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Abstract

Consumers hold inventory for future uses. This study investigates how such intertem-

poral decisions influence the cost-of-living index (COLI). To this end, I construct a simple

dynamic model, in which goods are storable and nonresalable, and prices take either high

(regular price) or low values (sales). I then introduce two types of dynamic COLIs. Sim-

ulation results show that neither index satisfies both monotonicity and the time reversal

test.

JEL Classification Numbers: C43, D15, E31

Keywords: consumer inventory; cost-of-living index; price index

1 Introduction

The cost-of-living index (COLI) serves as an important measure of price index, having strong

theoretical foundations (Könus,1924). However, most models are static, focusing on intratem-

poral substitutions among goods and neglecting intertemporal ones despite the fact that most

goods are storable.

In this note, I study the properties of the dynamic COLI. To this end, I construct a simple

model of storable goods, in which storable goods are nonresalable and households optimize how

much they purchase, consume, and stockpile. Prices take either high or low values exogenously.

I then numerically solve for model equilibrium using parameter values calibrated to the Japanese

economy. The dynamic COLI is defined as a welfare measure for compensating variation in

response to price changes, as in Könus (1924), but welfare is now calculated based on lifelong

utility, not period utility. An issue here is that welfare depends on a state variable, a household

inventory, which is endogenous in the previous period. When comparing the dynamic COLI

between two periods, it is a matter of judgment what level of household inventory we should

condition. As such, I examine two definitions for the dynamic COLI.

∗Waseda University and Centre for Applied Macroeconomic Analysis (CAMA) (E-mail:
kozo.ueda@waseda.jp). I would like to thank Kota Watanabe and Tsutomu Watanabe for the discus-
sions. This research was funded by the JSPS Grant-in-Aid for Scientific Research (16KK0065) and Nomura
Foundation (N19-2-E40). All remaining errors are my own.
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I find that the dynamic COLI is difficult to use for practical purposes as it does not satisfy

the following two basic properties simultaneously, which are considered as essential in price

indexes: monotonicity and the time reversal test (see ILO et al. 2004). One type of the

dynamic COLI satisfies monotonicity, exhibiting an increase (decrease) in the dynamic COLI

when the prices of storable goods increase (decrease). However, it does not satisfy the time

reversal test. The price index does not revert to the same level, although the prices of storable

goods revert to the same level. By systematically accumulating the COLI change whenever

temporary sales occur, a chain drift is generated in the long run. Another type of the dynamic

COLI satisfies the time reversal test, but not monotonicity. This unsatisfactory result poses

a challenge to both economists and practitioners. Until we solve this problem, the use of the

conventional static COLI may be better advised, because it not only satisfies both monotonicity

and the time reversal test, but is also simple to understand and construct.

Reis (2009) and Osborne (2018) propose a dynamic price index that considers the intertem-

poral decisions of households. In Reis (2009), the dynamic COLI is constructed from the

compensating variation of lifelong utility (welfare) rather than period utility. The main dif-

ference is that, although storable goods exist under both models, they are irreversible in my

model. Once households purchase storable goods, they cannot sell them to others and must

consume them by themselves, which is the key feature of most storable goods and becomes a

source of asymmetry (chain drift). Consequently, welfare cannot be expressed as a function of

wealth including inventory, which makes us unable to use the dynamic COLI defined in Reis

(2009).1

Osborne (2018) considers irreversible storable goods like our study, and computes the dy-

namic COLI following Gowrisankaran and Rysman (2012). The COLI in his definition is

essentially the one that keeps period utility, not lifelong utility, constant over time, although

it takes account of agents’ dynamic optimization problem. Furthermore, Osborne (2018) dis-

cards the chained price index claiming it is not theoretically correct or is subject to excessive

volatility, while this study considers the chained price index seriously (see, for example, Ivancic,

Diewert, and Fox 2011 for the same standpoint). This study investigates the short-run prop-

erties of the dynamic COLI. This aspect is almost always neglected but important, because

intertemporal substitutions (stockpiling) occur over a short horizon, of days. How the dynamic

COLI fluctuates when the prices of storable goods change is of particular concern here.

1As the second difference, in the proposed model, households receive utility from consuming storable goods,
while in Reis’ (2009), households receive utility by holding their stock (i.e., goods are durable). Third, the model
does not have risk-free bonds as a medium of savings or borrowings. Therefore, households cannot save, except
for storable goods, which is introduced into this model for simplicity. In Reis’ (2009) model, storable goods are
essentially similar to risk-free bonds in providing a medium of savings and borrowings, except that the former
directly contributes to utility.
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On the stockpiling of storable goods and its implications for the price index, many studies

have already been published, such as Boizot, Robin, and Visser (2001), Erdem, Imai, and Keane

(2003), Feenstra and Shapiro (2003), Hendel and Nevo (2006a,b), Gowrisankaran and Rysman

(2012), Wang (2013), and Osborne (2018) among others. Feenstra and Shapiro (2003) report

a large drift in the orthodox Törnqvist price index, attribute it to the stockpiling of storable

goods, and propose a modified fixed-base price index.

2 Model

2.1 Model Setup

The model is similar to that of Hendel and Nevo (2006a). A representative household (HH)

maximizes its welfare Wt in each period t as

Wt = Et

∞∑
i=0

βt−1u(ct+i, c
N
t+i), (1)

where 0 < β ≤ 1 represents a discount factor; Ct and CN
t represent the consumption of storable

and non-storable goods, respectively; and function u(ct, c
N
t ) satisfies uc > 0, ucN > 0, ucc < 0,

ucN cN < 0, and the Inada condition. The HH purchases storable goods by xt. The HH holds

the storable goods as

it = it−1 − ct + xt, (2)

where it is the inventory at the end of period t. The non-storable goods are purchased by cNt

and consumed by the same amount in period t. Nonnegative constraints for xt and it are the

key property of most storable goods. The storable goods cannot be sold in the second market,

once the HH purchases them. The HH does not have a savings opportunity, except for the

inventory of storable goods. I neglect the depreciation of storable goods, the cost of holding

inventory, and the discreteness of the unit of purchase without generality loss.

The budget constraint is expressed as

ptxt + cNt = 1, (3)

where pt represents the price of storable goods and the price of non-storable goods is normalized

to one. The HH receives the endowment of one. For timing, in each period, the HH holds it−1,

observes pt, purchases xt and cNt , and then consumes ct and cNt , which determines it.

The price of storable goods takes either of the two pH or pL, where pH > pL. The price
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evolves according to the Markov process as

Prob(pL|pH) = q

Prob(pL|pL) = q, (4)

where 0 < q, q < 1.

The value function is given by

V (it−1, pt) = maxct,cNt ,xt,it

[
u(ct, c

N
t ) + βEtV (it, pt+1)

]
,

subject to equations (2)–(4). Equivalently, it can be rewritten as

V (it−1, pt) = maxxt,it [u(it−1 + xt − it, 1− ptxt) + βEtV (it, pt+1)] , (5)

subject to xt ≥ 0, it ≥ 0, and equation (4).

2.2 Dynamic COLI

Könus (1924) defined the COLI as the welfare measure for compensating variation in response

to price changes. To extend this to a dynamic model, I refer to Reis (2008), Gowrisankaran

and Rysman (2012), and Osborne (2018), and introduce the following two definitions for the

dynamic COLI in the presence of storable goods:

(i) I define compensating variation PW
t so that

V (it−1, pt, P
W
t ) = V (it−2, pt−1, 1) (6)

or V (it−1, pt, P
W
t ) = V0, where V0 is a certain constant and V (it−1, pt, P

W
t ) is defined as

V (it−1, pt, P
W
t ) ≡ maxxt,it

[
u(it−1 + xt − it, PW

t − ptxt) + βEtV (it, pt+1, 1)
]
. (7)

The endowment of PW
t , which is transitory, is chosen to achieve constant welfare over time.

Then, the change in the dynamic COLI from the previous period, πWt , equals πWt = log(PW
t ).

This definition resembles that introduced in Gowrisankaran and Rysman (2012) and Os-

borne (2018). A main difference is that, in this study, the dynamic COLI is the unexpected

one-time compensation that holds welfare (lifelong utility) constant over time. In the above-

cited studies, it is a state-contingent compensation that holds period utility constant over time.

This difference is considered to matter when a price decreases. At sales, households sacrifice

today’s period utility, because goods are stockpiled for the future. In such a case, a large posi-
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tive compensation might be needed to hold period utility constant, although the occurrence of

sales increases its welfare and, thus, a negative compensation (tax) is needed to keep welfare

constant.

(ii) Whereas state variable it varies over time, you may think natural to compare welfare

given the same amount of inventory. Therefore, I introduce alternative PW
t so that

V (it−2, pt, P
W
t ) = V (it−2, pt−1, 1), (8)

where I base the inventory at the end of period t− 2.

It should be noted that, in Reis’ (2009) model, all goods are resalable in the second market,

and thus, welfare is expressed by households’ wealth at the beginning of each period, which

includes it−1 (inventory) times pt (the price of the goods in the current period). By contrast,

welfare in my model depends on state variable it−1, not ptit−1. Thus, we cannot consider

compensation for wealth as in Reis (2009).

3 Numerical Simulation

3.1 Equilibrium

The Bellman equation (5) characterizes the optimal behavior of the HH. To solve for equilib-

rium, I modify the code developed by Nakamura and Steinsson (2010) and take the following

steps. First, I specify a finite grid of points for the state variables, it−1, pt, as well as PW
t .

Second, I solve for HH’s policy functions for xt and it by iterating equation (5).

Parameterization

The unit of time is a day. I assume u(ct, c
N
t ) = αlog (ct)+(1−α)log

(
cNt
)
, where I set the share

of storable goods α at 0.1. Discount factor β equals 0.961/365. Regarding the price, I set the

values to be consistent with Japanese retailers’ scanner data in the 2000s and 2010s: price pL

is set at 0.90, while pH equals the price of non-storable goods, that is, 1, and the probability

of sales is given by q = 0.03 and q = 0.50.2

Policy Functions

Before studying the COLI, I verify the equilibrium. Figure 1 shows the policy functions for ct,

xt, and it and welfare Vt, given it−1. Welfare Vt is expressed by the inverse of the compensating

2See Sudo, Ueda, and Watanabe (2014) and Sudo et al. (2018) for the detailed data descriptions. For the
numerical simulation, x is discretized by 0.01, which is sufficiently small compared with the average consumption
of about 0.1.
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variation of current income, where it is normalized to zero when it−1 = 0 and pt = pH . For

example, 0.1 means that an increase in welfare corresponds to a 10 percent increase in current

income.

The results are simple to interpret. Consumption, as well as welfare, are higher at a low price

than at a high price and nondecreasing with the previous inventory. The amount of purchases

is also higher at a low price than at a high price. Opposite to consumption and welfare, the

amount of purchases is nonincreasing with the previous inventory, because there is a lower need

for stockpiling. The targeted level of inventory is nondecreasing with the previous inventory.

This suggests that consumption is not constant. It is low when household inventory is low or

the price high. Additionally, it is important to note that welfare becomes less sensitive to price

(whether high or low) when inventory is high, because there is almost no need to purchase

when the price is high.
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p = pH
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0
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Figure 1: Policy Functions and Welfare

3.2 Monotonicity of the Dynamic COLI

Next, I study the properties of the dynamic COLI. To do this, I generate the time series of prices

for 21 years (T = 365 × 21) and compute endogenous variables in each period, discarding the

first 365 samples. The top two panels of Figure 2 represent the scatter plots for the changes

in the dynamic COLI (πWt ) on the vertical axis with the changes in the prices of storable

goods (∆log(pt)) on the horizontal axis. Each dot indicates an observation in each period t.
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Additionally, Table 1 shows the means and standard deviations of the changes in the dynamic

COLIs.

The top left-hand panel of Figure 2 shows that the dynamic COLI based on definition (i)

does not necessarily increase (decrease) when the prices of storable goods increase (decrease),

although the correlation coefficient is positive (0.24). Even when prices remain unchanged,

the dynamic COLI fluctuates. To understand why, I represent inventories it−1 and it−2 and

purchase xt in the bottom panels. They show that it−1 tends to be large when prices increase

(positive ∆log(pt)), whereas there is no significant relationship between it−2 and ∆log(pt).

Since the price increase in period t suggests that prices were low in period t − 1, the level of

inventory at the end of period t − 1 tends to be large. This decreases the need for purchases

(low xt) and increases welfare (high Vt) and, in turn, contributes to almost no increase in the

dynamic COLI, despite the increase in pt. The opposite is also true. Inventory it−1 tends to be

low when prices decrease, because this implies that past prices were high. Therefore, welfare

and the dynamic COLI tend to be low and high, respectively. Such a nonmonotonic property

is difficult to use for a practical objective.

Conversely, the dynamic COLI based on definition (ii) holds a monotonic and positive

relationship with price changes. The dynamic COLI increases, when prices of storable goods

increase, and vice versa. When prices remain unchanged from the previous period, the dynamic

COLI does not change. This property is obvious from equation (8). As a result, πWt and

∆log(pt) have a correlation as high as 1.00.

3.3 Time Reversal of the Dynamic COLI

However, the dynamic COLI based on definition (ii) suffers from bias. Figure 3.4 shows the

time series of the levels of the dynamic COLIs, constructed by making a chain of their changes

ΠJ
j=1(1+πWt+j) for J = 1, 2, · · · , 7300. The right-hand panel shows that the price index decreases

by 3 percent over two decades. The average inflation rate of the dynamic COLI is only −4.00 ·
10−6 annually, but accumulating this leads to a clear price decrease.

There are two counteracting forces behind this chain drift. On one hand, welfare is more

sensitive to price changes when inventory is low than when it is high. Furthermore, when it−2

is high, the probability of pt−2 = pL is higher than the unconditional probability of being pL,

because the HH should purchase storable goods for stockpiling. Since the price takes only

two values and has an inertia, price pt is more likely to increase from pL to pH than decrease.

Therefore, the correlation between it−2 and ∆log(pt) becomes positive. This works to decrease

the dynamic COLI. On the other hand, given the same inventory level, the size of the changes in

the dynamic COLI tends to be larger when pt increases than when pt decreases. Put differently,
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because of the nonlinearity of it and xt, the HH dislikes price increases more than prefers price

decreases. This generates an upward bias. In the simulation, the former force dominates,

yielding around the 3 percent downward drift over two decades. Although the size of the drift

does not seem extraordinarily large, this size becomes about ten times larger if all goods are

storable, since the model assumes that only ten percent of goods are storable (i.e., α = 0.1).

Moreover, I show below that different, but plausible, parameter values yield far larger chain

drift.

The advantage of definition (i) is that it does not have such a bias. The left-hand panel

in Figure 3.4 shows that the dynamic COLI is stationary. In other words, this index satisfies

circularity or time reversal, an important property for the price index (see, for example, ILO

et al. 2004). Among three time periods, t0, t1, and t2, π
W from t0 to t2 equals that from t0 to

t1 times that from t1 to t2. Satisfaction of this property is obvious from equation (6), but not

(8).

3.4 Comparison with the Static COLI

I compare the dynamic COLI with the static one. The static COLI is calculated using a

standard model of perishable good and defined as a compensating variation to keep period

utility, not welfare, constant. See the Appendix for details on the calculations. Table 1 shows

that, when pt increases, the static COLI increases by 0.011. By the same size, it decreases

when pt decreases. This magnitude is in the same order as that of the dynamic COLI based on

definition (ii) (0.020). Further, both indexes exhibit no COLI change when pt is unchanged.

Meanwhile, the comparison with the dynamic COLI based on definition (i) is not as obvious,

because it has larger standard deviations and makes changes even when pt is unchanged.

Table 1: Comparisons of COLIs

All ∆log(pt) > 0 ∆log(pt) = 0 ∆log(pt) < 0

Dynamic COLI (it−1) 2.00E-06 -0.00137 0.00055 -0.01797
(0.0080) (0.0020) (0.0080) (0.0080)

Dynamic COLI (it−2) -4.00E-06 0.01960 0.00000 -0.01973
(0.0050) (0.0010) (0.0000) (0.0010)

Static COLI 0.00000 0.01054 0.00000 -0.01054
(0.0020) (0.0000) (0.0000) (0.0000)

Note: The figures represent the means of the changes in the COLIs generated by simulation. The figures in
parentheses are standard deviations. COLI (it−1) and COLI (it−2) represents the dynamic COLI based on
definition (i) and (ii), respectively.
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Figure 2: Change in COLI
Note: COLI (it−1) and COLI (it−2) represents the dynamic COLI based on definition (i) and (ii),
respectively.

3.5 Robustness

I calculate how much monotonicity and time reversal change under different parameter values.

Table 2 shows the simulation results. As for monotonicity, I report the correlation coefficient

between the change in the COLI and the change in the price of storable goods. The correlation

coefficient is always considerably lower than one, when the dynamic COLI is based on definition

(i). Meanwhile, the correlation coefficient is one for both the dynamic COLI based on definition

(ii) and the static COLI.

The time reversal test is satisfied for both the dynamic COLI based on definition (i) and

the static COLI. However, again, the dynamic COLI based on definition (ii) does not satisfy

this test. Furthermore, Table 2 shows that the size of the chain drift increases, when the effect

of sales increases (i.e., q or q increases or pL/pH decreases). Specifically, when the size of sales

discounts increases (pL/pH decreases from 0.9 to 0.8), the size of deflation in the dynamic COLI

based on definition (ii) increases from 3 percent in two decades to 42 percent. It is equivalent

to 4 percent deflation annually, which is sizable.

3.6 Dynamic COLI in a Regime Shift

I examine how much the dynamic COLI changes when parameter values regarding sales change

in a permanent and unanticipated manner. Before a regime change, I set pL/pH = 0.85,
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Figure 3: Movement of COLI
Note: COLI (it−1) and COLI (it−2) represents the dynamic COLI based on definition (i) and (ii),
respectively.

q = 0.017, and q = 0.600. After the regime change, these values change to pL/pH = 0.90,

q = 0.030, and q = 0.500,which are the same as in the above simulation. The values before the

regime change corresponds to those in the 1990s according to Japanese retailers’ scanner data,

while those after the regime change correspond to the 2000s and 2010s. The frequency of sales

has increased (higher q) given pt = pH , but the duration of sales decreased (lower q) and the

size of sales discounts also decreased (higher pL/pH). The first result implies a price decrease,

while the latter two imply a price increase.

I use definition (i) to compute the dynamic COLI. Definition (ii) cannot be applied here,

because it suffers from the chain drift. I make a slight modification since the regime shift is

permanent. The compensating variation PW
t is now assumed to be permanent:

V (it−1, pt, P
W
t ) = V (it−2, pt−1, 1), (9)

where PW
t enters into the second term on the right-hand side of the equation below:

V (it−1, pt, P
W
t ) ≡ maxxt,it

[
u(it−1 + xt − it, PW

t − ptxt) + βEtV (it, pt+1, P
W
t )
]
. (10)

In each regime, I generate the time series of prices for T = 365, compute endogenous variables in

each period, and compare the time series mean of PW
t between the two regimes. For comparison,

I also consider the change in the static COLI. While the prices of storable goods take two
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Table 2: Robustness

(1) Monotonicity (correlation with price changes)
COLI (it−1) COLI (it−2) Static

Benchmark 0.24 1.00 1.00
Higher q (0.05) 0.10 1.00 1.00
Higher q (0.75) 0.36 1.00 1.00

Lower pL (0.8) 0.20 0.99 1.00

(2) Time reversal (COLI changes from one in two decades)
COLI (it−1) COLI (it−2) Static

Benchmark 1.00 0.97 1.00
Higher q (0.05) 1.00 0.97 1.00
Higher q (0.75) 1.00 0.72 1.00

Lower pL (0.8) 1.00 0.58 1.00

Note: Benchamrk specification is as follows: q = 0.03, q = 0.50, and pL = 0.9.

values, I compute the unconditional mean of period utility in each regime and its change after

the regime changes.

Table 3 shows the results. At the regime change, the dynamic COLI increases by 0.0166.

To investigate the reason, I modify three parameter values one by one. When only q increases,

the dynamic COLI decreases by 0.0043. When only q decreases, the dynamic COLI increases

by 0.0052, which almost cancels out the previous decrease. Further, when pL/pH increases, the

dynamic COLI increases by 0.0166. Overall, the dynamic COLI increases mainly due to the

increase in pL/pH .

Meanwhile, the static COLI increases by 0.0001. The direction of the change is the same as

that for the dynamic COLI, although the size of the change is smaller by the order of two. The

decomposition of the change in the static COLI shows a similar pattern to that of the dynamic

COLI. The increase in q decreases the static COLI, while the other two factors increase it.

Table 3: Changes in COLIs at Regime Change

All higher q lower q higher pL/pH
Dynamic COLI (it−1) 0.0166 -0.0043 0.0052 0.0166

Static COLI 0.0001 -0.0002 0.0001 0.0003
Note: Dynamic COLI (it−1) is the dynamic COLI based on definition (i).

4 Concluding Remarks

No plausible dynamic COLI satisfies both monotonicity and the time reversal test. This poses

a significant challenge to both economists and practitioners. Until we solve this problem, the

use of the conventional static COLI may be better advised.
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Future research needs to search and propose desirable dynamic COLI that satisfies both

monotonicity and the time reversal test. It also needs to be simple to understand and construct.

For this, studies on consumer inventory are important from both empirical and theoretical

perspectives.
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Appendix A. Model of Perishable Goods

In a static model, there is no inventory, so it = xt. In this study’s specification, it follows

ptxt = α and period utility and welfare equal

u(pt) = αlog(α) + (1− α)log(1− α)− αlog(pt). (11)

Compensating income, PW
t , changes period utility by log(PW

t ); thus, the difference in u(pL)−
u(pH) = αlog(pH/pL) corresponds to log(PW

t ) when the price changes from pH to pL, and vice

versa.

We may consider a compensating income for welfare instead of period utility. Thus, we

have

V (pt) = αlog(α) + (1− α)log(1− α)− αlog(pt) + βEtV (pt+1), (12)

V (pH) = αlog(α) + (1− α)log(1− α)− αlog(pH) + β {(1− q)V (pH) + qV (pL)}

V (pL) = αlog(α) + (1− α)log(1− α)− αlog(pL) + β
{

(1− q)V (pH) + qV (pL)
}
,

13



which leads to V (pH)

V (pL)

 =

 1− β(1− q) −βq
−β(1− q) 1− βq

−1 αlog(α) + (1− α)log(1− α)− αlog(pH)

αlog(α) + (1− α)log(1− α)− αlog(pL)

 .

(13)

Compensating income, PW
t , changes welfare by log(PW

t ); thus, the difference in V (pL)−V (pH)

corresponds to log(PW
t ) when the price changes from pH to pL, and vice versa.
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