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1 Introduction

The relationship between income distribution and aggregate macro variables has been discussed
for a long time. A classic example is the relation between inequality and growth that has been
studied both theoretically and empirically for several decades (Aghion (2000), Alesina and Rodrik
(1994), Banerjee and Newman (1993), Forbes (2000), Islam (1995), Kaldor (1957), Kuznets (1955),
Persson and Tabellini (1994)). In addition, some studies analyzed the relation between income
distribution and a specific macroeconomic policy. For example, the effects of monetary policy on
income distribution are investigated by various researchers in recent years (Amberg et al. (2022),
Coibion et al. (2017), Mumtaz and Theophilopoulou (2017), Furceri et al. (2018), Holm et al.
(2020)).

This paper develops a novel empirical framework to analyze the interactions between income
distribution and aggregate macro variables. To utilize the entire income distributions, we use
their densities as a functional variable in our model, introducing a structural mixed autoregression
(structural MAR or SMAR) that combines a VAR and a functional autoregression. Statistical
analysis of functional observations has been quite active in recent years – see monographs by Bosq
(2000) and Ramsay and Silverman (2005), as well as notable works by Hall and Horowitz (2007),
Hyndman and Ullah (2007), Park and Qian (2012), Hörmann and Kokoszka (2012), Aue et al.
(2015), Hörmann et al. (2015), among many others. Based on the theory developed in Y. Chang
et al. (2021b), we represent our functional variable as a finite-dimensional vector, which is integrated
into the usual VAR for aggregate variables while allowing for contemporaneous as well as dynamic
interactions.

Our research is related to several strands of literature. From a methodological perspective,
our MAR model contributes towards a recently emerging literature that analyses the distributional
effects of macroeconomic shocks (e.g., Chang et al., 2021a, 2022b, Inoue and Rossi, 2021, Meeks
and Monti, 2022). Much of this literature utilizes existing methods in functional data analysis (see,
e.g., Bosq (2000) and Paparoditis (2018) for foundational theory, and Ramsay and Silverman (2005,
2007), and Kokoszka and Reimherr (2017) for a non-technical review. For instance, Meeks and Monti
(2022) estimate a New Keynesian Phillips curve where the inflation expectations distribution is used
as an exogenous covariate using a functional principal component regression. Kokoszka et al. (2018)
analyses the cross-section of returns using a functional regression model, thereby complementing
the Fama–French approach based on portfolio construction.1 Chang et al. (2022b) take a different
approach and consider a functional autoregression where the inflation expectations distribution
can be impacted by aggregate economic shocks. Inoue and Rossi (2021) consider a VAR in which
aggregate series can be impacted by functional shocks. In contrast to these approaches, our MAR
considers the joint dynamics of functional variables and aggregate time series in response to both
functional and conventional shocks in a single framework. In this sense, our approach is similar to

1While the cross-sectional approach to returns is undoubtedly valuable for financial research, our paper’s con-
tribution lies in utilizing the mixed autoregression to uncover deeper insights into the nuanced effects of oil market
dynamics on stock market behavior over time.
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M.Chang et al. (2021a), who specify a nonlinear state-space model to capture the joint dynamics
of aggregate macroeconomic time series and the earnings distribution. The key difference is that
we treat the functional variables as observable as opposed to unobservable states. This means that
we do not require the use of simulation-based estimation or filtering methods, but instead we can
directly estimate the model parameters by the simple ordinary least squares. By doing so, we
can identify both aggregate and functional shocks, and produce functional as well as conventional
impulse response functions. In addition, we also develop and apply commonly used tools for VAR
analysis, such as forecast error variance decomposition and historical decomposition, in our VAR
with both aggregate and functional variables.

The representation of a functional variable as a finite-dimensional vector requires the choice of
a basis for the function space, and we use the functional principal component (FPC) basis which by
construction most effectively represents the fluctuation of a functional variable. The choice of basis
is critically important, and we show in Appendix A that the functional principal component basis
works very effectively and better than other common bases as a finite-dimensional representation
of the income distribution. In a study conducted contemporaneously but independently of our
research, M. Chang et al. (2022a) consider a state space model involving probability density as a
functional variable. They specify that the loadings of a cubic spline basis employed to approximate
density functions evolve as a VAR jointly with other scalar variables, and use a Bayesian approach
to estimate the model by introducing an ad hoc relationship between the loadings obtained from
approximated density functions and the density functions themselves.2 In contrast, we let our
functional variable defined as probability density be directly observed up to a negligible estimation
error and use the data dependent functional principal component basis to approximate and include
it in our VAR. As we show in Appendix A, it is more effective and precise to use our functional
principal component basis to represent functional fluctuations in our model, rather than any other
fixed basis including a cubic spline basis.3

To demonstrate usefulness of our framework, we construct a VAR model with functional vari-
ables and key macro variables such as output, the price level, and a monetary policy indicator.
We first identify monetary policy shocks in the model by using a conventional method, e.g., Chris-
tiano et al. (1999), Christiano et al. (2005), and investigate the effects of monetary policy shocks
on income distribution. Their influence is more nuanced than simply a mean shift or changes in
dispersion. Contractionary monetary policy shocks worsen income inequality when the negative
aggregate income shift is taken into account. However, when the aggregate income is preserved,

2They use log-density, while we use density itself, as a functional variable. An observed density is used to fit
the data after demeaning, so we do not need to impose any non-negativity or unit integral restriction on density in
our analysis. In the function space we analyze density, moments are defined nicely as inner products of density with
polynomials. This allows us to compare the results using entire distribution with those relying only on moments.
Moreover, the effective support of our observed density changes over time, and the log-transformation of our density
is expected to unduly magnify the importance of its sparsely observed region.

3The existing theory for the finite-dimensional representation of a functional variable is only applicable for the
principal component basis. To the best of the authors’ knowledge, there is no existing theory showing the validity
of the use of a fixed basis. Indeed, if the functional variable is nonstationary, the approximation based on any fixed
basis fails as discussed in Chang et al. (2016).
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contractionary monetary policy shocks have a positive re-distributive effect improving income in-
equality by reducing the number of low and high income people while increasing the number of
middle income people. On the other hand, we also find that the contribution of monetary policy
shocks to income distribution variation is relatively small, albeit significant. We will not find these
results from the data unless we consider the entire income distribution together with aggregate
variables. Modeling the whole distribution is therefore critical.4

We also identify two types of hypothetical structural shocks to income distributions – hypotheti-
cal growth-targeted and equity-targeted redistributive policy shocks. The former is identified as the
shock to income distribution that has the largest positive effect on aggregate output ten years after
the impact while the latter is identified as the income distribution shock that minimizes the Gini in-
dex ten years after the impact date. First, we find that hypothetical growth-targeted redistributive
policy shocks have a huge and persistent positive effect on output fluctuations. The contribution
of such shocks to the output fluctuations is approximately 30% at long horizons and over 50% for
low-income percentiles. This finding suggests that properly-targeted redistributive policy shocks po-
tentially have huge effects on output fluctuations. Second, we find that hypothetical growth-targeted
redistributive policy shocks decrease the inequality substantially and persistently while hypothetical
equity-targeted redistributive policy shocks do not have negative effects on output. This finding
suggests that properly aimed redistributive policies are not subject to the often-claimed trade-off
between growth and equality. Third, we find that variations in income distribution are primarily
driven by shocks to the income distribution itself, rather than by aggregate shocks, including mone-
tary policy shocks. This suggests that redistributive policies are necessary to significantly alter the
income distribution and improve inequality.

The following section presents a detailed discussion of the data. A technical discussion of the
MAR is the main focus of Section 3, which a general reader not interested in the technical details
may skip. In Section 4, we discuss shocks to income distribution and our identification strategy
for those shocks. Section 5 presents the main empirical results of the paper. Specifically, we
present counterfactual responses from hypothetical unit impulses – i.e., impulse responses functions
of aggregate economic variables and response surfaces of the income distribution that allow us to
estimate effects from both aggregate shocks and income distribution shocks over the sample. Section
6 concludes. Appendices contain comparisons of the functional principal component basis described
in Section 3 with alternative bases, alternate income distribution shocks, comparisons of the results
of the SMAR with an SVAR that uses Gini index in place of the income distribution, robustness
checks and other ancillary and supporting results.

4Amberg et al. (2022) found a similar result by using Swedish administrative individual-level data by investigating
the effects on each quantile one-by-one. Compared to such a study, the current study provides a method to estimate
the results on any properties of distribution in a single empirical framework.
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Figure 1: Aggregate Macro Variables

Notes: Plotted are log levels of Industrial Production (IP), Consumer Price Index (CPI) and commodity Price Index
(PCOM), and Shadow Federal Funds Rates (FFRS). US recessions shaded in gray for reference.

2 Data

2.1 Aggregate Macro Variables

Figure 1 shows the aggregate variables that we use to represent macro economic activities. Plotted
are the monthly observations, from January 1980 to December 2015, of the log levels of Industrial
Production (IP), Consumer Price Index (CPI) and commodity Price Index (PCOM), and Shadow
Federal Funds Rates (FFRS). We use shadow Federal Funds Rates to represent monetary policy
stance near or at the zero lower bound5.

The Figure 2 shows the Gini index at monthly frequency, as a measure of aggregate inequality.
The blue line shows the time series of Gini index obtained from FRED, and the red line show the
Gini index measured from disaggregate micro level data from the Consumer Expenditure (CEX)
Survey, over the same sample period, January 1980 - December 2015, which will be explained in
Section 2.2. Though they do not exactly overlap, they are highly correlated with a correlation
coefficient 0.9984.

5We use shadow Federal Funds Rates constructed by Wu and Xia (2016).
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Figure 2: Gini Index of Aggregate Inequality

Notes: The blue line shows the time series of Gini index obtained from FRED, and the red line show the Gini index
measured from disaggregate micro level data from the Consumer Expenditure Survey.

2.2 Disaggregate Income Data

We use the micro-level income data from Consumer Expenditure (CEX) Survey conducted by Bu-
reau of Labor Statistics to construct time series of income distributions.6 Specifically, we obtain
monthly time series of cross-sectional income data from the CEX survey conducted by Bureau of
Labor Statistics following Krueger and Perri (2006) which uses using the U.S. households monthly
income data from the CEX survey series during the period from January 1980 to December 2015.
The data span, from January 1980 to December 2015, is chosen primarily because we were able
to obtain the cross-sectional income data at monthly frequency from the quarterly CEX survey.
Details of the CEX survey income data and the construction income densities from them follow.

We obtain the time-series of cross-sectional income distributions using the U.S. households
monthly income data obtained from the Consumer Expenditure Survey series7. The CEX sur-
vey consists of two surveys, Quarterly Interview Survey and Diary Survey, that provide continuous
flow of information on buying habits, expenditures, income, and consumer unit (families and single
consumers) characteristics of the US customers. The U.S. Census Bureau carries out the survey
under contract with the Bureau of Labor Statistics. The CEX Survey is the only federal survey
that provides information on complete range of consumer expenditures and incomes.

This data set spans 36 years and provides 432 monthly cross-sectional household observations
with the number of households for each month ranging from 1,825 to 5,663. During the sample
period, each household is included in the survey at most five times, and therefore the CEX survey
provides pseudo panel data. In order to construct monthly household income, we follow the defini-

6Krueger and Perri (2006) use the Consumer Expenditure Survey (CEX) data to construct their monthly income
data. Specifically, they define income as the sum of labor income (wages and salaries) and capital income (interest,
dividends, and rents). They do not explicitly mention whether capital gains are included in their definition of income.

7It is formerly called the Survey of Consumer Expenditures
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tions of income given by Krueger and Perri (2006), and aggregate the monthly values provided in
Universal Classification Code (UCC) level for each month and year. See Krueger and Perri (2006)
for detailed information. We then deflate the nominal income values by the monthly CPI for all
urban households constructed with a base year which varies among 1982, 1983 and 1984. The CPI
data used here are provided by the Bureau of Labor Statistics.

The CEX uses topcoding to change the values of the original data when they exceed some
prescribed critical values, which are calculated for each variable containing sensitive information in
accordance with the guidelines provided by the Census Disclosure Review Board. The critical values
may vary year to year. Each observation that exceeds the critical value is replaced with a topcode
value that represents the mean of all observations whose values exceed the critical value. Therefore,
topcode values may also change over time and be applied at a different start point. In our analysis
we drop all topcoded values of household income.8 Following the sample selection criteria given in
Krueger and Perri (2006), we exclude observations with possible measurement error or inconsistency
problem.9

Figure 3 shows, on the left panel, the monthly time series of the densities of cross-sectionally
demeaned incomes. At each time period, we use cross-sectionally demeaned monthly disaggregate
income data to estimate the income density centered at zero, and track its mean using the monthly
time series of aggregate income level.10 The right panel shows the same densities of cross-sectionally
demeaned incomes which are also demeaned over time. The temporally demeaned densities magnify
the fluctuations in income distributions, which in turn allow us to focus on the distributional aspect
of the income distribution.

3 Model and Methodology

In this section, we introduce the model and methodology used to study the interaction between the
macroeconomic aggregates and income distributions. Our empirical analysis is based on a mixed
autoregression (MAR), a mixture of vector autoregression and functional autoregression, which
allow us to include functional variables, such as income distributions, as well as aggregate variables
representing economic activities and policy variables in the model. We now discuss the MAR in
detail and explain how to estimate it effectively.

8Dropping top-coded observations based on time-varying topcode values may potentially create some problems,
for example when the number of excluded samples change over time. This is how Krueger and Perri (2006) handle
this issue. Since we do not have a better alternate way of dealing with topcoded data, we follow their approach here.

9Krueger and Perri (2006) excludes all households that satisfy one of the eight exclusion criteria they provide in
Appendix of their paper. We select the households with only the first five exclusion criteria to be able to include the
households with weekly wages below half of the minimum wage, households classified as rural, and those households
that did not complete the full set of four interviews but have complete income responses and have been interviewed
five times. We relax these two exclusion restrictions to increase the number of observations across all income ranges
each month. If we only consider households that meet all eight exclusion criteria, we have too few observations on
the lower end of the income distribution for some periods. This leads to too many empty bins, which in turn makes
our nonparametric density estimation more challenging.

10For kernel density estimation, we exclude the outliers on both ends at 1% for income distribution. Even after
removing topcoded observations, the CEX income data still have outliers enough to cause the aforementioned empty
bin problems. This is why we remove 0.5% of the observations at both left and right ends of the distribution.
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Figure 3: Time Series of Income Distributions

Notes: Left panel shows the monthly time series of the cross-sectionally demeaned densities estimated using the
disaggregate income data from Consumer Expenditure Survey. Right panel shows the same densities demeaned over
time. The horizontal income axis displays the quantile values of the demeaned income distribution at 1%, 10%, 25%,
50%, 75%, 90% and 99%. For example, 2395.46 (0.9) indicates the quantile value at the 90% level.

3.1 MAR

We denote by pxtq the four-dimensional time series

xt “ pIPt ´ ĎIP ,CPIt ´ ĘCPI, PCOMt ´ ĞPCOM,FFRSt ´ ĞFFRSq1

defined for each t with the aggregate series pIPtq, pCPItq, pPCOMtq and pFFRStq introduced
in Section 2 less their respective temporal means ĎIP , ĘCPI, ĞPCOM , and ĞFFRS. We denote by
pftq the functional time series given by the cross-sectionally and temporally demeaned densities of
the income distributions shown in the right panel of Figure 3.11 Note that pftq represents purely
distributional changes over time net of aggregate income fluctuations. FFRS is included in the
model to represent monetary policy stance. IP and CPI are the most important aggregate variables
to represent macroeconomic conditions. PCOM is included to represent inflationary pressure to
which monetary policy reacts. See Sims (1992) and Christiano et al. (1999).

We then define pztq as zt “ pxt, ftq, which is assumed to follow an MAR given by

zt “ Azt´1 ` εt, (1)

where A is a bounded linear operator and pεtq is a functional error to be specified below. Let ℓ

denote the number of aggregate variables, which is four in our model. Note that our MAR is defined

11In the paper, we use the density functions to represent income distributions. There are, of course, many other
ways of representing income distributions. See Appendix D for detailed discussions on other choices and their relative
advantages and disadvantages.
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without the constant term. This is because we assume that all our variables, both the aggregate
variables pxtq and the functional variable pftq, are demeaned a priori. This convention will be made
throughout the paper. To define our MAR more precisely, we further let pftq be given as random
elements taking values in a Hilbert space

H “

"

f : K Ñ R

ˇ

ˇ

ˇ

ˇ

ż

fprq dr “ 0,

ż

fprq2dr ă 8

*

,

where K is a bounded subset of R and integrals are defined over K. Clearly, H is a Hilbert space,
as a subspace of the usual Hilbert space of square integrable functions on K.

Now we may define pztq more formally as a time series of random elements in Rℓ ‘ H, which
itself is a Hilbert space defined as the direct sum of Rℓ and H. The new extended Hilbert space
Rℓ ‘ H is endowed with the inner product

xz, wy “ xx, yy ` xf, gy

for all z “ px, fq and w “ py, gq with x, y P Rℓ and f, g P H, where x¨, ¨y is used as a generic notation
for the inner product in Rℓ, H, or Rℓ ‘ H for notational brevity. The standard inner products in
Rℓ and H are given by

xx, yy “ x1y and xf, gy “

ż

fprqgprqdr

respectively for all x, y P Rℓ and f, g P H. We also use the same generic notation } ¨ } for the norm
induced by the inner product x¨, ¨y in Rℓ, H or Rℓ‘H, and therefore, }z}2 “ xz, zy “ xx, xy`xf, fy “

}x}2 ` }f}2 for all z “ px, fq P Rℓ ‘ H.
We also need to introduce the notion of tensor product in H and Rℓ ‘ H. For f, g P H, the

tensor product f b g is defined as a linear operator on H satisfying

pf b gqh “ xh, gyf

for all h P H. We may define the tensor product z b w of z “ px, fq and w “ py, gq similarly as a
linear operator on Rℓ ‘ H given by

pz b wqv “ xv, wyz “
`

c1y ` xh, gy
˘

px, fq

for all v “ pc, hq P Rℓ ‘H. When H “ Rm and H becomes finite-dimensional, we have f b g “ fg1

and zbw “ zw1, and they become outer products of two vectors, in contrast to their inner products
given by xf, gy “ f 1g and xz, wy “ z1w.

The autoregressive operator A in (1) is an element in the space LpRℓ ‘ Hq of linear operators
on Rℓ ‘ H and may be written more explicitly as the matrix of operators

A “

˜

ARR ARH

AHR AHH

¸

,
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where ARR : Rℓ Ñ Rℓ, ARH : H Ñ Rℓ, AHR : Rℓ Ñ H, and AHH : H Ñ H. If we let w “ Az for
z “ px, fq1 and w “ py, gq1 with x, y P Rℓ and f, g P H, we may represent ARR as an ℓ ˆ ℓ matrix
such that y “ ARRx,

ARH “

¨

˚

˚

˝

xh1, ¨y

...
xhℓ, ¨y

˛

‹

‹

‚

such that y “ ARHf “

¨

˚

˚

˝

xh1, fy

...
xhℓ, fy

˛

‹

‹

‚

,

AHR “

´

k1 ¨ ¨ ¨ kℓ

¯

such that g “ AHRx “

´

k1 ¨ ¨ ¨ kℓ

¯

x

for some h1, . . . , hℓ P H and k1, . . . , kℓ P H, and AHH is a bounded linear operator on H such that
g “ AHHf .

The functional error pεtq in (1) is assumed to be white noise, such that we have Epεtq “ 0 and

Epεt b εsq “

#

Ω

0
for

t “ s

t ‰ s
,

where Epεt b εsq is the covariance operator of εt and εs defined as an operator on Rℓ ‘ H such
that xz,Epεt b εsqwy “ Exz, εtyxw, εsy for all z, w P Rℓ ‘ H. In short, pεtq is a serially uncorrelated
functional time series with mean zero and a common variance operator, which is simply a vector
series of white noise in the finite-dimensional case.

3.2 Finite Dimensional Approximation and VAR Representation

In functional data analysis, functions are represented as finite-dimensional vectors in various ways.
We encompass those approaches within a single framework, so that an approach to represent func-
tions may be interpreted as a basis and truncation number. For instance, functions represented by
long vectors consisting of their values in the ordinate corresponding to a selected grid of values in
the abscissa may obviously be interpreted as their finite-dimensional representations using the basis
pviq given by vi “ δri , where δr is the Dirac delta function at r P R. More generally, let pviq be an
orthonormal basis of Rℓ ‘ H, and write z P Rℓ ‘ H as

z “

8
ÿ

i“1

xvi, zyvi,

which is approximated by

z «

n
ÿ

i“1

xvi, zyvi (2)

for an appropriately chosen truncation number n.
Once we fix an orthonormal basis pviq of Rℓ ‘ H, we may represent the MAR in (1) as a finite-

dimensional VAR. Our VAR representation closely follows that of Y. Chang et al. (2021b) and
extends their VAR representation of functional autoregressions for functional time series pftq only
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to mixed autoregressions for pztq that include ℓ-dimensional aggregate variables in addition to the
functional variable pftq.12 Let Rℓ ‘ V be the subspace of Rℓ ‘ H spanned by a sub-basis pviq

n
i“1,

and denote by P the Hilbert space projection on the subspace Rℓ ‘ V so that Pz “
řn

i“1xvi, zyvi.
We approximate the MAR in (1) as

zt “ APzt´1 ` Ap1 ´ P qzt´1 ` εt « APzt´1 ` εt, (3)

where 1 ´ P is an operator on Rℓ ‘ H defined as p1 ´ P qz “ z ´ Pz for all z P Rℓ ‘ H. The
approximation error pAp1´P qzt´1q is asymptotically negligible under suitable regularity conditions
and if we set n Ñ 8 as T Ñ 8 at an appropriate rate. The required conditions are not very
stringent and expected to hold generally.

We now explain how to represent the approximate MAR in equation (3) as a finite-dimensional
VAR. Define a mapping

π : z ÞÑ

¨

˚

˚

˝

xv1, zy

...
xvn, zy

˛

‹

‹

‚

(4)

and write
πpzq “ pzq (5)

for any z P Rℓ ‘ H. Accordingly, let

π : A ÞÑ

¨

˚

˚

˝

xv1, Av1y ¨ ¨ ¨ xv1, Avny

...
...

...
xvn, Av1y ¨ ¨ ¨ xvn, Avny

˛

‹

‹

‚

(6)

be the corresponding mapping on A given by

πpAq “ pAq (7)

for any A P LpRℓ ‘ Hq.
Using our notation in (5) and (7), we may approximate the MAR in (1) as

pztq “ pAqpzt´1q ` pεtq, (8)

a conventional n-dimensional VAR, which we refer to as the approximate VAR to our MAR. The
approximate VAR in (8) is readily derived from the approximate MAR in (3), since we have pAPzq “

pAqpzq for any z P Rℓ ‘ H and A P LpRℓ ‘ Hq, and pz ` wq “ pzq ` pwq for all z, w P Rℓ ‘ H. The
approximate MAR in (3) is therefore equivalent to the approximate VAR in (8), which implies that

12Our MAR extends the functional autoregressive model in Chang et al. (2021b) by adding aggregate time series.
However, their theory is directly applicable for our MAR, since Rℓ

‘ H may be viewed as an extended Hilbert space
in a trivial sense. we use the approach developed by Chang et al. (2021b), which has some obvious advantages over
other existing methods available for functional data analysis. This will be shown subsequently.
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the original MAR in (1) may be analyzed by the approximate VAR in (8) for large n and T .
Our empirical analysis and statistical inference are based on the approximate VAR in (8). The

validity of our procedure may be readily established following Y. Chang et al. (2021b), who show
that the usual VAR methodologies and their sample and bootstrap asymptotic theories are generally
applicable for the structural analysis of functional autoregressions based on approximate VARs like
the one given in (8).

Although the π’s in (4) and (6) are defined for any z P Rℓ ‘H and A P LpRℓ ‘Hq, we interpret
them as their restricted versions on Rℓ ‘ V and LpRℓ ‘ V q, respectively, whenever necessary. The
restricted versions of π’s are one-to-one, so that their inverses exist and are well defined. We may
indeed easily show that

π´1
`

pzq
˘

“ Pz and π´1
`

pAq
˘

“ PAP.

Consequently, from the estimate xpAq of the autoregressive coefficient matrix pAq and the fitted values
`

ypεtq
˘

of the residuals
`

pεtq
˘

in (8), we may easily obtain the corresponding estimate pA and the fitted
functional residuals

`

pεt
˘

as a linear operator on Rℓ ‘ V and a functional time series taking values
in Rℓ ‘ V and hence in Rℓ ‘ H.

In fact, the π’s in (4) and (6) are not just one-to-one mappings. They are isometries. For π in
(4), we have

}z}2 “ x1x ` }f}2 “ x1x `

m
ÿ

i“1

xvi, fy2 “
›

›pzq
›

›

2

for any z “ px, fq P Rℓ ‘V , where as before we use the generic notation } ¨ } for the norms in Rℓ ‘V

and Rn. Moreover, we have

|}A}|2 “ trace pA1Aq “ trace
`

pAq1pAq
˘

“
ˇ

ˇ

›

›pAq
›

›

ˇ

ˇ

2

for any Hilbert-Schmidt operator A on Rℓ ‘V , where A1 is the adjoint of the operator A, pAq1 is the
transpose of the n-dimensional matrix pAq, and |}A}| and |}pAq}| denote the Hilbert-Schmidt norm
of A and the Frobenius norm of pAq, respectively.

3.3 Choice of Basis: Non-Asymptotic Analysis

The VAR representation in (8) may be obtained for any orthonormal basis pviq of Rℓ ‘ H. The
effectiveness of the resulting approximation, however, depends crucially on the choice of basis. We
denote by pv˚

i q our particular choice of basis of Rℓ ‘ H, and show that it has some optimality
properties and yields an efficient estimate of the functional operator A. To introduce pv˚

i q explicitly,
we define Rℓ ‘ H more explicitly as the Hilbert space generated by a basis defined as a union of a
basis in Rℓ and a basis in H. Specifically, we let v˚

i “ ei for i “ 1, . . . , ℓ, where peiq is the standard
basis for Rℓ, so that

xt “
`

xv˚
1 , zty, . . . , xv˚

ℓ , zty
˘1
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for all t. Furthermore, define v˚
ℓ`i “ eipΓq for i “ 1, 2, . . ., where eipΓq denotes the eigenfunction

associated with the i-th largest eigenvalue of the sample variance operator of pftq

Γ “
1

T

T
ÿ

t“1

pft b ftq. (9)

Note that peipΓqq is the (normalized) functional principal component (FPC) of pftq, which is widely
used in the functional data analysis literature including Bosq (2000), Ramsay and Silverman (2005),
Hall and Horowitz (2007), and Park and Qian (2012), among many others. In the paper, we will
refer to pv˚

i q as the FPC basis.13 Our empirical analysis in the paper relies mainly on the VAR in
(8) obtained using this basis.

Subsequently, we denote by Rℓ ‘ V ˚ the subspace of Rℓ ‘ H spanned by the sub-basis pv˚
i qni“1,

and by P ˚ the Hilbert space projection on Rℓ ‘ V ˚. For comparison, we let pviq
n
i“1 be an arbitrary

sub-basis in Rℓ ‘ H with vi “ ei for i “ 1, . . . , ℓ spanning Rℓ ‘ V and P be the Hilbert space
projection on Rℓ ‘ V , so that the Hilbert space projection P ˚ on Rℓ ‘ V ˚ spanned by pv˚

i qni“1 may
be regarded as a special case. Note that pv˚

i qℓi“1 ” pviq
ℓ
i“1, since they both use the the standard

basis for Rℓ. We also let Π be the Hilbert space projection on V spanned by a sub-basis pvℓ`iq
m
i“1

in H with m “ n ´ ℓ, with Π˚ as a special case when pv˚
ℓ`iq

m
i“1 is used as a sub-basis.

As in Y. Chang et al. (2021b), we define the functional R-squared as

FR2 “

řT
t“1 }Πft}

2

řT
t“1 }ft}2

which represents the proportion of the total variation of pftq explained by its projection on V

spanned by an arbitrary sub-basis pvℓ`iq
m
i“1. It follows that FR2

˚ ě FR2, where we denote by FR2
˚

the functional R-squared for the projection of pftq on V ˚ spanned by the sub-basis pv˚
ℓ`iq

m
i“1, which

implies that the sub-basis pv˚
ℓ`iq

m
i“1 most effectively represents the temporal fluctuations of pftq

T
t“1.

Because }Pzt}
2 “ x1x` }Πft}

2, we may also deduce that the basis pv˚
i qni“1 represents the variations

of pztq over time more effectively than any other basis pviq
n
i“1.

There are more advantages of choosing the FPC basis pv˚
i qni“1 over any other basis pviq

n
i“1. The

approximation of A given by P ˚AP ˚ restricts A to the subspace Rℓ ‘V ˚ of Rℓ ‘H, where pztq has
the largest variation and consequently A is most strongly identified. In this sense, the basis pv˚

i q

provides the most effective approximation of A among its alternate restrictions on an n-dimensional
subspace Rℓ ‘ V of Rℓ ‘ H. Finally, the use of pv˚

i qni“1 makes the approximation error minimized,
which means that we estimate the error variance most precisely if it is used.

Table A.1 and A.2 in Appendix A.2 report FR2 statistics calculated using the FPC basis dis-
cussed here, as well as three other alternate basis, a histogram basis, a quantile basis, and an

13If a function is represented as a long vector, as is usually done in functional data analysis, the FPCA reduces to
the principal component analysis (PCA). In our analysis, we represent the estimated densities of demeaned income
levels as 1024-dimensional vectors to obtain FPCs. The dimension 1024 is non-consequential and does not affect our
results unless it is set to be too small.



13

orthonormalized moment basis defined in Appendix A, for different values of the dimension m of
the finite-dimensional approximation to pftq. It is clear from the table that the FPC basis does
a much better job of capturing variations in the demeaned income distributions, with just three
basis functions capturing 96%. In contrast, the first three functions of the histogram basis capture
24%, the first three of the quantile basis capture 42%, and the first three moment basis capture
only 17%. In particular, the mean of income distribution (first moment) captures only 9% of the
variation in the income distribution. These results on FR2 provide strong finite sample evidence for
the superiority of the FPC basis over the others for any given number of bases.

We also present the integrated variances (IVARs) of the estimated A as further evidence in
Table A.2 and Figure A.3. See Appendix A.3 for a detailed explanation of the IVAR. The IVARs
of the three alternate basis are huge and grow rapidly as the number of bases m increases. In stark
contrast, the IVARs of our FPC basis are much small and grow very slowly. Among the three
alternate basis, the quantile basis has the smallest IVARs, which are still much greater than those
of the FPC basis.

3.4 Reduced-Form Model Specification

We may generalize the first-order MAR in (1) to a p-th order MAR for any finite p, and consider

zt “ A1zt´1 ` ¨ ¨ ¨ ` Apzt´p ` εt

“ A1Pzt´1 ` ¨ ¨ ¨ ` ApPzt´p ` A1p1 ´ P qzt´1 ` ¨ ¨ ¨ ` App1 ´ P qzt´p ` εt

« A1Pzt´1 ` ¨ ¨ ¨ ` ApPzt´p ` εt, (10)

whose corresponding approximate p-th order VAR is given by14

pztq « pA1qpzt´1q ` ¨ ¨ ¨ ` pApqpzt´pq ` pεtq. (11)

As is well known, a p-th order MAR and corresponding p-th order approximate VAR can be re-
defined as a first-order MAR and corresponding approximate first-order approximate VAR in an
extended space. Therefore, our interpretations and representations of the first-order MAR and the
corresponding approximate VAR are applicable for p-th order MAR models.

Once we fix the truncation number m “ n ´ ℓ and represent the functional variable in MAR
as an m-dimensional vector, we may use standard lag selection procedures such as AIC and BIC
to select the order of the approximate VAR, and ultimately the order of the underlying MAR. For
our data, both the AIC and BIC select two lags with the choice of m “ 3, so we set p “ 2 for the
subsequent empirical analysis.

14If FPCs are defined as factors, our VAR (8) may simply be viewed as a FAVAR. However, the factors in the
VAR formulation of our approximated MAR are given by the inner products of our functional observations with their
eigenfunctions, which are very different from the usual factors constructed from a panel and used in a FAVAR.
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4 Identification

For our empirical study, we analyze a second-order MAR through the corresponding second-order
approximate VAR in (11) with p “ 2, which is given by

pztq « pA1qpzt´1q ` pA2qpzt´2q ` pεtq. (12)

For the subsequent structural analysis of our reduced-form approximate VAR (12), we write the
error term as

pεtq “
`

εIPt , εCPI
t , εPCOM

t , εFFRS
t , εDIN1

t , εDIN2
t , εDIN3

t

˘

(13)

where pεIPt q, pεCPI
t q, pεPCOM

t q and pεFFRS
t q are innovations to the aggregate variables pIP tq,

pCPItq, pPCOM tq, and pFFRStq, respectively, and pεDIN1
t q, pεDIN2

t q and pεDIN3
t q are innova-

tions to the three leading FPC loadings of the demeaned income distributions in our approximate
VAR (12).

4.1 Structural Shocks

We define structural shocks petq as
pεtq “ Bet (14)

with their matrix coefficient B, which is also referred as the at-impact response matrix. The shocks
petq are usual structural shocks to be defined and identified. To identify the shocks in (14) of
the approximate SVAR to our MAR, we introduce m “ 3 functional shocks peDIN1

t , eDIN2
t , eDIN3

t q.
Aggregate shocks peIPt q, peCPI

t q, pePCOM
t q, and peFFRS

t q are identified recursively à la Sims (1980),
where contemporaneously more exogenous shocks are listed first. Following Christiano et al. (1996)
and Christiano et al. (1999), peFFRS

t q is identified as monetary policy shocks.15 We interpret these
four aggregate shocks simply as unexpected changes in aggregate output, unexpected changes in
aggregate prices, unexpected changes in commodity prices and unexpected changes in monetary
policy, respectively. Three structural functional shocks peDIN1

t q, peDIN2
t q, peDIN3

t q are also recursively
identified. The recursive structure we impose for the three functional shocks is purely for convenience
and strictly inconsequential. Moreover, we assume that aggregate shocks, including monetary policy
shocks, are contemporaneously exogenous to three functional shocks. In this way, the functional
shocks can be defined as pure functional shocks that are orthogonal to the aggregate shocks.

We let
et “

`

eIPt , eCPI
t , ePCOM

t , eDIN1
t , eDIN2

t , eDIN3
t

˘

, (15)

which consists of four aggregate shocks and three functional shocks. Under our identifying restric-

15In this model, monetary policy authority is assumed to set monetary policy stance after observing current and
lagged values of IP and CPI, two most important target variables of monetary policy, and PCOM , a variable
representing inflationary pressure. Other aggregate shocks do not have clear structural interpretations.
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tions, the matrix B is identified from the relationship

BB1 “ Σ,

where Σ is the estimated covariance matrix of pBetq, such that Bet “ pεtq, for t “ 1, . . . , T .
We estimate the at-impact response matrix B, and use it to compute the aggregate structural

shocks, peIPt q, peCPI
t q, pePCOM

t q, and peFFRS
t q, and functional shocks, peDIN1

t q, peDIN2
t q and peDIN3

t q.
The recursively identified functional shocks in (14), peDIN1

t q, peDIN2
t q and peDIN3

t q, are not eco-
nomically interpretable, and hence not a structural shock until we make meaningfully interpretable
restrictions. For this reason, we may call them as semi-structural shocks. We subsequently use
these estimated semi-structural functional shocks to identity an interpretable income distribution
shock reflecting unexpected changes in income distributions. We illustrate how we may construct
an interpretable structural income distribution shock below in 4.4.

4.2 Impulse Responses and Functional Impulse Responses

Each column of the coefficient matrix B provides at-impact responses of aggregate variables xt and
the m-dimensional vector pftq representing the demeaned density ft of the income distribution to
the corresponding recursively identified shock. Recall that pf q includes the loadings of the three
leading leading FPCs of ft. The responses of the ℓ aggregate variables in xt and the m functional
principal components (FPC) loadings in pftq to each aggregate shock in peIPt , eCPI

t , ePCOM
t , eFFRS

t q

are obtained and interpreted as in the conventional SVAR models.
We define a functional impulse response hk to be the response of the functional variable, income

distribution (DIN), to the shock represented in the kth column of pBq for k “ ℓ ` 1, . . . , ℓ ` m.
Specifically, we let π be the isometry representing pftq as three dimensional vectors

`

pftq
˘

and
define

hk “ π´1
´

pBqℓ`1,k, . . . , pBqℓ`m,k

¯

, (16)

where pBqa,b denotes the pa, bq-th entry of pBq.16 We call phkq the functional impulse response
function of DIN to a shock k of interest. Note that π´1 recovers functions from m-dimensional
vectors.

For a graphical presentation of these functional responses, see the impulse response functions
obtained from our data reported in Figure 6 in the following section. The four panels in the bottom
row show the functional responses of the income distribution to the four aggregate shocks at-impact
and over the next twelve month horizons. The impulse responses there are presented as a surface
in a three-dimensional space, giving at each horizon a line in two dimensional space as for the
conventional impulse response functions, of the income distribution to each aggregate structural
shock. At each horizon, we therefore have a function (a line) instead of a number as the response
to the given shock.

16Note that although the π’s in (4) and (6) are defined for any z in Rℓ
‘H and for any linear operator in Rℓ

‘H,
we can interpret them as their restricted versions on Rℓ

‘ V whenever necessary.
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4.3 Variance Decomposition and Historical Decomposition

Using the estimates of the parameters pA1q and pA2q from the reduced-from approximate VAR
(12), the estimate of the at-impact response matrix pBq from the structural VAR in (14), we may
easily obtain the variance decomposition and historical decomposition of both macro aggregates
and income distribution as in the standard finite dimensional VAR models. We may then use the
essential isometry π´1 to take our results obtained with the finite pℓ ` mq-dimensional vectors
pxt, pftqq in the vector space Rℓ`m and interpret our results in the function space H of our original
functional variables pxt, ftq.

4.4 Structural Functional Shock Identification

As discussed earlier, the three semi-structural functional shocks are not individually identified in any
structural sense.17 These shocks are therefore not yet economically interpretable, and we need to
identify interpretable structural shocks as linear combinations of these preliminary semi-structural
functional shocks, peDIN1

t q, peDIN2
t q and peDIN3

t q. We may indeed identify various shocks to income
distributions by imposing additional identifying restrictions which provide a set of weights w1, w2, w3

that can be used to combine the three functional shocks driving dynamics of income distributions.18

4.4.1 Output Maximizing Income Distribution Shock

Changes in income distribution can impact aggregate output levels. To explore the maximum
effect on output that changes in income distribution may have, we identify the income distribution
shock that maximizes aggregate output. Specifically, we determine the shock that induces the
most positive cumulative response in aggregate output over a 10-year period by finding the linear
combination of three functional shocks to income distributions that results in the highest positive
cumulative impact on aggregate output.

We naturally refer to this shock as the output-maximizing income distribution shock, or simply
the YM shock. Such shocks may arise from various events, including redistributive policy actions
aimed at maximizing aggregate output. A redistributive policy designed to boost output could
result in an income distribution shock like the YM shock. In this context, it may also be described
as a ‘hypothetical growth-targeted redistributive policy shock.’ By analyzing the effects of the YM
shock, we can infer the types of income distribution shocks that would most effectively increase
output, providing valuable insights for designing growth-targeted redistributive policies.

Specifically, we define the YM shock as

eDIN˚
t “ w˚

1e
DIN1
t ` w˚

2e
DIN2
t ` w˚

3e
DIN3
t ,

17This problem of the lack of identification in functional shocks arises in all MAR models unless we set m “ 1.
In practice, this is rarely the case, since we would normally choose m ą 1 in most MAR models to represent richer
dynamics in functional time series.

18To be proper weights, w1, w2 and w3 need to satisfy w2
1 ` w2

2 ` w2
3 “ 1.
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where the weights w˚
1 , w˚

2 , and w˚
3 are chosen to maximize the positive cumulative effect on output

by the target year. To obtain w˚ “ pw˚
1 , w

˚
2 , w

˚
3 q1, we let τ1, τ2, and τ3 represent the cumulative

responses of pYtq over 10 years following the shock impact date for the functional shocks eDIN1
t ,

eDIN2
t , and eDIN3

t , respectively. We then define

τpwq “ w1τ1 ` w2τ2 ` w3τ3

with w “ pw1, w2, w3q1. The optimal weights w˚ “ pw˚
1 , w

˚
2 , w

˚
3 q1 are the maximizers of τpwq subject

to the constraint w2
1 ` w2

2 ` w2
3 “ 1. These weights are given by

w˚
k “

τk
b

τ21 ` τ22 ` τ23

for k “ 1, 2, 3.
In our empirical study with m “ 3, we identify the YM shock using the weights w˚ “ pw˚

1 , w
˚
2 , w

˚
3 q “

p´0.01, 0.99, 0.12q, normalized by its norm }w˚} to ensure that the identified structural income dis-
tribution shock also has the same unit variance as other structural shocks.

Figure 4 illustrates the response of the income distribution to the output-maximizing YM shock.
The left panel displays the at-impact response of the entire demeaned income distribution as a func-
tional impulse response, with the y-axis indicating the size of response and the x-axis representing
quantile values of the demeaned income distribution at 1%, 10%, 25%, 50%, 75%, 90% and 99%,
respectively.

The right panel shows the cumulative response of the income distribution one year after the
impact date, obtained by adding the cumulative distributional response to the pre-shock income
distribution. The top histogram summarizes this cumulative response across income decile groups,
while the bottom histogram does so across income quintile groups. In these histograms, the x-axis
represents the deciles (top) or quintiles (bottom) of the pre-shock income distribution. The blue
bars show the original decile (or quintile) proportions before the shock, with each bar covering
10% (or 20%) of the pre-shock income distribution. The red bars indicate the changes in these
proportions one year after the shock.

We can infer the distributional consequences of the YM income distribution shocks as follows:
The YM shock affects the income distribution in contrasting ways for the top and bottom income
groups. It significantly decreases the income of the poorest group in the bottom decile while modestly
increasing the incomes of the richest in the top two decile groups. Additionally, the shock has varying
effects on the middle-income groups: it raises the income of the lower-middle groups in the 2nd to
5th deciles but reduces the income of the upper-middle groups in the 6th to 8th deciles.

4.4.2 Inequality Minimizing Income Distribution Shock

Reducing income inequality has been a key policy objective. To explore how different income
distribution shocks can achieve this, we identify an income distribution shock that minimizes income
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Figure 4: At-impact Response of Income Distribution to YM Shock

Notes: The left panel presents the at-impact impulse responses of the income distribution to the output-maximizing
YM shock. It displays the response of the entire demeaned income distribution as a functional impulse response,
with the y-axis showing the response and the x-axis indicating quantile values of the pre-shock demeaned income
distribution at 1%, 10%, 25%, 50%, 75%, 90% and 99%. Shaded bands represent the 68% and 90% confidence
intervals. The histograms on the right present cumulative responses of the income distribution one year after the
impact. The top and bottom histograms summarize the cumulative responses, respectively, across decile and quintile
income groups. The x-axis of the top (bottom) histogram represents the deciles (quintiles) of the pre-shock income
distribution. In the top (bottom) histogram, the blue bars represent the pre-shock decile (quintile) proportions, with
each bar covering 10% (20%) of the pre-shock income distribution, while the red bars show the changes in these
proportions one year after the shock.
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inequality. Specifically, we determine the shock that has the most negative cumulative effect on
income inequality over a target period, such as 10 years after the impact date, as measured by the
Gini index19.

We identify this shock using a procedure similar to the one described in Section 4.4.1 for the
YM shock. This involves finding the linear combination of three semi-structural functional shocks
that results in the largest reduction in the Gini index. We refer to this income distribution shock as
the inequality-minimizing or GM shock. Such a shock could arise from redistributive policy actions
aimed at reducing income inequality or targeting equity. In this context, it may also be described
as a hypothetical “equity-targeted redistributive policy shock.” Analyzing the GM shock provides
insights into the macroeconomic implications of equity-focused redistributive policies.

In our empirical study with m “ 3, the weights w˚ “ pw˚
1 , w

˚
2 , w

˚
3 q for the GM shoc, which

induces the most negative cumulative response of the Gini index 10 years after the impact, are
(0.57, 0.24, -0.78).

Figure 5 shows the changes in the income distribution resulting from the inequality-minimizing
GM shock at impact. In contrast to the growth-targeted YM shock, the equity-targeted GM shock
substantially decreases the number of people in both the top decile and the bottom decile income
groups. Furthermore, the GM shock affects the middle-income groups differently compared to the
YM shock: it decreases the number of people in the lower-middle groups (2nd to 5th deciles) but
substantially increases the number of people in the upper-middle groups (6th to 9th deciles).

5 Empirical Results

We investigate interactions between aggregate macro variables and income distribution by using the
mixed autoregression (MAR) introduced in Section 3 in a structural form. In our MAR framework,
impulse responses of the entire income distribution to each aggregate shock can be traced. More-
over, meaningfully interpretable distributional shocks can be defined using the functional shocks
driving the income distributions. The new tools will then enable us to quantify and analyze not
only the effects of aggregate shocks on the income distribution but also the effects of the income
distributional shocks on macro aggregates in a novel way. Consequently, we can answer various
policy questions which require an understanding of distributional effects of aggregate shocks. In
particular, we study how monetary policy shocks affect income distribution, and also how shocks
to income distribution affect key macro variables. We demonstrate in detail how we implement
our procedure to quantify the distributional effects of contractionary monetary policy shocks, and
how two interpretable income distribution shocks, YM and GM shocks, affect macro aggregates and
income inequality.

Figure 6 presents impulse response functions of four scalar aggregate variables, IP , CPI,
PCOM , FFRS, and impulse response surfaces of the functional variable DIN over 10 years (120

19Other commonly used inequality measures, such as the inter-quartile range, inter-decile range, top 10%, bottom
10%, among others, may also be used.
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Figure 5: Changes in Income Distribution by Inequality-Minimizing GM shock

Notes: The left panel presents the at-impact impulse responses of the income distribution to the inequality minimizing
GM shock. It displays the functional impulse response of the entire demeaned income distribution, with the y-axis
indicating the response and the x-axis representing the quantile values at 1%, 10%, 25%, 50%, 75%, 90% and 99%
from the pre-shock demeaned income distribution. Shaded bands represent the 68% and 90% confidence intervals.
The right panel displays the cumulative response of the income distribution one year after the shock, with the top
histogram summarizing it across income decile groups and the bottom histogram across income quintile groups. The
x-axis of each histogram shows deciles (top) or quintiles (bottom) of the income distribution before the shock. In
both histograms, blue bars represent the original proportions before the shock, while red bars illustrate the changes
one year after the shock.

months). The top-left (4x4) block presents the standard IRFs of aggregate variables to aggregate
shocks. The last row presents 3D response surfaces of the entire income distribution. Each surface
presents the response of the income distribution to a shock at each horizon, which is a function
over the entire income range. Each response surface presented in the bottom row plots probability
densities in the z-axis, along the horizons in the x-axis as in the conventional response functions
presented for the aggregate variables in the top four rows, and over the ranges of demeaned income
levels in the y-axis.20 For example, the surface in the (5,4)-panel shows impulse responses of the
entire income distribution to monetary policy shocks. On the other hand, in the last column of
Figure 6, each row presents the responses of each variable to the YM shock. Impulse responses of
aggregate variables are reported with 68% and 90% probability bands that are signified, respectively,
by darker and lighter shades.

5.1 Effects of Monetary Policy Shocks

Figure 7 presents the fourth column of Figure 6, which shows the impulse responses to monetary
policy shock, under FFRS. The left column displays IRFs of the aggregate variables and impulse
response surface of the income distribution to contractionary monetary policy shocks. The three-

20The unit on the z-axis, density or probability density, does not have a specific unit of measurement in the
traditional sense, as it represents the likelihood of the income levels falling within a particular range rather than a
direct measurement.
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Figure 6: Impulse Response Functions and Surfaces

Notes: Presented are impulse response functions of aggregate variables, IP , CPI, PCOM , FFRS, and impulse
response surfaces of the functional variable DIN over 10 years (120 months). The top-left (4x4) block presents the
standard IRFs of aggregate variables to aggregate shocks. The last row presents 3D response surfaces of the entire
income distribution. Each surface presents the response of the income distribution to a shock at each horizon, which
is a function over the entire income range. Each response surface presented in the bottom row plots probability
densities in the z-axis, along the horizons in the x-axis, and over the ranges of demeaned income levels in the y-axis.
The last column presents the responses of each variable to the YM shock. Impulse responses of aggregate variables
are reported with 68% and 90% probability bands that are signified, respectively, by darker and lighter shades.

dimensional response surface in the bottom row is sliced at the horizons h “ 0, 12, 24, 60 and 120

months, with the resulting two-dimensional slices, representing the functional impulse responses of
the income distribution, shown on the right.

In Figure 7, we observe that output declines temporarily and the price level declines persistently
in response to the FFRS shocks, which is the expected effect of monetary policy shocks. More
interestingly, we see markedly different responses in income distribution across income levels. The
effects of the contractionary monetary policy shock are clearly heterogeneous for different income
groups.

Note that the impulse responses of the DIN presented in Figure 7 show only the distributional
effects, without accounting for any changes in the mean level. Specifically, the negative impact of
the FFRS shocks on aggregate output (or income), reported in the top-left panel of Figure 7, is
not reflected in the DIN responses. Therefore, to precisely quantify the effects of FFRS shocks on
the income distribution, we need to consider both the shifts in the mean of the income distribution
implied by changes in aggregate income (IP )21 and the pure distributional changes implied by

21To calculate the shift in mean of the income distribution, we determine the response of aggregate output (log
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Figure 7: Impulse Response Functions and Surfaces to Contractionary Monetary Policy Shocks

Notes: On the left are IRFs of the aggregate variables and impulse response surface of the income distribution to
contractionary monetary policy shocks. On the right, the functional impulse responses of the demeaned income
distribution - two dimensional slices of the response surface - are shown for the horizons h “ 0, 12, 24, 60 and 120
months, with the y-axis indicating the response and the x-axis representing quantile values (1%, 10%, 25%, 50%,
75%, 90% and 99%). Shaded bands represent the 68% and 90% confidence intervals.

the responses of the (cross-sectionally demeaned) income distribution (DIN) to FFRS shocks. By
combining these two effects, pure distributional effects and aggregate effects, we can quantify the
redistributive effects of the monetary policy shock on the income distribution.

Figure 8 presents the DIN responses to contractionary monetary policy shocks one year after
the impact in histograms. The top (bottom) panel on the left shows how the income distribution
changes without the mean shift for decile (quintile) income groups. Similarly, the top (bottom)
panel on the right shows those obtained with the mean shift for decile (quintile) income groups.

Figure 9 and Figure 10 present, respectively, without and with the mean shift, responses of
income distribution to the contractionary monetary policy shock with the 90% confidence intervals
in histograms for quintile income groups at four different horizons together–at-impact (h “ 0, top-
left), h “ 12 months, (top-right), h “ 24 months (bottom-left) and h “ 60 months (bottom-right)
after the impact. Shifts in the mean level of income distribution due to the contractionary monetary

industrial production, IP) to the FFRS shocks, since the difference in log IP is approximately the percentage change
in IP. From the IRF matrix, we infer that the percentage change in the mean of income distribution implied by IRFs
of aggregate income (IP ) is 0% at impact, -0.1056% at h “ 60, and -0.0264% at h “ 120.
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Figure 8: Distributional Effects of Contractionary Monetary Policy Shocks

Notes: Presented are the DIN responses to contractionary monetary policy shocks one year after the impact in
histograms. The top (bottom) panel on the left shows how the income distribution changes without the mean shift
for decile (quintile) income groups. Similarly, the top (bottom) panel on the right shows those obtained with the
mean shift for decile (quintile) income groups.

policy shock are measured by the changes in aggregated income due to the FFRS shock shown in
the top-left panel of Figure 7.

To see more explicitly how the monetary policy tightening affects inequality, we also present in
Figure 11, the impulse response functions of the Gini index computed from the income distribution,
without the mean shift (left) and with the mean shift (right). Shaded bands represent the 68% and
90% confidence intervals.

When the mean shift in the income distribution is not taken into account, contractionary mon-
etary policy shocks lead to a substantial decrease in the proportions of low income groups (the
bottom 10% and 20%, with a particularly significant reduction in the poorest 10% group). These
shocks also increase the proportion of the middle-income group (from the bottom 30% to 60%)
and decrease the proportions of high-income groups (the top 10% and 20%). This suggests that
monetary policy may play a positive role in reducing income inequality. This pure distributional
effect is clearly illustrated by the impulse response function of the Gini Index computed from the
counterfactual income distribution responses, which shows a sharp decrease from the impact date
and remains persistently low even after 10 years.

We observe markedly different effects of monetary policy on income inequality when considering
changes in aggregate income. The path of changes in the aggregate income level is shown in the
top-left panel of Figure 7, which tracks changes in the mean level of the income distribution. In
response to contractionary monetary policy shocks, aggregate output decreases, implying that the
income levels of all workers decrease by the same amount, in addition to the pure distributional
effect discussed earlier. This reduction diminishes the relative income share of low-income workers,
leading to an increase in the Gini Index, thereby worsening inequality. The right panel of Figure 11
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Figure 9: DIN Responses to Contractionary Monetary Policy Shock without Mean Shift

Notes: Responses of the income distribution to contractionary monetary policy shocks in histograms for quintile
income groups at-impact (h “ 0, top-left), h “ 12 months, (top-right), h “ 24 months (bottom-left) and h “ 60
months (bottom-right) after the impact. The numbers on the horizontal axis are the quintile values obtained from the
pre-shock income distribution. The black horizontal line signifies the benchmark 20% line, and the vertical line at the
top center of each bar represents the 90% confidence interval. Mean shift by the aggregate output is not considered.

Figure 10: DIN Responses to Contractionary Monetary Policy Shock with Mean Shift

Notes: Responses of the income distribution to contractionary monetary policy shocks in histograms for quintile
income groups at-impact (h “ 0, top-left), h “ 12 months, (top-right), h “ 24 months (bottom-left) and h “ 60
months (bottom-right) after the impact. The numbers on the horizontal axis are the quintile values obtained from
the pre-shock income distribution. The black horizontal line signifies the benchmark 20% line, and the vertical line at
the top center of each bar represents the 90% confidence interval. Mean shift by the aggregate output is considered.
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Figure 11: IRFs of Gini Index to Contractionary Monetary Policy Shocks with m “ 2

Notes: Presented are the impulse response functions of the Gini index computed from the income distribution over a
10-year horizon, without the mean shift (left) and with the mean shift (right). Shaded bands represent the 68% and
90% confidence intervals.

illustrates the trajectory of the Gini index in response to contractionary monetary policy: the Gini
index initially declines but begins to increase in a few months, peaking around 1.5 years after the
impact, and remains elevated for up to 6 years. Initially, the pure distributional effect dominates,
causing the Gini index to decline, but as aggregate output decreases, the aggregate effect takes over,
resulting in a gradual rise in the Gini index over time.

Figure 12 presents the forecast error variance decomposition (FEVD) of the variables in the MAR
model attributable to four aggregate structural shocks peIPt , eCPI

t , ePCOM
t , eFFRS

t q and one income
distribution (DIN) shock peDIN

t q which is constructed simply as the sum of the three independent
semi-structural functional shocks peDIN1

t , eDIN2
t , eDIN3

t q driving the time series of income distribution
(DIN). We call the one dimensional income distribution shock peDIN

t q as DIN shock. Each shock’s
contribution is color-coded, with the color codes provided in the legend box at the bottom of the
figure. The four panels in the first row show the FEVDs for four aggregate variables. The four
panels in the second row and the first panel in the third row present the FEVDs for the proportions
of the population at income levels around the 1st, 25th, 50th, 75th, and 99th percentiles of the most
recent income distribution, December 2015.22 The remaining three panels in the third row present
the FEVDs for the bottom 25%, middle 50%, and top 25% income groups defined using the historical
average income distribution. FFRS shocks affect low-income groups more than high-income groups;
however, the contribution of FFRS shocks to income distribution variations is limited in all cases
(less than 10%). For the FEVDs presented here and in the subsequent historical decompositions,
we focus solely on the contribution of monetary policy shocks and defer the analysis of other shocks
to Section 5.2.

We perform historical decompositions (HD) attributable to four aggregate shocks and one income
distribution shock, YM shock. The results on HDs for four aggregate variables (IP , CPI, PCOM ,
FFRS) are presented in Figure 13. To discuss impacts of shocks on income inequality, we also

22These percentile values from the demeaned income distribution in December 2015 are, respectively, -$2,576.62
(1st), -$1,338.36 (25th), -$378.71 (50th), $926.26 (75th), and $5,402.59 (99th).
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Figure 12: Variance Decomposition from MAR with DIN Shock

Notes: Presented are the forecast error variance decomposition (FEVD) of the variables in the MAR model at-
tributable to four aggregate shocks and one income distribution shock. Each shock’s contribution is color-coded, with
the color codes provided in the legend box at the bottom of the figure. The four panels in the first row show the
FEVDs for four aggregate variables. The four panels in the second row and the first panel in the third row present the
FEVDs for the proportions of the population at income levels around the 1st, 25th, 50th, 75th, and 99th percentiles
of the most recent income distribution, December 2015. The remaining three panels in the third row present the
FEVDs for the bottom 25%, middle 50%, and top 25% income groups, defined using the historical average income
distribution.

consider three benchmark income groups – bottom 25%, middle 50% and top 25%, defined with
the 25th, 50th and 75th percentiles of the historical average income distribution. We then examine
whether a given shock increases or decreases proportions of the population in the given group relative
to the corresponding benchmark proportions. Figure 14 presents the HDs for the proportions of
the population in three income groups (bottom 25%, middle 50% and top 25%), defined using the
historical average income distribution. The contribution from each shock is signified by a color-coded
bar, and the color codes are given in the legend box at the bottom of the figure.

We observe that monetary policy shocks have minimal effect on the evolution of the income
distributions of all three groups. The role of monetary policy shocks in explaining the evolution of
income distribution for each income group is even smaller than their role in explaining aggregate
output (IP ) fluctuations, which is relatively small. Considering our earlier findings from the impulse
response analysis and variance decompositions, monetary policy shocks appear to play a minimal
role in the rising income inequality observed in the US during our sample period. This is a new
finding that cannot be obtained from conventional aggregate VAR analysis and shows the potential
for our analysis to explore further distributional implications of monetary policy.
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Figure 13: Historical Decomposition of Aggregate Variables from MAR with YM Shock

Figure 14: Historical Decomposition of Income Distribution from MAR with YM Shock
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Figure 15: Impulse Response Functions and Surfaces to YM Shocks

Notes: Presented on the left are IRFs of the aggregate variables and impulse response surfaces of the income dis-
tribution to output-maximizing YM shock. On the right, presented are the functional impulse response functions -
two dimensional slices of the response surface - are shown for the horizons h “ 0, 12, 24, 60 and 120 months, with the
y-axis indicating the response and the x-axis representing quantile values (1%, 10%, 25%, 50%, 75%, 90% and 99%).
Shaded bands represent the 68% and 90% confidence intervals.

5.2 Effects of Output-Maximizing, Hypothetical Growth-Targeted Redistribu-
tive Policy Shocks

To study effects of shocks to income distribution on macroeconomy, we first consider the output-
maximizing YM shock, or hypothetical ‘growth-targeted redistributive policy’ shocks, identified in
Section 4.4.1 as a linear combination of the three semi-structural functional shocks driving the
income distributions that maximizes the aggregate output ten years after the impact.

Figure 15 reports the fifth column of Figure 6 presenting the impulse responses to the YM
shock. Presented on the left are IRFs of the aggregate variables and impulse response surface of
the income distribution to the YM shock. On the right, presented are the two-dimensional slices
of the three-dimensional DIN response surface at the bottom row for the horizons h “ 0, 12, 24, 60

and 120 months.
Figure 16 and Figure 17 present, respectively, without and with the mean shift, responses of

income distribution to the output-maximizing YM shock in histograms for quintile income groups
at-impact (h “ 0, top-left), h “ 12 months, (top-right), h “ 24 months (bottom-left) and h “ 60
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Figure 16: DIN Responses to Output-Maximizing YM Shock without Mean Shift

Notes: Responses of the income distribution to the output-maximizing YM shock in histograms for quintile income
groups at-impact (h “ 0, top-left), h “ 12 months, (top-right), h “ 24 months (bottom-left) and h “ 60 months
(bottom-right) after the impact. The numbers on the horizontal axis are the quintile values obtained from the pre-
shock income distribution. The black horizontal line signifies the benchmark 20% line, and the vertical line at the
top center of each bar represents the 90% confidence interval. Mean shift by the aggregate output is not considered.

months (bottom-right) after the impact. Shifts in the mean level of income distribution due to the
YM shock are measured by the changes in aggregated income due to the YM shock shown in the
top-left panel of Figure 15.

We first discuss effects of YM shocks on macro aggregate variables reflected in their impulse
response functions presented in the first four panels in the left column of Figure 15. The most salient
finding is that YM shocks increase output substantially. The size of output (IP ) increase is much
larger and persistent than that of monetary policy shocks shown in the top-left panel of Figure 7.
This result suggests that distributional shocks can have a huge effect on aggregate output potentially,
and a well-designed redistributive policy may have a substantial effect on output. Price (CPI) does
not change much, but commodity prices (PCOM) decreases substantially and persistently. Fed
funds rate (FFRS) increases in the medium run, which may be related to counter-cyclical and
counter-inflation monetary policy actions.

Then, we infer the redistributive nature of the YM shocks by characterizing the income distri-
bution changes to the YM shocks, without the mean-shift reflected in the aggregate output, from
the right panels of Figure 15 and Figure 16. At-impact, the YM shock decreases the poorest decile
income group and upper middle income groups in the fourth quintile group, while increasing the
lower middle income groups in the second quintile and the richest in the top quintile group. The
sharp drop in the poorest decile income group clearly contributes to reducing income inequality.
Such inequality reducing, purely redistributive effect of the YM shock is not permanent and vanishes
about 5 years after the impact date.

We discuss in detail the effect of YM shocks on income inequality. The left panel of Figure 18
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Figure 17: DIN Responses to Output-Maximizing YM Shock with Mean Shift

Notes: Responses of the income distribution to the output-maximizing YM shock in histograms for quintile income
groups at-impact (h “ 0, top-left), h “ 12 months, (top-right), h “ 24 months (bottom-left) and h “ 60 months
(bottom-right) after the impact. The numbers on the horizontal axis are the quintile values obtained from the pre-
shock income distribution. The black horizontal line signifies the benchmark 20% line, and the vertical line at the
top center of each bar represents the 90% confidence interval. Mean shift by the aggregate output is considered.

shows the IRFs of the Gini index obtained using the response of the income distribution to the YM
shock without the mean shift reflected in the changes in the aggregate output. This is therefore
the inequality implications of the hypothetical, purely redistributive YM shock discussed above.
As noted earlier, changes in aggregate income due to the YM shock are significantly positive and
persistent; see the top-left panel of Figure 15. Without taking into account the positive responses
of the aggregate income, the significant initial decline in the Gini index diminishes and becomes
insignificant after six years. On the other hand, when such positive and persistent mean shift is
taken into account, income inequality decreases except in the very short-run. As shown in the right
panel of Figure 18, the Gini index increases slightly at-impact, but quickly becomes negative and
remains negative in the long run. Hence, the YM shock decreases the inequality substantially and
persistently. As aggregate output increases, the income levels of all workers increase by the same
amount, in addition to the pure distributional effects discussed above.23 This increases the relative
income share of low-income workers, which leads to a decrease in the Gini index. Therefore, by taking
account of the aggregate output effect, in addition to the purely distributional effect, the reduction
in the Gini index turns out to be greater. Moreover, the finding that the YM shocks increase both
growth and equality suggests that properly aimed growth-targeted redistributive policies are not
subject to the often-claimed trade-off between growth and equality.

We discuss how YM shocks contribute to the fluctuations of both aggregate variables and the

23There are more families in the upper quintiles with a positive aggregate mean shift than without, as shown in
Figure 17 (with mean shift) and Figure 16 (without mean shift). This is because the income levels of all workers are
higher when there is a positive mean shift compared to when there is no mean shift.
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Figure 18: IRFs of Gini Index to YM Shock

Notes: Impulse response functions of the Gini index to YM shock without the mean shift (on the left) and with the
mean shift (on the right). Shaded bands represent the 68% and 90% confidence intervals.

income distribution. Figure 19 shows the forecast error variance decomposition obtained with four
aggregate shocks and the output maximizing YM Shock which is a linear combination of the three
DIN shocks satisfying our identifying restriction. Each shock is color-coded, and the color codes
are given in the legend box at the bottom of each figure. The purple area shows the contribution
to the forecast error variances of YM shocks while the sum of the purple and white areas show the
total contribution of the income distribution (DIN) shocks, i.e., the sum of the contributions from
the three independent functional shocks driving the dynamics of the income distribution. The total
contributions from the three independent DIN shocks, which are given here as the combined areas
of purple and white color areas, are the purple areas shown earlier in Figure 12.

he five panels, including the four panels in the second row and the first panel in the third row of
Figure 19, present the variance decomposition of income levels in the small neighborhoods of the 1st,
25th, 50th, 75th, and 99th percentiles of the income distribution in the last period. The remaining
three panels of the third row present the variance decomposition of incomes for the bottom 25%,
middle 50%, and top 25% of the average income distribution. As shown in the second and third rows,
the three DIN shocks explain most of the income distribution variations. We also observe that YM
shocks substantially contribute to fluctuations in IP and PCOM . In particular, the contribution
to IP is large, accounting for up to 30% in the long run. The contribution of YM shocks to IP is
far greater than that of FFRS shocks, especially in the long run. In addition, YM shocks have a
huge and persistent impact on the income distribution of the low-income group.

As discussed above, our empirical results from variance decompositions of aggregate variables
and income distribution (DIN) indicate that DIN shocks matter for output, commodity prices, and
interest rates, but not overall prices. They also show that YM shocks are relatively more influ-
ential for the poor than for the rich income groups. Most interestingly, the DIN shock accounts
for the majority of variations in income distribution, making it the main driver of income dis-
tribution changes. In contrast, monetary policy shocks play a relatively minor role in explaining
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Figure 19: Variance Decomposition from MAR with YM Shock

Notes: Presented are the forecast error variance decomposition (FEVD) of the variables in the MAR model at-
tributable to four aggregate shocks and one distributional YM shock. Each shock’s contribution is color-coded, with
the color codes provided in the legend box at the bottom of the figure. The four panels in the first row show the
FEVDs for four aggregate variables. The four panels in the second row and the first panel in the third row present the
FEVDs for the proportions of the population at income levels around the 1st, 25th, 50th, 75th, and 99th percentiles
of the most recent income distribution, December 2015. The remaining three panels in the third row present the
FEVDs for the bottom 25%, middle 50%, and top 25% income groups, defined using the historical average income
distribution.

these variations. These findings suggest that redistributive policies targeting income distribution
directly, rather than macroeconomic policies targeting aggregate variables such as monetary policy,
are necessary to substantially alter income distribution and improve inequality.

Next, we discuss historical decompositions (HD) obtained with the four aggregate shocks and the
YM shock. Figure 13 presents the HDs of the aggregate variables in the MAR model attributable
to four aggregate shocks and the distributional YM shock. We find that the YM shocks (signified
by purple bars) tend to have a negative contribution to output level but a positive contribution to
commodity prices throughout our sample period except for the early 2000s. The income distribution
shock as a whole (purple and white bars combined) tends to contribute negatively to output level
and FFRS but positively to PCOM level throughout the sample period. Interestingly, YM shocks
and the income distribution shocks as a whole have negative contributions on output level in all
recessions except for the one in the early 2000s.

In Figure 14, we also observe that YM shocks (purple bars) reduce the proportion of the bottom
25% and the top 25%, but increase that of the middle 50%, especially in the late 1990s and early
2000s, which likely reduces income inequality. Interestingly however, the income distribution shocks
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excluding the YM shock (only white bars) have huge positive contributions to the proportions of
the bottom 25% and the top 25% and equally large negative contribution to the proportion of the
middle 50%, thereby increasing income inequality. Note that all three non-policy aggregate shocks
also have worsened inequality throughout our sample period. Also note that among them the CPI

shock has contributed most substantially and its impact is increasing. This result suggests that the
YM shock, if it can be implemented with a growth-targeted redistributive policy, has a potential to
mitigate the negative effects of aggregate shocks on income inequality discussed above.

5.3 Effects of Inequality-Minimizing, Hypothetical Equity-targeted Redistribu-
tive Policy Shocks

We now explore the effects of the GM shock identified as a linear combination of the three functional
shocks that minimizes the Gini index ten years after the impact.

Figure 20 reports the impulse responses to the GM shock. Presented on the left are IRFs of the
aggregate variables and impulse response surface of the income distribution to the GM shock. On
the right, presented are the two-dimensional slices of the three-dimensional DIN response surface in
the bottom row for the horizons h “ 0, 12, 24, 60 and 120 months. In response to the GM shock, IP
decreases in the short run and increases in the long run, but the responses tend to be insignificant.
PCOM and CPI tend to decrease but responses of CPI are insignificant. FFRS increases and the
short-run increase is significant. Figures 17 and 16 further present, respectively, with and without
the mean shift, responses of income distribution to the output-maximizing growth-targeted YM
shock in histograms for quintile income groups at-impact (h “ 0, top-left), h “ 12 months, (top-
right), h “ 24 months (bottom-left) and h “ 60 months (bottom-right) after the impact. The mean
shift in the income distribution is measured by the changes in aggregate output.

The inequality-minimizing GM Shock changes the income distribution in a distinctively different
way compared to the growth-targeted YM shock, which is not surprising because two shocks have
different natures. GM shocks decrease both the poorest group in the bottom quintile and the
richest group in the top quintile, but tend to increase the middle income group in the remaining
three middle quintiles. Such a change in income distribution naturally improves income inequality.
Interestingly, this pattern of changes is found in both Figures 21 and 22, without and with the mean
shift, respectively. Output responses are relatively small, so the results with and without the mean
shift are similar.

Figure 23 shows the IRFs of the Gini index obtained using the response of the income distribution
to the GM shock with the mean shift on the left panel and without the mean shift on the right
panel. The results confirm that GM shocks reduce inequality. The Gini index decreases sharply
initially, and this decline continues over time, although the rate of decrease slows. When the mean
shift is taken into account, the decline in the Gini index becomes persistent, though insignificant,
which can be attributed to the aggregate output responses. Aggregate output begins to increase
five years after the impact and stays positive even after ten years, albeit not significantly, leading
to an improvement of inequality in addition to the improvements from the distributional effects.
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Figure 20: Impulse Response Functions and Surfaces to GM shocks

Notes: Presented on the left are IRFs of the aggregate variables and impulse response surfaces of the income distri-
bution to inequality-minimizing GM shock. On the right, presented are the functional impulse response functions -
two dimensional slices of the response surface - for the horizons h “ 0, 12, 24, 60 and 120 months.

Figure 24 shows the forecast error variance decomposition for four aggregate shocks and the GM
shock, which is a linear combination of the three DIN shocks satisfying the identifying restriction.
We find that the GM shock contributes less to aggregate variables compared to YM shocks. However,
GM shocks still account for variations in IP as much as FFRS shocks do and explain variations
in PCOM substantially more than FFRS shocks, particularly over longer horizons. Furthermore,
GM shocks explain more than half of the variations at all income levels except around the 25th
percentile.

The historical decompositions with the equity-targeted GM shock and four aggregate shocks
are presented in Figures 25 and 26. From the historical decompositions of the aggregate variables
presented in Figure 25, we find that GM shocks’ effects have been a negative contribution to output
starting from late 1980s, but a positive contribution to commodity prices throughout our sample
period, especially from mid-1980s. As shown in Figure 26, the effects of GM shocks on the income
distribution have been changing over time. Until the global financial crisis (GFC), GM shocks in-
crease proportions of the bottom 25% and top 25%, but decrease the middle 50%, thereby worsening
income inequality. During the GFC and its aftermath (until around 2012), the opposite happens,
decreasing inequality. In recent years, GM shocks start increasing inequality again as in the pre-
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Figure 21: DIN Responses to Inequality-Minimizing GM Shock without Mean Shift

Notes: DIN responses to the inequality minimizing equity-targeted GM shock in histograms for quintile income
groups at-impact (h “ 0, top-left), h “ 12 months, (top-right), h “ 24 months (bottom-left) and h “ 60 months
(bottom-right) after the impact. Mean shift by the aggregate output is not considered when computing the changes in
income distribution. The numbers on the horizontal axis are the quintile values obtained from the pre-shock income
distribution. The black horizontal line signifies the benchmark 20% line, and the vertical line at the top center of
each bar represents the 90% confidence interval.

Figure 22: DIN Responses to Inequality-Minimizing GM Shock with Mean Shift

Notes: Responses to the inequality-minimizing equity-targeted GM shock of income distribution with the mean shift
measured by the changes in aggregate output in histograms for quintile income groups at-impact (h “ 0, top-left),
h “ 12 months, (top-right), h “ 24 months (bottom-left) and h “ 60 months (bottom-right) after the impact. The
numbers on the horizontal axis are the quintile values obtained from the income distribution on the month the shock
is given. The black horizontal line signifies the benchmark 20% line, and the vertical line at the top center of each
bar represents the 90% confidence interval.
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Figure 23: IRFs of Gini Index to GM Shock

Notes: Impulse response functions of the Gini index to GM shock without the mean shift (on the left) and with the
mean shift (on the right). Shaded bands represent the 68% and 90% confidence intervals.

GFC period. We also observe that GM shocks have contributed negatively to FFRS throughout
our sample period.

5.4 Other Possible Income Distribution Shocks and Robustness Checks

In Appendix B, we explore two additional income distribution shocks. First, we examine an income
distribution shock that maximizes monetary policy responses, as reflected in the cumulative changes
in the shadow Fed funds rate over a five-year horizon. Details of this interest rate-maximizing shock,
labeled as the MP shock, are provided in Appendix B.1. Second, we consider an income distribution
shock that leads to maximal increases in the price level, as reflected in the cumulative changes
in the consumer price index (CPI) five years after the impact. Further discussions on this price-
maximizing shock, labeled as the PM shock, are presented in Appendix B.2. The identification
of these shocks follows the same procedure used for the output-maximizing YM shock and the
inequality-minimizing GM shock.

We examine the robustness of our benchmark results with respect to the number m of FPCs
used to approximate income distributions in Appendix C.

The dimension m of our VAR is determined by the number of the FPCs used to approximate the
demeaned density pwtq with wt “ pft ´ fq. For the choice of m, we simply followed the convention
in the literature, which is described in Section 3.2 of Hörmann and Kokoszka (2012) as by finding “a
balance between retaining the relevant information in the sample, and the danger of working with
the reciprocals of small eigenvalues.” Our choice m “ 3 was made as such. It is important to check
the robustness of our results to the choice of m, and we find that our results are quite robust with
respect to the choice of m as we show in this section.

We provide explicit evidence on the robustness of our results against the choice of m. We repeat
the same analysis on our approximate VAR model with m “ 2 and m “ 4, i.e., using two and four
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Figure 24: Variance Decomposition from MAR with GM Shock

Notes: Presented are the forecast error variance decomposition (FEVD) of the variables in the MAR model at-
tributable to four aggregate shocks and the distributional GM shock. Each shock’s contribution is color-coded, with
the color codes provided in the legend box at the bottom of them figure. The four panels in the first row present the
FEVDs for four aggregate variables. The four panels in the second row and the first panel in the third row present
the FEVDs for the proportion of people with income levels in the neighborhood around the first, 25th, 50th, 75th
and 99the percentiles of the most recent income distribution, December 2015. The remaining three panels in the
third row present the FEVDs for the bottom 25%, middle 50% and top 25% income groups, defined using the average
income distribution.
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Figure 25: Historical Decomposition Aggregate Variables from MAR with GM Shock

Figure 26: Variance Decomposition of Income Distribution from MAR with GM Shock
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FPCs, instead of three FPCs. When m “ 3 is chosen optimally, using m “ 2 allows us to assess the
bias incurred by omitting the third FPC. Conversely, using m “ 4 helps evaluate the robustness of
the benchmark results with m “ 3 to the inclusion of an additional, unnecessary FPC component.

In Appendix C.1 and C.2 , we report key results obtained with two and four FPCs in sequel
in the same format as the benchmark results presented in the main text for easy comparisons. As
the results below show, all qualitative conclusions remain unchanged with only minor quantitative
differences.

6 Conclusion

This paper develops a structural VAR model with functional variables to investigate the interactions
between macroeconomic aggregates and income distribution. With this novel empirical approach,
we are able to identify and analyze the effects of various shocks to the income distribution on
macro aggregates, as well as the effects of macroeconomic shocks on the income distribution. In our
empirical applications, we investigate the effects of monetary policy shocks on income distribution
and the role of various hypothetical distributional shocks in business cycles. Our main empirical
results are as follows. First, contractionary monetary policy shocks worsen inequality, but its role
in explaining income inequality changes is relatively small. Second, properly aimed redistributive
policies can have huge effects on output and income distribution my without creating the trade-off
between growth and inequality.

As demonstrated in the paper, our empirical framework to approximate and analyze functional
variables in standard models makes a significant push on methodological front for studying distri-
butional effects of policies. Policymakers are becoming more interested in the distributional effects
of their policies, as reflected clearly, for instance, in the recent statements by governors of Federal
Reserve, which explicitly mentions their concerns on inequality.24 As illustrated, our MAR method-
ology effectively quantifies the distributional effects of monetary policy shocks and identifies income
distribution shocks that can be interpreted as outcomes of redistributive policies. This enables us to
study their impacts on both macroeconomic variables and income distribution. Consequently, our

24Examples include:

• “The Fed provides this help by influencing interest rates. Although we work through financial markets, our goal
is to help Main Street, not Wall Street. . . When the Federal Reserve’s policies are effective, they improve the
welfare of everyone who benefits from a stronger economy, most of all those who have been hit hardest by the
recession and the slow recovery.” (https://www.federalreserve.gov/newsevents/speech/yellen20140331a.htm)

• “It is no secret that the past few decades of widening inequality can be summed up as significant in-
come and wealth gains for those at the very top and stagnant living standards for the majority. I
think it is appropriate to ask whether this trend is compatible with values rooted in our nation’s
history, among them the high value Americans have traditionally placed on equality of opportunity.”
(https://www.federalreserve.gov/newsevents/speech/yellen20141017a.htm)

• “We view maximum employment as a broad and inclusive goal. Those who have historically been left
behind stand the best chance of prospering in a strong economy with plentiful job opportunities. Our
recent history highlights both the benefits of a strong economy and the severe costs of a weak one.”
(https://www.federalreserve.gov/newsevents/speech/powell20210503a.htm)
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new functional approach has significant potential for widespread use in analyzing the distributional
effects of macroeconomic and redistributive policies.

A similarly broad impact could be achieved in other settings where one is interested in de-
scribing the effects of aggregate shocks on a distribution of various economic variables such as
expected inflation distributions, temperature anomaly distributions or on general functions such
as yield curves and employment and labor force participation profiles across ages or occupations,
to name a few. We therefore contribute to improving how economists solve and estimate models
where distributions matter. Distributions matter when there is heterogeneity or generic uncertainty,
which cannot be described only by a few moments or features of a distribution, which is often the
case in real-world settings. These models, a prime example of which are the heterogeneous agent
new Keynesian (HANK) models, are difficult to solve and estimate precisely because distributions
introduce an infinite number of state variables. Our simple and efficient approach to functional
data analysis therefore has promising potential to approximate infinite dimensional state variables
in heterogenous agent models, estimate them using both macro and micro level data, and conduct
counterfactual policy analysis.
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Figure A.1: Cumulative Scree Plot

Appendix A Choice of Basis

In this appendix, we focus on details of the comparisons of the functional principal components
basis that we employ in this paper and for which we advocate more generally to reasonable alter-
native bases. Let ℓ denote the number of aggregate variables, which is three in our model. To
show how important it is in practice to choose a basis pvℓ`iq for the functional variable pftq, we
compare estimators of A based on our basis pv˚

ℓ`iq and other bases generically denoted by pvℓ`iq.
As an alternative to our basis pv˚

ℓ`iq, we consider three other bases: a histogram basis given by
indicators on a partition of the support of the demeaned income distributions, a quantile basis, and
an orthonormalized moment basis. For this comparison, we set pftq to be functions defined on the
interval r´2971.58, 6899.39q. Details of the four alternative bases follow. Note that all the bases
are normalized so that }vi} “ 1.

A.1 Alternative Bases

Functional Principal Component (FPC) Basis. As described in the Section 3, we perform
principal components analysis on the sample variance operator Γ of pftq given in equation (9),
where eipΓq denotes the eigenfunction associated with its ith largest eigenvalue. Figure A.1 shows
the cumulative scree plot with the first ten eigenvalues of the sample variance operator. The FPC
basis is defined by basis function v˚

ℓ`iprq “ eipΓq for i “ 1, . . . ,m. This is the basis we use for our
analysis.

Interval Basis. The interval basis pvℓ`iq is given by

vℓ`iprq “
1

?
qi ´ pi

1tpi ď r ă qiu,
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where
`

rpi, qiq
˘

is a partition of the common support rp, qq with p “ ´5.30 and q “ 5.56 of the
densities pftq into m-sub-intervals.25 Note that

xvℓ`i, fty “
1

?
qi ´ pi

ż qi

pi

ftprqdr «
1

?
qi ´ pi

1

N

N
ÿ

j“1

1tpi ď rjt ă qiu,

where prjtq are observations on the demeaned incomes available for cross-sections j “ 1, . . . , N and
time periods t “ 1, . . . , T ,

If we set the length of the sub-intervals
`

rpi, qiq
˘

in the partition to be the same across all
i “ 1, . . . ,m, we call the resulting interval basis pvℓ`iq the histogram basis. In case that we define
the sub-intervals

`

rpi, qiq
˘

, i “ 1, . . . ,m, in the partition to be pi{mqˆ100 percentile of the empirical
distribution of observations prjtq on the demeaned income levels for j “ 1, . . . , N and t “ 1, . . . , T ,
the interval basis pvℓ`iq is referred in particular to as the quantile basis.

Orthonormalized Moment Basis. The orthonormal moment basis pvℓ`iq is obtained by the
Gram-Schmidt orthogonalization procedure from the pre-basis defined as uiprq “ ri for i ě 1. We
call puiq a moment basis because

xui, fty “

ż

riftprqdr «
1

N

N
ÿ

j“1

rijt,

where as before prjtq denote observations on the demeaned incomes available for cross-sections
j “ 1, . . . , N and time periods t “ 1, . . . , T , and the collection pxui, ftyq represents the i-th moments
of the demeaned income distributions given by the densities pftq for i ě 1.

A.2 Computation of FR2 and Numerical Results

Table A.1 and Figure A.2 show, numerical results and their plots of the functional R-squared from
the four sub-bases described above, namely, the FPC, histogram, quantile, and orthornormalized
moment bases.

25Note that FR2 is generally not strictly increasing in the number m of basis used for the interval basis, because
the basis – i.e., the whole set of basis functions – is different for each n.
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m FPC Basis Histogram Basis Quantile Basis Moment Basis
1 0.8849 0.0201 0.0126 0.0909
2 0.9428 0.0207 0.3314 0.1581
3 0.9591 0.2366 0.4157 0.1694
4 0.9733 0.4208 0.4484 0.2203
5 0.9825 0.3826 0.4674 0.2528
6 0.9879 0.3822 0.4777 0.3052
7 0.9914 0.4103 0.4862 0.3522
8 0.9939 0.4682 0.4944 0.3592
9 0.9955 0.5429 0.5029 0.4276
10 0.9968 0.6320 0.5115 0.5603

Table A.1: FR2 for four choices of basis

Notes: Presented are numerical results of the functional R-squared computed with the four sub-bases considered
for comparison, namely, the FPC, histogram, quantile, and orthornormalized moment bases. The four bases are
described in Section A.1 and computation of FR2 is described in Section A.2. In the first column, m denotes number
of bases used.

Figure A.2: FR2 for four choices of basis

Notes: Presented are plots of the functional R-squared values computed with the four sub-bases considered for
comparison, namely, the FPC, histogram, quantile, and orthornormalized moment bases. The four bases are described
in Section A.1 and computation of FR2 is described in Section A.2.

As noted in Section 3, the functional R-squared is defined by equation

FR2 “

řT
t“1 }Πft}

2

řT
t“1 }ft}2

,

where Π is the Hilbert space projection on V spanned by a sub-basis pvℓ`iq
m
i“1.

The (normalized) FPC bases for H are given by the eigenfunctions pv˚
i qTi“1 of sample variance

operator Γ in (9) associated with nonzero eigenvalues pλiq
T
i“1. If we let Π˚ be the projection on the
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subspace V ˚ spanned by pv˚
i qmi“1, it follows that

T
ÿ

t“1

}Πft}
2 “

m
ÿ

i“1

xv˚
i , fty

2 “ T
m
ÿ

i“1

λi

and
T

ÿ

t“1

}ft}
2 “

T
ÿ

i“1

xv˚
i , fty

2 “ T
T

ÿ

i“1

λi,

since

Π˚ft “

m
ÿ

i“1

xv˚
i , ftyv

˚
i and ft “

T
ÿ

i“1

xv˚
i , ftyv

˚
i ,

xv˚
i ,Γv

˚
i y “ λi for i “ 1, . . . , T and xv˚

i ,Γv
˚
j y “ 0 for all i ‰ j. Note that

λi “ xv˚
i ,Γv

˚
i y “

1

T

T
ÿ

t“1

xv˚
i , fty

2

for i “ 1, . . . , T . Clearly, the choice of the basis pviq only affects
řT

t“1 }Πft}
2, not

řT
t“1 }ft}

2 “

T
řT

i“1 λi.
Table A.1 and Figure A.2 show, numerical results and their plots of the functional R-squared from

the four sub-bases described above, namely, the FPC, histogram, quantile, and orthornormalized
moment bases. We note that FR2 may not strictly increasing in the number m of the basis used
for the histogram basis, since the basis used is different for each case of m. For example, having
just two indicator bases of equal length has higher FR2 than having three indicator bases of equal
length. This happens because there is more variation in the functions between negative and positive
values of the domain compared to the variation in the partition made by three intervals of equal
length. The results are discussed in Section 3.

A.3 Computations of Integrated Variances and Numerical Results

As Table A.1 illustrates, we can make the FR2 arbitrarily large for any given basis pviq simply by
increasing the number of basis functions m. However, doing so comes at a cost. The variance of the
estimator pA for the autoregressive operator A is expected to increase with m, and it can increase
very sharply and become explosive even when m is moderately large. It is therefore prudent to
investigate this rate of increase.

Below we discuss how we compute integrated variances (IVARs). Let pAk be the estimator
obtained from zpAkq by pAk “ π´1

`

zpAkq
˘

, which we may regard more explicitly as the estimator of
Ak “ π´1

`

pAkq
˘

“ PAkP for k “ 1 or 2, and let

pA “

˜

pA1

pA2

¸

and A “

ˆ

A1

A2

˙

,

which are operators from H to H ˆ H. Furthermore, we define

Q “

ˆ

P 0
0 P

˙

and Λ “
1

T

T
ÿ

t“1

„ˆ

zt
zt´1

˙

b

ˆ

zt
zt´1

˙ȷ
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for the MAR(2) model of Section 3. Here, P is the Hilbert space projection defined by Pz “
řn

i“1xvi, zyvi where z is defined as px, fq1 with x being a ℓ-dimensional vector of aggregate variables.
Now, pviq is the basis in the extended Hilbert space Rl ˆ H.

Then the MSE of pA is given by

E
ˇ

ˇ

›

› pA ´ A
›

›

ˇ

ˇ

2
“ E

ˇ

ˇ

›

› pA ´ E pA
›

›

ˇ

ˇ

2
`

ˇ

ˇ

›

›E pA ´ A
›

›

ˇ

ˇ

2
,

where
ˇ

ˇ

›

› ¨
›

›

ˇ

ˇ denotes the Hilbert-Schmidt norm in H. The MSE of pA is thus decomposed into the
variance and the squared bias terms. The variance term of pA, which is the integrated variance
(IVAR), is approximately given by

ptraceΩq
`

trace pQΛQq`
˘

,

where Ω is the variance operator of pεtq defined in Section 3, and pQΛQq` is the inverse of the
bounded linear operator QΛQ restricted to the subspace V ˆ V of H ˆ H. For the sake of com-
pleteness, the squared bias term of pA is approximately given by

ˇ

ˇ

›

›Ap1 ´ QqΛQpQΛQq`
›

›

ˇ

ˇ

2
,

where A is defined from A1 and A2 similarly to pA and A.
We also compute the variance of the functional variables pftq conditionally on the aggregate

variables xt. The inverse pQΛQq` defined above may be written as

Γ “ pQΛQq` “

¨

˚

˚

˝

1

T

T
ÿ

t“1

»

—

—

–

¨

˚

˚

˝

xt
pf qt

xt´1

pf qt´1

˛

‹

‹

‚

¨

˚

˚

˝

xt
pf qt

xt´1

pf qt´1

˛

‹

‹

‚

1fi

ffi

ffi

fl

˛

‹

‹

‚

`

,

so that the conditional variance Γf ¨x of functional variables pftq on the aggregate variables xt is
given by

Γf ¨x “ Γff ´ ΓfxΓ
´1
xxΓxf

where Γff , Γfx and Γxx denote, respectively, the unconditional variance of pftq, covariance between
pftq and xt and variance of xt.

Figure A.3 compares the conditional IVARs for the four choices of basis for the number m of
bases upto 10. The actual values of IVARs for some cases are too huge to fit in the table cells, so
we report the IVARs scaled by 10´8.

Table A.1 and Figure A.2 show, numerical results and their plots of the functional R-squared from
the four sub-bases described above, namely, the FPC, histogram, quantile, and orthornormalized
moment bases. We note that FR2 may not strictly increasing in the number m of the basis used
for the histogram basis, since the basis used is different for each case of m. For example, having
just two indicator bases of equal length has higher FR2 than having three indicator bases of equal
length. This happens because there is more variation in the functions between negative and positive
values of the domain compared to the variation in the partition made by three intervals of equal
length. The results are discussed in Section 3.
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m FPC Basis Indicator Basis Quantile Basis Moment Basis
1 0.879 22.069 14.899 5.029
2 3.101 91.525 33.281 24.238
3 4.872 218.963 63.504 73.155
4 10.546 522.272 91.327 127.847
5 14.279 1234.047 124.681 246.410
6 18.923 2179.446 169.958 402.601
7 24.042 4372.095 238.313 720.407
8 34.486 7561.455 328.062 1138.031
9 43.466 16222.373 515.494 1831.119
10 60.725 32001.877 798.174 2798.105

Table A.2: Conditional Integrated Variances

Notes: Presented are numerical results of the variance factor, trace pΓf ¨xq, of the conditional integrated variance
(IVARs) discussed in Section A.1 computed, for comparison, using four bases, namely, the FPC, histogram, quantile,
and orthornormalized moment bases. The IVARs are computed for each basis with the given number m of basis
functions, m “ 1, . . . , 10. The actual values of IVARs for some cases are too huge to fit in the table cells, so we report
the IVARs scaled by 10´8.

Figure A.3: Conditional Integrated Variances

Notes: Plots of the variance factor, trace pΓf ¨xq, of the conditional integrated variance (IVARs) discussed in Section
A.1 computed, for comparison, using four bases, namely, the FPC, histogram, quantile, and orthornormalized moment
bases. The IVARs are computed for each basis with the given number m of basis functions, m “ 1, . . . , 10. Four lines
show the plots of the IVARs computed using the four bases with m of bases, for m “ 1, . . . , 10, as shown in x-axis.
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Figure B.1: Impulse Response Functions and Surfaces to MP-Shock

Notes: Presented on the left are IRFs of the aggregate variables and impulse response surfaces of the income distri-
bution to interest rate-maximizing MP-shock. On the right, presented are the functional impulse response functions
- two dimensional slices of the response surface - for the horizons h “ 0, 12, 24, 60 and 120 months.

Appendix B Alternate Income Distribution Shocks

B.1 Interest Rate-Maximizing MP-Shock

We consider an income distribution shock that induces maximal monetary policy responses reflected
in the changes in the FFRS. To identify this income distribution shock, we follow the same procedure
used to construct the output maximizing YM shock and Gini index minimizing GM shock with a
different target horizon. Since effects of monetary policies are considered temporary or short-run,
we find the linear combination of the three functional income distribution shocks that leads to
most positive cumulative changes in the Federal funds rate upto five years after the impact date.
We consider five-year, instead of ten-year, horizons because monetary policy, used as a tool for
stabilization over a business cycle horizon, does not tend to respond to the same direction for a long
time. We refer this policy interest rate maximizing income distribution shock as MP-shock. In our
empirical study, we find the weights for the combination to be p0.54, 0.84,´0.03q.

B.2 Price-Maximizing PM-Shock

We consider an income distribution shock that induces maximal price level increases reflected in
the changes in the variable CPI. To identify this income distribution shock, we follow the same
procedure used to construct the output maximizing YM shock and Gini index minimizing GM shock
with a different target horizon. Since we would like to check the issue for a business cycle horizon,
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Figure B.2: DIN Responses to Interest Rate-Maximizing MP-Shock

Notes: DIN responses to the FFR maximizing MP-shock in histograms for quintile income groups at-impact (h “ 0,
top-left), h “ 12 months, (top-right), h “ 24 months (bottom-left) and h “ 60 months (bottom-right) after the
impact. The numbers on the horizontal axis are the quintile values obtained from the income distribution on the
month the shock is given. The black horizontal line signifies the benchmark 20% line, and the vertical line at the
top center of each bar represents the 90% confidence interval. Mean shift by the aggregate output is not considered
when computing the changes in income distribution.

Figure B.3: DIN Responses to Interest Rate-Maximizing MP-Shock with Mean Shift

Notes: Responses to the FFR maximizing MP-shock of income distribution with the mean shift by the aggregate
output in histograms for quintile income groups at-impact (h “ 0, top-left), h “ 12 months, (top-right), h “ 24
months (bottom-left) and h “ 60 months (bottom-right) after the impact. The numbers on the horizontal axis are
the quintile values obtained from the income distribution on the month the shock is given. The black horizontal line
signifies the benchmark 20% line, and the vertical line at the top center of each bar represents the 90% confidence
interval. Mean shift by the aggregate output is taken into account.
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Figure B.4: Variance Decomposition from MAR with MP Shock

Notes: Presented are the forecast error variance decomposition (FEVD) of the variables in the MAR model at-
tributable to four aggregate shocks and the interest rate-maximizing PM-shock. The contribution from each shock
is color-coded, and the color codes are given in the legend box at the bottom of them figure. The four panels in the
first row present the FEVDs for four aggregate variables. The four panels in the second row and the first panel in the
third row present the FEVDs for the proportion of people with income levels in the neighborhood around the first,
25th, 50th, 75th and 99the percentiles of the most recent income distribution, December 2015. The remaining three
panels of the third row presents the FEVDs for the bottom 25%, middle 50% and top 25% income groups computed
from the average income distribution.
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Figure B.5: Impulse Response Functions and Surfaces to PM-Shock

Notes: Presented on the left are IRFs of the aggregate variables and impulse response surfaces of the income distri-
bution to price-maximizing PM-shock. On the right, presented are the functional impulse response functions - two
dimensional slices of the response surface - for the horizons h “ 0, 12, 24, 60 and 120 months.

we set the target horizon at five years to identify the income distribution shock that has most impact
on aggregate price level, as we did to identify the interest-rate maximizing shock. We therefore find
the linear combination of the three functional income distribution shocks that leads to most positive
cumulative changes in the price level upto five years after the impact date. We refer this price level
maximizing income distribution shock as PM-shock. The weights used to construct the PM shock
are p´0.54,´0.83,´0.13q.

Appendix C Appendix: Robustness Checks - Choice of m

In this section, we examine the robustness of our results with respect to the number m of FPCs
used to approximate income distributions.

The dimension m of our VAR is determined by the number of the FPCs used to approximate the
demeaned density pwtq with wt “ pft ´ fq. For the choice of m, we simply followed the convention
in the literature, which is described in Section 3.2 of Hörmann and Kokoszka (2012) as by finding “a
balance between retaining the relevant information in the sample, and the danger of working with
the reciprocals of small eigenvalues.” Our choice m “ 3 was made as such. It is important to check
the robustness of our results to the choice of m, and we find that our results are quite robust with
respect to the choice of m as we show in this section.

We provide explicit evidence on the robustness of our results against the choice of m. We repeat
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Figure B.6: DIN Responses to Price-Maximizing PM-Shock

Notes: DIN responses to the Price maximizing PM-shock in histograms for quintile income groups at-impact (h “ 0,
top-left), h “ 12 months, (top-right), h “ 24 months (bottom-left) and h “ 60 months (bottom-right) after the
impact. The numbers on the horizontal axis are the quintile values obtained from the income distribution on the
month the shock is given. The black horizontal line signifies the benchmark 20% line, and the vertical line at the
top center of each bar represents the 90% confidence interval. Mean shift by the aggregate output is not considered
when computing the changes in income distribution.

the same analysis on our approximate VAR model with m “ 2 and m “ 4, i.e., using two and four
FPCs, instead of three FPCs. When m “ 3 is chosen optimally, using m “ 2 allows us to assess the
bias incurred by omitting the third FPC. Conversely, using m “ 4 helps evaluate the robustness of
the benchmark results with m “ 3 to the inclusion of an additional, unnecessary FPC component.

We report key results obtained with two FPCs in Section C.1 and those obtained with four
FPCs in Section C.2 in the same format as the benchmark results presented in the main text for
easy comparisons. As the results show, all qualitative conclusions remain unchanged only with some
minor quantitative differences.

C.1 MAR Approximated by Two FPCs

The key results obtained with two FPCs are presented in the figures in this subsection with m “ 2
in their titles, from Figure C.1 to Figure C.10.

C.2 MAR Approximated by Four FPCs

Similarly, this subsection presents the same set of key results obtained with four FPCs in the figures
with m “ 4 in their titles, from Figure C.11 to Figure C.20.

Appendix D Using Density for a Distributional Variable

There are different ways of representing income distributions and investigating their fluctuations
over time. In the paper, we use the density functions of income distributions to empirically analyze
the dynamic interactions of income distributions with other aggregate macro variables in our MAR.
This is mainly because the density is the most direct and intuitive way of defining a distributional
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Figure B.7: DIN Responses to Price-Maximizing PM-Shock with Mean Shift

Notes: Responses to the price maximizing PM-shock of income distribution with the mean shift by the aggregate
output in histograms for quintile income groups at-impact (h “ 0, top-left), h “ 12 months, (top-right), h “ 24
months (bottom-left) and h “ 60 months (bottom-right) after the impact. The numbers on the horizontal axis are
the quintile values obtained from the income distribution on the month the shock is given. The black horizontal line
signifies the benchmark 20% line, and the vertical line at the top center of each bar represents the 90% confidence
interval. Mean shift by the aggregate output is taken into account.

variable, and using the density makes it possible to nicely relate and compare our results with
the conventional approaches based on the indicator basis and the moment basis. Unfortunately,
however, the functional data analysis is typically done in the Hilbert space of square integrable
functions, which is not most suitable for the analysis of density functions that are subject to two
restrictions: non-negativity and unit integral. The set of square integrable density functions is only
a subset, not a subspace, of the Hilbert space of square integrable functions, which implies that the
set of density functions itself is not a Hilbert space. Therefore, it is impossible to use the existing
methodology developed for functional data analysis.

However, MARs with constant term for any set of variables including functional variables as
well as aggregate variables are equivalent to MARs without constant term defined by the same set
of aggregate and functional variables after after they are demeaned. As a result, our functional
variable may be effectively analyzed by demeaned density functions in a Hilbert space defined as

H “

"

f : K Ñ R

ˇ

ˇ

ˇ

ˇ

ż

fprq dr “ 0,

ż

fprq2dr ă 8

*

,

where we let K be a bounded subset of R, and integrals are defined over K. As discussed earlier, H
is a Hilbert space as a subspace of the Hilbert space of square integrable functions. In our empirical
analysis, we thus assume that the demeaned densities of income distributions are generated by a
functional time series taking values in the Hilbert space H. This allows us to use the standard
methodology for functional data analysis to analyze our MAR. Our framework is used by, e.g.,
Kneip and Utikal (2001) to perform inferences on density functions.

A density recovered by adding an element in H to the mean density or any other reference
density has unit integral. However, it may have negative parts. Our empirical analysis focuses not
on densities themselves but on demeaned densities, and therefore, this problem does not arise on
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Figure B.8: Variance Decomposition from MAR with PM Shock

Notes: Presented are the forecast error variance decomposition (FEVD) of the variables in the MAR model at-
tributable to four aggregate shocks and the price-maximizing PM-shock. The contribution from each shock is color-
coded, and the color codes are given in the legend box at the bottom of them figure. The four panels in the first row
present the FEVDs for four aggregate variables. The four panels in the second row and the first panel in the third
row present the FEVDs for the proportion of people with income levels in the neighborhood around the first, 25th,
50th, 75th and 99the percentiles of the most recent income distribution, December 2015. The remaining three panels
of the third row presents the FEVDs for the bottom 25%, middle 50% and top 25% income groups computed from
the average income distribution.
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Figure C.1: Impulse Response Functions and Surfaces to Contractionary Monetary Policy Shocks
with m “ 2

Notes: On the left are IRFs of the aggregate variables and impulse response surface of the income distribution to
contractionary monetary policy shocks. On the right, the functional impulse responses of the demeaned income
distribution - two dimensional slices of the response surface - are shown for the horizons h “ 0, 12, 24, 60 and 120
months, with the y-axis indicating the response and the x-axis representing quantile values (1%, 10%, 25%, 50%,
75%, 90% and 99%). Shaded bands represent the 68% and 90% confidence intervals.

the surface. In our structural MAR analysis, negative probabilities may be implied by the reference
density and counter-factual functional responses obtained from H. However, we don’t think this
causes any serious problem. The interested reader is referred to https://en.wikipedia.org/wiki/
negative_probability for the use of negative probabilities in various fields. In fact, we didn’t have
any negative probabilities in our presentations of the responses of income distributions in quintile
and decile income groups to various macro shocks. Of course, if necessary, we may just replace
negative values of densities by zeros and renormalize them, although this introduces adjustment
errors in addition to the errors incurred by approximating infinite dimensional functions to finite
dimensional vectors.

As an alternative to density functions for distributional variables, we may use other functions
representing the same distributional information in our MAR. The simplest option is to use log-
density functions. In this case, the non-negativity is ensured though the unit integral is generally
violated. Petersen and Müller (2016) and Horta and Ziegelmann (2018) explore novel frameworks
to analyze distributional observations in a Hilbert space not directly relying on density functions.
In particular, Petersen et al. (2022) and Zhang et al. (2022), among others, illustrate the use of
some concrete transformations of density functions in practical applications. It is certainly possible
to use any of these transformations of density functions, instead of density functions themselves, in

https://en.wikipedia.org/wiki/negative_probability
https://en.wikipedia.org/wiki/negative_probability
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Figure C.2: Distributional Effects of Contractionary Monetary Policy Shocks with m “ 2

Notes: Presented are the DIN responses to contractionary monetary policy shocks one year after the impact in
histograms. The top (bottom) panel on the left shows how the income distribution changes without the mean shift
for decile (quintile) income groups. Similarly, the top (bottom) panel on the right shows those obtained with the
mean shift for decile (quintile) income groups.

Figure C.3: IRFs of Gini Index to Contractionary Monetary Policy Shocks with m “ 2

Notes: Presented are the impulse response functions of the Gini index computed from the income distribution over a
10-year horizon, without the mean shift (left) and with the mean shift (right). Shaded bands represent the 68% and
90% confidence intervals.
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Figure C.4: Variance Decomposition from MAR with DIN Shock with m “ 2

Notes: Presented are the forecast error variance decomposition (FEVD) of the variables in the MAR model at-
tributable to four aggregate shocks and one income distribution shock. Each shock’s contribution is color-coded, with
the color codes provided in the legend box at the bottom of the figure. The four panels in the first row show the
FEVDs for four aggregate variables. The four panels in the second row and the first panel in the third row present the
FEVDs for the proportions of the population at income levels around the 1st, 25th, 50th, 75th, and 99th percentiles
of the most recent income distribution, December 2015. The remaining three panels in the third row present the
FEVDs for the bottom 25%, middle 50%, and top 25% income groups, defined using the historical average income
distribution.

our empirical analysis. However, this has not been done in our paper, mainly because of the two
reasons. First, we see some clear advantages of using density functions, as discussed above, while
there is no such clear advantage of using their transformations. Second, the MAR relying on a
transformation of density functions is a different model and not directly comparable with our MAR
relying on density functions themselves.

Appendix E Conventional SVAR

This section presents the conventional SVAR as a special case of our MAR with only aggregate
variables. If we simply use Gini to refer to Gini index for inequality, in place of the income
distribution pftq, our specification of pBq reduces to
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Figure C.5: Impulse Response Functions and Surfaces to YM Shocks with m “ 2

Notes: On the left are IRFs of the aggregate variables and impulse response surface of the income distribution to
output maximizing YM shocks. On the right, the functional impulse responses of the demeaned income distribution
- two dimensional slices of the response surface - are shown for the horizons h “ 0, 12, 24, 60 and 120 months, with
the y-axis indicating the response and the x-axis representing quantile values (1%, 10%, 25%, 50%, 75%, 90% and
99%). Shaded bands represent the 68% and 90% confidence intervals.

where we only have a 5 ˆ 5 at-impact matrix, and peGini
t q is a usual scalar structural shock.

We perform the conventional structural VAR analysis using these identifying restrictions to
compare our results obtained using an MAR with those from taking the conventional approach.
Figure E.1 shows the impulse response functions from the conventional aggregate SVAR with Gini
index. As in other models, peFFRS

t q is identified as monetary policy shocks, and peGini
t q, as a

distributional shock, is identified as orthogonal to aggregate shocks.
Figure E.1 and Figure E.2 show the impulse responses and forecast error variance decomposition

obtained from the conventional aggregate SVAR model with Gini index. The impulse responses show
that the effects of monetary policy shocks on Gini index is qualitatively similar to those in reported
in our baseline mixed autoregressive model reported in Figure 8. However, the results of the baseline
MAR model are more significant than those of the current model.
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Figure C.6: IRFs of Gini Index to YM Shock with m “ 2

Notes: Presented are the impulse response functions of the Gini index to YM shocks computed from the income
distribution over a 10-year horizon, without the mean shift (left) and with the mean shift (right). Shaded bands
represent the 68% and 90% confidence intervals.

Figure C.7: Variance Decomposition from MAR with YM Shock with m “ 2

Notes: Presented are the forecast error variance decomposition (FEVD) of the variables in the MAR model at-
tributable to four aggregate shocks and one distributional YM shock. Each shock’s contribution is color-coded, with
the color codes provided in the legend box at the bottom of the figure. The four panels in the first row show the
FEVDs for four aggregate variables. The four panels in the second row and the first panel in the third row present the
FEVDs for the proportions of the population at income levels around the 1st, 25th, 50th, 75th, and 99th percentiles
of the most recent income distribution, December 2015. The remaining three panels in the third row present the
FEVDs for the bottom 25%, middle 50%, and top 25% income groups, defined using the historical average income
distribution.
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Figure C.8: Impulse Response Functions and Surfaces to GM Shocks with m “ 2

Notes: On the left are IRFs of the aggregate variables and impulse response surface of the income distribution to
inequality minimizing GM shocks. On the right, the functional impulse responses of the demeaned income distribution
- two dimensional slices of the response surface - are shown for the horizons h “ 0, 12, 24, 60 and 120 months, with
the y-axis indicating the response and the x-axis representing quantile values (1%, 10%, 25%, 50%, 75%, 90% and
99%). Shaded bands represent the 68% and 90% confidence intervals.

Figure C.9: IRFs of Gini Index to GM Shock with m “ 2

Notes: Presented are the impulse response functions of the Gini index to GM shocks computed from the income
distribution over a 10-year horizon, without the mean shift (left) and with the mean shift (right). Shaded bands
represent the 68% and 90% confidence intervals.
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Figure C.10: Variance Decomposition from MAR with GM Shock with m “ 2

Notes: Presented are the forecast error variance decomposition (FEVD) of the variables in the MAR model at-
tributable to four aggregate shocks and one distributional GM shock. Each shock’s contribution is color-coded, with
the color codes provided in the legend box at the bottom of the figure. The four panels in the first row show the
FEVDs for four aggregate variables. The four panels in the second row and the first panel in the third row present the
FEVDs for the proportions of the population at income levels around the 1st, 25th, 50th, 75th, and 99th percentiles
of the most recent income distribution, December 2015. The remaining three panels in the third row present the
FEVDs for the bottom 25%, middle 50%, and top 25% income groups, defined using the historical average income
distribution.
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Figure C.11: Impulse Response Functions and Surfaces to Contractionary Monetary Policy Shocks
with m “ 4

Notes: On the left are IRFs of the aggregate variables and impulse response surface of the income distribution to
contractionary monetary policy shocks. On the right, the functional impulse responses of the demeaned income
distribution - two dimensional slices of the response surface - are shown for the horizons h “ 0, 12, 24, 60 and 120
months, with the y-axis indicating the response and the x-axis representing quantile values (1%, 10%, 25%, 50%,
75%, 90% and 99%). Shaded bands represent the 68% and 90% confidence intervals.
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Figure C.12: Distributional Effects of Contractionary Monetary Policy Shocks with m “ 4

Notes: Presented are the DIN responses to contractionary monetary policy shocks one year after the impact in
histograms. The top (bottom) panel on the left shows how the income distribution changes without the mean shift
for decile (quintile) income groups. Similarly, the top (bottom) panel on the right shows those obtained with the
mean shift for decile (quintile) income groups.

Figure C.13: IRFs of Gini Index to Contractionary Monetary Policy Shocks with m “ 4

Notes: Presented are the impulse response functions of the Gini index computed from the income distribution over a
10-year horizon, without the mean shift (left) and with the mean shift (right). Shaded bands represent the 68% and
90% confidence intervals.
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Figure C.14: Variance Decomposition from MAR with DIN Shock with m “ 4

Notes: Presented are the forecast error variance decomposition (FEVD) of the variables in the MAR model at-
tributable to four aggregate shocks and one income distribution shock. Each shock’s contribution is color-coded, with
the color codes provided in the legend box at the bottom of the figure. The four panels in the first row show the
FEVDs for four aggregate variables. The four panels in the second row and the first panel in the third row present the
FEVDs for the proportions of the population at income levels around the 1st, 25th, 50th, 75th, and 99th percentiles
of the most recent income distribution, December 2015. The remaining three panels in the third row present the
FEVDs for the bottom 25%, middle 50%, and top 25% income groups, defined using the historical average income
distribution.
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Figure C.15: Impulse Response Functions and Surfaces to YM Shocks with m “ 4

Notes: On the left are IRFs of the aggregate variables and impulse response surface of the income distribution to
output maximizing YM shocks. On the right, the functional impulse responses of the demeaned income distribution
- two dimensional slices of the response surface - are shown for the horizons h “ 0, 12, 24, 60 and 120 months, with
the y-axis indicating the response and the x-axis representing quantile values (1%, 10%, 25%, 50%, 75%, 90% and
99%). Shaded bands represent the 68% and 90% confidence intervals.

Figure C.16: IRFs of Gini Index to YM Shock with m “ 4

Notes: IRFs of the Gini index to YM shock without the mean shift (on the left) and with the mean shift (on the
right). Shaded bands represent the 68% and 90% confidence intervals.
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Figure C.17: Variance Decomposition from MAR with YM Shock with m “ 4

Notes: Presented are the forecast error variance decomposition (FEVD) of the variables in the MAR model at-
tributable to four aggregate shocks and one distributional YM shock. Each shock’s contribution is color-coded, with
the color codes provided in the legend box at the bottom of the figure. The four panels in the first row show the
FEVDs for four aggregate variables. The four panels in the second row and the first panel in the third row present the
FEVDs for the proportions of the population at income levels around the 1st, 25th, 50th, 75th, and 99th percentiles
of the most recent income distribution, December 2015. The remaining three panels in the third row present the
FEVDs for the bottom 25%, middle 50%, and top 25% income groups, defined using the historical average income
distribution.



69

Figure C.18: Impulse Response Functions and Surfaces to GM Shocks with m “ 4

Notes: On the left are IRFs of the aggregate variables and impulse response surface of the income distribution to
inequality minimizing GM shocks. On the right, the functional impulse responses of the demeaned income distribution
- two dimensional slices of the response surface - are shown for the horizons h “ 0, 12, 24, 60 and 120 months, with
the y-axis indicating the response and the x-axis representing quantile values (1%, 10%, 25%, 50%, 75%, 90% and
99%). Shaded bands represent the 68% and 90% confidence intervals.

Figure C.19: IRFs of Gini Index to GM Shock with m “ 4

Notes: IRFs of the Gini index to GM shock without the mean shift (on the left) and with the mean shift (on the
right). Shaded bands represent the 68% and 90% confidence intervals.
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Figure C.20: Variance Decomposition from MAR with GM Shock with m “ 4

Notes: Presented are the forecast error variance decomposition (FEVD) of the variables in the MAR model at-
tributable to four aggregate shocks and one distributional GM shock. Each shock’s contribution is color-coded, with
the color codes provided in the legend box at the bottom of the figure. The four panels in the first row show the
FEVDs for four aggregate variables. The four panels in the second row and the first panel in the third row present the
FEVDs for the proportions of the population at income levels around the 1st, 25th, 50th, 75th, and 99th percentiles
of the most recent income distribution, December 2015. The remaining three panels in the third row present the
FEVDs for the bottom 25%, middle 50%, and top 25% income groups, defined using the historical average income
distribution.
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Figure E.1: Impulse Response Functions from SVAR with Gini Index

Notes: Presented are full set of impulse response functions from the conventional SVAR model with four aggregate
variables in our benchmark model, namely, IP,CPI, PCOM,FFRS, and Gini index. Shaded bands represent the
68% and 90% confidence intervals.
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Figure E.2: Variance Decomposition from SVAR with Gini Index

Notes: Each column presents the forecast error variance decomposition of the variables in the conventional ag-
gregate SVAR model, including the Gini index as well as the four aggregate variables in the benchmark model,
IP,CPI, PCOM,FFRS. Shaded bands represent the 68% and 90% confidence intervals.
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