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1 Introduction

The natural rate of interest—the equilibrium real interest rate that yields price stability (Wicksell,

1898)—has been a key concept for monetary policy analysis. In particular, a modern New Keynesian

framework relates the concept of the natural rate to intertemporally optimizing agents and makes it

relevant for social welfare (Woodford, 2003; Gaĺı, 2008). The level of the natural interest rate in this

framework is a useful indicator for policymakers because it is a benchmark as to whether policy is too

tight or too loose from a welfare perspective.1 However, the natural rate is unobservable and must

be estimated. Whereas the literature has developed various empirical methods to infer the natural

rate of interest, an increasing number of researchers have estimated the natural rate measures

based on New Keynesian dynamic stochastic general equilibrium (DSGE) models.2 Examples for

the U.S. economy include Andrés, López-Salido, and Nelson (2009), Barsky, Justiniano, and Melosi

(2014), Cúrdia (2015), Cúrdia, Ferrero, Ng, and Tambalotti (2015), Del Negro, Giannone, Giannoni,

and Tambalotti (2017), Edge, Kiley, and Laforte (2008), Justiniano and Primiceri (2010), and Neiss

and Nelson (2003).

This paper estimates the natural rate of interest in the U.S. using a nonlinear New Keynesian

DSGE model with a zero lower bound (ZLB) constraint on the nominal interest rate and examines

how and to what extent nonlinearity affects the estimates of the natural rate and its driving forces.

Whereas the previous studies estimate the DSGE-based natural interest rate only in a linear setting

that abstracts from the ZLB, this paper is the first to estimate the natural rate in a fully nonlinear

and stochastic setting that incorporates the ZLB.3 Fernández-Villaverde and Rubio-Ramı́rez (2005)

and Fernández-Villaverde, Rubio-Ramı́rez, and Santos (2006) demonstrate that the level of likeli-

hood and parameter estimates based on a linearized model can be significantly different from those

1Closing the gap between the actual real interest rate and the natural rate is not necessarily optimal in the

economy where “divine coincidence” (Blanchard and Gaĺı, 2007) does not hold. However, Barsky, Justiniano, and

Melosi (2014) demonstrate that, even in such a circumstance, the Federal Reserve would be able to stabilize both

inflation and the welfare-relevant output gap to a considerable degree by tracking the natural rate using an estimated

New Keynesian model.

2Another strand of the literature estimates the long-run natural interest rate based on semi-structural or reduced-

form models. See, for instance, Holston, Laubach, and Williams (2016), Johannsen and Mertens (2016), Kiley (2015),

Laubach and Williams (2003, 2016), Lubik and Matthes (2015), Pescatori and Turunen (2015), and Williams (2015).

Based on a DSGE model, Del Negro, Giannone, Giannoni, and Tambalotti (2017) present the estimates of the 20-

and 30-year forward natural rates, which are comparable to the long-run natural rate.

3A contemporaneous paper by Iiboshi, Shintani, and Ueda (2017), which evolved independently from our work,

estimates a nonlinear New Keynesian model for Japan and extracts a sequence of the natural rate.
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based on the original nonlinear model, and the same may be true for the estimation of unobservable

state variables, including the natural rate. Moreover, the recent experience of the Great Recession

and the extremely low interest rate period that followed has led researchers to conduct empirical

analyses based on nonlinear DSGE models in order to take the ZLB into consideration. For in-

stance, Gust, Herbst, López-Salido, and Smith (2017) incorporate the ZLB into a medium-scale

DSGE model similar to those developed by Christiano, Eichenbaum, and Evans (2005) and Smets

and Wouters (2007), and estimate the model in a nonlinear setting using U.S. macroeconomic time

series. Richter and Throckmorton (2016a, 2016b) estimate a nonlinear version of a prototypical

New Keynesian model with the ZLB for the U.S. economy, and Iiboshi, Shintani, and Ueda (2017)

estimate a similar model for the Japanese economy. Aruoba, Cuba-Borda, and Schorfheide (2017)

consider Markov switching between the targeted-inflation and deflation steady states in a New

Keynesian framework with the ZLB and estimate the probabilities of the U.S. and Japan having

been in either the targeted-inflation or deflation regime in a nonlinear setting. The present paper

contributes to these strands of the literature, focusing on the estimation of the natural rate.

In estimating the natural rate of interest, we follow the two-step approach in Aruoba, Cuba-

Borda, and Schorfheide (2017). First, to parameterize the model, we estimate a linearized version

of the model using U.S. data prior to the date when the nominal interest rate was bounded at

zero. Hirose and Sunakawa (2015) demonstrate that a linearized DSGE model gives rise to biased

estimates of parameters if the ZLB existing in an economy is omitted in estimation but that

neglecting the other nonlinearities does not lead to biased estimates for a sample period during

which the ZLB is not binding. Thus, this approach enables us not only to avoid a computational

burden that would increase exponentially in the estimation of a fully nonlinear model, but also to

obtain reliable estimates of parameters.

Next, given the estimated parameters, we solve the model in a fully nonlinear and stochastic

setting with the ZLB and apply a nonlinear filter for a full sample to extract the sequence of the

natural interest rate. The literature (e.g., Boneva, Braun, and Waki, 2016; Fernández-Villaverde,

Gordon, Guerrón-Quintana, and Rubio-Ramı́rez, 2015; Gavin, Keen, Richter, and Throckmorton,

2015; Gust, Herbst, López-Salido, and Smith, 2017; Nakata, 2016a, 2016b; and Ngo, 2014) has

emphasized the importance of considering nonlinearity in assessing the quantitative implications

of New Keynesian models that include the ZLB. The natural rate estimated in the present paper

takes account of this important feature. Moreover, our analysis is based on an empirically richer

DSGE model than the prototypical New Keynesian model. The model features habit persistence

in consumption preferences, price and wage stickiness, backward-looking components in price and
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wage settings, and monetary policy smoothing. Because of the high dimensionality of the state

variables, it is computationally challenging to solve such a richer DSGE model in a fully nonlinear

setting. To overcome this issue, we employ a projection method that adopts a very efficient Smolyak

algorithm developed by Judd, Maliar, Maliar, and Valero (2014). Their solution method is very

accurate, albeit with the reduced number of grid points.

The main results are summarized as follows. Comparing the estimated natural interest rate

based on the nonlinear model with the rate based on the linear counterpart, we find that the

former is higher than the latter to a substantial degree, particularly in the periods when the

nominal interest rate is close to or bounded at zero. This difference is ascribed to a contractionary

effect arising from the ZLB, which is considered only in the nonlinear model. Although such a

contractionary effect lowers expected output and inflation, actual output and inflation are pegged

to the corresponding observables in the filtering process. Then, positive shocks to aggregate demand

must be identified as being larger in order to satisfy the optimality conditions of households and

firms. As a consequence, the estimated natural rate increases in the nonlinear setting. Although

other nonlinearities, including price and wage dispersion, potentially affect the identification of

shocks and the estimates of the natural rate, we demonstrate that their effects are relatively minor.

This point is confirmed by estimating the natural rate based on a quasi-linear model in which the

ZLB constraint is imposed but all of the equilibrium conditions are linearized, and comparing it

with the one based on the baseline nonlinear model. We find that these two estimates are very

similar.

The remainder of the paper proceeds as follows. Section 2 describes the model used in our

analysis and a strategy for estimating the natural rate of interest. Section 3 presents our results.

Section 4 provides the conclusion.

2 The Model and the Estimation Strategy

This section begins by describing the model used in our analysis. In the model economy, there are

households, perfectly competitive final-good firms, monopolistically competitive intermediate-good

firms, and a central bank. To ensure a better fit to the macroeconomic time series, the model

features habit persistence in consumption preferences, price and wage stickiness, backward-looking

components in price and wage settings, and monetary policy smoothing. In the model, the natural

rate of interest is defined as the real interest rate that would prevail if prices and wages were fully

flexible without any markup shocks.
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To obtain the estimates of the natural interest rate, we follow the two-step approach in Aruoba,

Cuba-Borda, and Schorfheide (2017). First, we estimate a linearized version of the model using

U.S. data before the period of the global financial crisis and the virtually zero nominal interest

rate. Next, given the estimated parameters, we solve the model in a fully nonlinear and stochastic

setting with the ZLB constraint on the nominal interest rate and apply a nonlinear filter to extract

the sequence of the natural rate.

2.1 The model

2.1.1 Households

Each household h ∈ [0, 1] consumes final goods Ch,t, supplies labor lh,t =
∫ 1
0 lf,h,tdf to intermediate-

good firms f ∈ [0, 1], and purchases one-period riskless bonds Bh,t so as to maximize the following

utility function

E0

∞∑
t=0

βt

(
t∏

k=1

dk

)−1 [
log (Ch,t − γCt−1)−

l1+η
h,t

1 + η

]
,

subject to the budget constraint

PtCh,t +Bh,t = Wn
h,tlh,t +Rn

t−1Bh,t−1 + Th,t,

where β ∈ (0, 1) is the subjective discount factor, γ ∈ [0, 1] is the degree of external habit persistence

in consumption preferences (Ct−1 is the aggregate consumption in period t−1), η ≥ 0 is the inverse

of the labor supply elasticity, Pt is the price of final goods, W
n
h,t is the nominal wage for household h,

Rn
t is the gross nominal interest rate, and Th,t is the sum of a lump-sum public transfer and profits

received from firms. Following Eggertsson and Woodford (2003) and Christiano, Eichenbaum, and

Rebelo (2011), a shock to the discount factor dt affects the weight of the utility in period t + 1

relative to the one in period t. In the present model, this shock is broadly interpreted as a shock

to aggregate demand. The log of the discount factor shock follows an AR(1) process

log dt = ρd log dt−1 + εd,t, (1)

where ρd ∈ [0, 1) is an autoregressive coefficient and εd,t is a normally distributed innovation

with mean zero and standard deviation σd. The first-order conditions for optimal decisions on

consumption and bond-holding are identical among households, and therefore become

Λt =
1

Ct − γCt−1
, (2)

Λt =
β

dt
RtEt

Λt+1

Πt+1
, (3)

where Λt is the marginal utility of consumption and Πt = Pt/Pt−1 denotes gross inflation.
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2.1.2 Wage setting

A labor packer collects differentiated labor {lf,h,t} from each household h and resells a labor package

augmented by a CES aggregator lf,t =
[∫ 1

0 l
(θw−1)/θw
f,h,t dh

]θw/(θw−1)
to intermediate-good firms f ,

where θw > 1 represents the elasticity of substitution among labor varieties. Given the nominal

wage for each household Wn
h,t, cost minimization yields a set of labor demand schedules lf,h,t =(

Wn
h,t/W

n
t

)−θw
lf,t and the aggregate wage index Wn

t =
(∫ 1

0 Wn
h,t

1−θwdh
)1/(1−θw)

.

Given the demand for labor by the labor packers, labor unions representing each household h

set nominal wages on a staggered basis, as in Erceg, Henderson, and Levin (2000). In each period,

a fraction 1 − ξw ∈ (0, 1) of labor unions reoptimizes their nominal wages, whereas the remaining

fraction ξw indexes nominal wages to the economy’s trend growth γa and a weighted average of

past inflation Πt−1 and steady-state inflation Π̄. The labor unions that reoptimize their nominal

wages in the current period then maximize expected utility as follows

Et

∞∑
j=0

ξjwβ
j

(
j∏

k=1

dk

)−1 [
γjaWn

h,t

Pt+j

j∏
k=1

(
Πιw

t+k−1Π̄
1−ιw

)
Λh,t+jlh,t+j −

l1+η
h,t+j

1 + η

]
,

subject to the labor demand

lf,h,t+j =

[
γjaWn

h,t

Wn
t+j

j∏
k=1

(
Πιw

t+k−1Π̄
1−ιw

)]−θw

lf,t+j ,

where lh,t =
∫ 1
0 lf,h,tdf is the amount of labor supplied by each household h, and ιw ∈ [0, 1) is

the weight of wage indexation to past inflation relative to steady-state inflation. The first-order

condition for the reoptimized wage Wn,o
t is given by

(
Wn,o

t

Wn
t

)1+ηθw

=
θw

θw − 1

Et
∑∞

j=0 ξ
j
wβj

(∏j
k=1dk

)−1
[(∏j

k=1Π
ιw
t+k−1Π̄

1−ιw γj
aW

n
t

Wn
t+j

)−(1+η)θw
l1+η
d,t+j

]
Et
∑∞

j=0 ξ
j
wβj

(∏j
k=1dk

)−1
[(∏j

k=1Π
ιw
t+k−1Π̄

1−ιw γj
aW

n
t

Wn
t+j

)1−θw
Λt+j

Wn
t+j

Pt+j
ld,t+j

] ,
(4)

where ld,t =
∫ 1
0 lf,tdf is the total labor demand. The aggregate nominal wage index Wn

t =(∫ 1
0 Wn

h,t
1−θwdh

)1/(1−θw)
can be written as

Wn
t =

[
(1− ξw) (W

n,o
t )1−θw + ξw

(
Πιw

t−1Π̄
1−ιwγaW

n
t−1

)1−θw
] 1

1−θw . (5)

2.1.3 Firms

The representative final-good firm produces output Yt under perfect competition by choosing a

combination of intermediate inputs {Yf,t} so as to maximize profit PtYt−
∫ 1
0 Pf,tYf,tdf , subject to a
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CES production technology Yt =
[∫ 1

0 Y
(θp−1)/θp
f,t df

]θp/(θp−1)
, where Pf,t is the price of intermediate

good f and θp > 1 denotes the elasticity of substitution among the variety of intermediate goods.

The first-order condition for profit maximization yields the final-good firm’s demand for each in-

termediate good Yf,t = (Pf,t/Pt)
−θp Yt and the aggregate price index Pt =

(∫ 1
0 P

1−θp
f,t df

)1/(1−θp)
.

Each intermediate-good firm f produces a differentiated good Yf,t under monopolistic competi-

tion by choosing a labor input lf,t, given the real wage Wt = Wn
t /Pt, and subject to the production

function

Yf,t = Atlf,t,

where At represents total factor productivity. The log of the productivity level follows a nonsta-

tionary stochastic process

logAt = log γa + logAt−1 + at, (6)

where log γa represents the steady-state growth rate of productivity and at is a shock to the pro-

ductivity growth. The productivity shock follows an AR(1) process

at = ρaat−1 + εa,t, (7)

where ρa ∈ [0, 1) is an autoregressive coefficient and εa,t is a normally distributed innovation with

mean zero and standard deviation σa. Assuming the existence of a shock to real marginal cost zt,

which is interpreted as an inefficient cost-push shock, the first-order condition for cost minimization

is given by4

MCt =
Wt

At
zt. (8)

The log of the cost-push shock follows an AR(1) process

log zt = ρz log zt−1 + εz,t, (9)

where ρz ∈ [0, 1) is an autoregressive coefficient and εz,t is a normally distributed innovation with

mean zero and standard deviation σz.

In the face of the final-good firm’s demand and marginal cost, the intermediate-good firms set

the prices of their products on a staggered basis, as in Calvo (1983). In each period, a fraction

1 − ξp ∈ (0, 1) of intermediate-good firms reoptimizes their prices, whereas the remaining fraction

ξp indexes prices to a weighted average of past inflation Πt−1 and steady-state inflation Π̄. The

4The first-order condition also indicates that the real marginal cost MCt is identical across the intermediate-good

firms.
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firms that reoptimize their prices in the current period then maximize expected profit as follows

Et

∞∑
j=0

ξjpβ
j

(
j∏

k=1

dk

)−1

Λt+j

Λt

[
Pf,t

Pt+j

j∏
k=1

(
Π

ιp
t+k−1Π̄

1−ιp
)−MCt+j

]
Yf,t+j ,

subject to the final-good firm’s demand

Yf,t+j =

[
Pf,t

Pt+j

j∏
k=1

(
Π

ιp
t+k−1Π̄

1−ιp
)]−θp

Yt+j ,

where ιp ∈ [0, 1) denotes the weight of price indexation to past inflation relative to steady-state

inflation. The first-order condition for the reoptimized price P o
t is given by

P o
t

Pt
=

θ

θ − 1

Et
∑∞

j=0 ξ
j
pβj

(∏j
k=1 dk

)−1 Λt+j

Λt

[(∏j
k=1

[(
Πt+k−1

Π̄

)ιp
Π̄

Πt+k

])−θp
MCt+jYt+j

]
Et
∑∞

j=0 ξ
j
pβj

(∏j
k=1 dk

)−1 Λt+j

Λt

[(∏j
k=1

[(
Πt+k−1

Π̄

)ιp
Π̄

Πt+k

])1−θp
Yt+j

] . (10)

The final-good’s price Pt =
(∫ 1

0 P
1−θp
f,t df

)1/(1−θp)
can be written as

Pt =
[
(1− ξp) (P

o
t )

1−θp + ξp
(
Π

ιp
t−1Π̄

1−ιpPt−1

)1−θp
] 1

1−θp . (11)

2.1.4 Market clearing conditions

The final-good market clearing condition is

Yt = Ct, (12)

whereas the labor market clearing condition leads to

lt =
Δp,tΔw,tYt

At
, (13)

where lt =
∫ 1
0

∫ 1
0 lf,h,tdfdh is the aggregate labor input, Δp,t =

∫ 1
0 (Pf,t/Pt)

−θp df is price dispersion

across the intermediate-good firms, and Δw,t =
∫ 1
0

(
Wn

h,t/W
n
t

)−θw
dh is wage dispersion across the

labor unions. Equation (13) can be rewritten in terms of ld,t =
∫ 1
0 lf,tdf as

ld,t =
Δp,tYt
At

. (14)

In the present model, the price and wage dispersion evolve according to

Δp,t = (1− ξp)

(
P o
t

Pt

)−θp

+ ξp

(
Πt

Π̄

)θp (Πt−1

Π̄

)−ιpθp

Δp,t−1, (15)

Δw,t = (1− ξw)

(
Wn,o

t

Wn
t

)−θw

+ ξw

(
ΠtWt

Π̄γaWt−1

)θw (Πt−1

Π̄

)−ιwθw

Δw,t−1. (16)
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2.1.5 Flexible wage and price equilibrium

Natural output Y ∗
t and the natural rate of interest R∗

t are defined as the levels that would prevail

if both wages and prices were perfectly flexible with no cost-push shocks. Such a flexible wage and

price equilibrium is obtained with ξw = ξp = 0, Wn
h,t = Wn

t , Pf,t = Pt, and zt = 1 for all h, f , and

t in the model above and is characterized by the following equations:(
Y ∗
t − γY ∗

t−1

)(Y ∗
t

At

)η

= μAt, (17)

R∗
t =

dt
β

(
Et

Y ∗
t − γY ∗

t−1

Y ∗
t+1 − γY ∗

t

)−1

, (18)

where μ = θw−1
θw

θp−1
θp

is the product of price and wage markups. Thus, the law of motion for natural

output Y ∗
t is determined by (17), given the sequence of total factor productivity At. The natural

rate of interest R∗
t is determined by (18), with the sequences of natural output Y ∗

t and the discount

factor shock dt.

2.1.6 Central bank

A monetary policy rule is specified as

Rn
t = max[R̂n

t , 1], (19)

where

R̂n
t = (R̂n

t−1)
φr

[
R̄Π̄

(
Πt

Π̄

)φπ
(

Yt
Y ∗
t

)φy
]1−φr

exp(εr,t). (20)

R̂n
t denotes the hypothetical nominal interest rate that the central bank would set according to

a Taylor (1993) type monetary policy rule, where R̄ is the steady-state gross real interest rate,

φr ∈ [0, 1) is the policy-smoothing parameter, and φπ ≥ 0 and φy ≥ 0 are the degrees of the

interest rate policy response to inflation and the output gap. The output gap is defined as a

deviation of actual output from its natural level. εr,t is a monetary policy shock, which is normally

distributed with mean zero and standard deviation σr. The max function in (19) constrains the

nominal interest rate to be greater than or equal to zero. If R̂n
t > 1, the ZLB constraint is not

imposed, i.e., Rn
t = R̂n

t . If R̂
n
t ≤ 1, the ZLB is binding, i.e., Rn

t = 1.

2.1.7 Equilibrium

An equilibrium is given by the sequences {Yt, Ct,Λt,Wt,W
n
t ,W

n,o
t , lt, ld,t,MCt,Πt, Pt, P

o
t ,Δp,t,Δw,t,

Y ∗
t , R

∗
t , R

n
t , R̂

n
t , dt, At, at, zt}∞t=0 satisfying the equilibrium conditions (1)–(20) and two definitional

equations, Wt = Wn
t /Pt and Πt = Pt/Pt−1.
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Because total factor productivity At is nonstationary, as specified by (6), we rewrite the equilib-

rium conditions in terms of stationary variables detrended by At, as follows: yt = Yt/At, ct = Ct/At,

λt = ΛtAt, wt = Wt/At, w
n
t = Wn

t /At, w
n,o
t = Wn,o

t /At, mct = MCt/At, and y∗t = Y ∗
t /At, so that

we can derive a nonstochastic steady state for the detrended variables.

2.2 Estimation of parameters

To parameterize the model, we estimate a linearized version of the model using four U.S. quarterly

time series: the per capita real GDP growth rate (100Δ logGDPt), the inflation rate of the GDP

implicit price deflator (100Δ logPGDPt), the federal funds rate (FFt), and the log of hours worked

(100 logHt). The sample period is from 1983:I to 2007:IV. The beginning of the sample is deter-

mined to exclude the possibility of equilibrium indeterminacy, based on the results of Clarida, Gaĺı,

and Gertler (2000) and Lubik and Schorfheide (2004). The end of the sample is selected to avoid

the periods of economic instability arising from the financial turmoil and the subsequent virtually

zero nominal interest rates. The linearized equilibrium conditions and observation equations are

presented in Appendix A.

In the estimation, we employ Bayesian methods. The prior distributions of the parameters are

presented in the second to fourth columns of Table 1. For most of the parameters, each prior mean

is set at the corresponding prior mean used in Smets and Wouters (2007). The prior mean of the

policy-smoothing parameter φr is set at 0.5, which is lower than that in Smets and Wouters (2007)

because a higher value of the estimated φr would lead to a nonconvergence problem in solving our

nonlinear model.5 As for the steady-state rates of output growth, inflation, and real interest (ā, π̄,

r̄), the priors are centered at the sample mean. For the standard deviations of the shocks (100σd,

100σa, 100σz, 100σr), we assign inverse-gamma distributions with a mean of 0.5 and a standard

deviation of 2.0.

The posterior mode and standard deviation of each parameter are reported in the last two

columns of Table 1. In the subsequent analysis, the parameters are fixed at the posterior mode.

2.3 Nonlinear solution and filtering

The model is solved in a fully nonlinear and stochastic setting with the ZLB constraint on the

nominal interest rate using a projection method. The model has seven endogenous state variables

(output y−1, inflation Π−1, the real wage w−1, the hypothetical nominal interest rate R̂n−1, price

5For the same reason, relatively tight priors are used for the parameters that determine the persistency of endoge-

nous variables in the model.
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dispersion Δp,−1, wage dispersion Δw,−1, and natural output y∗−1) and four exogenous shocks (the

discount factor shock d, the productivity shock A, the cost-push shock z, and the monetary policy

shock εr).
6 The policy functions satisfying the detrended equilibrium conditions can be written as

S = h(S−1, τ),

where S−1 = [y−1,Π−1, w−1, R̂
n−1,Δp,−1,Δw,−1, y

∗−1]
′ and τ = [d,A, z, εr]

′.

Because of the high dimensionality of the state variables, it is computationally very expensive

to apply a conventional projection method that uses the tensor product of one-dimensional polyno-

mials. In this regard, we employ a projection method equipped with a Smolyak algorithm, in which

a relatively small number of grid points are selected on the basis of their potential importance for

the quality of approximation. Moreover, we adopt a more efficient Smolyak algorithm developed

by Judd, Maliar, Maliar, and Valero (2014). Specifically, we construct the unidimensional disjoint

sets of grid points of the endogenous state variables S−1 instead of the conventional nested sets to

avoid repetitions of grid points. Then, we compute projection functions onto the grid points with

interpolation coefficients and a Chebyshev family of orthogonal basis functions.7 The grid points

obtained by this algorithm are sparse; therefore, the algorithm is more likely to be free from the

curse of dimensionality. The details of the solution method are described in Appendix B.

According to an artificial sample of 40,000 periods simulated from the nonlinear solution of

the model, the economy is at the ZLB for 11.8 percent of quarters, and the average duration of

ZLB spells is 4.3 quarters. These statistics indicate that our model economy is more frequently

constrained by the ZLB and that the average duration of ZLB spells is longer than the simulation

results in the previous studies that employ nonlinear New Keynesian models, such as Fernández-

Villaverde, Gordon, Guerrón-Quintana, and Rubio-Ramı́rez (2015) and Gust, Herbst, López-Salido,

and Smith (2017).8

6Time subscripts are omitted in this subsection and Appendix B as the policy functions are time-independent

objects.

7To obtain the interpolation coefficients, we follow Judd, Maliar, Maliar, and Valero (2014) and use a Lagrange

interpolation method, whereas Malin, Krueger, and Kubler (2011) use the closed-form formula to obtain approximated

functions.

8Fernández-Villaverde, Gordon, Guerrón-Quintana, and Rubio-Ramı́rez (2015) simulate a small-scale model cal-

ibrated for the U.S. economy and show that the economy spends 5.5 percent of quarters at the ZLB and that the

average duration at the ZLB is 2.1 quarters. Gust, Herbst, López-Salido, and Smith (2017) estimate a medium-scale

model in a nonlinear setting using U.S. data from 1983:Q1 to 2014:Q1, and the simulation of their estimated model

demonstrates that the economy is at the ZLB for about 4 percent of quarters on average and that the average duration

of the ZLB spells is just over 3.5 quarters.
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We apply a particle filter as developed by Fernández-Villaverde and Rubio-Ramı́rez (2007) to

extract the sequence of the state variables and then compute the estimates of natural output and

the natural interest rate.9 The data used for filtering is the same as those used for the parameter

estimation in Section 2.2, but the period over which the filter is run is extended to 2016:III. To

facilitate the use of the particle filter, measurement errors are added in the observation equations.

The measurement errors of output growth, inflation, the nominal interest rate, and hours worked

are respectively set to be 20, 20, 10, and 5 percent of their standard deviations in the data over the

sample from 1983:I to 2016:III so that the smoothed (two-sided) estimates of the observables can

track the data reasonably well, as shown in Figure 1. We use 20,000 particles and confirmed that

any further increase in the number of particles delivered almost the same results as those presented

below.

3 Results

This section presents the estimate of the natural interest rate based on the nonlinear model and

compares it with the estimate based on its linear counterpart. To understand the cause of the

difference between the two estimates, we investigate how the natural rate of interest is identified in

each case. Moreover, we consider a quasi-linear model, in which the ZLB constraint is imposed but

all the equilibrium conditions are linearized, and examine its usefulness for estimating the natural

rate.

3.1 Estimated natural rate of interest

The thick line in Figure 2 shows the smoothed mean estimate of the natural rate of interest on

an annualized basis. The estimated natural rate measure peaked around 15 percent in the late

1980s and the late 1990s, fell to less than −10 percent in the aftermath of the global financial

crisis, and thereafter remained negative. Although the overall cyclical movements in the natural

rate are very similar to those estimated by Barsky, Justiniano, and Melosi (2014), their estimate

of the natural rate exhibits less variability than ours; i.e., the peak and bottom of their estimate

are around 12 percent and −7 percent, respectively. This difference is attributable to the fact

that Barsky, Justiniano, and Melosi (2014) employ a model with capital accumulation, whereas our

model excludes it. Inclusion of capital would reduce the volatility of shocks and make the natural

9For a textbook treatment of a particle filter, see Fernández-Villaverde, Rubio-Ramı́rez, and Schorfheide (2016)

or Herbst and Schorfheide (2015).
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rate less volatile, as explained by Cúrdia, Ferrero, Ng, and Tambalotti (2015).10

The primary objective of this paper is to examine how and to what extent nonlinearity, including

the ZLB, affects the estimates of the natural rate of interest. To this end, we estimate the natural

rate using a linear counterpart of the model, as in the previous studies, and compare it with the one

obtained above. The thin line in Figure 2 is the smoothed mean estimate of the natural interest

rate based on the linearized version of the model with the same parameters and data set as used

in the nonlinear case.11 The figure indicates that the natural rate based on the linearized model

is lower than that based on the nonlinear model. In particular, the difference is pronounced in the

periods where the natural rate is low or negative.

To understand what causes the difference between the two estimates, we consider how the

natural rate of interest is identified in each case. As addressed in Section 2.1, equation (17), i.e.,(
Y ∗
t − γY ∗

t−1

)
(Y ∗

t /At)
η = μAt, determines natural output Y ∗

t , given the sequence of total factor

productivity At (or, equivalently, the productivity shock at). The natural rate of interest R∗
t

can be traced out from equation (18), i.e., R∗
t = dt/β

[
Et(Y

∗
t − γY ∗

t−1)/(Y
∗
t+1 − γY ∗

t )
]−1

, with the

sequences of natural output Y ∗
t and the discount factor shock dt. Thus, the natural interest rate is

pinned down by identifying the two shocks, at and dt.

In the linear model, the productivity shock at is explicitly identified by the data on output

and hours worked because detrending and log-linearizing the labor market clearing condition (13)

yields ỹt = l̃t and because the associated observation equations (abstracting from the observation

errors) are 100Δ logGDPt = ā+ ỹt− ỹt−1+at and 100 logHt = l̄+ l̃t, where ā and l̄ are the steady-

state growth rate and hours worked, respectively, and the variables with ˜ represent percentage

deviations from their steady-state values. In the nonlinear model, however, equation (13) contains

the price and wage dispersion, Δp,t and Δw,t, and can be written as yt = lt/(Δp,tΔw,t) in detrended

terms. These dispersion terms fluctuate so that Δp,t ≥ 1 and Δw,t ≥ 1, as the price and wage,

respectively, deviate from the steady state. Thus, yt becomes lower than in the linear case where

the dispersion terms are suppressed. Consequently, to satisfy the observation equation for output

growth, at can be identified as being larger in the nonlinear case. Higher productivity results in

10Cúrdia, Ferrero, Ng, and Tambalotti (2015) compare the estimated efficient real interest rates—the real interest

rates that would prevail if the economy were perfectly competitive—using a small-scale New Keynesian model without

capital and a medium-scale extension with capital and show that the latter model reduces the volatility of the rate.

11In the case of the linear model, the smoothed estimates of model variables could be computed with a widely used

linear solution method and Kalman filter. However, we apply the same projection method and particle filter as in the

nonlinear case to avoid the possibility that differences in the solution and filtering methods could affect the estimate

of the natural interest rate.
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the higher natural rate.

Identification of the discount factor shock dt is more complicated and influenced by the whole

structure of the model. However, taking account of the finding that the two estimates of the natural

interest rate differ from each other during the periods when the nominal interest rate is close to or

bounded at zero, the existence of the ZLB, from which the linear model abstracts, possibly affects

the identification of dt in the nonlinear model. The literature has established that the ZLB has a

contractionary effect on the economy not only when the nominal interest is already binding at zero,

but also when uncertainty exists about whether the ZLB will bind in the future.12 Although such a

contractionary effect lowers expected output and inflation, the particle filter pegs actual output and

inflation to the corresponding observables, which are the same in the linear and nonlinear cases.

Then, in the nonlinear case, the discount factor shock dt must increase to satisfy the optimality

conditions of households and firms. As a result, the natural rate increases.

To quantify the differences in the sequences of identified shocks, Figure 3 shows the smoothed

mean estimates of the discount factor shocks dt and the productivity shocks at, in percentage terms,

based on the nonlinear model (thick lines) and its linear counterpart (thin lines). The sequence of dt

identified in the nonlinear model is substantially different from that identified in the linear model.

In particular, the difference amounts to nearly two percent after the global financial crisis. On the

other hand, the movements of at are very similar between the models. Therefore, the difference in

dt is the main source of the different estimates of the natural rate between the two cases.

Figure 4 confirms the mechanism behind the difference in the estimates of dt, which is described

above. In the figure, the smoothed estimates of expected inflation Et log Πt+1 and expected output

Etyt+1 (in detrended terms) are compared for the nonlinear case (thick lines) and the linear case

(thin lines), in terms of percentage deviation from the steady state. In the case of the nonlinear

setting, Et log Πt+1 shifts downward to a large extent during the periods of the low nominal interest

rate, whereas the downward shift in Etyt+1 is limited. The limited shift in Etyt+1 is ascribed to

the consequence of the increased dt, which has a direct positive effect on actual output through the

Euler equation and accordingly raises the expected output.

The finding of the small difference in the estimated productivity shocks at implies that the price

and wage dispersion terms, Δp,t and Δw,t, play a minor role in the nonlinear model. Indeed, as

shown in Figure 5, the smoothed estimates of Δp,t and Δw,t based on the nonlinear model exhibit

little fluctuation, i.e., less than 0.1 percent at most, even though they are pronounced in the period

12Hills, Nakata, and Schmidt (2016) quantify such an uncertainty effect on inflation in the face of the interest rate

lower bound.
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of the financial crisis when the ZLB constraint is binding.

3.2 The natural rate of interest based on the quasi-linear model

The analysis thus far suggests that the existence of the ZLB constraint plays a crucial role in

identifying the natural rate of interest in a nonlinear setting, and that the inclusion of price and wage

dispersion is relatively minor. However, we cannot deny the possibility that other nonlinearities

affect the identification of the natural rate to a substantial degree. To investigate this possibility, we

estimate the natural rate based on a quasi-linear version of the model, in which the ZLB constraint

is imposed but all the equilibrium conditions are linearized, with the same parameters and data set

as used in the preceding subsection, and we compare its estimate of the natural rate with the one

based on the original nonlinear model.

Figure 6 depicts the smoothed mean estimate of the natural interest rate in the quasi-linear

setting (thin line) along with the baseline estimate in the fully nonlinear setting (thick line). These

two estimates almost coincide with each other throughout the sample period. Thus, nonlinearities

other than the ZLB play a negligible role in identifying the natural rate. The same is confirmed

by Figure 7, which shows the smoothed mean estimates of the discount factor shocks dt and the

productivity shocks at, based on the quasi-linear model (thin lines) and the nonlinear model (thick

lines). No substantial differences are found in each pair of the estimated shocks.

The result in the present subsection is parallel to that obtained by Hirose and Sunakawa (2015),

who demonstrate that, first, a linearized DSGE model gives rise to biased estimates of parameters

if the ZLB existing in a data generating process is omitted in estimation, but second, neglecting the

other nonlinearities does not lead to biased estimates if the ZLB is not an issue. Therefore, from a

practical perspective, a quasi-linear model incorporating the ZLB can be a possible substitute for

a fully nonlinear model in estimating the natural rate measures.

4 Concluding Remarks

This paper has estimated the natural rate of interest in a nonlinear New Keynesian model using

U.S. macroeconomic data and compared it with the rate estimated with the model’s linear coun-

terpart. We have found that the natural rate based on the nonlinear model is substantially higher

than that based on the linear model, particularly in the periods when the nominal interest rate is

close to or bounded at zero. This difference is explained by a contractionary effect of the ZLB,

which is considered only in the nonlinear model. Although other nonlinearities such as price and
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wage dispersion potentially affect the estimates of the natural rate, we have demonstrated that

their effects are relatively minor. Our findings suggest the importance of considering the ZLB in

the estimation of natural rate measures.

Whereas the present paper employs an empirically richer DSGE model than the prototypical

New Keynesian model, existing studies, including Barsky, Justiniano, and Melosi (2014), Cúrdia,

Ferrero, Ng, and Tambalotti (2015), Edge, Kiley, and Laforte (2008), Del Negro, Giannone, Gi-

annoni, and Tambalotti (2017), and Justiniano and Primiceri (2010) have estimated the natural

interest rate using medium-scale DSGE models with capital accumulation. Our analysis could

be extended to exploit such a medium-scale model so that the estimated natural rate would be

comparable to the rates obtained in these studies. We conjecture that our results regarding the

higher estimate of the natural rate in a nonlinear setting would still hold, even if we extended our

model to a larger scale, because the main mechanism through which nonlinearities can affect the

identification of the natural rate remains unchanged.
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Appendix

A Linearized Equilibrium Conditions and Observation Equations

Log-linearizing the detrended equilibrium conditions around the nonstochastic steady state, and

rearranging the resulting equations, yields

ỹt =
γa

γa + γ
(Etỹt+1 + Etat+1) +

γ

γa + γ
(ỹt−1 − at)− γa − γ

γa + γ
(R̃t − EtΠ̃t+1 − d̃t),

w̃t = w̃t−1 − Π̃t + ιwΠ̃t−1 − at + β(Etw̃t+1 − w̃t + EtΠ̃t+1 − ιwΠ̃t + Etat+1)

+
(1− ξw) (1− ξwβ)

ξw(1 + ηθw)

[
ηl̃t +

1

γa + γ
(γaỹt − γỹt−1 + γat)− w̃t

]
,

ỹt = l̃t,

Π̃t =
β

1 + βιp
EtΠ̃t+1 +

ιp
1 + βιp

Π̃t−1 +
(1− ξp) (1− ξpβ)

ξp (1 + βιp)
(w̃t + z̃t),

ỹ∗t =
γ

γa(1 + η)− γη
(ỹ∗t−1 − at),

R̃t = φrR̃t−1 + (1− φr)
[
φπΠ̃t + φy(ỹt − ỹ∗t )

]
+ εr,t,

d̃t = ρdd̃t−1 + εd,t,

at = ρaat−1 + εa,t,

z̃t = ρz z̃t−1 + εz,t,

where the variables with ˜ represent percentage deviations from their steady-state values.

The observation equations are⎡⎢⎢⎢⎢⎢⎢⎣
100Δ logGDPt

100Δ logPGDPt

FFt

100 logHt

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
ā

π̄

r̄ + π̄

l̄

⎤⎥⎥⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎢⎢⎣
ỹt − ỹt−1 + at

Π̃t

R̃t

l̃t

⎤⎥⎥⎥⎥⎥⎥⎦ ,

where ā = 100 log γa, π̄ = 100 log Π̄, r̄ = 100 log R̄(= 100 log(γa/β)), and l̄ are, respectively, the

steady-state growth rate, the inflation rate, the real interest rate, and hours worked.
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B Nonlinear Solution Method

B.1 Recursive forms of the price and wage setting equations

After detrending, the equilibrium conditions (10) and (4) can be written in the following recursive

forms:

P o
t

Pt
=

Sp,t

Fp,t

Sp,t = θpwtzt + ξpβd
−1
t Et

[(
Πt+1

Π̄

)(
Πt

Π̄

)−ιp
]θp

yt+1

yt

λt+1

λt
Sp,t+1,

Fp,t = (θp − 1) + ξpβd
−1
t Et

[(
Πt+1

Π̄

)(
Πt

Π̄

)−ιp
]θp−1

yt+1

yt

λt+1

λt
Fp,t+1,(

Wn,o
t

Wn
t

)1+ηθw

=
Sw,t

Fw,t

Sw,t = θwl
η
d,tλ

−1
t + ξwβd

−1
t Et

[(
Πw,t+1

Π̄
exp(at+1)

)(
Πt

Π̄

)−ιw
](1+η)θw

ld,t+1

ld,t

λt+1

λt
Sw,t+1,

Fw,t = (θw − 1)wt + ξwβd
−1
t Et

[(
Πw,t+1

Π̄
exp(at+1)

)(
Πt

Π̄

)−ιw
]θw−1

ld,t+1

ld,t

λt+1

λt
Fw,t+1,

where Πw,t = Πtwt/wt−1 and ld,t = Δp,tyt.

B.2 Solution algorithm

To solve for the policy functions on each grid point of the state space (S−1, τ), we follow the approach

in Christiano and Fisher (2000) and Gust, Herbst, López-Salido, and Smith (2017). We consider the

regime-specific policy functions hx,i(S−1, τ) for x ∈ {y,Π, w, R̂n,Δp,Δw, y
∗,Πw, ld} and i ∈ {1, 2},

for which the index i is associated with the interest-rate regime in which the hypothetical nominal

interest rate R̂n is either above or below the lower bound. Specifically, the policy functions are

defined as weighted averages of the regime-specific functions as follows

x = hx(S−1, τ) = hx,1(S−1, τ)1{h
̂Rn,1

(S−1,τ)>1} + hx,2(S−1, τ)1{h
̂Rn,1

(S−1,τ)≤1},

where 1{D} is the indicator function that equals one if the condition D is true and zero otherwise,

and h
̂Rn,i

(S−1, τ), i = 1, 2 are

h
̂Rn,1

(S−1, τ) = (R̂−1)
φr

[
R̄Π̄

(
hΠ,1(S−1, τ)

Π̄

)φπ
(

hy,1(S−1, τ)

hy∗,1(S−1, τ)

)φy
]1−φr

exp(εr), (A.1)

h
̂Rn,2

(S−1, τ) = 1. (A.2)
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Given the stochastic processes of τ , the equilibrium conditions of the model can be expressed

with the regime-specific functions in each regime i = 1, 2 as follows:

1

Wi(S−1, τ)
= βd−1h

̂Rn,i
(S−1, τ)

∫
τ ′

{
Φ(τ ′|τ)

W(S, τ ′)hΠ(S, τ ′)

}
,

Sp,i(S−1, τ) = θpXi(S−1, τ)z

+ ξpβd
−1

∫
τ ′
Φ(τ ′|τ)

⎧⎨⎩
[(

hΠ(S, τ
′)

Π̄

)(
hΠ,i(S−1, τ)

Π̄

)−ιp
]θp

hy(S, τ
′)

hy,i(S−1, τ)

Wi(S−1, τ)

W(S, τ ′)
Sp(S, τ

′)

⎫⎬⎭ ,

Fp,i(S−1, τ) = (θp − 1)

+ ξpβd
−1

∫
τ ′
Φ(τ ′|τ)

⎧⎨⎩
[(

hΠ(S, τ
′)

Π̄

)(
hΠ,i(S−1, τ)

Π̄

)−ιp
]θp−1

hy(S, τ
′)

hy,i(S−1, τ)

Wi(S−1, τ)

W(S, τ ′)
Fp(S, τ

′)

⎫⎬⎭ ,

1 = (1− ξp)

(
Sp,i(S−1, τ)

Fp,i(S−1, τ)

)1−θp

+ ξp

[(
hΠ,i(S−1, τ)

Π̄

)(
Π−1

Π̄

)−ιp
]θp−1

,

hΔp,i(S−1, τ) = (1− ξp)

(
Sp,i(S−1, τ)

Fp,i(S−1, τ)

)−θp

+ ξp

[(
hΠ,i(S−1, τ)

Π̄

)(
Π−1

Π̄

)−ιp
]θp

Δp,−1, (A.3)

Sw,i(S−1, τ) = θwhld,i(S−1, τ)
ηWi(S−1, τ)

+ ξwβd
−1

∫
τ ′
Φ(τ ′|τ)

⎧⎨⎩
[(

hΠw(S, τ
′) exp(a′)
Π̄

)(
hΠ,i(S−1, τ)

Π̄

)−ιw
](1+η)θw

× hld(S, τ
′)

hld,i(S−1, τ)

Wi(S−1, τ)

W(S, τ ′)
Sw(S, τ

′)
}
,

Fw,i(S−1, τ) = (θw − 1)Xi(S−1, τ)

+ ξwβd
−1

∫
τ ′
Φ(τ ′|τ)

⎧⎨⎩
[(

hΠw(S, τ
′) exp(a′)
Π̄

)(
hΠ,i(S−1, τ)

Π̄

)−ιw
](1+η)θw

× hld(S, τ
′)

hld,i(S−1, τ)

Wi(S−1, τ)

W(S, τ ′)
Fw(S, τ

′)
}
,

1 = (1− ξw)

(
Sw,i(S−1, τ)

Fw,i(S−1, τ)

) 1−θw
1+ηθw

+ ξw

[(
hΠw,i(S−1, τ) exp(a)

Π̄

)(
Π−1

Π̄

)−ιw
]θw−1

,

hΔw,i(S−1, τ) = (1− ξw)

(
Sw,i(S−1, τ)

Fw,i(S−1, τ)

)−θw

+ ξw

[(
hΠw,i(S−1, τ) exp(a)

Π̄

)(
Π−1

Π̄

)−ιw
]θw

Δw,−1,

(A.4)

hw,i(S−1, τ) = Xi(S−1, τ), (A.5)

μ =

[
hy∗,i(S−1, τ)− γ

γa
y−1 exp(−a)

]
[hy∗,i(S−1, τ)]

η , (A.6)

where Wi(S−1, τ) = hy,i(S−1, τ)− (γ/γa)y−1 exp(−a), Xi(S−1, τ) = [hΠw,i(S−1, τ)/hΠ,i(S−1, τ)]w−1,
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Φ(τ ′|τ) is a conditional probability of τ ′, given τ , and hΠ(S, τ
′), hy(S, τ ′), hΠw(S, τ

′), hld(S, τ
′),

Sp(S, τ
′), Fp(S, τ

′), Sw(S, τ
′), Fw(S, τ

′) and W(S, τ ′) are weighted averages of the regime-specific

functions for the next period.13 Moreover, as in Gust, Herbst, López-Salido, and Smith (2017) and

Hirose and Sunakawa (2015), we apply the following changes of variables:

Vp,i(S−1, τ) =

∫
τ ′
Φ(τ ′|τ)

⎧⎨⎩
[(

hΠ(S, τ
′)

Π̄

)(
hΠ,i(S−1, τ)

Π̄

)−ιp
]θp

hy(S, τ
′)Sp(S, τ

′)
hy,i(S−1, τ)W(S, τ ′)

⎫⎬⎭ ,

Kp,i(S−1, τ) =

∫
τ ′
Φ(τ ′|τ)

⎧⎨⎩
[(

hΠ(S, τ
′)

Π̄

)(
hΠ,i(S−1, τ)

Π̄

)−ιp
]θp−1

hy(S, τ
′)Fp(S, τ

′)
hy,i(S−1, τ)W(S, τ ′)

⎫⎬⎭ ,

Vw,i(S−1, τ) =

∫
τ ′
Φ(τ ′|τ)

⎧⎨⎩
[(

hΠw(S, τ
′) exp(a′)
Π̄

)(
hΠ,i(S−1, τ)

Π̄

)−ιw
](1+η)θw

hld(S, τ
′)Sw(S, τ

′)
hld,i(S−1, τ)W(S, τ ′)

⎫⎬⎭ ,

Kw,i(S−1, τ) =

∫
τ ′
Φ(τ ′|τ)

⎧⎨⎩
[(

hΠw(S, τ
′) exp(a′)
Π̄

)(
hΠ,i(S−1, τ)

Π̄

)−ιw
]θw−1

hld(S, τ
′)Fw(S, τ

′)
hld,i(S−1, τ)W(S, τ ′)

⎫⎬⎭ .

Instead of approximating the policy functions hx,i(S−1, τ) directly, we approximate the auxiliary

functions, Wi(S−1, τ), Xi(S−1, τ), Vp,i(S−1, τ), Kp,i(S−1, τ), Vw,i(S−1, τ), and Kw,i(S−1, τ), using a

projection method.14 To this end, we adopt a very efficient Smolyak algorithm developed by Judd,

Maliar, Maliar, and Valero (2014). Specifically, we construct the unidimensional disjoint sets of grid

points of the state variables instead of the conventional nested sets in order to avoid repetitions

of grid points. Then, we compute projection functions onto the grid points with interpolation

coefficients and a Chebyshev family of orthogonal basis functions. In the algorithm, the level of

approximation is set at 2, following Fernández-Villaverde, Gordon, Guerrón-Quintana, and Rubio-

Ramı́rez (2015).

To obtain the interpolation coefficients of the approximated functions, we employ a fixed-point

iteration with initial values of W(0)
i (S−1, τ), X (0)

i (S−1, τ), V(0)
p,i (S−1, τ), K(0)

p,i (S−1, τ), V(0)
w,i(S−1, τ)

and K(0)
w,i(S−1, τ) on the grid points. In each iteration j = 1, 2, ..., W(j−1)

i (S−1, τ), X (j−1)
i (S−1, τ),

V(j−1)
p,i (S−1, τ), K(j−1)

p,i (S−1, τ), V(j−1)
w,i (S−1, τ), andK(j−1)

w,i (S−1, τ) determine Sp,i(S−1, τ), Fp,i(S−1, τ),

13Note that these weighted averaged functions are affected by the possibility that the nominal interest rate can be

bounded at zero in the next period. They also depend on the values of the policy functions in the current period,

x = hx,i(S−1, τ).

14We update the policy function hw,i(S−1, τ) = Xi(S−1, τ) iteratively rather than solving the nonlinear equilibrium

conditions to obtain w at each grid point. When the algorithm converges, the obtained w = hw,i(S−1, τ) satisfies the

equilibrium conditions.
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Sw,i(S−1, τ) and Fw,i(S−1, τ) from
15

Sp,i(S−1, τ) = θpX (j−1)
i (S−1, τ)z + ξpβd

−1W(j−1)
i (S−1, τ)V(j−1)

p,i (S−1, τ),

Fp,i(S−1, τ) = (θp − 1) + ξpβd
−1W(j−1)

i (S−1, τ)K(j−1)
p,i (S−1, τ),

Sw,i(S−1, τ) = θwhld,i(S−1, τ)
ηW(j−1)

i (S−1, τ) + ξwβd
−1W(j−1)

i (S−1, τ)V(j−1)
w,i (S−1, τ),

Fw,i(S−1, τ) = (θw − 1)X (j−1)
i (S−1, τ) + ξwβd

−1W(j−1)
i (S−1, τ)K(j−1)

w,i (S−1, τ).

Then, hΠ,i(S−1, τ), hΠw,i(S−1, τ), hy,i(S−1, τ), and hld,i(S−1, τ) are obtained by

hΠ,i(S−1, τ) = Π

(
Π−1

Π̄

)ιp
(
ξ−1
p

[
1− (1− ξp)

(
Sp,i(S−1, τ)

Fp,i(S−1, τ)

)1−θp
]) 1

θp−1

,

hΠw,i(S−1, τ) = Πexp(−a)

(
Π−1

Π̄

)ιw
(
ξ−1
w

[
1− (1− ξw)

(
Sw,i(S−1, τ)

Fw,i(S−1, τ)

) 1−θw
1+ηθw

]) 1
θw−1

,

hy,i(S−1, τ) = W(j−1)
i (S−1, τ) + (γ/γa)y−1 exp(−a),

hld,i(S−1, τ) =

⎛⎝(1− ξp)

(
Sp,i(S−1, τ)

Fp,i(S−1, τ)

)−θp

+ ξp

[(
hΠ,i(S−1, τ)

Π̄

)(
Π−1

Π̄

)−ιp
]θp

Δp,−1

⎞⎠hy,i(S−1, τ),

whereas hΔp,i(S−1, τ), hΔw,i(S−1, τ), and hw,i(S−1, τ) follow from (A.3), (A.4), and (A.5), respec-

tively. hy∗,i(S−1, τ) is given by solving (A.6) using Newton’s method. Finally, h
̂Rn,i

(S−1, τ) is

obtained by (A.1) and (A.2). Therefore, there is a one-to-one mapping from W(j−1)
i (S−1, τ),

X (j−1)
i (S−1, τ), V(j−1)

p,i (S−1, τ), K(j−1)
p,i (S−1, τ), V(j−1)

w,i (S−1, τ), and K(j−1)
w,i (S−1, τ) to hx,i(S−1, τ) for

all x ∈ {y,Π, w, R̂n,Δp,Δw, y
∗,Πw, ld}.

To describe the iterations, let Ŵ ′ = W(j−1)(S, τ ′), X̂ ′ = X (j−1)(S, τ ′), V̂ ′
p = V(j−1)

p (S, τ ′),

K̂′
p = K(j−1)

p (S, τ ′), V̂ ′
w = V(j−1)

w (S, τ ′), K̂′
w = K(j−1)

w (S, τ ′), where W(j−1)(S, τ ′), X (j−1)(S, τ ′),

V(j−1)
p (S, τ ′), K(j−1)

p (S, τ ′), V(j−1)
w (S, τ ′), and K(j−1)

w (S, τ ′) are weighted averages of the regime-

specific functions for the next period, obtained in the j − 1th iteration. Then, in each iteration,

15For simplicity of notation, we omit the index j from the functions except for W(j)
i (S−1, τ), X (j)

i (S−1, τ),

V(j)
p,i (S−1, τ), K(j)

p,i(S−1, τ), V(j)
w,i(S−1, τ), and K(j)

w,i(S−1, τ).
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W(j)
i (S−1, τ), X (j)

i (S−1, τ), V(j)
p,i (S−1, τ), K(j)

p,i (S−1, τ), V(j)
w,i(S−1, τ) and K(j)

w,i(S−1, τ) are updated by

W(j)
i (S−1, τ) =

[
βd−1hR,i(S−1, τ)

∫
τ ′

{
Φ(τ ′|τ)
Ŵ ′Π̂′

}]−1

,

X (j)
i (S−1, τ) = (hΠw,i(S−1, τ)/hΠ,i(S−1, τ))w−1,

V(j)
p,i (S−1, τ) =

∫
τ ′
Φ(τ ′|τ)

⎧⎨⎩
[(

Π̂′

Π̄

)(
hΠ,i(S−1, τ)

Π̄

)−ιp
]θp

ŷ′

hy,i(S−1, τ)

×
(
θpX̂ ′Ŵ ′−1z′ + ξpβd

′−1V̂ ′
p

)}
,

K(j)
p,i (S−1, τ) =

∫
τ ′
Φ(τ ′|τ)

⎧⎨⎩
[(

Π̂′

Π̄

)(
hΠ,i(S−1, τ)

Π̄

)−ιp
]θp−1

ŷ′

hy,i(S−1, τ)

×
(
(θp − 1)Ŵ ′−1 + ξpβd

′−1K̂′
p

)}
,

V(j)
w,i(S−1, τ) =

∫
τ ′
Φ(τ ′|τ)

⎧⎨⎩
[(

Π̂′
w exp(a′)

Π̄

)(
hΠ,i(S−1, τ)

Π̄

)−ιw
](1+η)θw

l̂′d
hl̃,i(S−1, τ)

×
(
θw l̂

′η
d + ξwβd

′−1V̂ ′
w

)}
,

K(j)
w,i(S−1, τ) =

∫
τ ′
Φ(τ ′|τ)

⎧⎨⎩
[(

Π̂′
w exp(a′)

Π̄

)(
hΠ,i(S−1, τ)

Π̄

)−ιw
]θw−1

l̂′d
hl̃,i(S−1, τ)

×
(
(θw − 1)X̂ ′Ŵ ′−1 + ξwβd

′−1K̂′
w

)}
,

where the values of Π̂′, Π̂′
w, ŷ

′, and l̂′d are given by the aforementioned mapping from Ŵ ′, X̂ ′, V̂ ′
p,

K̂′
p, V̂ ′

w, K̂′
w. The integrals over τ ′ are approximated by the Gauss–Hermite quadrature formula

with four nodes.
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Table 1: Prior and posterior distributions of parameters

Prior Posterior

Parameter Distribution Mean S.D. Mode S.D.

γ Beta 0.500 0.050 0.684 0.032

η Gamma 2.000 0.250 1.782 0.252

ξw Beta 0.500 0.050 0.618 0.069

ιw Beta 0.500 0.050 0.526 0.053

ξp Beta 0.500 0.050 0.737 0.036

ιp Beta 0.500 0.050 0.514 0.052

φπ Gamma 1.500 0.250 2.075 0.201

φy Gamma 0.125 0.050 0.096 0.025

φr Beta 0.500 0.050 0.784 0.020

ā Normal 0.540 0.100 0.484 0.062

π̄ Normal 0.624 0.100 0.634 0.049

r̄ Gamma 0.699 0.100 0.675 0.057

l̄ Normal 0.000 0.100 -0.011 0.095

ρd Beta 0.500 0.050 0.691 0.034

ρa Beta 0.500 0.050 0.402 0.041

ρz Beta 0.500 0.050 0.664 0.056

100σd Inv. Gamma 0.500 2.000 0.635 0.103

100σa Inv. Gamma 0.500 2.000 0.520 0.040

100σz Inv. Gamma 0.500 2.000 1.901 0.460

100σr Inv. Gamma 0.500 2.000 0.145 0.012
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Figure 1: Data and smoothed estimates
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Note: The figure compares the data (thin lines) on output growth, inflation, hours worked, and the nominal interest

rate with the smoothed mean estimates (thick lines) of the corresponding variables.
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Figure 2: Natural rate of interest
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Note: The figure compares the smoothed mean estimate of the natural interest rate, in annualized terms, based on

the nonlinear model (thick line) with that based on the linear model (thin line).
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Figure 3: Estimated shocks
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Note: The figure compares the smoothed mean estimates of the discount factor shocks dt and the productivity shocks

at, in percentage terms, based on the nonlinear model (thick lines) with those based on the linear model (thin lines).
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Figure 4: Expected inflation and output
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Note: The figure compares the smoothed mean estimates of expected inflation Et log Πt+1 and expected output

Etyt+1, in terms of percentage deviation from the steady state, based on the nonlinear model (thick lines) with those

based on the linear model (thin lines).
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Figure 5: Price and wage dispersion
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Note: The figure shows the smoothed mean estimates of the price and wage dispersion in terms of percentage deviation

from the steady state.
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Figure 6: Natural rate of interest (Nonlinear vs. Quasi-linear)
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Note: The figure compares the smoothed mean estimate of the natural interest rate, in annualized terms, based on

the nonlinear model (thick line) with that based on the quasi-linear model (thin line).
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Figure 7: Estimated shocks (Nonlinear vs. Quasi-linear)
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Note: The figure compares the smoothed mean estimates of the discount factor shocks dt and the productivity shocks

at, in percentage terms, based on the nonlinear model (thick lines) with those based on the quasi-linear model (thin

lines).
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