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Abstract 

 
 

In a number of time times models there are I(1) variables that appear in data sets in 
differenced from. This note shows that an emerging practice of assuming that observed 
data relates to model variables through the use of "measurement error shocks" when 
estimating these models can imply that there is a lack of co-integration between model 
and data variables, and also between data variables themselves. An analysis is provided 
of what the nature of the measurement error would need to be if it was desired to 
reproduce the same co-integration information as seen in the data. Sometimes this 
adjustment can be complex. It is very unlikely that measurement error can be described 
properly with the white noise shocks that are commonly used for measurement error. 
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Abstract

In a number of time times models there are I(1) variables that
appear in data sets in differenced from. This note shows that an
emerging practice of assuming that observed data relates to model
variables through the use of "measurement error shocks" when esti-
mating these models can imply that there is a lack of co-integration
between model and data variables, and also between data variables
themselves. An analysis is provided of what the nature of the mea-
surement error would need to be if it was desired to reproduce the
same co-integration information as seen in the data. Sometimes this
adjustment can be complex. It is very unlikely that measurement er-
ror can be described properly with the white noise shocks that are
commonly used for measurement error.

1 Introduction

Many applications of time series models use data measured as growth rates
of variables such as GDP, nominal exchange rates and price levels. It is often
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now assumed that these are noisy measures of the corresponding variables in
the model of interest. A recent application in Aruoba et al (2016) considered
that the different measures of GDP growth could be regarded as deviating
from true GDP growth and that the deviations would be described by mea-
surement errors. Many factor models make a similar assumption. In terms
of models with a greater economic emphasis, DSGE models often proceed in
this way e.g. Guerron-Quintana (2010). Examples of policy models following
this strategy would be the EDO model of the Federal Reserve - Chung et.
al. (2010) - and the Multi-sector model of the Reserve Bank of Australia -
Rees et. al. (2016). When estimation of the parameters is performed it is
assumed that there is a discrepancy between model growth variables and the
data on them, and these discrepancies are often described as "measurement
error shocks".1 The purpose of this note is to explore what the implication
of these "measurement error shocks" is.

Section 2 shows that such shocks generally imply a lack of co-integration
between the levels of the model variables and the corresponding data in lev-
els, but also it implies that there is a lack of co-integration between the
data variables themselves.2 After showing this in a simple way, sections 3
and 4 turn to the question of what happens when the model implies some
co-integration between the model level variables, while the data may be con-
sistent with exactly the same number of co-integrating vectors (or perhaps
more) than are implied by the model. In both cases one can make the model
and data variables co-integrate by using time differences of white noise mea-
surement error shocks as the augmenting mechanism. However, this is at the
expense of using an incorrect description of what the correct measurement
error shocks should be. It is rarely the case that one can treat the mea-
surement error shocks as white noise, as is typically done in most applied
studies. The exception to that occurs if there is no co-integration in the
data. So using white noise shocks is making the presumption that the data
lacks co-integration. Whether this was the modeller’s intention is a question

1I have never been happy with this description. Basically what these shocks do is to
measure the extent to which the model fails to track the data, and therefore Fukac and
Pagan (2011) called them "tracking shocks".

2This is also true if the I(1) data is filtered to produce I(0) processes that are used in
models e.g. as an output gap. In those cases the filtered data will be weighted averages
of growth rates in variables so it is an average of growth rates in the data that would be
held to deviate from model growth. Thus, the issues we describe in this note also apply
when filtered data are used, although the analysis is more complex.
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that always needs to be resolved.

2 Case 1: The Most Common Approach

We start with a simple situation which parallels that in Aruoba et. al. (2016).
Let ∆zt be the true growth rate in GDP and ∆zjt (j = 1, 2) being two noisy
measures of it. Then we have ∆zjt = ∆zt + ηjt, where ηjt are said to be
measurement errors. In that paper they are white noise. Now consider
what this means for the relation between the level of GDP and its measures.
Selecting the first data series we have

z1t − zt =
t∑

k=1

(∆z1k −∆zk)

=
t∑

k=1

η
1k.

Consequently, under the assumption that measurement errors are white noise
it is clear that z1t and zt must not be co-integrated i.e. the data and model
variables do not co-integrate. Moreover the difference

z1t − z2t =
t∑

k=1

(∆z1k −∆z2k)

=
t∑

k=1

(η
1k − η2k),

would also be I(1) and so, unless η
1k and η

2k are perfectly correlated, there
would be no co-integration between the data variables z1t and z2t.

3

Now it may be that the observed andmodel variables are not co-integrated
but it would seem more satisfactory if at least one of the measured quantities
did co-integrate with the true level of GDP. Therefore it doesn’t seem sensible
to rule it out with the chosen specification of the measurement error, and so
later we look at how the latter would need to be treated. One can of course
always test if z1t and z2t are co-integrated so that provides some check on
the reasonableness of the assumptions being made about the measurement

3If they were perfectly correlated then basically z1t and z2t would be the same series.
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error. For the Aruoba et al (2016) paper one model used has z1t as the
expenditure based series on GDP while z2t is the income based series. We
therefore test if there is co-integration between these two series. Using a
VAR(2), Johansen’s trace and eigenvalue tests are equal and of value 3.22.
The 5% critical value would be 3.84, so there does seem to be co-integration
between the observables, and a useful re-specification of their model would
be to include some error correction terms, although whether this would have
a big impact is a different issue.4 It is interesting that the co-integrating
vector seems to be (1 -.9978).

Now in the statistical model above there is only one latent (unobserved)
variable and so there is no issue of co-integration between the model variables
themselves. In contrast DSGE models generally have co-integration between
I(1) variables in the model. To make this more concrete let there be data on
three I(1) model variables -∆z∗Dt = data on foreign GDP growth;∆zDt =data
on domestic GDP growth and∆cDt = data on domestic consumption growth,
where D =data. As well we have corresponding DSGE model variables (M =
model) ∆z∗Mt , ∆zMt and ∆cMt. In the DSGE model there is a log level of
technology process at which follows a pure random walk at = at−1+ωt, where
ωt are white noise innovations that have zero mean and variance σ2. This
produces unit roots in the logs of the two GDP and consumption processes,
and these co-integrate with at. Thus the DSGEmodel features co-integration.

Now the assumptions often made when estimating the DSGE model with
the growth rate data are that the model and data growth rate variables differ
by measurement error, that is 5

∆z∗Dt = ∆z∗Mt + η1t
∆zDt = ∆zMt + η2t
∆cDt = ∆cMt + η3t,

where the ηjt are white noise innovations that are uncorrelated with each
other. To see the relation between the data and model level variables assume

4I thank Dongho Song for sending me this data.
5See for example Pfeifer (2015).
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initial conditions are zero so that

z∗Dt − z
∗

Mt =
t∑

k=1

η
1k

zDt − zMt =
t∑

k=1

η
2k

cDt − cMt =
t∑

k=1

η
3k.

Hence

z∗Dt − zDt − (z
∗

Mt − zMt) =
t∑

k=1

η
1k −

t∑

k=1

η
2k (1)

Now within the model there is co-integration between zMt and z
∗

Mt since they
both co-integrate with the log level of technology at. Consequently, using (1),

z∗Dt − zDt = (z∗Mt − zMt) +
t∑

k=1

η
1k −

t∑

k=1

η
2k

= I(0) +
t∑

k=1

(η
1k − η2k)

But this must mean that z∗Dt − zDt is I(1) unless
∑t

k=1(η1k − η2k) is I(0),
which cannot happen unless η

1t = η2t.We can see the same thing if we ask
whether cDt and zDt co-integrate? cMt co-integrates with at, and so cMt and
zMt co-integrate, but this is not true of cD,t and cM,t.

So whenever the data is measured as growth rates in a variable zt, and a
measurement error shock is added into the observation equation, it implies
there is no co-integration between the data and model variables. Moreover,
if more than one I(1) variable is being treated in the same way, then this
implies no co-integration between the variables in the data. This is a strong
assumption and one that can be tested. Of course, if there is really no co-
integration in the data then the standard method of adding on white noise
measurement error shocks will be appropriate. It is interesting to note that
the EDO model has measurement error shocks that are specified in this way,
and so this implies a lack of co-integration between some I(1) variables. So
nothing needs to be done if one is happy with that outcome. Instead the
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EDO modellers introduced some extra I(1) shocks to account for the lack of
co-integration seen in the data, even though this is unnecessary.

3 Case 2: Both Data and Model Have Co-

integration of the Same Form

We now look at the case where both the model and data might be thought of
as having the same type of co-integration. We need to be more specific about
what we mean by this term and so we consider an example based on having
the basic RBCmodel as the theoretical DSGEmodel and where there is a unit
root in the log of technology at driving the model. Then this is log-linearized
and model variables are expressed as deviations from at. Consequently the
variables solved for in the model will be c̃t = ct − at, ı̃t = it − at, k̃t = kt − at
and ỹt = yt−at, where ct,it, kt and yt are the logs of consumption, investment,
the capital stock and output. Then c̃t, ı̃t, k̃t and ỹt will be I(0) and so ct, it, kt
and yt co-integrate with at. Alternatively, we can partially express this as yt
co-integrating with ct, it and kt because the co-integrating relations with at
imply that (ct− yt), (it− yt) and (kt− yt) are I(0). Finally, there is a further
co-integrating relation due to (yt − at) being I(0). Thus the number of co-
integrating vectors is larger in the DSGE model than in the data but those
which are common i.e which relate to observable variables ct, yt, it, kt and yt,
are of exactly the same type.

Now using the example above at is not an observed variable and so the
DSGE model will therefore have one more co-integrating relation than the
VECM in observed data would have. Thus, if there are n observed I(1) vari-
ables zDt , with the corresponding model variables being zMt , and the DSGE
model can be expressed as a VECM of the form6

∆zMt = δγ′zMt−1 + ψ(z
M
nt−1 − at−1) + e

M
t , (2)

where γ are the common co-integrating vectors, and we have chosen to nor-

6If it was the case that kt was treated as unobservable then there would be a second
unobserved variable (kt−1− at−1) to join (yt−1− at−1). In that instance γ′ would capture
the common co-integrating vectors and there would be two less in the data than in the
model. In Christensen et. al. (2011) an algorithm is given for converting DSGE model
output into a VECM representation.
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malize the extra co-integrating relation using the n′th variable znt.
7 Now

suppose that the data is generated by

∆zDt = δγ
′zDt−1 + e

D
t . (3)

Then, subtracting (2) from (3), gives

∆zDt −∆z
M
t = δγ′(zDt−1 − z

M
t−1)− ψ(z

M
nt−1 − at−1) + e

D
t − e

M
t .

Defining the term ξt = z
D
t − z

M
t this evolves as

∆ξt = δγ
′ξt−1 − ψ(z

M
nt−1 − at−1) + e

D
t − e

M
t ,

and this will imply that ξt is I(0). Consequently, there will be co-integration
between the levels of variables in the model and the data. Moreover, if we
define ∆zDt − ∆z

M
t = ηt, it is clear that the "errors in variables shocks" ηt

that reconcile data and model growth rates would need to be

ηt = δγ
′ξt−1 − ψ(z

M
nt−1 − at−1) + e

D
t − e

M
t , (4)

and it will be impossible for the vector ηt to be white noise, as is generally
assumed. In fact due to the composite nature of the error term it will be
a VARMA process. Notice the presence of the error correction terms in (4)
and it is this that results in the co-integration.8

Now one might set up the shock process as in (4), but suppose we simply
want to ensure co-integration between the levels of variables in the data and
the model. If we make the shock reconciling growth rates ηt a white noise
process, vt, then this would mean that ∆(zDt − z

M
t ) = ηt = vt, and so there

would be no co-integration between model and data level variables . However,
by setting ηt = ∆vt we would ensure co-integration, even though the true
ηt that is needed to reconcile the growth rates in the data and the model is
quite different, being (4).9

Now in the analysis above it was assumed that the loadings δ were the
same in the model as in the data. However this seems unlikely. To relax this
assumption we designate the loadings from model and data as δM and δD

7The model shocks will be assumed to be white noise processes i.e. they are innovations,
although they only need to be I(0) processes for our analysis.

8Note that in the case where kt was unobserved we would have (kt−1−at−1) also driving
ξ
t
but because this is I(0) by assumption it will not affect the result.
9When we have ∆zD

t
−∆zM

t
= ∆vt the solution for zD

t
− zM

t
does not cumulate vt.
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respectively. Then following the same steps as the analysis above we would
get

ηt = δ
Dγ′ξt−1 + (δ

D − δM)γ′zMt−1 − ψ(z
M
nt−1 − at−1) + e

D
t − e

M
t

so the analysis above will stand because γ′zMt−1 is I(0). Things would be dif-
ferent if the co-integrating vectors relating to observables γ′ were not the
same as in the model, since then the analysis shows that ξt would become
I(1). But it seems reasonable to argue that modellers would be able to dis-
cover this and make adjustments to the model to reflect that. Thus in terms
of the RBC model example, if cDt − y

D
t was I(1) then it would be necessary

to introduce a second independent (of at) common I(1) latent variable into
the model. Thus allowing a preference shock to be I(1) would accomplish
this. If this second latent I(1) shock was ζt then we would end up with I(0)
variables yt−1 − at−1 and ct−1 − ζt−1 in (4). Once again the specification of
ηt would be complex.

4 Case 3: More Co-integrating Vectors in the

Data than Implied by the Model

This case may arise infrequently and is most likely due to the model not
being complex enough and the extra co-integrating vectors reflecting some
factor not accounted for in the model. In this instance the model has the
VECM structure

∆zMt = δγ′zMt−1 + ψ(z
M
nt−1 − at−1) + e

M
t ,

while the VECM for the data has extra co-integrating vectors with the form

∆zDt = δγ
′zDt−1 + αβ

′zDt−1 + e
D
t . (5)

Following the analysis of the previous section we would have

ηt = ∆ξt = δγ
′ξt−1 + αβ

′zDt−1 − ψ(z
M
nt−1 − at−1) + e

D
t − e

M
t . (6)

Because αβ′zDt−1 − ψ(z
M
nt−1 − at−1) + e

D
t − e

M
t is I(0) then we will get co-

integration again. To achieve that it is necessary to add the extra co-
integrating vectors into the augmenting term ηt. Notice that once again
a choice of ηt = ∆vt would effect co-integration, but clearly this is a mis-
specification of the actual shock needed to reconcile data and model growth
rates.
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5 Conclusion

The note shows that working with the traditional form of errors in variables
shocks in DSGE models would fail to produce co-integration between model
variables and data, and would also imply that there is no co-integration be-
tween the data variables. If there is in fact co-integration in the data, and
it has either the same or more co-integrating vectors as the model, then the
traditional method of assuming that model and data growth rates differ by
a white noise process results in a failure of model variables to co-integrate
with the data. One can produce co-integration by working with differences
in a white noise process, although the correct measurement error shocks
are far more complex, and involve a VARMA structure. Exactly what the
consequences are of this mis-specification of the shock processes will be de-
pendent upon the nature of the model. If one is happy to simply preserve
co-integration between model and data variables using differences in white
noise shocks, this would seem to be a relatively simple modification in pro-
grams that perform estimation with state space methods, such as Dynare.
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