceri (2015), which show that by selecting this type of overall shrinkage

hyperparameters in a data-based fashion, one can substantially improve the forecast

performance of the resulting VAR.7

We assume gamma priors for the hyperparameters κ1 and κ2: κj ∼ G(c1,j, c2,j), j = 1, 2.

We set c1,1 = c1,2 = 1, c2,1 = 1/0.04 and c2,2 = 1/0.042. These values imply that the

prior modes are at zero, which provides global shrinkage. The prior means of κ1 and κ2

are 0.04 and 0.042 respectively, which are the fixed values used in Carriero, Clark, and

Marcellino (2015).

Next, following Frühwirth-Schnatter and Wagner (2010), the square roots of the diagonal

elements of Σθi = diag(σ2
θi,1

, . . . , σ2
θi,kθi

), i = 1, . . . , n and Σh = diag(σ2
h,1, . . . , σ

2
h,n) are

independently distributed as mean 0 normal random variables: σθi,j ∼ N (0, Sθi,j) and

σh,i ∼ N (0, Sh,i), with j = 1, . . . , kθi , i = 1, . . . , n. The success probabilities pθi and phi are

assumed to have beta distributions: pθi ∼ B(apθ , bpθ) and phi ∼ B(aph , bph), i = 1, . . . , n.

Finally, the initial conditions h0 are assumed to be jointly Gaussian: h0 ∼ N (ah0 ,Vh0).

3.2 Posterior Simulator

We now turn to the estimation of the model in (5)–(7) given the prior described in the

previous section. There are a few challenges in the estimation. First, since θi becomes

7Moreover, this data-based Minnesota prior is also found to forecast better than many recently in-
troduced adaptive shrinkage priors such as the normal-gamma prior, the Dirichlet-Laplace prior and the
horseshoe prior. For example, this is demonstrated in a comprehensive forecasting exercise in Cross,
Hou, and Poon (2019).
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degenerate when γθ
i = 0, making its sampling nonstandard (similarly for hi). To sidestep

this problem, we will use the parameterization in terms of θ̃i and h̃i. Then, given the

posterior draws of θ̃i, h̃i and other parameters, we can recover the posterior draws of θi

and hi using the definitions θi,t = θi,0 + γθ
iΣ

1
2
θi
θ̃i,t and hi,t = hi,0 + γh

i σh,ih̃i,t.

Second, since θ̃i and the indicator γθ
i enter the likelihood multiplicatively, it is vital to

sample them jointly (similarly for h̃i and γh
i ); otherwise the Markov chain might get

stuck. To see this, consider an alternative sampling scheme in which we simulate θ̃i given

γθ
i , followed by sampling γθ

i given θ̃i. Suppose γ
θ
i = 0 in the last iteration. Given γθ

i = 0,

θ̃i does not enter the likelihood and we simply sample it from its state equation. Since the

sampled θ̃i has no relation to the data, the implied time variation in the VAR coefficients

would not match the data. Consequently, it is highly likely that the model would prefer

no time variation, i.e., γθ
i = 0. Hence, it is unlikely for the Markov chain to move away

from γθ
i = 0 once it is there. Therefore, in the following posterior sampler we jointly draw

θ̃i and γθ
i , as well as h̃i and γh

i .

Given the model in (5)–(7) and the above the prior described in the previous section, we

can simulate from the joint posterior distribution using the following posterior sampler

that sequentially samples from:

1. p(γθ
i , θ̃i |y, h̃,θ0,h0,Σθ,Σh,γ

h,pθ,ph,κ), i = 1, . . . , n;

2. p(γh
i , h̃i |y, θ̃,θ0,h0,Σθ,Σh,γ

θ,pθ,ph,κ), i = 1, . . . , n;

3. p(Σ
1
2
θi
,θi,0 |y, θ̃, h̃,h0,Σh,γ

θ,γh,pθ,ph,κ), i = 1, . . . , n;

4. p(σh,i, hi,0 |y, θ̃, h̃,Σθ,θ0,γ
θ,γh,pθ,ph,κ), i = 1, . . . , n;

5. p(pθi , p
h
i |y, θ̃, h̃,Σθ,θ0,γ

θ,γh,Σh,h0,κ), i = 1, . . . , n;

6. p(κ |y, θ̃, h̃,Σθ,θ0,γ
θ,γh,Σh,h0,p

θ,ph).

Step 3 to Step 6 are relatively straightforward and we leave the details to Appendix A.

Here we focus on the first two steps.

Step 1. Since γθ
i and θ̃i enter the likelihood multiplicatively, we sample them jointly to

improve efficiency. This is done by first drawing the indicator γθ
i marginally of θ̃i—but
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conditional on other parameters—and then sample θ̃i from its full conditional distribu-

tion. The latter of these two steps is straightforward because given γθ
i , we have a linear

Gaussian state space model in θ̃i. Specifically, we stack the observation equation (5) over

t = 1, . . . , T :

yi = Xiθi,0 + γθ
iZiθ̃i + εyi , N (0,Σhi

),

where Σhi
= diag(ehi,1 , . . . , ehi,T ) with hi,t = hi,0 + γh

i σh,ih̃i,t,

Xi =

⎛⎜⎜⎝
xi,1

...

xi,T

⎞⎟⎟⎠ , Zi =

⎛⎜⎜⎜⎜⎜⎝
xi,1Σ

1
2
θi

0 · · · 0

0 xi,2Σ
1
2
θi

· · · 0
...

...
. . .

...

0 0 · · · xi,TΣ
1
2
θi

⎞⎟⎟⎟⎟⎟⎠ .

Next, stack the state equation (7) over t = 1, . . . , T :

Hkθi
θ̃i = εθ̃i , εθ̃i ∼ N (0, ITkθi

),

where Hkθi
is the first difference matrix of dimension kθi . Since Hkθi

is a square matrix

with unit determinant, it is invertible. It then follows that θ̃i ∼ N (0, (H′
kθi

Hkθi
)−1).

Finally, using standard linear regression results, we have

(θ̃i |yi,hi,Σθi ,θi,0, γ
θ
i ) ∼ N

(̂̃
θi,K

−1

θ̃i

)
, (8)

where

Kθ̃i
= H′

kθi
Hkθi

+ γθ
iZ

′
iΣ

−1
hi
Zi,

̂̃
θi = K−1

θ̃i

(
γθ
iZ

′
iΣ

−1
hi
(yi −Xiθi,0)

)
. (9)

Since the precision matrixKθ̃i
is a band matrix, one can sample from (θ̃i |yi,hi,Σθi,γθ

i
,θi,0)

efficiently using the algorithm in Chan and Jeliazkov (2009).

To sample γθ
i marginal of θ̃i, first note that

p(γθ
i |yi,hi,Σθi ,θi,0) ∝

[∫
R
Tkθi

p(yi | θ̃i,hi,Σθi ,θi,0, γ
θ
i )p(θ̃i)dθ̃i

]
p(γθ

i ),
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where both the conditional likelihood p(yi | θ̃i,hi,Σθi ,θi,0, γ
θ
i ) and the prior density p(θ̃i)

are Gaussian. It turns out that the above integral admits an analytical expression. In

fact, using a similar derivation in Chan and Grant (2016), one can show that∫
R
Tkθi

p(yi | θ̃i,hi,Σθi ,θi,0, γ
θ
i )p(θ̃i)dθ̃i

= (2π)−
T
2 |Kθ̃i

|− 1
2 e

− 1
2

(∑T
t=1 hi,t+(yi−Xiθi,0)

′Σ−1
hi

(yi−Xiθi,0)−̂̃
θ
′
iK˜θi

̂̃
θi

)
,

(10)

where
̂̃
θi and Kθ̃i

are defined in (9). When γθ
i = 0, |Kθ̃i

| = 1 and
̂̃
θi = 0. It follows that

P(γθ
i = 0 |yi,hi,Σθi ,θi,0) ∝ (1− pθ)(2π)

−T
2 e

− 1
2

(∑T
t=1 hi,t+(yi−Xiθi,0)

′Σ−1
hi

(yi−Xiθi,0)
)
. (11)

Similarly,

P(γθ
i = 1 |yi,hi,Σθi ,θi,0)

∝ pθ(2π)
−T

2 |Kθ̃i
(1)|− 1

2 e
− 1

2

(∑T
t=1 hi,t+(yi−Xiθi,0)

′Σ−1
hi

(yi−Xiθi,0)−̂̃
θi(1)

′K
˜θi
(1)

̂̃
θi(1)

)
,

(12)

where
̂̃
θi(1) and Kθ̃i

(1) denote respectively
̂̃
θi and Kθ̃i

evaluated at γθ
i = 1. A draw from

this Bernoulli distribution is standard once we have normalized the probabilities in (11)

and (12).

Step 2. Again we sample γh
i and h̃i jointly to improve efficiency. Unlike Step 1, however,

we cannot first sample γh
i marginally of h̃i followed by drawing h̃i from its full conditional

distribution, because the latter distribution is nonstandard. Instead, we implement an

independence-chain Metropolis-Hastings step using the joint proposal density q(γh
i , h̃i) =

q(γh
i )q(h̃i | γh

i ).

Ideally, we would like to use a joint proposal that is “close” to the joint full posterior distri-

bution of γh
i and h̃i. To that end, we first use the marginal posterior p(γh

i |yi,θi, σ
2
h,i, hi,0)—

unconditional on h̃i—as the marginal proposal of γh
i . More precisely, it is a Bernoulli

distribution with success probability P(γh
i = 1 |yi,θi, σ

2
h,i, hi,0). To compute this success

probability, we need to evaluate the marginal density

p(γh
i |yi,θi, σ

2
h,i, hi,0) ∝

[∫
RT

p(yi | h̃i,θi, σ
2
h,i, hi,0, γ

h
i )p(h̃i)dh̃i

]
p(γh

i ),

12



where both the conditional likelihood p(yi | h̃i,θi, σ
2
h,i, hi,0, γ

h
i ) and the prior p(h̃i) are

Gaussian. Unfortunately, the above integral is not available in closed-form. However, it

can be evaluated via the importance sampling approach in Chan and Eisenstat (2018a,b)

that uses a Gaussian approximation of the theoretical zero-variance importance sam-

pling density. After normalization, we can therefore calculate P(γh
i = 1 |yi,θi, σ

2
h,i, hi,0)

and obtain a candidate draw γh∗
i ∼ q(γh

i ). If γh∗
i = 0, we obtain a candidate h̃∗

i from

the prior distribution p(h̃i); if γ
h∗
i = 1, h̃∗

i is drawn from a Gaussian approximation of

p(h̃i |yi,θi, σ
2
h,i, hi,0, γ

h
i = 1) using the methods in Chan (2017). Given the current draw

(γh
i , h̃i), the candidate draw (γh∗

i , h̃∗
i ) is accepted with probability

min

{
1,

p(yi | γh∗
i , h̃∗

i ,θi, σ
2
h,i,hi,0)p(γ

h∗
i )p(h̃∗

i )

p(yi | γh
i , h̃i,θi, σ2

h,i,hi,0)p(γh
i )p(h̃i)

× q(γh
i , h̃i)

q(γh∗
i , h̃∗

i )

}
.

Finally, we use the sampled value of h̃i to get a draw of hi by setting hi = hi,01T+γh
i σh,ih̃i.

The details of the remaining steps are provided in Appendix A.

4 Illustration

In this section we apply the proposed model in a simple setting to demonstrate that it

can recover salient patterns of the data. To that end, we aim to replicate the the model

comparison exercise in Chan and Eisenstat (2018b). More specifically, Chan and Eisen-

stat (2018b) compare a number of small hybrid TVP-VARs with different combinations

of time-varying parameters and constant coefficients using a dataset that consists of US

quarterly GDP deflator inflation, real GDP growth, and Fed funds rate. Since there are

three variables in the VAR and in each equation the coefficients can either be constant or

time varying—all the models include stochastic volatility—there are in total eight hybrid

TVP-VARs. The model comparison there is done by computing the marginal likelihood

of each model. For each hybrid TVP-VAR, the model first needs to be estimated. Then,

an adaptive importance sampling estimator is used to compute the marginal likelihood.

Obviously this approach is too computationally intensive to be applicable to large sys-

tems.
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Here we fit the same dataset using the proposed hybrid TVP-VAR.8 Of particular interest

are the estimates of the indicators, γθ
i and γh

i , as each can be interpreted as the posterior

model probability comparing an equation with time-vary parameters versus one with

constant parameters. The estimates are reported in Table 1.

Table 1: Posterior estimates of γθ
i and γh

i for the hybrid TVP-VAR with n = 3 variables.

Equation Chan and Eisenstat (2018b) γθ
i γh

i

GDP deflator time varying 1 1
Real GDP time varying 0.97 1
Fed funds rate constant 0 1

The best model in Chan and Eisenstat (2018b) is found to be the hybrid TVP-VAR that

has time-varying parameters in the GDP deflator and real GDP equations, whereas the

interest rate equation has constant coefficients. Consistent with the model comparison

result there, our estimates of γθ
i for the three equations are, respectively, 1, 0.97 and 0,

indicating that one needs time-varying parameters in only the first two equations but

not the third. Moreover, since all the indicators γh
i are estimated to be one, there is

strong evidence for stochastic volatility in all equations, supporting the modeling choice

of including stochastic volatility in all models in Chan and Eisenstat (2018b).

Overall, our results confirm that the proposed hybrid model can recover salient patterns—

such as time-varying conditional means and variances—in the data. Comparing to per-

forming a formal Bayesian model comparison, our approach is computationally efficient

as it only requires fitting the proposed hybrid TVP-VAR once. Moreover, it is also ap-

plicable to fitting large systems, as our empirical application in the following section

demonstrates.

5 Application: Trend Estimation and Forecasting

In this section we fit a large US macroeconomic dataset set to demonstrate the usefulness

of the proposed model. After describing the dataset in Section 5.1, we first present the

8To make our results comparable to those in Chan and Eisenstat (2018b), we use the same priors
there whenever it is possible.
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full sample results in Section 5.2, particularly, the estimates of the trend output growth

and trend inflation from the model. We then consider a pseudo out-of-sample forecasting

exercise in Section 5.3. We show that the forecast performance of the proposed model

compares favorably to a range of standard benchmarks.

5.1 Data and Prior Hyperparameters

The US dataset for our empirical application consists of 20 quarterly variables with a

sample period from 1959Q1 to 2018Q4. It is sourced from the FRED-QD database at the

Federal Reserve Bank of St. Louis as described in McCracken and Ng (2016). Our dataset

contains a variety of standard macroeconomic and financial variables, such as Real GDP,

industrial production, inflation rates, labor market variables, money supply and interest

rates. They are transformed to stationarity, typically to annualized growth rates. The

complete list of variables and how they are transformed is given in Appendix B.

We use the priors described in Section 3.1. In particular, since the data are transformed

to growth rates, we set the prior mean of θ0 to be zero, i.e., aθ0 = 0. For the prior

hyperparameters on κ1 and κ2, we set c1,1 = c1,2 = 1, c2,1 = 1/0.04 and c2,2 = 1/0.042.

These values imply that the prior means of κ1 and κ2 are respectively 0.04 and 0.042.

For the hyperparameters of the initial conditions h0, we set ah = 0 and Vh = 10 × In.

Next, the hyperparameter of σh,i is set so that the prior mean is 0.1. In other words,

the difference between consecutive log-volatilities is within 0.2 with probability of about

0.95. Similarly, the implied prior mean of σθi,j is 0.0052 if it is associated with a VAR

coefficient and 0.012 for an intercept. Finally, we set apθ = bpθ = aph = bph = 0.1. These

values imply prior modes at 0 and 1, whereas the prior mean is 0.5.

5.2 Full Sample Results

In this section we report the full sample results of the hybrid TVP-VAR fitted using all n =

20 variables. Of particular interest are the posterior estimates of γθ
i and γh

i , the indicators

that control time variation in the VAR coefficients and the variance, respectively. The

estimates are reported in Table 2.

As the table shows, the estimates of γh
i for most equations are close to one, suggesting
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that the stochastic volatility specification is needed for most equations. Our results thus

confirm the importance of allowing for time-varying variance in modeling macroeconomic

and financial data. However, there seems to be much less time variation in the VAR

coefficients—for the majority of the equations, the estimates of γθ
i are close to zero, im-

plying that time variation in those equations is essentially turned off. Overall, while we

find evidence for time-varying VAR coefficients and stochastic volatility in some equa-

tions, not all equations need both forms of time variation. Our results therefore highlight

the empirical relevance of the proposed hybrid TVP-VAR.

Table 2: Posterior estimates of γθ
i and γh

i for the hybrid TVP-VAR with n = 20 variables.

Equation γθ
i γh

i

Real GDP 0.96 1
PCE inflation 0.90 1
Unemployment 0 1
Fed funds rate 0 1
Industrial production index 0.99 1
Real average hourly earnings in manufacturing 1 0.15
M1 1 1
PCE 0.90 1
Real disposable personal income 0.06 1
Industrial production: final products 0 1
All employees: total nonfarm 0 0.95
Civilian employment 0 0.68
Nonfarm business section: hours of all persons 0 0.85
GDP deflator 0 1
CPI 0 1
PPI 1 1
Nonfarm business sector: real compensation per hour 1 1
Nonfarm business section: real output per hour 0 1
10-year treasury constant maturity rate 0 1
M2 1 1

Next, we report the model-implied long-run trends of GDP growth and PCE inflation.

Given the current slow growth and low inflation macroeconomic environment, there is

much interest to understand whether this is transitory as part of the slow recovery from

the Great Recession, or they reflect deeper structural changes in the economy. To that

end, we compute the potentially time-varying unconditional means of the dependent

variables implied by the hybrid TVP-VARs. More precisely, given a set of posterior
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draws of the structural-form VAR coefficients At,bt,B1,t, . . . ,Bp,t, we first compute the

implied reduced-form VAR coefficients b̃t = A−1
t bt, B̃j,t = A−1

t Bj,t, j = 1, . . . , p. Then,

set ct = (b̃′
t,0, . . . ,0)

′ and let Pt denote the companion matrix associated with the

reduced-form VAR parameters, i.e.,

Pt =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

B̃1,t B̃2,t · · · · · · B̃p,t

In 0 · · · 0 0

0 In 0 0
...

. . .
...

...

0 · · · 0 In 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Finally, we use the first n elements of μt = (Inp −Pt)
−1ct as the unconditional means of

the dependent variables and interpret them as the long-run trend estimates.

Figure 1 reports the long-run trend estimates of real GDP growth and PCE inflation rate.

As a comparison, we also report the corresponding long-run trend estimates for a small

system (n = 3) with real GDP, PCE inflation and unemployment, as well as a medium

system (n = 7) with four additional variables: Fed funds rate, industrial production,

real average hourly earnings in manufacturing and M1 money stock. These variables are

similar to those used in Morley and Wong (2019) for estimating the output gap.

1960 1970 1980 1990 2000 2010
1.5

2

2.5

3

3.5

4

1960 1970 1980 1990 2000 2010
0
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6

8
n = 20
n = 7
n = 3

Figure 1: Long-run trend estimates (posterior medians) of real GDP growth (top) and
PCE inflation rate (bottom).
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It is evident from the figure that that there is substantial time variation in the trend

output growth under the large hybrid TVP-VAR over the past six decades. Specifically,

the trend growth rate fluctuates around 3.5% from the beginning of the sample until

early 1970s. It then begins a steady decline and reaches a trough of about 3% in early

1990s. There is a slight pickup in trend growth in late 1990s, followed by a long, gradual

decline that begins around 2000 to about 1.9% in 2012. At the end of the sample, the

trend output growth is 2%. The general evolution of the trend output growth is similar

to those obtained previously in the literature (e.g. Berger, Everaert, and Vierke, 2016;

Grant and Chan, 2017) using unobserved components models. Moreover, the timing of

the apparent slowdown in trend output is consistent with the breakdates identified in

Perron and Wada (2009) and Morley and Panovska (2019). In particular, our results

suggest that the decline of trend output started before the onset of the Great Recession.

Compared to the large VAR, the trend output estimates under the small and medium

VARs show less time variation—e.g., the pickup in trend output in 2000 is less apparent

in both cases. This highlights the fact that estimates from VARs of different sizes could

be quite different, and using a richer set of variables might give better estimates.

Figure 1 also depicts the long-run trend estimates of PCE inflation. Here the three VARs

give similar estimates, except for the Great Inflation period. In particular, the results

show a gradual decline in trend inflation from early 1980s to late 1990s. Trend inflation

has mostly stayed at around 2% since early 2000s, although there is a slight decline after

2010. At the end of the sample, the trend inflation is about 1.7%.

5.3 Forecasting Results

In this section we evaluate the forecast performance of the proposed hybrid TVP-VARs

relative to a few standard benchmarks. In particular, we consider the conventional ho-

moscedastic, constant-coefficient VAR (by setting all the indicators to 0), the constant-

coefficient VAR with stochastic volatility (by setting all γh
i to 0 and all γθ

i to 1), and

the full-fledged TVP-VAR (by setting all the indicators to 1). All models use all n = 20

variables. The sample period is from 1959Q1 to 2018Q4, and the evaluation period starts

at 1985Q1 and runs till the end of the sample.

We perform a recursive forecasting exercise using an expanding window. More specifi-
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cally, in each forecasting iteration t, we use only data up to time t, denoted as y1:t, to

estimate the models. We then evaluate both point and density forecasts. We use the

conditional expectation E(yi,t+m |y1:t) as the m-step-ahead point forecast for variable i

and the predictive density p(yi,t+m |y1:t) as the corresponding density forecast.

The metric used to evaluate the point forecasts from model M is the root mean squared

forecast error (RMSFE) defined as

RMSFEM
i,m =

√∑T−m
t=t0

(yoi,t+m − E(yi,t+m |y1:t))2

T −m− t0 + 1
,

where yoi,t+m is the actual observed value of yi,t+m. For RMSFE, a smaller value indicates

better forecast performance. To evaluate the density forecasts, the metric we use is the

average of log predictive likelihoods (ALPL):

ALPLM
i,m =

1

T −m− t0 + 1

T−m∑
t=t0

log p(yi,t+m = yoi,t+m |y1:t),

where p(yi,t+m = yoi,t+m |y1:t) is the predictive likelihood. For this metric, a larger value

indicates better forecast performance.

To compare the forecast performance of model M against the benchmark B, we follow

Carriero, Clark, and Marcellino (2015) to report the percentage gains in terms of RMSFE,

defined as

100× (1− RMSFEM
i,m/RMSFEB

i,m),

and the percentage gains in terms of ALPL:

100× (ALPLM
i,m − ALPLB

i,m).

Figure 2 reports the forecasting results of the hybrid TVP-VAR, where we use the conven-

tional homoscedastic, constant-coefficient VAR as the benchmark. The top panel shows

the percentage gains in RMSFE for all 20 variables, and the bottom panel presents the

corresponding results in ALPL.

For both 1- and 4-step-ahead point forecasts, the hybrid TVP-VAR outperforms the

benchmark for almost all variables (all but one for 1-step-ahead and all but two for 4-
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step ahead). For a few variables, such as Fed funds rate, CPI inflation and industrial

production, the former outperforms the benchmark by more than 10% for 1-step-ahead

forecasts. Overall, the median percentage gains in RMSFE for 1- and 4-step-ahead fore-

casts are, respectively, 4.7% and 6.1%.

For density forecasts, the hybrid TVP-VAR performs even better relative to the benchmark—

it outperforms the benchmark for all variables in both forecast horizons. The median

percentage gains in ALPL for 1- and 4-step-ahead forecasts are 13% and 11%, respec-

tively. Moreover, for many variables the percentage gains are more than 20%. These

results are consistent with the small VAR literature that shows allowing for time-varying

structures substantially improves forecast performance compared to VARs with constant

parameters, especially for density forecasts.
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Figure 2: Forecasting results of the hybrid TVP-VAR compared to the benchmark: a
standard homoscedastic, constant-coefficient VAR. The top panel shows the percentage
gains in root mean squared forecast error of the asymmetric conjugate prior. The bottom
panel presents the percentage gains in the average of log predictive likelihoods.

Next, we compare the forecast performance of the hybrid TVP-VAR with that of the
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constant-coefficient VAR with stochastic volatility (VAR-SV), and the results are re-

ported in Figure 3. For both 1- and 4-step-ahead density forecasts, the hybrid TVP-VAR

substantially outperforms the VAR-SV for most variables. The median percentage gains

in RMSFE and ALPL are 7.3% and 11.5%, respectively. For point forecasts, the results

are similar, though the gains are more modest. The median percentage gains in RMSFE

for 1- and 4-step-ahead forecasts are, respectively, 1.5% and 2.7%. Overall, these results

suggest that allowing for time variation in VAR coefficients—with appropriate shrinkage

and sparsification—can further enhance the forecast performance of a VAR with stochas-

tic volatility.
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Figure 3: Forecasting results of the hybrid TVP-VAR compared to the benchmark VAR-
SV. The top panel shows the percentage gains in root mean squared forecast error of
the asymmetric conjugate prior. The bottom panel presents the percentage gains in the
average of log predictive likelihoods.

Finally, Figure 4 compares the forecast performance of the the hybrid TVP-VAR with

that of the full-fledged TVP-VAR where all the VAR coefficients and error variances are

time varying. For point forecasts, the hybrid TVP-VAR performs slightly worse than
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the benchmark. In particular, the median percentage gains in RMSFE for 1- and 4-step-

ahead forecasts are −1.8% and −1.0%, respectively. However, for density forecasts, the

hybrid TVP-VAR does substantially better for most variables. The median percentage

gains in ALPL are 8.6% and 9.9%, respectively. These results suggest that the hybrid

TVP-VAR constructs better predictive distributions, possibly due to the shrinkage and

sparsification built into the model.
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Figure 4: Forecasting results of the hybrid TVP-VAR compared to the benchmark TVP-
VAR. The top panel shows the percentage gains in root mean squared forecast error of
the asymmetric conjugate prior. The bottom panel presents the percentage gains in the
average of log predictive likelihoods.

Overall, these forecasting results show that the proposed hybrid TVP-VAR forecasts

better than many state-of-the-art time-varying models. These results highlight the ad-

vantages of using a data-driven approach to discover the time-varying structures—rather

than imposing either constant coefficients or time variation in parameters.
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6 Concluding Remarks and Future Research

We have developed a new class of models we call hybrid TVP-VARs, i.e., VARs with

time-varying parameters in some equations but not in others. Using US data, we found

evidence that while VAR coefficients and error variances in some equations are time

varying, the data prefer constant coefficients or homoscedastic errors in others. In a

forecasting exercise that involves 20 macroeconomic and financial variables, we demon-

strated the superior forecast performance of the proposed hybrid TVP-VARs compared

to standard benchmarks.

In future work, it would be interesting to develop methods to allow for more sophisti-

cated forms of time variation in coefficients. For example, while it is straightforward to

introduce multiple indicators in each equation to control the time variation in different

groups of VAR coefficients, it is more difficult to handle a group of coefficients that spans

across equations within the current equation-by-equation estimation framework. More-

over, dynamic sparsification—e.g., restricting a coefficient to be constant in some periods

but allowing it to be time-varying in others—would be an interesting and important

extension.
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Appendix A: Estimation Details

In this appendix we provide estimation details of the hybrid TVP-VAR given in (2)-(4).

In particular, we describe the details of the remaining steps of the posterior sampler.

Step 3. The parameters Σ
1
2
θi
and θi,0 can be sampled easily as their joint distribution is

Gaussian. To see that, let μθ
i = (θ′

i,0, σθi,1, . . . , σθi,kθi
) and define wθ

i,t = (xi,t, γ
θ
i xi,t� θ̃i,t),

where � denotes the component-wise product. Then, we can rewrite (5) as a linear

regression:

yi,t = wθ
i,tμ

θ
i + εyi,t.

Since both Σ
1
2
θi

and θi,0 have Gaussian priors, the implied prior of μθ
i is also Gaussian:

μθ
i ∼ N (0,Vμθ

i
), where Vμθ

i
= diag(Vθi,0

, Sθi,1, . . . , , Sθi,kθi
). Define Wθ

i by stacking wθ
i,t

over t = 1, . . . , T . It follows that the full conditional distribution of μθ
i is given by

(μθ
i |yi, θ̃i,hi, γ

θ
i , γ

h
i ) ∼ N (μ̂θ

i ,K
−1
μθ

i
),

where Kμθ
i
= V−1

μθ
i
+ (Wθ

i )
′Σ−1

hi
Wθ

i and μ̂θ
i = K−1

μθ
i
(Wθ

i )
′Σ−1

hi
yi.

Step 4. The full conditional distribution of σh,i and hi,0 is nonstandard, and we simulate

σh,i and hi,0 using an independence-chain Metropolis-Hastings step. Specifically, the full

conditional density of (σh,i, hi,0) is given by

p(σh,i, hi,0 |yi,θi, h̃i, γ
h
i ) ∝ p(yi | σh,i, hi,0,θi, h̃i, γ

h
i )p(σh,i)p(hi,0),

where both priors p(σh,i) and p(hi,0) are Gaussian and

log p(yi | σh,i, hi,0,θi, h̃i, γ
h
i ) = −T

2
log(2πehi,0)−1

2
σh,iγ

h
i

T∑
t=1

h̃i,t−1

2

T∑
t=1

e−hi,0−σh,iγ
h
i h̃i,t(εyi,t)

2.

Hence, we can readily compute the gradient and Hessian of log p(σh,i, hi,0 |yi,θi, h̃i, γ
h
i )

with respect to (σh,i, hi,0). Then, the mode of this full conditional density can be obtained

by, e.g., Newton-Raphson method. Finally, we construct a Gaussian proposal with mean

and precision matrix (inverse of the covariance matrix) set to be, respectively, the mode

and the negative Hessian of log p(σh,i, hi,0 |yi, h̃i, γ
h
i ).
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Step 5. Next, given the independent beta priors on pθi and phi , i = 1, . . . , n their full

conditional posterior distributions are also beta distributions. In fact, we have:

(pθi | γθ
i ) ∼ B(apθ + γθ

i , bpθ + 1− γθ
i ),

(phi | γh
i ) ∼ B(aph + γh

i , bph + 1− γh
i ).

Step 6. To implement Step 6, we follow the sampling approach in Chan (2019). First

note that κ1 and κ2 only appear in their priors κj ∼ G(c1,j, c2,j), j = 1, 2, and in the prior

covariance matrices Vθi,0
, i = 1, . . . , n. Letting θij,0 denote the j-th element of θi,0, we de-

fine the index set Sκ1 to be the collection of indexes (i, j) such that θij,0 is a coefficient asso-

ciated with an own lag. That is, Sκ1 = {(i, j) : θij,0 is a coefficient associated with an own lag}.
Similarly, define Sκ2 as the set that collects all the indexes (i, j) such that θij,0 is a co-

efficient associated with a lag of other variables. It is easy to check that the numbers of

elements in Sκ1 and Sκ2 are respectively np and (n− 1)np. Further, for (i, j) ∈ Sκ1 ∪Sκ2 ,

let

Cij =

{
1
l2
, for the coefficient on the l-th lag of variable i,

s2i
l2s2j

, for the coefficient on the l-th lag of variable j, j �= i.

Then, we have

p(κ1 |θ0) ∝
∏

(i,j)∈Sκ1

κ
− 1

2
1 e

− 1
2κ1Cij

θ2ij,0 × κ
c1,1−1
1 e−κ1c2,1

= κ
c1,1−np

2
−1

1 e
− 1

2

(
2c2,1κ1+κ−1

1

∑
(i,j)∈Sκ1

θ2ij,0
Cij

)
,

which is the kernel of the GIG
(
c1,1 − np

2
, 2c2,1,

∑
(i,j)∈Sκ1

θ2ij,0
Cij

)
distribution. Similarly, we

have

(κ2 |θ0) ∼ GIG
⎛⎝c1,2 − (n− 1)np

2
, 2c2,2,

∑
(i,j)∈Sκ2

θ2ij,0
Cij

⎞⎠ .
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Appendix B: Data

The dataset covers 20 quarterly variables sourced from the FRED-QD database at the

Federal Reserve Bank of St. Louis (McCracken and Ng, 2016). The sample period

is from 1959Q1 to 2018Q4. Table 3 lists all the variables and describes how they are

transformed. For example, Δ log is used to denote the first difference in the logs, i.e.,

Δ log x = log xt − log xt−1.

Table 3: Description of variables used in empirical application.
Variable Mnemonic Transformation
Real Gross Domestic Product GDPC1 400Δ log
Personal Consumption Expenditures: Chain-type
Price index PCECTPI 400Δ log
Civilian Unemployment Rate UNRATE no transformation
Effective Federal Funds Rate FEDFUNDS no transformation
Industrial Production Index INDPRO 400Δ log
Real Average Hourly Earnings of Production and
Nonsupervisory Employees: Manufacturing CES3000000008x 400Δ log
Real M1 Money Stock M1REAL 400Δ log
Personal Consumption Expenditures PCECC96 400Δ log
Real Disposable Personal Income DPIC96 400Δ log
Industrial Production: Final Products IPFINAL 400Δ log
All Employees: Total nonfarm PAYEMS 400Δ log
Civilian Employment CE16OV 400Δ log
Nonfarm Business Section: Hours of All Persons HOANBS 400Δ log
Gross Domestic Product: Chain-type Price index GDPCTPI 400Δ log
Consumer Price Index for All Urban Consumers: All Items CPIAUCSL 400Δ log
Producer Price Index for All commodities PPIACO 400Δ log
Nonfarm Business Sector: Real Compensation Per Hour COMPRNFB 400Δ log
Nonfarm Business Section: Real Output Per Hour of
All Persons OPHNFB 400Δ log
10-Year Treasury Constant Maturity Rate GS10 no transformation
Real M2 Money Stock M2REAL 400Δ log
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