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1. Introduction

Empirical reality of exchange rates keeps confounding researchers of international finance.
Real exchange rates are very persistent as well as volatile. Near random-walk nominal exchange
rates have no significant dependence on the current as well as the past information of macroeconomic
fundamentals. Real and nominal exchange rates move together very closely. Nominal exchange
rate regimes affect significantly real exchange rate dynamics. These stylized facts jointly defy
theoretical challenges of canonical open-economy models with price stickiness. The literature of New
Keynesian (NK) open-economy models is still far from satisfactory elucidation of the complicated
life of exchange rates.1

In this paper, I scrutinize critical roles of trend inflation in exchange rate dynamics.2 My
investigation is based on an otherwise standard symmetric two-country NK model that is equipped
with the Calvo-type time-dependent pricing behaviors of monopolistic competitive final goods firms
conducting pricing-to-market strategies in foreign markets, Taylor-rule type monetary policies with
interest rate smoothing, incomplete international financial markets, and permanent labor produc-
tivity shocks cointegrated across the two countries. I extend the standard NK model by allowing
for trend inflation in two countries. As in Ireland (2007), the source of fluctuations in trend infla-
tion is a time-varying inflation rate target that the central bank in each country sets in the Taylor
rule. The inflation rate target follows a persistent but stationary stochastic process with a positive
long-run mean. The persistent behaviors of trend inflation in the two countries are simply passed
through to a slow-swing of the two-county inflation differential as observed in data. To my best
knowledge, this paper is the first attempt to embed trend inflation into a two-country NK model
explicitly and extract its implications on exchange rate dynamics.

Allowing for persistent trend inflation with a positive long-run mean within an open-economy
NK models makes fundamentally richer equilibrium dynamics of real and nominal exchange rates.
In this model, the real uncovered interest rate parity (RUIP) condition determines the real cur-
rency return, which then depends on the inflation differential as well as the output gap differential
through the Taylor rules in the two countries. Trend inflation changes the dynamics of the inflation
and output gap differentials essentially. First of all, a positive long-run mean of trend inflation
substantially alters the shape of the log-linearized New Keynesian Phillips curve (NKPC) in each
country, as discussed in Cogley and Sargent (2008) and Ascari and Sbordone (2014). In this NKPC
generalized by trend inflation (hereafter, generalized NKPC: GNKPC) the current inflation rate
follows a second-order expectational difference equation depending on rational expectations of the
one and two period future inflation rates. As claimed by Cogley and Sbordone (2008), this depen-
dence of the current inflation rate on higher-order expectations terms creates a persistent as well
as less volatile movement of the inflation rate even without an ad hoc indexation of the current
price setting behavior to the past inflation rates. Importantly, the GNKPCs of the two countries
result in a looser relationship between the cross-county inflation differential and the real exchange
rate than that in the standard model: the current inflation differential becomes less sensitive to a

1Burstein and Gopinath (2014) and Engel (2014) provide excellent surveys about the recent empirical findings
related to international real and nominal relative prices.

2Ascari and Sbordone (2014) offer an excellent summary of the recent researches on trend inflation, especially
focusing on the inflation dynamics in the United States.
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current development of the real exchange rate.

Second, a positive long-run trend inflation has a substantial impact on the cross-country
differential in output gap. Through the market clearing conditions, the output gap differential is
determined by the terms of trade (TOT) and the cross-country differential in the degree of price
dispersions in the final goods markets.3 The terms of trade (TOT) dynamics become more persistent
with a positive long-run mean of trend inflation: the TOT growth rate is characterized by a second-
order expectational difference equation with the expectations of the one and two period future
TOT growth rates. Furthermore, the transition of the cross-country differential in price dispersion
is backward-looking and its persistence relies on the long-run trend inflation positively. These
novel roles of the long-run trend inflation in an open-economy NK environment yield more sluggish
adjustments in aggregate hours worked, marginal costs, and the TOT. Therefore, the output gap
differential between the two countries also becomes more persistent.

The trend inflation model of this paper convincingly explains both high persistence and large
volatility of real exchange rates. Suppose for exposition that there is no response of the Taylor
rule to the output gap. Recall that the inflation differential is less sensitive to the real exchange
rate when the model is endowed with positive long-run trend inflation. In this situation, the RUIP
condition solely characterizes the equilibrium real exchange rate as a near unit root process. The
lesser the sensitivity of the inflation differential to the real exchange rate in the GNKPC, the closer
to unity the AR root of the real exchange rate. Iterating forward the RUIP condition toward an
infinite future provides the present value representation of the real exchange rate. As claimed by
Engel and West (2005), the Beveridge and Nelson random-walk trend component of a near non-
stationary economic fundamental, — the two-country differential in trend inflation in this model —
dominates the stochastic property of the real exchange rate.4 The real exchange rate then follows
a near random-walk with a large volatility, as suggested by Engel and West’s (2005) proposition.
This main mechanism is preserved and even strengthened when allowing for a positive response of
the Taylor rule to the output gap.

Under a plausible calibration a benchmark specification of the model indeed generates a highly
persistent real exchange rate: the sum of the AR(5) roots is 0.992. As emphasized in the recent
literature of real exchange rate dynamics including Eichenbaum and Evans (1995), Cheung and Lai
(2000), Steinsson (2008), Iversen and Sönderstörm (2014), and Burstein and Gopinath (2014), the
impulse response function (IRF) of the real exchange rate to a reduced-form shock is hump-shaped
with a peak around a year and the corresponding half life of the real exchange rate is larger then four
years. A decomposition of the IRF into structural shocks uncovers that the trend inflation shock
even with a smaller standard deviation than those of the productivity shock and the conventional
monetary policy shock dominates the amplification and propagation mechanism of the real exchange
rate by generating a persistent hump-shaped IRF.

The benchmark specification also mimics a large volatility of the real exchange rate as in

3As discussed in Ascari and Sbordone (2014), price dispersion due to price stickiness is an important source of
market distortion in this model. Especially, given the aggregate output level, price dispersion lowers the amount of
consumption.

4The random-walk property of the nominal exchange rate within two-country general equilibrium models with
explicit real money demand the functions is investigated by Nason and Rogers (2008) and, subsequently, Kano (2016).
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actual data. The simulated volatility ratio of the real currency return to the nominal one is close to
one. The benchmark specification in fact implies an almost perfect correlation between the real and
nominal currency returns. In other words, Mussa’s (1986) well-known observation of the one-to-one
correspondence between the real and nominal exchange rates is replicated in equilibrium. Moreover,
when the benchmark model constricted under the flexible nominal exchange rate is allowed for a
managed exchange rate regime, the volatility of the real exchange rate is dampened sharply, whereas
the volatility of the inflation differential is unchanged significantly. Hence, the trend inflation model
in this paper also approaches the Mussa puzzle plausibly. The results of the calibration exercises of
this paper strongly support trend inflation as a relevant hypothesis for our better understanding of
exchange rate dynamics.

The rest of the paper is organized as follows. Section 2 introduces the model. Section 3 derives
an approximated analytical solution of the model under parametric assumptions. The approximated
analytical solution proves random-walk property of the real exchange rate at the limiting case of
a random-walk trend inflation. Section 4 reports the results of calibration exercises of this paper.
Section 5 concludes.

2. The model

To extract implications of trend inflation for exchange rate dynamics as clearly as possible, I
investigate a “plain vanilla” version of a two-country NK model equipped with Calvo-type sticky lo-
cal currency pricing firms and Taylor-rule type monetary policies under an incomplete international
financial markets. It is well-known that this canonical symmetric two-country NK model generates
neither the persistence and volatility of the real exchange rates nor the one-to-one comovement of
the real and nominal exchange rates as observed in actual data.

2.1. Household sectors

There are the home and foreign countries in this model. The two countries are endowed with
the representative households whose objectives are the following lifetime utility functions

∞∑
j=0

βjEt

{
lnCt+j − (Nt+j)

1+η

1 + η

}
and

∞∑
j=0

βjEt

{
lnC∗

t+j −
(N∗

t+j)
1+η

1 + η

}
,

for the home and foreign countries, respectively, where Ct and Nt represent the home country’s
consumption basket and hours worked and C∗

t and N∗
t are their foreign country’s counterparts. For

simplicity, I assume that the two countries share the identical lifetime utility specified by the same
subjective discount factor β ∈ (0, 1) and the Frisch elasticity of labor supply η > 1.5 Throughout
this paper, any variable with the asterisk mark corresponds to a foreign variable, while a variable
without the asterisk mark denotes the home counterpart.

5Because of stochastic trends due to permanent labor productivity shocks in the two countries, the model assumes
the log utility functions over consumption to guarantee the existence of a balanced growth path in two-country
equilibrium.
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The representative households in the two countries consume the home (h) and foreign (f)
final goods. Home consumption basket Ct consists of home and foreign product aggregators Ch,t

and Cf,t, while foreign consumption basket C∗
t home and foreign product aggregators C∗

h,t and C∗
f,t:

Ct =
[
(Ch,t)

ζ−1
ζ + (Cf,t)

ζ−1
ζ

] ζ
ζ−1

and C∗
t =

[
(C∗

h,t)
ζ−1
ζ + (C∗

f,t)
ζ−1
ζ

] ζ
ζ−1

where ζ > 0 is the elasticity of substitution between the home and foreign aggregators.6 The cost
minimization problems of the home and foreign households derive the demand functions for Ch,t,
Cf,t, C

∗
h,t, and C∗

f,t: for j = {h, f}

Cj,t =

(
Pj,t

Pt

)−ζ

Ct, and C∗
j,t =

(
P ∗
j,t

P ∗
t

)−ζ

C∗
t ,

where Pt and P ∗
t are the aggregate consumer price indices (CPIs) of the home and foreign countries

Pt =
[
(Ph,t)

1−ζ + (Pf,t)
1−ζ

] 1
1−ζ and P ∗

t =
[
(P ∗

h,t)
1−ζ + (P ∗

f,t)
1−ζ

] 1
1−ζ .

Here Ph,t, Pf,t, P
∗
h,t, and P ∗

f,t are, respectively, the aggregate price over the home goods in the home
country, that over the foreign goods in the home country, that over the home goods in the foreign
country, and that over the foreign goods in the foreign country, as defined below.

The home and foreign aggregators of the home and foreign final goods, Ch,t, Cf,t, C
∗
h,t, and

C∗
f,t consist of a continuum of the home and foreign final goods, each of which is produced by

a monopolistically competitive firm residing either in the home or foreign countries, respectively.
Each final good is placed within the unit interval [0, 1]. The home and foreign final good aggregators
in the home country are of the following Dixit and Stiglitz type: for j = {h, f}

Cj,t =

(∫ 1

0

Cj,t(z)
ζ−1
ζ dz

) ζ
ζ−1

and C∗
j,t =

(∫ 1

0

Cj,t(z)
∗ ζ−1

ζ dz

) ζ
ζ−1

,

where Cj,t(z) and Cj,t(z)
∗ are the home and foreign demands for the particular home and foreign

final goods indexed by z ∈ [0, 1], respectively. Here, ζ > 0 represents the elasticity of the demand
for each final good with respect to its own price.7

The static cost-minimization problems of the representative households in the two countries
derive the two countries’ demand functions for the home and foreign final goods. Given the home
and foreign prices of the home and foreign goods indexed by z, Ph,t(z), Pf,t(z), P

∗
h,t(z), and P ∗

f,t(z),
they are

Cj,t(z) =

(
Pj,t(z)

Pj,t

)−ζ

Cj,t and C∗
j,t(z) =

(
P ∗
j,t(z)

P ∗
j,t

)−ζ

C∗
j,t,

6In this paper, I assume no home bias over each country’s consumption preference. Steinsson (2008) and Iversen
and Söderström (2014), for example, exploit the home bias as an important propagation for real exchange rates.

7For simplicity, I assume the same price elasticity of the demand for an individual final product, ζ, as that of the
demand for an aggregate consumption basket.
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for j = {h, f}. Price aggregators Ph,t, Pf,t, P
∗
h,t, and P ∗

f,t then are given as

Pj,t =

(∫ 1

0

Pj,t(z)
1−ζdz

) 1
1−ζ

and P ∗
j,t =

(∫ 1

0

P ∗
j,t(z)

1−ζdz

) 1
1−ζ

,

for j = {h, f}.
The home representative household needs to satisfy the budget constraint in its maximization

of the lifetime utility

Bh,t + StBf,t + PtCt = (1 + ih,t−1)Bh,t−1 + St(1 + if,t−1)Bf,t−1 +WtNt + Λt

where Bh,t, Bf,t, ih,t, if,t, Wt, Λt, and St denote the home country’s holding of the home country’s
nominal bonds, the home country’s holding of the foreign country’s nominal bonds, the home
county’s nominal interest rate for the home country’s bonds, the home county’s nominal interest rate
for the foreign country’s bonds, the home country’s nominal wage, the static profit from the home
country’s monopolistically competitive firms, and the level of the bilateral nominal exchange rate
of the home currency per the foreign country, respectively. Similarly, the representative household
in the foreign country maximizes its lifetime utility subject to the following budget constraint

B∗
h,t

St

+B∗
f,t + P ∗

t C
∗
t = (1 + i∗h,t−1)

B∗
h,t−1

St

+ (1 + i∗f,t−1)B
∗
f,t−1 +W ∗

t N
∗
t + Λ∗

t

where B∗
h,t, B

∗
f,t, i

∗
h,t, i

∗
f,t, W

∗
t and Λ∗

t denote the foreign country’s holding of the home country’s
nominal bonds, the foreign country’s holding of the foreign country’s nominal bonds, the foreign
county’s nominal interest rate for the home country’s bonds, the foreign county’s nominal interest
rate for the foreign country’s bonds, the foreign country’s nominal wage, and the static profit from
the foreign country’s monopolistically competitive final good firms.

The first order necessary conditions (FONCs) for the home and foreign households’ lifetime
utility maximization problems consist of the home and foreign Euler equations

1

PtCt

= β(1 + ih,t)Et
1

Pt+1Ct+1

and
1

P ∗
t C

∗
t

= β(1 + i∗f,t)Et
1

P ∗
t+1C

∗
t+1

,

the home and foreign utility-based uncovered interest parity conditions (UIPs),

Et
1

Pt+1Ct+1

{
(1 + ih,t)− (1 + if,t)

St+1

St

}
= 0 and Et

1

P ∗
t+1C

∗
t+1

{
(1 + i∗f,t)− (1 + i∗h,t)

St

St+1

}
= 0,

and the home and foreign intratemporal optimality conditions for hours worked

Nη
t =

Wt

PtCt

and N∗η
t =

W ∗
t

P ∗
t C

∗
t

.

Finally, suitable transversality conditions for international bond holdings should be satisfied.

2.2. Final good sectors
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Facing the corresponding demand functions, final good firm z ∈ [0, 1] acts as an identical
monopolistically competitive price setter. When setting its current optimal price, each firm follows
the Calvo (1983) type time-dependent pricing strategy: in each period, a firm cannot reset its
optimal price with a probability μ ∈ (0, 1]. Moreover, to generate endogenous fluctuations of the
real exchange rate, I assume that all the firms adopt the local currency pricing (LCP) strategy as
in Betts and Devereux (1996, 2000): each firm sets its optimal price differently between the two
countries in terms of the local currencies.

Under the LCP-Calvo pricing strategy, the objective function of a home firm is

max
Ph,t,P

∗
h,t

Et

∞∑
i=0

μiΓt+i

{(
Ph,t

Ph,t+i

)
−mct+i

}(
Ph,t

Ph,t+i

)−ζ

Ch,t+i

+ Et

∞∑
i=0

μiΓt+i

{(
St+iP

∗
h,t

Ph,t+i

)
−mct+i

}(
P∗

h,t

P ∗
h,t+i

)−ζ

C∗
h,t+i,

where Ph,t, P
∗
h,t, mct, and Γt are the optimal price of the home good in the home country, the

optimal price of the home good in the foreign country, the real marginal cost of the home firm, and
the home country’s stochastic discount factor Γt+i ≡ βi(Pt/Pt+i)(Ct/Ct+i). Similarly, the objective
function of a foreign firm is

max
Pf,t,P

∗
f,t

Et

∞∑
i=0

μiΓ∗
t+i

{(
Pf,t

St+iP ∗
f,t+i

)
−mc∗t+i

}(
Pf,t

Pf,t+i

)−ζ

Cf,t+i

+ Et

∞∑
i=0

μiΓ∗
t+i

{(
P∗

f,t

P ∗
f,t+i

)
−mc∗t+i

}(
P∗

f,t

P ∗
f,t+i

)−ζ

C∗
f,t+i

where Pf,t, P
∗
f,t, mc∗t , and Γ∗

t are the optimal price of the foreign good in the home country, the
optimal price of the foreign good in the foreign country, the real marginal cost of the foreign firm,
and the foreign country’s stochastic discount factor Γ∗

t+i = β(P ∗
t /P

∗
t+1)(C

∗
t /C

∗
t+i).

The FONCs for the optimal prices the home firm sets for the home and foreign countries are

Ph,tEt

∞∑
i=0

μiΓt+i

(
1

Ph,t+i

)1−ζ

Ch,t+i =
ζ

ζ − 1
Et

∞∑
i=0

μiΓt+imct+i

(
1

Ph,t+i

)−ζ

Ch,t+i,

P∗
h,tEt

∞∑
i=0

μiΓt+i

(
St+iP

∗
h,t+i

Ph,t+i

)(
1

P ∗
h,t+i

)1−ζ

C∗
h,t+i =

ζ

ζ − 1
Et

∞∑
i=0

μiΓt+imct+i

(
1

P ∗
h,t+i

)−ζ

C∗
h,t+i,

respectively. Similarly, the FONCs for the optimal prices the foreign firm for the home and foreign
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countries are

Pf,tEt

∞∑
i=0

μiΓ∗
t+i

(
Pf,t+i

St+iP ∗
f,t+i

)(
1

Pf,t+i

)1−ζ

Cf,t+i =
ζ

ζ − 1
Et

∞∑
i=0

μiΓ∗
t+imc∗t+i

(
1

Pf,t+i

)−ζ

Cf,t+i,

P∗
f,tEt

∞∑
i=0

μiΓ∗
t+i

(
1

P ∗
f,t+i

)1−ζ

C∗
f,t+i =

ζ

ζ − 1
Et

∞∑
i=0

μiΓ∗
t+imc∗t+i

(
1

P ∗
f,t+i

)−ζ

C∗
f,t+i.

Given the optimal prices, the price aggregators Ph,t, Pf,t, P
∗
h,t,and P ∗

f,t follow the laws of motion

P 1−ζ
j,t = (1− μ)P1−ζ

j,t + μP 1−ζ
j,t−1, and P ∗1−ζ

j,t = (1− μ)P∗1−ζ
j,t + μP ∗1−ζ

j,t−1 .

where j = {h, f}.
In this paper, I assume that each final good firm produces its product using only labor input

hired from the domestic competitive labor market. The production functions of the home and foreign
goods are Yt(z) = AtLt(z) and Y ∗

t (z) = A∗
tL

∗
t (z), where At and A∗

t are the labor productivities in
the home and foreign countries. In this case, the real marginal costs the home and foreign firms
face are, respectively,

mct =
Wt

AtPh,t

and mc∗t =
W ∗

t

A∗
tP

∗
f,t

.

The home and foreign static profits are

Λt ≡
∫ 1

0

{Ph,t(z)Ch,t(z) + StP
∗
h,t(z)C

∗
h,t(z)−WtNt(z)}dz

= Ph,t

(
Ph,t

Pt

)−ζ

Ct + StP
∗
h,t

(
P ∗
h,t

P ∗
t

)−ζ

C∗
t −WtNt,

StΛ
∗
t ≡

∫ 1

0

{Pf,t(z)Cf,t(z) + StP
∗
f,t(z)C

∗
f,t(z)− StW

∗
t Nt(z)

∗}dz

= Pf,t

(
Pf,t

Pt

)−ζ

Ct + StP
∗
f,t

(
P ∗
f,t

P ∗
t

)−ζ

C∗
t − StW

∗
t N

∗
t ,

respectively.

2.3. Monetary policies with trend inflations

The monetary policies in the two countries are characterize by Taylor rules. The central
banks of the two countries set their short-term domestic nominal interest rate (1 + ih,t) and (1 +
i∗f,t) depending on the past interest rate levels, (1 + ih,t−1) and (1 + i∗f,t−1), the current inflation
rates, γπ,t ≡ Pt/Pt−1 and γ∗

π,t ≡ P ∗
t /P

∗
t−1, and the detrended output levels, yt ≡ Yt/At and y∗t ≡

Y ∗
t /A

∗
t , respectively. In this paper, I further allow for exogenous slow-moving trend inflations

γτ,t ≡ Pτ,t/Pτ,t−1 and γ∗
τ,t ≡ P ∗

τ,t/P
∗
τ,t−1 in the two countries, where Pτ,t and P ∗

τ,t are the exogenous
permanent components of the aggregate price levels of the two countries generated by the trend
inflations. As argued by Ireland (2007), the central banks of the two countries target the trend
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inflation levels:

(1 + ih,t) = (1 + i)1−ρi(1 + ih,t−1)
ρi

(
γπ,t
γτ,t

)aπ

(yt)
ay exp(εi,t),

(1 + i∗f,t) = (1 + i∗)1−ρi(1 + i∗f,t−1)
ρi

(
γ∗
π,t

γ∗
τ,t

)aπ

(y∗t )
ay exp(ε∗i,t),

where i and i∗ are the deterministic steady state values of the home and foreign nominal interest
rates and ρi ∈ (0, 1) captures the degree of the interest rate smoothing. The condition of aπ > 1
is well known as the Taylor principle that is necessary for the unique equilibrium in this model.
εi,t and ε∗i,t are i.i.d. monetary policy shocks in the home and foreign countries. Finally, the trend
inflation rates γτ,t and γ∗

τ,t follow AR(1) processes in the log term:

ln γτ,t = (1− ρτ ) ln γτ + ρτ ln γτ,t−1 + ετ,t and ln γ∗
τ,t = (1− ρτ ) ln γτ + ρτ ln γ

∗
τ,t−1 + ε∗τ,t,

where γτ is the common long-run mean of the trend inflation rate, ρτ ∈ [0, 1) is the AR(1) root of
the trend inflation rate, and ετ,t and ε∗τ,t are i.i.d. trend inflation shocks. As in a closed-economy NK
model by Ascari and Sbordone (2014), the time-invariant common unconditional mean γτ makes
the log-linearization exercise of this paper tractable when characterizing the deterministic steady
state.8 Taking a difference between the two equations of the two countries’s trend inflations yields
the stochastic process of the trend inflation differential

ln γd
τ,t = ρτ ln γ

d
τ,t−1 + εdτ,t, (1)

where εdτ,t ≡ ετ,t − ε∗τ,t. Below I scrutinize implications of I(1) trend inflation differential on the
equilibrium of the model by taking the limit of the unit root, ρτ → 1.

2.4. Market clearing and productivity shocks

To guarantee a stationary distribution of the net foreign asset positions of the two countries
within incomplete international financial markets, I allow for a debt-elastic risk premium in the
interest rates faced only by the home country: for j = {h, f}

ij,t = i∗j,t[1 + ψ{exp(−bj,t + d̄)− 1}], d̄ ≤ 0, ψ > 0,

where bj,t is the transitory component of the home country’s holdings of country j’s bonds, which is
precisely defined below. Notice that the home country needs to pay a risk premium over the interest
rate level the foreign household faces when the transitory components of the home country’s net
borrowing positions bj,t < 0 is beyond its threshold level d̄. The risk premium is given as an
externality: the household does not take into account the effect of the debt position on the risk
premium when maximizing the lifetime utility function. On the other hand, we do not attach a risk
premium to foreign country’s interest rates.9

8Ascari and Sbordone (2014) do not allow for stochastic variations in trend inflation. To the contrary, Cogley
and Sbordone (2008) investigate a time-varying stochastic steady state with I(1) trend inflation.

9Since the elasticity of the risk premium toward the debt position, ψ, is set to a very small number, this asymmetric
treatment of the debt elastic risk premium between the home and foreign countries does not affect the equilibrium
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The market-clearing conditions of the two countries’ bond markets are

Bh,t +B∗
h,t = 0 and Bf,t +B∗

f,t = 0,

i.e., along an equilibrium path, the world net supply of nominal bonds is zero on a period-by-period
basis. The market clearing conditions of the home and foreign final goods are

AtNt =

∫ 1

0

{Ch,t(z) + C∗
h,t(z)}dz = Ωh,tCh,t + Ω∗

h,tC
∗
h,t,

A∗
tN

∗
t =

∫ 1

0

{Cf,t(z) + C∗
f,t(z)}dz = Ωf,tCf,t + Ω∗

f,tC
∗
f,t,

where the variables

Ωj,t ≡
∫ 1

0

(
Pj,t(z)

Pt

)−ζ

dz, and Ω∗
j,t ≡

∫ 1

0

(
P ∗
j,t(z)

P ∗
t

)−ζ

dz, for j = h, f

capture the degrees of price dispersions in the four final good markets. As discussed by Ascari and
Sbordone (2014), the price dispersion variables are greater than one under price stickiness, but are
one if all the prices are identical within each final goods market in each country under flexible price
adjustments. The market clearing conditions then imply that variables Ωj,t and Ω∗

j,t represent the
resource costs of price dispersion: given the output level, the higher the price dispersion variable,
the lower the amount allocated to consumption. The price dispersion variables then follow the
transitions

Ωj,t = (1− μ)

(
Pj,t

Pt

)−ζ

+ μ

(
Pj,t

Pj,t−1

)ζ

Ωj,t−1,

Ω∗
j,t = (1− μ)

(
P∗

j,t

P ∗
t

)−ζ

+ μ

(
P ∗
j,t

P ∗
j,t−1

)ζ

Ω∗
j,t−1,

for j = h, f .10

I assume that the logarithms of the labor productivities, lnAt and lnA∗
t , are of I(1). To

guarantee a balanced growth path of this two country model, I assume that the labor productivity
differential ln at ≡ lnAt−lnA∗

t is of I(0). Notice that the I(1) labor productivities and the stationary
productivity differential jointly imply that the labor productivity of the home country must be
cointegrated with that of the foreign country. The home and foreign growth rates of the labor
productivity, γA,t ≡ lnAt − lnAt−1 and γ∗

A,t ≡ lnA∗
t − lnA∗

t−1, follow

γA,t = ln γA − λ

2
ln at−1 + εA,t, and γ∗

A,t = ln γA +
λ

2
ln at−1 + ε∗A,t,

where γA > 1 is the common drift term and λ ∈ [0, 1) is the adjustment speed of the error correction

outcome much.
10The full derivation of the transition equations of the price dispersion variables is found in Ascari and Sbordone

(2014).
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mechanism. The error correction mechanism implies that the cross-country labor productivity
differential is of I(0) because

ln at = (1− λ) ln at−1 + εdA,t, (2)

where εdA,t ≡ εA,t − ε∗A,t. Importantly, if the adjustment speed λ is sufficiently close to zero, the
cross-country labor productivity differential can be realized near I(1).

Because the model contains non-stationary components At, A
∗
t , Pτ,t, and P ∗

τ,t, I stochastically
de-trend the FONCs by these stochastic trend components to characterize the unique determin-
istic steady state, as shown in the accompanying appendix in detail.11 In doing so, define the
stochastically detrended versions of the home consumption by ct ≡ Ct/At; the foreign consumption
c∗t ≡ C∗

t /A
∗
t ; the home price of home goods ph,t ≡ Ph,tAt/Pτ,t; the home price of foreign goods

pf,t ≡ Pf,tAt/Pτ,t; the foreign price of home goods p∗h,t ≡ P ∗
h,tA

∗
t/P

∗
τ,t; the foreign price of foreign

goods p∗f,t ≡ P ∗
f,tA

∗
t/P

∗
τ,t; the optimal home price of home goods ph,t ≡ Ph,tAt/Pτ,t; the optimal home

price of foreign goods pf,t ≡ Pf,tAt/Pτ,t; the optimal foreign price of home goods p∗
h,t ≡ P∗

h,tA
∗
t/P

∗
τ,t;

the optimal foreign price of foreign goods p∗
f,t ≡ P∗

f,tA
∗
t/P

∗
τ,t; the home CPI pt ≡ PtAt/Pτ,t; the

foreign CPI p∗t ≡ P ∗
t A

∗
t/P

∗
τ,t; the home holding of the home bond bh,t = Bh,t/Pτ,t; the home holding

of the foreign bond bf,t = Bf,t/P
∗
τ,t; the foreign holding of the home bond b∗h,t = B∗

h,t/Pτ,t; the
foreign holding of the foreign bond b∗f,t ≡ B∗

f,t/P
∗
τ,t; the home nominal wage wt ≡ Wt/Pτ,t; the

foreign nominal wage w∗
t ≡ W ∗

t /P
∗
τ,t; the nominal exchange rate st ≡ StP

∗
τ,t/Pτ,t. The real exchange

rate is given by qt ≡ StP
∗
t /Pt = statp

∗
t/pt. To derive the corresponding linear rational expectations

(LRE) models, I take a log-linear approximation of the stochastically detrended FONCs around the
unique deterministic steady state. For a variable xt, let x̂t denote the percentage deviation from its
deterministic steady state value x, i.e., x̂t ≡ (xt−x)/x, and x̃t the deviation from the deterministic
steady state vale, i.e, x̃t ≡ xt − x, respectively.

For simplicity, I assume symmetric two countries with d̄ = 0 throughout this paper. In this
case, the deviation from the law of one price is also symmetric across the home and foreign goods:

q̂t = ŝt + ât + p̂∗h,t − p̂h,t, and q̂t = ŝt + ât + p̂∗f,t − p̂∗f,t.

Hence, p̂h,t− p̂∗h,t = p̂f,t− p̂∗f,t, i.e., the cross-country price differential is identical across the home and
foreign goods. Moreover, from the home and foreign CPIs, this condition implies p̂t−p̂∗t = p̂h,t−p̂∗h,t =
p̂f,t − p̂∗f,t, i.e., the cross-country CPI differential is also identical with the price differentials of the
individual goods across the two countries.

2.5. A generalized New Keynesian Phillips curve with trend inflation

The accompanying appendix shows the whole derivation of the GNKPCs for the home good
price inflation at the home country, π̂h,t = p̂h,t − p̂h,t−1. Under the parameter definitions of ϕ1 ≡
βμ (γτ/γA)

ζ−2 ∈ (0, 1), ϕ2 ≡ βμ (γτ/γA)
ζ−1 ∈ (0, 1), and ϕ0 ≡ 1−β−1ϕ2

β−1ϕ2
, the corresponding GNKPC

11The appendix is available upon request.
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is

π̂h,t + γ̂τ,t − γ̂A,t = −ϕ0(ϕ1 − ϕ2)

ϕ1

ζ

∞∑
i=1

ϕi
1Et(π̂t+i − π̂h,t+i) + ϕ0(1− ϕ2)m̂ct

+ ϕ2(1 + ϕ0)Et(π̂h,t+1 + γ̂τ,t+1 − γ̂A,t+1) +
ϕ0(ϕ1 − ϕ2)

ϕ1

∞∑
i=1

ϕi
1Et(π̂t+i + γ̂τ,t+i − γ̂A,t+i)

− ϕ0(ϕ1 − ϕ2)

ϕ1

(ζ − 1)
∞∑
i=1

ϕi
1Et(π̂h,t+i + γ̂τ,t+i − γ̂A,t+i). (3)

Therefore, as claimed by Cogley and Sbordone (2008), GNKPC (3) depends on higher-order leads of
the home good price inflation as well as the home CPI inflation. Moreover, although no time-varying
coefficient founded in Cogley and Sbordone (2008) is allowed for in this model, coefficients ϕ0, ϕ1,
and ϕ2 depend on primitives β, μ, γτ , and γA. In particular, a higher steady state trend inflation
relative to productivity growth γτ/γA implies a lower weight on the current real marginal cost m̂ct,
a higher weight on the expected future home good price inflation Et(π̂h,t+i + γ̂τ,t+i − γ̂A,t+i), and a
lower weight on the expected future home CPI inflation Et(π̂t+i + γ̂τ,t+i − γ̂A,t+i) for i = 1, 2, · · · . 12

The appendix also displays the full derivation of the GNKPC for the home good price inflation
at the foreign country, π̂∗

h,t ≡ p̂∗h,t − p̂∗h,t−1. Notice that under the assumption of symmetric two-
countries, π̂t − π̂∗

t = π̂h,t − π̂∗
h,t = π̂f,t − π̂∗

f,t. For exposition, define the cross-country difference

variables xd
t ≡ xt − x∗

t for any home and foreign variables xt and x∗
t . Subtracting the GNKPC of

π̂∗
h,t from that of π̂h,t then provides the following GNKPC for the inflation differential between the

two countries π̂d
t :

π̂d
t + γ̂d

τ,t − γ̂d
A,t = ϕ0(1− ϕ2)ât +

ϕ0ϕ2(1− ϕ1)

ϕ1

(q̂t − ât) + ϕ2(1 + ϕ0)Et(π̂
d
t+1 + γ̂d

τ,t+1 − γ̂d
A,t+1)

− ϕ0(ϕ1 − ϕ2)(ζ − 1)

ϕ1

∞∑
i=1

ϕi
1Et(π̂

d
t+i + γ̂d

τ,t+i + γ̂d
A,t+i) +

ϕ0(ϕ1 − ϕ2)

ϕ1

∞∑
i=1

ϕi
1EtΔĉdt+i

+
ϕ0(ϕ1 − ϕ2)(1− ϕ1)

ϕ1

∞∑
i=0

ϕi
1Et(q̂t+i − ât+i). (4)

Observe that under the condition γτ = γA the GNKPC for the inflation differential, eq. (4), will be

12Observe that GNKPC (3) turns out to be the conventional NKPC under the restrictive parameterization of
γτ = γA. Because in this case ϕ1 = ϕ2 = βμ and ϕ0 = (1 − μ)/μ, the first, fourth, and fifth terms in the RHS of
eq.(3) vanish and the conventional NKPC of the home good price inflation Δ lnPh,t emerges:

Δ lnPh,t = βEtΔlnPh,t+1 + κμm̂ct

where κμ ≡ (1−μ)(1−βμ)
μ ∈ (0, 1) and Δ ≡ 1 − L is the first difference operator. Hence, GNKPC (3) nests the

standard NKPC under the restrictive parametalization of γτ = γA. Notice that the standard open-economy NK
model investigated in the literature of the PPP puzzle such as Chari et al.(2002) and Benigno (2004) allows for no
stochastic trend of either productivity growth or inflation, i.e., γA = γτ = 1. Therefore, GNKPC in this model
implies richer and more persistent dynamics of the domestic inflation than that in the conventional models.

11



simplified as
Δ lnP d

t = βEtΔ lnP d
t+1 + κμq̂t.

where κμ ≡ (1−μ)(1−βμ)
μ

∈ (0, 1) and Δ ≡ 1−L is the first difference operator. Under this restrictive
case, the current inflation differential depends on the one-period ahead expected inflation differential
and the real exchange rate.13 On the other hand, the current inflation differential in this model
depends not only on the current real exchange rate and the one-period ahead expected inflation
differential but also on the expectations of higher order leads of the future real exchange rates and
the future inflation differentials. As discussed by Cogley and Sbordone (2008), this characteristic
yields a more persistent process of the inflation differential than that in the standard case with
γτ = γA = 1.

2.6. Terms of trade dynamics

Another important relative price in this model is the terms of trade (TOT). Let Ψt and Ψ∗
t

denote the terms of trade in the home and foreign countries, i.e., the relative price of the home good
to the foreign good in the home country, Ψt ≡ Ph,t/Pf,t = ph,t/pf,t and that of the foreign good to
the home good in the foreign country, Ψ∗

t ≡ P ∗
f,t/P

∗
h,t = p∗f,t/p

∗
h,t. Recall that under the symmetric

equilibrium,
Pf,t

Ph,t
=

P ∗
f,t

P ∗
h,t

and, hence, Ψt = 1/Ψ∗
t . Below I focus only on the dynamics of the home

TOT Ψt.

The log linear approximation of the home TOT is Ψ̂t = p̂h,t − p̂f,t. Hence, the growth rate of
the home TOT is simply the inflation differential between the home good price and the foreign good
price in the home country: ΔΨ̂t = π̂h,t − π̂f,t. The appendix derives the GNKPC for the foreign
good price inflation in the home country π̂f,t ≡ p̂f,t − p̂f,t−1. Subtracting the GNKPC of π̂f,t from
that for π̂h,t, eq.(3) and rearranging the result provides the TOT dynamics

ΔΨ̂t = ϕ0(1− ϕ2)(m̂cdt − ât) + ϕ2(1 + ϕ0)EtΔΨ̂t+1 − ϕ0ϕ2(1− ϕ1)

ϕ1

(q̂t − ât)

+
ϕ0(ϕ1 − ϕ2)

ϕ1

∞∑
i=1

ϕi
1EtΔΨ̂t+i +

ϕ0(ϕ1 − ϕ2)

ϕ1

∞∑
i=1

ϕi
1EtΔĉdt+i

− ϕ0(ϕ1 − ϕ2)(1− ϕ1)

ϕ1

∞∑
i=0

ϕi
1Et(q̂t+i − ât+i) +

ϕ0(ϕ1 − ϕ2)

ϕ1

∞∑
i=1

ϕi
1Et(π̂

d
t+i + γ̂d

τ,t+i − γ̂d
A,t+i). (5)

When γτ = γA, the TOT follows

ΔΨ̂t = βEtΔΨ̂t+1 + κμ(m̂cdt − q̂t).

Hence, in this simplified version of the TOT equation, the growth rate of the home TOT depends
on the expected future growth rate of the home TOT and the real marginal costs differential in
terms of the home currency unit. Eq.(5) implies that the TOT growth rate further relies on higher
order leads of expectations of the future TOTs, the future real exchange rates, the future inflation
differentials, and the future consumption differentials, respectively.

13This is the exactly same representation of the inflation differential dynamics as in Benigno (2004).
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2.7. Symmetric two-country equilibrium

In summary, the symmetric equilibrium of this two-country model is characterized by the
following eight equations. Jointly with the home risk premium, the log-linear approximation of the
home UIP is

Etŝt+1 − ŝt = (1 + ît)
d + ψ(1− κ)b̃t − Etγ̂

d
τ,t+1, (6)

where (1+ ît)
d ≡ (1+ îh,t)−(1+ î∗f,t) is the two country interest rate differential. Taking a difference

between two countries’ Euler equations and using the home UIP characterizes the forward-looking
dynamics of the consumption differential ĉdt + ât as a function of the real exchange rate q̂t and the
net foreign asset position b̃t:

ĉdt − q̂t + ât − ψ(1− κ)b̃t = Et(ĉ
d
t+1 − q̂t+1 + ât+1). (7)

The home and foreign good market clearing conditions determine the labor supply differential N̂d
t

as a static function of the terms of trade Ψ̂t, the productivity differential ât, and the price dispersion
differential ω̂d

t ≡ ω̂h,t − ω̂f,t + ω̂∗
h,t − ω̂∗

f,t = lnΩh,t/Ωf,t + lnΩ∗
h,t/Ω

∗
f,t:

N̂d
t + 2ζΨ̂t + 2ât = ω̂d

t . (8)

The transition of the price dispersion differential ω̂d is given as

ω̂d
t = −2ϕ−1

0 ζ{1− μ(γτ/γA)
ζ}ΔΨ̂t + μ(γτ/γA)

ζω̂d
t−1. (9)

The home and foreign budget constraints characterize the equilibrium transition of the net foreign
asset position b̃t:

b̃t = β−1b̃t−1 + pc∗(1− ζ)Ψ̂t − pc∗(ĉdt + ât − q̂t), (10)

where pc∗ = pc/4. The home and foreign real marginal costs and the home and foreign intratemporal
optimality conditions jointly determine the real marginal cost differential as a static function of
terms of trade Ψ̂t, consumption differential ĉdt , and labor supply differential N̂d

t :

m̂cdt = −Ψ̂t + ĉdt + ηN̂d
t , (11)

The home and foreign Taylor rules give the interest rate differential (1 + ît)
d

(1 + ît)
d = ρi(1 + ît−1)

d + aπ(π̂
d
t − γ̂d

A,t) + ayN̂
d
t + εdi,t. (12)

Using the definition of the real exchange rate characterizes the relation among the real and nominal
currency returns and the inflation differential

Δq̂t+1 = Δŝt+1 − π̂d
t+1 + γ̂d

A,t+1. (13)

Rearranging the GNKPC of the inflation differential, eq.(4), provides the following second order
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expectational difference equation of the inflation differential

ϕ1ϕ2(1+ϕ0)Et(π̂
d
t+2+γ̂d

τ,t+2−γ̂d
A,t+2)−[ϕ1+ϕ2(1+ϕ0)−ϕ0(ϕ1−ϕ2)(ζ−1)]Et(π̂

d
t+1+γ̂d

τ,t+1−γ̂d
A,t+1)

+ π̂d
t + γ̂d

τ,t − γ̂d
A,t = ϕ0(1− ϕ1)q̂t − ϕ0(1− ϕ1)ϕ2Etq̂t+1 + ϕ0(ϕ1 − ϕ2)ât − ϕ0(ϕ1 − ϕ2)Etât+1

+ ϕ0(ϕ1 − ϕ2)EtΔĉdt+1. (14)

Similarly, rearranging the TOT dynamics (5) implies the following second order expectational dif-
ference equation of the terms of trade growth

ΔΨ̂t − [ϕ2 + ϕ1(1 + ϕ0)]EtΔΨ̂t+1 + ϕ2(1 + ϕ0)ϕ1EtΔΨ̂t+2 = ϕ0(1− ϕ2)(m̂cdt − ât)

−ϕ0(1−ϕ2)ϕ1Et(m̂cdt+1−ât+1)−ϕ0(1−ϕ1)(q̂t−ât)+ϕ0(1−ϕ1)ϕ2Et(q̂t+1−ât+1)+ϕ0(ϕ1−ϕ2)EtΔĉdt+1

+ ϕ0(ϕ1 − ϕ2)Et(π̂
d
t+1 + γ̂d

τ,t+1 − γ̂d
A,t+1). (15)

The linear rational expectations model of this paper consists of nine stochastic difference equations
(6)-(15) and determines nine endogenous variables ĉdt , N̂

d
t , ω̂

d
t , m̂cdt , ŝt, q̂t, Ψ̂t, (1+ ît)

d, and b̃t, given
the stochastic processes of three exogenous variables γ̂d

τ,t, ât, and εdi,t, including eqs.(1), and (2).14

3. Random-walk real exchange rates within a restricted model

In this section, I show that a restricted version of the model is able to generate near random-
walk exchange rates with large volatilities in a rational expectations equilibrium. Because the full
specification of the model does not have an analytical solution, I impose several restrictions on the
parameter space of the model to derive an approximated analytical solution of the real exchange
rate.

To begin with, the Euler equation (7) rewrites the GNKPC (14) as

ϕ1ϕ2(1+ϕ0)Et(π̂
d
t+2+γ̂d

τ,t+2−γ̂d
A,t+2)−[ϕ1+ϕ2(1+ϕ0)−ϕ0(ϕ1−ϕ2)(ζ−1)]Et(π̂

d
t+1+γ̂d

τ,t+1−γ̂d
A,t+1)

+ π̂d
t + γ̂d

τ,t − γ̂d
A,t = ϕ0(1− 2ϕ1 + ϕ2)q̂t + ϕ0(ϕ1 − 2ϕ2 + ϕ1ϕ2)Etq̂t+1 + 2λϕ0(ϕ1 − ϕ2)ât

− ϕ0(ϕ1 − ϕ2)φ(1− κ)b̃t. (16)

Notice that the coefficients on q̂t and Etq̂t+1 are quite small numbers in absolute values.15 This
means that the inflation differential is inelastic with real exchange rate developments. Because the
steady state nominal discount factor κ = β/γτ is close to 1 and ψ is conventionally calibrated to a
very small positive number, the term ψ(1−κ)b̃t is negligible in the following approximated analytical
solution of q̂t. The GNKPC then implies that the inflation differential Δ lnP d

t ≡ π̂d
t + γ̂d

τ,t − γ̂d
A,t is

approximately given as the present discounted values of expected future productivity differentials.

14Notice that γ̂d
A,t = ât − ât−1.

15Under the benchmark calibration discussed below, the calibrated coefficients on q̂t and Etq̂t+1 are 0.0024 and
-0.0030, while those on π̂d

t + γ̂d
τ,t − γ̂d

A,t, Et(π̂
d
t+1 + γ̂d

τ,t+1 − γ̂d
A,t+1), and Et(π̂

d
t+2 + γ̂d

τ,t+2 − γ̂d
A,t+2) are 1.000, -1.935,

and 0.927, respectively. Indeed, if trend inflation is not allowed, the calibrated coefficients on q̂t and Etq̂t+1 sharply
increase in the absolute value to 0.052 and -0.041, respectively.
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Taylor rule differential (12) and home UIP condition (6) jointly provides the RUIP condition:

Etq̂t+1 = q̂t + aπΔ lnP d
t − EtΔ lnP d

t+1 − aπγ̂
d
τ,t + ρi(1 + ît−1)

d + ayN̂
d
t + ψ(1− κ)b̃t + εdi,t.

If I assume no output gap response of the Taylor rule by ay = 0 and no interest rate smoothing by
ρi = 0, the above RUIP condition is further simplified as

q̂t = Etq̂t+1 + aπγ̂
d
τ,t − aπΔ lnP d

t + EtΔ lnP d
t+1 − εdi,t.

Because the current and expected inflation differentials Δ lnP d
t and EtΔ lnP d

t+1 depend on real
exchange rate qt to a negligible degree, iterating the above expectational difference equation with
respect to q̂t forward toward an infinite future derives the following present value representation of
the real exchange rate16

q̂t = aπ

∞∑
s=0

Etγ̂
d
τ,t+s − εdi,t + f(ât). (17)

where f(ât) is a bounded stationary function of the productivity differential ât. The real currency
return Δq̂t then follows

Δq̂t =
aπ

1− ρτ
Δγ̂d

τ,t −Δεdi,t +Δf(ât).

Observe now that at the limit of ρτ → 1, the first term of the RHS of the above equation dominates
the real currency return because the second and third terms are stationary with finite variances:17

lim
ρτ→1

Δq̂t = lim
ρτ→1

aπ
1− ρτ

εdτ,t.

Therefore, given trend inflation with ρτ → 1, the real exchange rate follows a near random walk
with an infinite volatility. The real exchange rate enters into a permanent process in which the first
difference has no serial correlation and an extremely large volatility induced by a shock to the trend
inflation differential.

4. Assessing the model by calibration

4.1. Empirical moments

16The present value representation below is a restricted case of the fundamental asset pricing equation in Engel
and West (2005):

zt = (1− b)

∞∑
j=0

bjEt(a
′
1x1,t+i) + b

∞∑
j=0

bjEt(a
′
2x2,t+j),

where zt is an asset price, b is is discount factor, x1,t is a vector of observable economic fundamentals, x2,t is a vector
of unobservable economics fundamentals, a1, and a2 are the corresponding coefficient vectors, respectively. Observe
that eq.(17) is obtained by imposing a1 = 0 and b → 1. In this case, as proved by Engel and West (2005), if an
element of the unobserved economic fundamentals γ̂d

τ,t is I(1), the real exchange rate converges to a random walk
with an infinite variance of the real currency return.

17This proof borrows the argument found in the appendix of Engel and West (2005).
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In this paper, I assess the performance of the proposed model in terns of the empirical moments
of the real and nominal exchange rates. The empirical moments this paper targets are summarized
in the first row of Table 2. The first empirical moment is the sum of the autoregressive coefficients
of the AR(5) process of the real exchange rate ln qt, denoted by α. Steinsson (2008) conducts α
from the augmented Dicky-Fuller regression with the fifth lags. He reports that the estimate of α
is 0.954 with the 90 % confidence interval between 0.879 and 1.000 for the U.S. trade-weighted real
exchange rate. 18

Steinsson (2008) and Burstein and Gopinath (2014) report a half-life measure, which is de-
noted by HL. The estimated ADF equation provides the impulse response functions (IRFs) of the
real exchange rate with a unit reduced-form shock. The second empirical moment this paper tar-
gets, HL, is simply calculated as the maximum period before the IRF reaches 0.500, i.e., HL = T
such that IRF(T-1) > 0.500 and IRF(T) ≤ 0.500. Burstein and Gopinath (2014) report HL for
eight advanced countries.19 The cross-country average of the HL is 4.425 years with the minimum
of 1.600 years for Switzerland and the maximum of 6.000 years for the United States.

The third empirical moment is the correlation coefficient between the real and nominal cur-
rency returns. It is well known that the real and nominal exchange rates co-move very much closely
each other. In fact, Burstein and Gopinath (2014) show the correlation coefficients between the
real and nominal currency returns over the eight advanced countries. The average of the correlation
coefficient, denoted by Corr, is 0.932 with the minimum of 0.820 for Italy and the maximum of
0.990 for Japan. Notice that the tight co-movement between the real and nominal currency return
implies that the exchange rate dynamics are almost disconnected with the inflation differential at
least in the short run. Indeed, Burstein and Gopinath (2014) provide the ratio of the standard

deviations of the real currency return to the nominal currency return, Std(Δ ln qt)
Std(Δ lnSt)

, for the eight ad-
vanced economies. The cross-country average is 0.956 with the minimum of 0.870 for France and the
maximum of 1.040 for the United Kingdom. The STD ratio close to one implies that the exchange
rate is more volatile than the inflation differential. Figure 1 plots that the real currency return as
the solid red line, the nominal currency return the dotted blue line, and the inflation differential
the solid black line for the Japan and the United States between Q2:1985 and Q4:2014. Confirm
that the real and nominal currency returns co-move almost one-to-one and the real and nominal
currency returns are much more volatile than the inflation differential.

4.2. Calibration

The linear rational expectations (LRE) model derived in Section 2 has no analytical closed-
form solution. To capture the population properties, I conduct Monte Carlo simulations of the
calibrated LRE model to generate synthetic time series samples of the real and nominal exchange
rates and the inflation differential with 1,000 quarterly periods. I then calculate the theoretical
moments using the synthetic samples to understand the model’s implications for real and nominal
exchange rate dynamics.

18The corresponding half-life, which is calculated through the conventional formula, log(0.5)/ log(α), is equal to
3.649. This number is quite consistent with the conventional consensus about the real exchange rate’s half-life of 3-5
years (Rogoff 1996).

19The eight countries includes Canada, France, Germany, Italy, Japan, Switzerland, the United Kingdom, and the
United States.
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I follow the conventional calibrations of the structural parameters of the subjective discount
factor and the Frisch labor supply elasticity by β = 0.990, η = 2.000, respectively. The Calvo
probability of no price resetting is calibrated to μ = 0.800. The sensitivity parameters of the Taylor
rule toward the inflation gap and the output gap are set to aπ = 1.500 and ay = 0.100, respectively.
The interest rate smoothing parameter is calibrated to ρi = 0.800. Notice that Benigno (2004)
shows that with the Calvo probability of no price resetting of 0.800, the empirically plausible
interest rate smoothing parameter around 0.800 fails to generate a sufficiently large persistence of
the real exchange rate as in actual data.

A key parameter of the model is the long-run unconditional means of the trend inflation rate
γτ and the labor productivity growth rate γA. Observe what actually matters for the equilibrium
dynamics of the model is γ̄ ≡ γτ/γA, i.e., the long-run unconditional mean of the trend inflation
rate adjusted by the productivity growth rate (hereafter, long-run trend inflation). Notice that the
transition of the price dispersion differential (9), the GNKPC (14), and the TOT dynamics (15)
depend on γ̄ through parameters ϕ0, ϕ1, and ϕ2. As the benchmark calibration, I set γ̄ = 1.0084,
which is equivalent to 3.42% at annual rate.

The calibration of the price elasticity of demand ζ depends on γ̄ crucially. To see this, recall
that the price elasticity of demand is conventionally calibrated in the way that the model generates
about 11-12% markup rate at the steady state. Under the GNKPC the steady-state markup rate
is given by the inverse of the real marginal cost

mc =

(
ζ − 1

ζ

)(
1− βμγ̄ζ−1

1− βμγ̄ζ−2

)(
1− μ

1− μγ̄ζ−1

) 1
1−ζ

. (18)

Notice that given γ̄ = 1, the steady state markup rate returns to the conventional one, i.e., ζ/(ζ−1).
Under the benchmark calibration of β, μ, and γ̄ for the GNKPC above, I set ζ = 22 as the
benchmark, which implies that the steady-state markup rate of 11.69%.

Finally, the three exogenous impulses are calibrated as follows. The error correction speed of
the cointegrated labor productivity process, λ, is set to 0.010 to reflect a quite slow cross-country
productivity diffusion. The AR root of the trend inflation process is set to 0.990 to capture the
slow mean-reverting property of the permanent component of the inflation differential as in data.
Figure 2 plots that the quarterly sample of the inflation differential between Japan and the United
States and the corresponding trend component extracted by the Hodrick and Prescott (HP) filter.
The figure shows that there are substantial fluctuations in the trend component of the two-country
inflation differential over the sample period. The trend component indeed moves very slowly around
zero.20 The standard deviations of the productivity differential shock, the trend inflation differential
shock, and the monetary policy differential shock are calibrated to σA = 0.010, στ = 0.002, and
σi = 0.005, respectively. The three shocks follow i.i.d. normal distributions with the zero means.
Table 1 summarizes the benchmark calibration.

The above calibration guarantees the equilibrium of the LRE model to be determinant. I
solve the unique equilibrium of the LRE model and derive the state-space representation using the

20The figure plots the demeaned time series of both the inflation differential and the HP trend component because
the model with the symmetric two-countries has no implication of the unconditional mean.
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QZ algorithm by Sims for Monte Carlo simulations.

4.3. Results of the benchmark model

The second row of Table 2, which is labelled “Benchmark”, reports the theoretical moments
simulated with the benchmark model. Notice that the benchmark model fits to all of the targeted
empirical moments fairly well. The benchmark model implies a quite large AR root of the real
exchange rate: the sum of the AR (5) coefficients, α, is simulated to 0.992. In fact, this number
is consistent with the empirical counterpart of 0.954 and surely within the 90 % coverage of the
cross-country sample. The benchmark model, hence, can generate a very high persistence of the real
exchange rate as observed in actual data. Furthermore, the benchmark model yields a large half-life
measure HL of 4.250 years, which mimics the empirical counterpart of 4.425 years very closely. This
high value of the half-life measure stems from the fact that the benchmark model generates a strong
hump-shaped impulse response of the real exchange rate. Figure 3 plots the simulated IRF of the
real exchange rate calculated in the same way as in Steinsson (2008). The IRF peaks out after a
year and monotonically but slowly declines toward zero over time. This hump-shaped pattern of
the IRF of the real exchange rate is emphasized in the literature of the real exchange rate including
Eichenbaum and Evans (1995), Cheung and Lai (2000), Steinsson (2008), Iversen and Sönderstörm
(2014), and Burstein and Gopinath (2014). The benchmark model, therefore, is endowed with a
strong propagation mechanism of the real exchange rate.

A natural question then is: which structural shock generates such a high persistence of the
real exchange rate with the hump-shaped impulse response? To answer this question, I calculate
the IRFs of the real exchange rate to the three structural shocks, productivity shock εdA,t, trend
inflation shock εdτ,t, and monetary policy disturbance εdi,t, from the state space representation of the
benchmark model. The left window of Figure 4 plots the IRF of the real exchange rate to the one
standard deviation shock to the productivity differential; the center window to the trend inflation
shock; and the right window to the monetary policy shock, respectively. Confirm that the IRF to
the trend inflation shock dominates those to the other two shocks in the absolute size. This means
that even the calibrated size of the trend inflation shock is smaller than those of the other two
shocks, the benchmark model amplifies and propagates the trend inflation shock greatly toward the
real exchange rate. Observe also that only the IRF to the trend inflation shock is hump-shaped.
It is, therefore, the trend inflation shock that generates the hump-shaped IRF of the real exchange
rate as shown in Figure 3.

To capture an economic intuition behind this hump-shaped response of the real exchange rate
to the trend inflation shock, it is convenient to solve the RUIP forward:

q̂t =
∞∑
j=0

EtΔ lnPt+1+j −
∞∑
j=1

Et(1 + ît+j)
d + lim

j→∞
Etq̂t+j.

Notice that the last limiting term on the RHS will converge toward zero. Hence, the real exchange
rate response depends positively on the difference between the expected present values of the future
inflation rates and that of the future nominal interest rates. Figure 5 plots the IRFs of the nominal
interest rate and the inflation rate to the trend inflation shock as the sold blue and red lines,
respectively. Observe, on the one hand, that the IRF of the nominal interest rate is very persistent

18



with a hump shape. This stems from the Taylor rule with the interest rate smoothing as well as
the persistent adjustment of the inflation rate. On the other hand, while the inflation rate response
is greater in the absolute value than the nominal interest rate response up to a year, the latter
response gradually overcomes the former response after a year. The expected present values of
the future nominal interest rates, hence, dominates that of the future inflation rates. This is the
primary reason why the real exchange rate responds negatively to the trend inflation shock at the
impact. Over periods of time the hump-shaped response of the nominal interest rate is reflected in
the hump-shaped response of the real exchange rate though the above present value calculation.

4.4. Into the Mussa puzzle

The benchmark model also replicates successfully the two influential observations established
by Mussa (1986) on the joint behavior of real and nominal exchange rates within the fixed and flexi-
ble exchange rate regimes before and after the breakdown of the Bretton Woods (BW) international
monetary system. First, in the post BW period, the real exchange rates of the advanced economies
almost perfectly co-move with the nominal exchange rates. Second, the short-run volatilities of
the real exchange rates are much smaller under the BW period than those in the post BW period.
Because it is hard for neoclassical real models with flexible prices to reconcile, these observations
are well known as the Mussa puzzle. In a small open economy New Keynesian model, Monachelli
(2004) shows that the price stickiness accompanied by incomplete pass though resolves the Mussa
puzzle plausibly. Because of inheriting theoretical properties of Monacelli’s (2004) model, the trend
inflation model of this paper also passes this stringent reality check.21

The benchmark model, indeed, implies a high positive correlation coefficient between the real
and nominal currency returns. The simulated correlation coefficient of 0.965 is also close to the
empirical counterpart of 0.932. The benchmark model successfully replicates a high volatility of the
real exchange rate relative to the inflation differential as in actual data: the STD ratio of the real
to nominal currency returns is 0.965. This simulated value almost perfectly matches the empirical
counterpart of 0.956. Figure 6 plots the simulated synthetic time series of the real currency return
as the solid red line, the nominal currency return the dotted blue line, and the inflation differential
the solid black line. Observe that the real and nominal currency returns co-move almost perfectly.
This result means that by construction the fluctuation in the inflation differential is very flat with a
much smaller volatility than the volatilities of the real and nominal currency returns. The simulated
relative volatilities of the real and nominal currency returns to the inflation differential in fact match
the empirical counterparts.

To simulate synthetic time series in the BW period, I assume a managed exchange rate regime
following Benigno (2004) in which the monetary authority in the foreign country adopts the Taylor
rule including the nominal currency return

(1 + i∗f,t) = (1 + i∗)1−ρi(1 + i∗f,t−1)
ρi

(
γ∗
π,t

γ∗
τ,t

)aπ

(y∗t )
ay

(
St

St−1

)− ϕ
1−ϕ

exp(ε∗i,t).

21Monacelli (2004), however, does not touch upon the persistence puzzle on which the recent literature of the real
exchange rate puts strong emphasis.
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Parameter ϕ ∈ [0, 1) captures the degree of the managed exchange rate regime: the larger ϕ, the
more stringent the managed regime is. If ϕ = 0, the model returns to the benchmark specification
with the flexible exchange rate. If ϕ → 1, the model is subject to a strict fixed nominal exchange rate
regime with St = 1 for all t. If ϕ ∈ (0, 1), the model is characterized by a managed exchange rate
regime. To calibrate parameter ϕ, I follow Monachelli (2004) and set ϕ = 0.760. For a robustness
check, I also simulate the model under a smaller calibration of ϕ = 0.500.

Table 3 reports the simulated standard deviations of the real currency return and the inflation
differential in the benchmark model and the managed exchange rate regime models. The first column
corresponds to the benchmark model with ϕ = 0.000. Observe that under the flexible exchange rate
regime the real currency return is much more volatile than the inflation differential. The second
column of the table corresponds to the managed exchange rate model with a smaller degree of the
the sensitivity of the foreign country’s Taylor rule to the nominal currency return ϕ = 0.500. Notice
that in this calibration the volatility of the real currency return is greatly weakened: the standard
deviation of the real currency return of the benchmark model is almost seven times larger than
that under the managed exchange rate model. Notice that on the other hand the volatility of the
inflation differential is not changed much between the two exchange rate regimes: the standard
deviation under the benchmark model is 1.803 %, while that under the managed exchange rate
regime is 1.134 %. The alternative calibration for a more stringent managed exchange rate regime
with ϕ = 0.760 yields the same inference that the volatility of the real currency return jumps up
sharply from the managed regime to the flexible regime, while there is no sharply change in the
volatility in the inflation differential.

Figure 9 graphically verifies these successful properties of the model toward the Mussa puzzle.
The figure plots the simulated time series of the real currency return as the dashed blue line and the
simulated inflation rate differential as the solid black line under the calibration of ϕ = 0.500. The
two time series in the first 200 sample periods are simulated from the managed exchange rate model,
while those in the second 200 sample periods from the benchmark model. On the one hand, the
volatility of the real currency return rises sharply from the managed regime to the flexible regime.
On the other hand, the volatility of the inflation differential stays to the almost same degree.22

In sum, the model of this paper replicates the observed structural change in the dynamics
of the real exchange rate before and after the BW periods quite plausibly. As Monachelli (2004)
infers, a regime change in the monetary policy rule should be the primary reason behind the Mussa
puzzle.

4.4. Contributions of long-run trend inflation

22This successful outcome of the model toward the Mussa puzzle is explained intuitively. For simplicity, consider
the strict fixed exchange rate regime with ϕ = 1. In this case, St = 1 for all t and the real currency return is
perfectly determined by the inflation differential, q̂t = q̂t−1 − ΔlnP d

t . Substituting this equilibrium relationship
into the GNKPC of the inflation differential (16) provides the equilibrium dynamics of the real exchange rate. The
equilibrium dynamics of the real exchange rate under the fixed exchange rate regime, thus, is completely governed
by the relative price dynamics characterized by the GNKPC, rather than the asset price dynamics represented by
the RUIP under the flexible exchange rate regime as in the benchmark model. This difference is the main reason
why the volatility of the real exchange rate is smaller under the fixed exchange rate regime than that in the flexible
one. The same intuition is applicable to the managed exchange rate model depending on the size of ϕ.
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The most crucial parameter of the benchmark model to generate successful outcomes on the
exchange rate dynamics is the long-run trend inflation γ̄. Recall that under γ̄ = 1 the transition of
the price dispersion differential (9), the GNKPC (14), and the TOT dynamics (15) are degenerated
to the corresponding standard specifications in the conventional two-country NK model as in Be-
nigno (2004). To clarify the contribution the long-run trend inflation γ̄ makes to our understanding
of the exchange rate dynamics more sharply, I simulate the model under no long-run trend inflation,
γ̄ = 1.

The third row of Table 2, which is labelled “No LR Trend Inflation”, reports the simulated
moments of the restricted model. First, the sum of AR(5) coefficient, α, decreases sharply to 0.793
in the restricted model from the benchmark value of 0.992. Furthermore, the simulated half-life
measure HL of 0.750 years uncovers the weak persistence of the real exchange rate within the
restricted model. Therefore, without the long-run trend inflation the model fails to generate a
sufficient degree of the persistence of the real exchange rate to match the empirical observation.

Moreover, the restricted model performs worse even in the other moments. The simulated
correlation coefficient between the real and nominal currency returns, Corr, is 0.550, which is far
below the minimum value of 0.820 among the Burstein and Gopinath’s (2014) estimates. The
simulated STD ratio of the real and nominal currency return sharply falls to 0.261 from 0.965 of the
benchmark. This low value of the STD ratio implies that in the restricted model the volatility of the
inflation differential is counterfactually large. To confirm this weak property of the restricted model,
Figure 7 plots the simulated synthetic time series of the real currency return as the solid read line,
the nominal currency return the dotted blue line, and the inflation differential the solid black line.
Observe that the inflation differential has a quite large swing with a high volatility. The long-run
trend inflation improves the model’s empirical fit by damping down the inflation differential process.

4.5. Roles of price elasticity of demand

The most controversial calibration in the benchmark model might be about the price elasticity
of demand ζ. With a positive long-run trend inflation γ̄ > 1, the price elasticity of demand ζ affects
the transition of the price dispersion differential (9), the GNKPC (14), and the TOT dynamics (15).
Contrary to the standard NK model with no long-run trend inflation, the price elasticity parameter
plays a crucial role in the exchange rate dynamics in the benchmark model.

In the benchmark model, I set the parameter a quite large size of 22 because this value implies
an empirically plausible markup rate of 11.690 % through the markup equation (18). A careful
investigation, however, reveals that the markup equation (18) is a quadratic U-shape equation as
shown in Figure 8. Hence a conventional value of ζ, say, around 10 also implies the markup rate
of 11.780 %.23 This means that under a positive long-run trend inflation the conventional way of
calibration of ζ by matching the theoretical markup rate to the estimated markup rate with actual
data fails to pin down the value of ζ. How can we find a plausible value of ζ within this two-country
NK model with trend inflation?

23For example, using the post war U.S. data, Cogley and Sbordone (2014) estimate a single-equation GNKPC and
reports that the median estimate of ζ is 9.8 with the 90 % confidence interval between 7.4 and 12.1. Ascari and
Sbordone (2014) set ζ to 10 in their discussion of their closed-economy NK model. To my best knowledge, there has
been no estimate of ζ within an open-economy NK model with trend inflation.
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The fourth row of Table 2, which is labelled “Lower Price Elasticity”, displays the implications
on the exchange rate moments of the specification of the model with ζ = 10. The simulated sum of
the AR(5) coefficients α of 0.964 is consistent with the empirical counterpart. The implied half-life
measure HL of a year, however, is counterfactually low. This means that the model is absent from
a strong propagation mechanism of the real exchange rate and cannot generate a hump-shaped
impulse response as found in the empirical counterpart. The correlation between the real and
nominal currency returns is simulated to 0.582 and the STD ratio of the two currency returns to
0.328. These numbers are far below the empirical counterparts. A lower price elasticity clearly
worsens the fit of the model to the data properties of the exchange rates.

Therefore, the benchmark model with a larger value of ζ around 22 performs much better in
terms of the exchange rate moments than the specification of the model with a conventional value
of the price elasticity around 10. Developing a better estimation of the price elasticity of demand
is beyond the scope of this paper. I leave this as an important future task of the literature.

5. Conclusion

In this paper I argue that allowing for trend inflation in an otherwise standard two-country NK
model fundamentally changes exchange rate dynamics. A positive long-run trend inflation implies
a more persistent but less volatile inflation differential with the GNKPCs of the two countries.
At the same time, the GNKPCs weaken the linkage between the inflation differential and the real
exchange rate. The RUIP condition jointly with the Taylor rules then generates a nearly permanent
real exchange rate with a large volatility. Combined with the less volatile inflation differential, the
real and nominal currency returns co-move almost perfectly in an equilibrium of the model.

Because the model of this paper is still absent from many other theoretical features that the
recent literature of the international relative prices emphasize to approach exchange rate anomalies.
For example, the benchmark specification has neither home-bias nor distributional margin. As a
result, the benchmark model implies an almost one-to-one correspondence of the real exchange rate
to the consumption differential even under incomplete international financial markets. Including
these features into the benchmark model is an important future task to approach Backus and
Smith’s (1993) anomaly.
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Table 1: Benchmark Calibration of Trend Inflation Model

Parameters Values

β Subjective Discount Factor 0.990
γ̄ Mean Adjusted Trend Inflation Rate 0.0084
η Labor Supply Elasticity 2.000
ζ Price Elasticity of Final Goods Demand 22.000
μ Calvo probability of No Price Resetting 0.800
aπ Taylor Rule Parameter on Inflation Gap 1.500
ay Taylor Rule Parameter on Output Gap 0.100
ρi Interest Rate Smoothing Parameter 0.800
λ Error Correction Speed of Productivity Shock 0.010
ρτ Trend Inflation Differential AR(1) Coef. 0.990
σA Productivity Differential Shock Std. 0.010
στ Trend Inflation Differential Shock Std. 0.002
σi Monetary Policy Shock Std. 0.005

Note 1. Price elasticity of demand ζ is calibrated to match the steady state markup rate to 11.690%.
Note 2. Calibrated long-run adjusted trend inflation rate γ̄ corresponds to to 3.420% at annual rate.
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Table 2: Data and Simulated Moments of Exchange Rates

α HL Corr Std(Δ ln qt)
Std(Δ lnSt)

Empirical 0.954 4.425 0.932 0.956
90 % CI or {min,max} [0.879 1.000] {1.600 6.000} {0.820 0.990} {0.870 1.040}

Benchmark 0.992 4.250 0.965 0.965

No LR Trend Inflation 0.792 0.750 0.550 0.261
(γ̄ = 1)

Lower Price Elasticity 0.964 1.000 0.582 0.328
(ζ = 10)

Note 1: α is the sum of the AR coefficients in the AR(5) process of ln qt.
Nore 2. Half-life measure HL is the maximum period at which the impulse response function of the real exchange
rate is greater than 0.5. HL is measured in years.
Note 3. Corr represents the correlation coefficient between Δ ln qt and Δ lnSt.

Note 4. Std(Δ ln qt)
Std(Δ lnSt)

represents the ratio of the standard deviations of Δ ln qt to Δ lnSt.

Note 5: In the “Empirical” row, α comes from Steinsson’s (2008) estimate using the U.S. trade weighted real exchange
rate. The other statistics stem from Burstein and Gopinath (2014). Each of them exhibits the average of the point
estimates over the eight advanced countries.
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Table 3: Simulated Volatilities Between Flexible and Managed
Exchange Rate Regimes

Benchmark Managed
ϕ = 0.000 ϕ = 0.500 ϕ = 0.750

Std (Δqt) % 6.717 0.972 0.388

Std(Δ lnP d
t ) % 1.803 1.134 0.637
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