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Abstract  

Most megacities in developing countries are constantly exposed to flood risk, with a clear lack of 

understanding of insurance leading to poor risk management by urban populations. This paper 

analyses the demand for a hypothetical index-based flood insurance product among households in 

Jakarta, Indonesia. An expected utility framework is used to test whether this demand is significantly 

determined by the basis risk component of the insurance. The paper investigates the effects on 

insurance uptake of premium discounts, and risk aversion. Using distance of a house to the reference 

floodgate station (a proxy for basis risk), we find demand falls as basis risk increases. Additionally, 

the uptake decreases with price and risk aversion. We recommend further investment in floodgate 

stations to reduce basis risk, complemented with subsidies to encourage demand for this product. 

However, the level of discount offered to urban households is inconclusive and constitutes an 

important topic for future research. 
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Demand for index-based flood insurance in Jakarta, Indonesia 

 
 

1. Introduction 

Changes in extreme weather and climate events can have large impacts on human health and 

cause losses to wealth. There has been growing evidence showing that the ongoing trend of 

climate change contributes to higher temperatures that will exacerbate weather-related events 

in the coming decades, such as flooding and drought (IPCC, 2012; IPCC et al., 2018; 

UNDRR, 2019). In turn, this increases the vulnerability of communities to natural hazards, 

especially those in developing countries characterised by poverty and limited coping 

capacity. To improve developing countries’ capacity, mechanisms such as weather-related 

insurance are considered to reduce or compensate for economic and financial losses. This risk 

transfer instrument can speed-up rebuilding and recovery processes by providing post-

disaster funding and liquidity soon after the natural event (Kousky, 2019). 

Index-based insurance1 has emerged as a new type of financial risk transfer product 

helping to overcome issues commonly identified under traditional insurance policies (Barnett 

and Mahul, 2007; IFAD, 2010). More specifically, it removes the problems of moral hazard 

(hidden action) and adverse selection (hidden information) – considered advantageous to the 

insurer – compared to traditional insurance (Barnett et al., 2008; Cole et al., 2013). This type 

of insurance has become prominent as a solution for poor management of land and water 

resources, and instances of people being exposed to flooding. In particular, index-based flood 

insurance protects against damage resulting from flood incidences due to heavy rainfall. 

Unlike indemnity-based insurance, where the policyholder receives compensation for 

verifiable losses, this product pays out claims based on observable and measured flood 

indices that are correlated with losses suffered by policyholders. 

                                                 
1  This product is classified as a derivative which differs from traditional insurance (known as indemnity-based 

contracts). 
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In that context, this study proposes a hypothetical product based insurance on flood-

related indices for households located in the megacity of Jakarta, Indonesia, which suffers 

from annual flooding. This product would compensate urban households against actual losses 

such as housing maintenance repairs, clean-up costs, income loss, and costs related to 

evacuation2. However, this beneficial aspect of the insurance product also presents a problem: 

basis risk, the situation whereby the insured faces uncertainty that its actual losses are not 

fully covered. 

Some experimental studies explore these same factors to assess their collective impact 

on the demand of smallholder farmers in developing countries purchasing index-based 

insurance. Their findings show that insurance adoption is negative (and highly sensitive) to 

prices and distance to the station (basis risk); and demand increases at low levels of risk 

aversion, then decreases at higher levels (Mobarak and Rosenzweig, 2013; Hill et al., 2013; 

Cole et al., 2013; Hill et al., 2016).  

The purpose of this paper is to test how demand for this insurance product behaves 

under basis risk, and the response to premium and risk aversion using a hypothetical index-

based flood insurance for the urban context of Jakarta, Indonesia. This megacity was selected 

for our study due to a number of reasons. First, it is one of the biggest and most populated in 

the world, and vulnerable from flooding due to the occurrence of annual flood-related 

disasters (Firman et al., 2011; Cobian and Resosudarmo, 2019). This condition comes as a 

result of: i) high rainfall intensity; ii) subsidence soil; and iii) inadequate hydraulic 

infrastructure in the city (Sedlar, 2016). In addition, parts of north Jakarta are sinking at an 

average rate of 15 centimetres (cm) per year, making Jakarta the world’s fastest sinking city 

(Octavianti and Charles, 2018).  

                                                 
2 These are the most common household expenditures due to flooding in Jakarta, based on the individual’s 

responses from our survey. 
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Second, the annual cost of these floods has been significant; for example, the 2007 

flood, which is considered the worst natural shock, caused a total loss of US$ 565 million in 

terms of property damage (Wijayanti et al., 2017). Third, to improve the capabilities of 

Jakarta’s residents to cope with this annual flood event, there has been discussion on the 

possibility of developing an index-based flood insurance product. This product may insulate 

household income and consumption against flood shocks that are exogenous to the household 

unit.  

We achieve the paper’s objective by using data from a double-bounded dichotomous 

choice experiment conducted in 2018, combined with five-year flood data. We use as a proxy 

of basis risk the distance of a household to the reference floodgate station in the hypothetical 

insurance product they were offered. Our identification strategy leverages the exogeneity of 

the distance to the station after controlling distance of a household to the closest river and 

household’s characteristics, as well as premiums and risk aversion, in order to exploit these 

exogenous variations to identify the effects on demand. To the best of our knowledge, it is 

one of the first studies to examine features of demand for index-based flood insurance in the 

urban context of a developing country.  

The results of this study are in line with those of previous study estimates, showing 

that demand falls with price and distance to the floodgate station, while insurance uptake only 

decreases at extreme risk averse households. In addition, we find that households located 

equal to and less than five km away from the reference floodgate station are four times as 

sensitive to prices (demand is elastic) as those households located equal to or more than 12 

km away. 

The remainder of the paper is structured as follows. The next section defines index-

based insurance, providing the theoretical framework and literature review. It is followed by 

a section describing the household survey on index-based flood insurance in Jakarta. The next 
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section is on the identification strategy and the econometric framework; then, sections on 

main results and extended analysis, and lastly the conclusion section. 

 

2. Index-based insurance: Theoretical framework and literature review 

Index-based insurance compensates the insured based on pre-agreed weather-related indices – 

measured with historical information recorded at monitoring stations – that represent actual 

losses within a geographically defined space (Skees and Barnett, 2006). In agriculture, for 

example, temperature and precipitation gauge information is used to model drought and 

rainfall crop yields. If weather-related indices remain below or cross pre-defined thresholds, 

compensation is released to the insured. 

With index-based flood insurance, the index is typically constructed based on data 

related to the extent and depth of water level, and the amount of time for flooding to subside. 

Floods occurring generally near a body of water (mostly rivers) are known to be unevenly 

distributed across space – in the same way that precipitation is identified as an idiosyncratic 

shock in Dell et al. (2014). Under this approach, every household within a similar spatial area 

with the same insurance policy and damage experience from flooding receives identical 

payouts despite actual losses. Hence, indemnity payments are based on objective, observable, 

and verifiable variables. 

Following the approach of Hill, Robles and Ceballos (2016), complemented with 

elements of Clarke’s (2016) work, a standard expected utility model for index-based 

insurance is adapted to explore predictions on whether insurance demand behaves as 

expected in response to basis risk, premium and risk aversion. Consider a representative 

urban household that is strictly risk-averse3, with welfare 𝑊, and faces two states of the 

world 𝑆 = {𝐿𝑜𝑠𝑠 = 𝐿, 𝐿𝑜𝑠𝑠 = 0}; where 𝐿𝑜𝑠𝑠 = 𝐿 with probability 𝑝 if the household 

                                                 
3  A risk-averse household with indirect utility function satisfies Constant Absolute Risk Aversion (CARA). This 

means as wealth increases a household holds the same amount of dollars in risky assets. 
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suffered from a disaster, and 𝐿𝑜𝑠𝑠 = 0 with probability 1 − 𝑝, if they did not. In the absence 

of insurance, the expected welfare is 𝐸[𝑊|𝑆] = 𝑝(𝑤 − 𝐿) + (1 − 𝑝)(𝑤 − 0) = 𝑤 − 𝑝. 𝐿.  

In the presence of index-based insurance, the maximum payout claimed by an insured 

household is 𝐼 when facing losses after a bad natural event occurs. Hence, the expected 

amount of claim per household is 𝑝𝐼. The premium of the index-based insurance is equal to 

𝑚𝑝𝐼, where 𝑚 is known as “price multiple” that places it above or below the expected claim. 

Therefore, when 𝑚 = 1, it is an actuarially-fair price; 𝑚 > 1 is an actuarially-unfair price; 

and 𝑚 < 1 is a favourable product priced below the actuarially-fair price. 

The urban household can choose an index insurance coverage as high as 𝛼, where 0 <

𝛼 ≤ 1. This urban household would face four possible scenarios when flooding occurs in the 

neighbourhood area as shown in Figure 1. These are combinations of joint events: i) 

household experiences or not Loss (= 𝐿) due to flooding; and ii) whether or not the weather-

related index crosses a pre-determined threshold to trigger a payout; i.e. the compensation (=

𝐼) is released or not. 

 

 
Notes: Loss = scenario for a household experiencing loss equal to L due to flooding; No Loss = scenario for 

a household experiencing no loss; Index = scenario for a weather-related index crossing a pre-defined 

threshold and compensation I released; No Index = scenario for a weather-related index placed below a pre-

defined threshold. 

Source: Author’s illustration. 

Fig. 1 Possible scenarios of households’ welfare with index-based insurance when flooding occurs 
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The presence of basis risk is associated with a joint probability distribution (𝑟) of 

some loss experienced by the household due to flooding and the weather-related index placed 

below a pre-defined threshold – i.e. household facing the worst scenario 𝑊(𝐿, 0), or no loss 

experienced by the household but the weather-related index crosses a pre-defined threshold – 

i.e. household facing the best scenario 𝑊(0, 𝐼). In these two scenarios, basis risk is not zero 

(or 𝑟>0). In contrast, a perfect weather index insurance is one that has no basis risk (𝑟=0). 

The household decision problem consists of maximising its expected indirect utility 

by controlling 𝛼: 

max 𝐸[𝑊|𝑆] = 𝐸[𝑤 − 𝛼𝑚𝑝𝐼 − 𝐿(𝑆) + 𝛼𝐼(𝑆)]     (1) 

The first-order condition is as follows: 

𝐸 [𝑊′(𝑆)
𝜕𝑊(𝑆)

𝜕𝛼
] = 0         (2) 

Basis risk (r) indirectly impacts the expected welfare through the optimal choice of 𝛼. In the 

absence of basis risk (𝑟 = 0) and an actuarially-fair price (𝑚 = 1), the optimal solution is 

𝛼∗ = 1. 

Given the presence of basis risk with an actuarially-fair price insurance product, we 

expect to see a downward demand curve with respect to levels of household risk aversion 

(from least to extreme risk-aversion), however it may not be monotonic. In any case, we 

predict a least risk averse household willing to purchase insurance ( = 1), while an 

extremely risk-averse household unwilling to purchase insurance ( = 0). 

The demand for index insurance would be also affected by the magnitude of 𝑚 (the 

price factor) when it is different from 1, 𝑚 ≠ 1. A household’s welfare is negatively 

impacted by an actuarially-unfair price (𝑚 > 1) and basis risk (𝑟 > 0) when the disaster 

occurs, resulting in a low probability of purchasing the index insurance. Therefore, given 

possible variations of price and non-price factors – namely the payout relative to the product 
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price, and the degree of basis risk and risk-aversion – in the household’s decision problem, 

the shape of index-based insurance demand becomes an empirical question. 

There exists experimental research focusing on the impact that price and non-price 

factors have on index-based insurance demand, including those in developing countries (Giné 

et al., 2008). Index-based insurance literature, focusing on analysis of paying a price in return 

for a future payout using discounts randomly allocated among households to generate 

exogenous price variation for insurance uptake, shows that, as prices decline via incentives, 

the probability of purchase increases. This is exacerbated when index-based insurance is 

below or at an actuarially-fair price, showing that demand is clearly sensitive to these 

variations for risk-averse households (Cole et al., 2013; McIntosh et al., 2013; Takahashi et 

al., 2016; Tadesse et al., 2017; Jensen et al., 2017). By contrast, for insurance products with 

an actuarially-unfair price – with or without discounts, household demand increases with 

risk-seeking and decreases with risk-averse households (Hill et al., 2016; Clarke, 2016). 

Basis risk, however, has been under-researched within index-based insurance 

literature in the developing country context (Jensen et al., 2016), despite being a major issue 

substantially reducing demand for insurance. Few studies posit approaches to proxy for basis 

risk; for example, Giné et al. (2008) use accumulated rainfall to consider when a farmer 

decides to sow seeds4, and share of cultivated land used for castor and groundnut crops5 to 

infer if the farmers’ planting decision coincides with precipitation measurements collected at 

the gauge. Another proxy – used in Deng et al. (2007), Gaurav and Chaudhary (2020), and 

Ceballos and Robles (2020) – is the degree of correlation between two sets of weather 

indices collected at the weather station and the household’s plot, finding that basis risk 

                                                 
4  This proxy is a dummy equal to one if a farmer decides to sow based on accumulated rainfall (due to the 

approximate 2-month verification delay following rainfall occurring and the government making a payout), 

and zero if instead the decision is based on other factors such as soil moisture and advice from other farmers 

(which are non-reliant on government verification). 
5  If a household grows castor or groundnut crops, which are related to the presence of low rainfall and 

associated with the insurance design product, they were more likely to purchase insurance. 
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decreases when the coefficient is closer to 1. Finally, Mobarak and Rosenzweig (2013), 

McIntosh et al. (2013), Hill et al. (2016), and Sibiko et al. (2018) use distance to the weather 

station to measure the basis risk degree of index-based insurance, finding that pay-outs for 

shorter distances are more closely correlated with actual losses of the insured. A similar 

proxy is used in this study – distance of a house to the reference floodgate station. 

 

3. Household survey on hypothetical index-based flood insurance in Jakarta 

A household survey was conducted for a month between February and March in 2018 to 

collect basic information on household characteristics, including age, gender, number of 

members, years of education, income and consumption, and housing ownership; geographic 

characteristics; and experience with flood shocks. The survey also included a specialised 

module regarding demand for a hypothetical index-based flood insurance product, premium 

rates, discounts, and risk attitudes. 

Given that areas in Jakarta are exposed to different flood risks, we classified each 

Rukun Warga (RW), or sub-village (kelurahan), in Jakarta into three categories: i) almost 

never experienced flood; ii) occasionally experienced flood; and iii) always experienced 

flood. This classification used data on flood water level at RW level collected by the Badan 

Penanggulangan Bencana Daerah (BPBD or Jakarta Regional Disaster Management 

Agency)6 for the period 2013-2016. In collaboration with the Indonesian statistical agency, 

the Statistics Indonesia, we then sampled 1,200 households, equally distributed across 

“almost never flooded”, “occasionally flooded” and “always flooded” areas. A total of 836 

households completed the survey, which 258 of them are in the “almost never flooded” 

                                                 
6 A flood event is defined as an overflow of river water with a height of 40cm and above. According to 

Cobian and Resosudarmo (2019), approximately from this flood height, households start experiencing 

property damage associated with flooding. In addition, we did not use data on elevation with respect to sea 

level to allocate villages to any category because of the significant variation across locations with houses that 

have or have not experienced floods in the 2013-2016 period. 
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category, 289 in the “occasionally flooded” category, and 289 in the “always flooded” 

category. Figure 2 maps the household locations of survey participants in Jakarta, and the 

areas covered including within and outside of flood hazard zones, and closer to and far from 

main rivers. 

 

 
Notes: This figure shows the regions of our study area, the households who participated in the 

survey, and the location of the reference floodgate stations used for triggering payouts of the 

hypothetical index-based flood insurance. 

Source: Author’s own illustration. 

Fig. 2 Location of study area, sampling sites and reference floodgate stations 
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A unique hypothetical index-based flood insurance product was offered in each 

surveyed household. The product would pay a fixed amount (IDR 10 million7) to cover losses 

caused by a flood event associated with the river water height crossing a certain threshold 

(predetermined trigger)8 corresponding to a particular floodgate station9. The hypothetical 

product was designed in a way that payouts and perils are covered in the area related to the 

reference floodgate station, but with each station having a different predetermined trigger 

(flood index levels associated with the river water level). Households were free to express 

their willingness to pay (or not) for the hypothetical index-based flood insurance product. 

The flood indices associated with the river water level relied on 14 reference 

floodgate stations distributed across the five regions of Jakarta: eight are located within the 

megacity, and six are at territory borders (see map in Figure 2)10. However, six floodgate 

stations were not included in this study as a result of simple random sampling when 

conducting the survey. No household surrounding these six floodgate stations were chosen to 

be surveyed. 

The degree of basis risk associated with the hypothetical index-based flood insurance 

is measured by using distance of a house to the reference floodgate station (as a proxy). The 

survey dataset provides the geographic location of households in the study area (x-and-y 

coordinates expressed as longitude and latitude) 11, whereas locations for existing floodgate 

                                                 
7  It represents the average maximum amount spent to cover household losses such as housing repairs, clean-up 

costs, and income loss when flooding occurs. This information was obtained from focus group discussions 

involving people who live in some flood-prone communities in Jakarta. 
8  The thresholds at which payouts are triggered vary from 200 to 950 cm. 
9  Each floodgate station has a particular river water level that was determined by the observed measurement 

during the 2007 flood event in Jakarta. This is known as the critical level of Siaga 1 (highest alert). 
10  Flood indices consider water level information from fluvial, pluvial and coastal flooding in Jakarta. 

Floodgate stations record river water levels that are identified with flood heights measured in 

neighbourhoods affected by any type of this natural hazard. 
11  There are 81 pairs of missing coordinates in the data due to problems with GPS signal during the survey. 

Information on household location at the Rukun Warga level (Community Unit) and the x-y coordinates of 

the centroid of these community units obtained from OpenStreetMap website are available for this study. By 

using these sources of information, we fill in the missing values on coordinates. 
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stations used as reference stations to trigger payouts were obtained freely from the Posko 

Banjir Online (Flood Information Center Online) website12. 

Surveyed households were referenced to a closer floodgate station if they were 

downstream from that floodgate station in a particular river; or to a unique, nearest floodgate 

station in a particular area. We argue that we have introduced sufficient exogenous variation 

in the degree of basis risk associated with the hypothetical index-based flood insurance 

product in our estimated model. 

Additionally, we offered random variation in monthly premiums among surveyed 

households. First, they were randomly offered 1 of 5 different premiums13 to measure their 

willingness to purchase. Then, if a household did not choose to purchase the index-based 

insurance product, it received a price discount of 50 percent; otherwise, it faced a price 

increase of 50 percent. This method follows the double-bounded dichotomous choice 

contingent valuation (Hanemann et al., 1991) that improves efficiency over discrete choice 

models. This hypothetical insurance product, however, was priced at a particular actuarially 

(un)fair price. 

Finally, a Binswanger-style lottery choice model (Binswanger, 1980) was utilised in 

our experiment to measure individual risk preferences and understand how each respondent 

makes decisions14. Table A.1 in the Appendix reports that the tendency of participants to 

move to a riskier option could have been driven by the fact they were trying to win as much 

                                                 
12  The information about geographical location of each floodgate station used in this study is available at: 

http://poskobanjirdsda.jakarta.go.id/map_fullscreen.aspx. 
13  The randomised monthly prices chosen were IDR 10,000, IDR 50,000, IDR 100,000, IDR 200,000 and IDR 

500,000. The base price was obtained from focus group discussions involving people from some flood-prone 

communities in Jakarta before conducting the survey. These communities have the “Community Flood 

Savings” which consists of collecting IDR 10,000 monthly per household in a particular community and 

uses the saved amount to help affected households during flooding. 
14  This model included two rounds, hypothetical payments and real payments. Under the game, each 

respondent chooses one of six investment options. These include IDR 20,000 - IDR 20,000; IDR 16,000 - 

IDR 25,000; IDR 12,000 - IDR 30,000; IDR 8,000 - IDR 35,000; IDR 4,000 – IDR 40,000; and IDR 0 - IDR 

50,000. Then, a ‘which-hand-is-it in’ type game is played with two marbles (blue and yellow), with a 

probability of 50 percent to yield a return. The respondents are asked to choose a hand. Finally, respondents 

receive the payment associated with the blue or yellow marble. 

http://poskobanjirdsda.jakarta.go.id/map_fullscreen.aspx
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cash as possible, rather than revealing a true preference for risk. Therefore, in this study, we 

present estimates for the relationship between risk aversion (measured through a hypothetical 

lottery survey) and demand for index-based flood insurance. This is explained by two factors. 

Firstly, risk preference measures under hypothetical payoffs are consistent with the expected 

utility theory. Secondly, we do not see significant differences in estimates when we replicate 

these results using monetary payoffs. Table 1 presents the summary statistics of the 

households in our survey and the weather-related variables for our analysis. 

 

Table 1. Summary statistics 

 
 

Figure 3 shows the probability of accepting to buy index-based flood insurance at 

different price levels. As the monthly premium goes up, the probability of insurance purchase 

declines. Note that the average monthly premium for households willing to purchase this 

mean sd mean sd mean sd mean sd

Panel A: Geographic characteristics

Distance to closest floodgate station (km) 8.524 6.468 7.830 4.313 12.274 3.590 9.580 5.259

Distance to nearest river (km) 1.328 0.834 1.018 0.843 0.568 0.407 0.958 0.783

Elevation (metres above sea level) 16.194 13.746 19.691 18.363 17.409 8.573 17.823 14.209

Panel B: Premium rates

First question 153.411 145.901 157.993 156.787 146.747 148.026 152.691 150.367

Follow-up question 91.647 95.371 94.464 84.086 91.851 97.363 92.691 92.246

Panel C: Household head risk preference

Extreme risk aversion (hypo. lottery) 0.318 0.467 0.291 0.455 0.311 0.464 0.306 0.461

Extreme risk aversion (real lottery) 0.291 0.455 0.294 0.456 0.277 0.448 0.287 0.453

Panel D: Household characteristics

Household members 3.702 1.392 3.709 1.431 3.668 1.605 3.693 1.480

Age 49.651 10.886 50.851 12.074 51.035 12.105 50.544 11.733

Education 10.318 3.051 9.471 3.480 9.603 3.209 9.778 3.275

Female (1,0) 0.209 0.408 0.183 0.388 0.183 0.388 0.191 0.394

Married (1,0) 0.806 0.396 0.813 0.390 0.803 0.399 0.807 0.395

Income (million IDR) 5.300 3.495 5.234 3.007 4.356 2.870 4.950 3.148

Expenditure (million IDR) 3.769 2.468 3.468 1.860 3.121 1.581 3.441 2.000

House value (million IDR) 15.578 11.235 16.588 15.279 12.357 6.495 14.812 11.717

Homeowner (1,0) 0.764 0.426 0.772 0.421 0.799 0.401 0.779 0.415

Panel E: Weather and flood experience

Rainfall in 2015 (mm) 1,705.50 126.23 1,715.22 160.04 1,677.68 109.84 1,699.25 134.76

Flood expenses in 2017 (million IDR) 0.272 1.368 0.211 0.363 0.424 1.084 0.303 1.017

Flood shocks 4.109 3.164 4.536 2.918 8.581 2.183 5.803 3.432

Panel F: Perception of flood

Flood risk (1,0) 0.756 0.430 0.803 0.399 0.782 0.414 0.781 0.414

Flood cycle - every 5 years (1,0) 0.581 0.494 0.599 0.491 0.439 0.497 0.538 0.499

Panel G: Mitigation strategy

Mitigation (1,0) 0.326 0.470 0.304 0.461 0.356 0.480 0.329 0.470

(3)

Households always

flooded (289 obs.)

(4)

All households

(836 obs.)

Households almost never

flooded (258 obs.)

Households occasionally

flooded (289 obs.)

(1) (2)
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insurance product is IDR 50,000. Thus, in this study we expect this premium rate to be the 

actuarially-fair price of the hypothetical index-based flood insurance offered to households. 

 

 
Notes: This figure shows the probability of insurance purchase for the first question and the follow-

up question under a dichotomous choice method. 

Source: The Impact of Jakarta Floods Survey (2018). 

Figure 3. Probability for accepting index-based flood insurance by different price levels 

 

4. Identification strategy  

This study takes inspiration from Hill et al. (2016) who used distance to the reference station, 

premium rates, and household risk aversion in a field experiment to explore the predictions of 

an expected utility model on insurance demand. As a proxy for basis risk, we use the distance 

of a house to the reference floodgate station and assume it is exogenous after we control for 

distance of a house to the nearest river. Households’ decision on where to live either far from 

or closer to the river, is mainly driven by income and amenities, such as affordable housing 
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and adequate basic services15. By contrast, distance to the floodgate station is typically 

ignored16.  

Figure 4 illustrates the spatial proximities, that is, the distance (𝑑𝑖) of house 𝑖 (𝐻𝑖) to 

the reference floodgate station (𝐹𝑠), and the distance to the nearest river (𝑑𝑟). The former is 

the perpendicular distance to the floodgate station and differences in x-and-y coordinates (𝑎𝑖 

and 𝑏𝑖, respectively) to the floodgate station. The latter is the straight-line distance between 

each sampled household and the nearest river. 

 
Source: Author’s own illustration. 

Figure 4. Illustration of spatial proximity 

 

In addition, in Figure 4, the distance 𝑑𝑖 of house 𝐻𝑖 to the reference floodgate station 

𝐹𝑠 is shorter than the distance 𝑑𝑗 of house 𝐻𝑗 to the same floodgate station 𝐹𝑠
17 where flood 

indices are measured for both houses, despite the fact that 𝐻𝑗 would potentially experience 

different flood conditions compared to 𝐻𝑖. This creates basis risk where 𝐻𝑗 may not receive 

                                                 
15  For example, low-income families are often located in densely populated areas that are more likely exposed 

to flood risks (Jha et al., 2012). In the case of Jakarta, many of the poor have developed large informal 

settlements along the waterways and rivers (Texier, 2008). 
16  If distance to the station had an impact on location decision-making, households would have considered 

purchasing coverage to protect their property from flooding; however, as identified in the survey, no 

households have house insurance. 
17  This means that when a house is closer to a floodgate station, the policy is aligned to the flood information 

nearby (flood height and damage); whereas when a house is further from a floodgate station, the policy is 

still aligned to the floodgate station information but not local conditions. 
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compensation even though they experience losses from flooding, simply due to the fact that 

the floodgate station records a different level of flooding (e.g., lower). Therefore, the key 

identifying assumption is that index-based flood insurance demand is negatively affected by 

the distance to the reference floodgate station, given that distance to the river is controlled in 

the estimated model18. 

In relation to premium rates, one of five price levels were randomly presented to each 

respondent for the hypothetical index-based flood insurance product. In theory, each sampled 

individual had an equal probability of being assigned any of these prices. Then, exogenous 

variation in the price was introduced by randomly allocating a price discount or price increase 

across urban households, under a double-bounded dichotomous choice. We test this 

exogeneity by performing balance tests on a number of covariates. Therefore, the 

identification strategy used in the study assumes the premium rates have no statistically 

significant effect on these covariates. 

Referring to risk aversion, index-based insurance literature has treated risk 

preferences as exogenous using Binswanger’s (1980) lottery choices19 in field experiments to 

infer the levels of risk. Recent empirical research has found that risk aversion may be 

influenced by natural shocks, including flooding (Chuang and Schechter, 2015; Schildberg-

Hörisch, 2018); however, in our experiment, using data of household risk aversion and flood 

shocks, we find no statistically significant relationship. 

                                                 
18  A concern for the credibility of this assumption is that floodgate stations may have been constructed in 

specific locations based on potential flood risks. In practice, between late 1800 and 1945, the Dutch 

administration installed floodgate stations at randomly-chosen locations as a part of the drainage system 

within the Ciliwung river basin and main drains, to control both the flow of water from upstream, and the 

volume of water entering Batavia – the former colonial port from where Jakarta has expanded. 
19  Each respondent chooses one lottery (investment option) out of six, and a ‘which-hand-is-it in’ type game 

with two marbles (blue and yellow) is played. Then, respondents are asked to pick the hand with the blue 

marble or with the yellow marble (each with a probability of 50%), and the respondent receives the payment 

accordingly. The investment options are: 1) IDR 20,000 (blue)-IDR 20,000 (Yellow); 2) IDR 16,000-IDR 

25,000; 3) IDR 12,000-IDR 30,000; 4) IDR 8,000-IDR 35,000; 5) IDR 4,000-IDR 40,000; and 6) IDR 0-

IDR 50,000. 
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In the estimated model, furthermore, we include region characteristics and flood 

intensity fixed effects, so that the identifying variations do not disproportionately rely only on 

flood-prone villages where the impact of flooding is larger. Finally, we account for the 

variation of flood levels between 2013 and 2017 within a particular village area by 

calculating the monthly flood shocks20. This controls any weather-related influence such as 

floods on the household decision to purchase index-based flood insurance. 

 

Table 2. Balance test for covariates 

 
Notes: OLS and probit regression estimates for continuous and dummy variables, respectively. Each result 

represents a regression of the dependent variable on an explanatory variable (which are our study variables). 

Each result display the coefficients related to each exogenous variable and the bootstrapped standard errors in 

parenthesis (100 replications). Each regression includes distance to nearest river and fixed effects (region and 

flood intensity). The number of observations is 836, except for the premium explanatory variable that 

corresponds to two successive questions, which have 1,672 observations. Asterisk (*), double asterisk (**), and 

triple asterisk (***) denote variables significant at 10 percent, 5 percent, and 1 percent, respectively. 

Source: The Impact of Jakarta Floods Survey (2018) and Posko Banjir Online. 

 

Our identification strategy relies on the exogeneity of distance to the reference 

floodgate station, premium rates, and extreme risk aversion with respect to household 

characteristics. We test this assumption by performing balance tests of these three exogenous 

variables on a number of observable variables at the household level. Table 2 displays the 

outcome of these tests. Most covariates are statistically insignificant; although, by random 

chance, we should expect some variables to be correlated with our study variables. Therefore, 

                                                 
20  Shocks are relative to the subdistrict level long-run flood in a particular month (they are defined at a monthly 

definition). The estimation of monthly flood shocks follows the approach of Karadja and Prawitz (2017) (see 

Appendix Section B for more details about the calculation.  

Dependent 

variable:

Explanatory

variable:

-0.0158 0.1335 -0.0141 -0.0106*** 0.0036 -0.0668*** -0.0457*** -0.3543*** -0.0026 0.0016

(0.0111) (0.1074) (0.0232) (0.0035) (0.0034) (0.0217) (0.0176) (0.0713) (0.0031) (0.0053)

0.0002 -0.0032 -0.00003 -0.00001 0.00001 0.0001 -0.0005 0.0004 -0.00004 0.0002

(0.0002) (0.0020) (0.0006) (0.0001) (0.0001) (0.0006) (0.0003) (0.0022) (0.0001) (0.0002)

0.1196 -0.8551 0.0167 -0.0582* 0.0220 -0.1631 -0.0789 -0.7757 -0.0287 -0.0661

(0.1165) (0.9324) (0.2506) (0.0308) (0.0310) (0.2192) (0.1574) (0.6870) (0.0293) (0.0467)

YES YES YES YES YES YES YES YES YES YES

YES YES YES YES YES YES YES YES YES YES

YES YES YES YES YES YES YES YES YES YES

Distance to nearest river

Region fixed effects

Flood intensity fixed effects

House value 

(million IDR)

(8)

Own 

house=1

(9)

Extreme risk aversion (1,0)

Flood-related 

expenses 2017 

(million IDR)

(10)

Distance to

floodgate station (km)

Premium

Years of 

education

(3)

Female=1

(4)

Married=1

(5)

Income

(6)

Expenditure

(7)

Number of 

household 

members

(1)

Age

(2)
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we conclude that both distance to the reference floodgate station and extreme risk aversion 

variables are relatively exogenous; by contrast, premium is purely exogenous. 

 

5. Empirical model 

The cross-sectional equation of interest is: 

𝑃(𝑦𝑖𝑗 = 1) = 𝐹(𝛽0 + 𝜷𝟏𝑫𝒊 + 𝜷𝟐𝑷𝒊 + 𝜷𝟑𝑬𝒊 + 𝛿𝐺𝑖𝑗 + 𝛾𝑋𝑖 + 𝜆𝐹𝑖 + 𝜙𝑟 + 𝜃𝑗 + 𝜀𝑖,𝑗) (3) 

where 𝑦𝑖𝑗 is the household participation in the index-based flood insurance product (a binary 

variable = 1 if the 𝑖th household in the village 𝑗 is willing to purchase the product and =0 

otherwise). 𝑫𝒊 indicates the distance of a house to the reference floodgate station expressed in 

km; 𝑷𝒊 captures the premium rates of index-based flood insurance offered to the 𝑖th 

household; 𝑬𝒊 represents the extremely risk averse household (a binary variable = 1 if the 𝑖th 

household is the most risk averse and =0 otherwise); 𝐺𝑗 is the vector of geographical 

characteristics in a village; 𝑋𝑖 represents the household characteristics; 𝐹𝑖 is a vector of flood 

experience of the 𝑖th household; 𝜙𝑟 a fixed effect for the five regions; 𝜃𝑗 is the flood intensity 

fixed effect at village level; and 𝜀𝑖,𝑗 is the random error. To account for the dichotomous 

nature of our dependent variable, equation (3) will be estimated by using probit regressions. 

We also investigate the interaction of distance to the floodgate station with extreme 

risk aversion, and with premium in separate regressions to identify the channels through 

which basis risk impacts demand for index-based flood insurance. 

 

6. Main results 

In this section we present the results on the impact of basis risk, premium and risk aversion 

on the demand for index-based flood insurance. The probit estimations of index-based flood 

insurance demand for “all sample” includes an initial and follow-up bidding questions asked 

to surveyed households. Additionally, we present separately these estimations for responses 
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to the “first question” and “second question” in order to identify whether or not we face 

potential problems of sequential bidding experiments influenced by their starting point 

(Cameron and James, 1987). Finally, we bootstrap all probit regressions to approximate 

standard errors, confidence intervals, and p-values for test statistics, based on the sample 

data. 

Based on equation (3), in columns (1) through (3) of Table 3, results suggest that 

demand for index-based flood insurance is negative and statistically significant at 1 percent 

for distance to the floodgate station and premium, and negative and statistically significant at 

10 percent for extremely risk-averse households, as predicted. When using probit regressions 

for double-bounded dichotomous choice (“all sample”), and separate first and second 

questions, we find no significant differences in terms of coefficients and significance level. 

However, through “first” and “second” question specifications, extremely risk averse yields 

non-significant estimates. Additionally, a 10 percent decrease in price seems to lead to a 1.3 

percentage point increase in uptake which, given the effective demand of 9.9 percent, 

corresponds to a 22 percent increase in demand for this product21. 

We now turn to the relationship between basis risk and extreme risk aversion. 

Specifically, we expect the extremely risk-averse households to be more likely to purchase 

the insurance product when they are closer to the reference floodgate station than far away. 

Although the coefficient of the interaction term in column (4) is not statistically significant, it 

has the expected sign. 

In column (5), we only consider the effects of basis risk and premium. We assume 

there is different price elasticity of insurance that households face as they move closer (less 

basis risk) or further (more basis risk) from the reference floodgate station. We test this 

                                                 
21  This is calculated with the product of the average marginal effect for the premium (in logs) variable in 

column (1) of Table 3, that is -0.134, and the natural logarithm transformation of a 10 percent increase in the 

same variable, which is ln(0.134). 



 

 

 

20 

assumption by interacting premium and distance to the floodgate station. We find a strong 

significance estimate resulting in price elasticity increases the closer the household is to the 

reference floodgate station. 

 

 Table 3. Index-based flood insurance demand among households 

 
Notes: This table presents probit regression estimations of household-level insurance uptake on 

distance to the reference floodgate station, premium and extreme risk-aversion. Average marginal 

effects are reported. All sample corresponds to double-bounded dichotomous choice questions. The 

“Far from and close to floodgate station’’ sample only includes households at a perpendicular 

distance from their reference floodgate station below 5 km (‘‘close’’) or over 12 km (‘‘far’’). In 

columns (4), (5) and (6) probit specifications include the interaction term. All specifications include 

distance to nearest river, covariates, as well as region and flood intensity fixed effects. Standard 

errors for the marginal effects are in parentheses. Standard errors are bootstrapped (100 replications). 

Asterisk (*), double asterisk (**), and triple asterisk (***) denote variables significant at 10 percent, 

5 percent, and 1 percent, respectively. 

Source: The Impact of Jakarta Floods Survey (2018).  
 

As an additional exercise, in column (6) of Table 3, the sample is restricted to only 

those households located less than 5 km and more than 12 km from their reference floodgate 

station22. We then use an indicator variable that takes the value of one if a household belongs 

                                                 
22  The idea to restrict the sample comes from the study by Hill et al. (2016) that considers the average distance 

to the reference station of the treated (5km) and control (10km) villages in India. In the same way, we find 

the same difference in distance to the station variable where, on average, households that always experience 

floods are 12km from the reference floodgate station while households that almost never or occasionally 

Model: Probit

-0.013 *** -0.014 *** -0.010 ** -0.012 *** -0.037 ***

(0.003) (0.004) (0.004) (0.003) (0.007)

-0.134 *** -0.153 *** -0.108 *** -0.194 *** -0.088 ***

(0.009) (0.009) (0.014) (0.016) (0.012)

-0.034 * -0.024 -0.039 -0.061

(0.020) (0.025) (0.027) (0.047)

0.003

(0.004)

0.006 ***

(0.002)

0.419 ***

(0.095)

-0.087 ***

(0.023)

Distance to nearest river YES YES YES YES YES YES

Covariates YES YES YES YES YES YES

Region fixed effects YES YES YES YES YES YES

Flood intensity fixed effects YES YES YES YES YES YES

Number of observations 1,658 829 829 1,658 1,658 908

Floodgate station is close

x Premium (in logs)

(2)

1st

question

Dependent variable: Index-based flood insurance demand

Floodgate station is

close (≤ 5km)

(5)

All sample

(1)

All sample

(6)

Far from and 

close to station

Distance to floodgate station 

(km)

Extreme risk-aversion (1,0)

Distance to floodgate station

x Premium (in logs)

(3)

2nd

question

Premium (in logs)

(4)

All sample

Distance to floodgate station

x Extreme risk-aversion (1,0)
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to the first group (less than 5 km), and otherwise zero. Then, doubling the distance of a house 

to the reference floodgate station reduces insurance demand by 0.9 percentage points. 

To verify the robustness of our main results, Panel A of Table 4 reports the Linear 

Probability Model (+1 LPM) results which are relatively the same in magnitude and signs as 

in the main estimates23. Moreover, we employ the method developed by Oster (2019) to 

understand whether variation in unobservables could drive our results – especially in the case 

of a proxy for basis risk. We set the coefficient of proportionality equal to one (𝛿=1) which 

suggests that “the observables are at least as important as the unobservables” (Oster, 2019: 

195-196) in determining the outcome variable. In addition, we set the value of 𝑅𝑚𝑎𝑥
2 , the 𝑅2 

from a hypothetical regression of the outcome on basis risk and both observed and 

unobserved controls, to be equal to 1.3𝑅̃2, where 𝑅̃2is the 𝑅2 from the corresponding 

regression from Panel A of Table 4. The magnitude of Oster’s statistics (see Panel B of Table 

4) makes it very unlikely that the results of distance of a house to the floodgate station can be 

explained by variation in unobservables. 

 

 

 

 

 

 

 

 

 

 

 

                                                 
experience floods are 8km from the reference station; therefore, we sample for 5km (“close”) and 12km 

(“far”). 
23  This is also true for the risk preferences with real monetary payoffs instead of hypothetical rewards (see 

Table A.2 in the Appendix). 
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Table 4. Linear Probability Model (+1 LPM) and Oster tests 

 
Panel A presents Linear Probability Model regressions of household-level insurance uptake on 

distance to the reference floodgate station, premium and extreme risk-aversion. All sample 

corresponds to double-bounded dichotomous choice questions. The “Far from and close to floodgate 

station’’ sample only includes households at a perpendicular distance from their reference floodgate 

station below 5 km (‘‘close’’) or over 12 km (‘‘far’’). In columns (4), (5) and (6) probit specifications 

include the interaction term. All specifications include distance to nearest river, covariates, as well 

as region and flood intensity fixed effects. Standard errors are in parentheses. Standard errors are 

bootstrapped (100 replications). Asterisk (*), double asterisk (**), and triple asterisk (***) denote 

variables significant at 10 percent, 5 percent, and 1 percent, respectively. 

Panel B shows the results of the Oster test for the coefficient of basis risk. In row (1), the estimates 

are relatively similar in magnitude and sign as in the LPM results. 

In row (2), a value of δ < 1 means the observed controls are more important than their unobservable 

counterparts in explaining the effect of basis on index demand. 

Source: The Impact of Jakarta Floods Survey (2018). 
Furthermore, we first exclude the set of covariates from the estimations. The results in 

Table 5 show that all point estimates remain significant and relatively similar. This can be 

interpreted as evidence of structural validity of the probit specification. 

 

 

 

 

 

 

Model: Linear Probability Model

Panel A.

-0.012 *** -0.013 *** -0.009 *** -0.011 *** -0.040 ***

(0.002) (0.003) (0.003) (0.003) (0.009)

-0.149 *** -0.186 *** -0.116 *** -0.212 *** -0.099 ***

(0.009) (0.011) (0.015) (0.018) (0.014)

-0.029 * -0.023 -0.033 -0.056

(0.017) (0.025) (0.026) (0.041)

0.002

(0.004)

0.007 ***

(0.002)

0.478 ***

(0.116)

-0.090 ***

(0.021)

Distance to nearest river Yes Yes Yes Yes Yes Yes

Fixed effects and controls Yes Yes Yes Yes Yes Yes

Number of observations 1,658 829 829 1,658 1,658 908

R-squared 0.208 0.327 0.132 0.056 0.215 0.211

Panel B.

(1) Oster δ=1 and Rmax=1.3R ̃ -0.019 -0.022 -0.016 -0.019 -0.215 -

(2) Oster δ for β1=0 -17.6 -29.14 -14.54 13.187 2.1398

Floodgate station is close

x Premium (in logs)

Dependent variable: Index-based flood insurance demand

Distance to floodgate station (km)

Premium (in logs)

Extreme risk-aversion (1,0)

Distance to floodgate station

x Premium (in logs)

Floodgate station is

close (≤ 5km)

Distance to floodgate station

x Extreme risk-aversion (1,0)

Oster tests: Distance to floodgate station (km)

(1)

All sample

(2)

1st

question

(3)

2nd

question

(4)

All sample

(5)

All sample

(6)

Far from and 

close to station
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Table 5. Excluding covariates 

 
Notes: This table presents probit regression estimations of household-level insurance uptake on 

distance to the reference floodgate station, premium and extreme risk-aversion, excluding 

covariates. Average marginal effects are reported. All sample corresponds to double-bounded 

dichotomous choice questions. In columns (4), (5), and (6) probit specifications include the 

interaction term. All specifications include distance to nearest river, as well as region and flood 

intensity fixed effects. Standard errors for the marginal effects are in parentheses. Standard errors 

are bootstrapped (100 replications). Asterisk (*), double asterisk (**), and triple asterisk (***) 

denote variables significant at 10 percent, 5 percent, and 1 percent, respectively. 

Source: The Impact of Jakarta Floods Survey (2018). 

 

Second, we use the available time-series data of floods from BPBD to perform a 

placebo test for our identification assumption with respect to basis risk. We only use 

information from villages that experienced flood water levels above 2 metres (m) registered 

between 2013 and 201724. Then, we use the village centre as the new location for a 

hypothetical floodgate station. Due to these areas typically suffering from flooding, and 

                                                 
24  A box plot is used to visually identify outliers within the flood water level data set, defined as points that are 

located outside the whiskers of the box plot. These points lie on the range of 200cm – 400cm and provide the 

information of villages that experienced these flood heights.  

Model: Probit

-0.007 *** -0.007 ** -0.005 * -0.008 *** -0.027 ***

(0.002) (0.003) (0.003) (0.003) (0.007)

-0.133 *** -0.155 *** -0.107 *** -0.183 *** -0.089 ***

(0.007) (0.009) (0.012) (0.018) (0.014)

-0.048 *** -0.038 -0.054 ** -0.089 **

(0.017) (0.025) (0.027) (0.048)

0.004

(0.004)

0.005 ***

(0.002)

0.316 ***

(0.109)

-0.075 ***

(0.027)

Distance to nearest river YES YES YES YES YES YES

Covariates NO NO NO NO NO NO

Region fixed effects YES YES YES YES YES YES

Flood intensity fixed effects YES YES YES YES YES YES

Number of observations 1,672 836 836 1,672 1,672 914

Dependent variable: Index-based flood insurance demand

(1)

All sample

(2)

1st

question

(3)

2nd

question

(5)

All sample

(6)

Far from and 

close to station

(4)

All sample

Distance to floodgate station 

(km)

Extreme risk-aversion (1,0)

Distance to floodgate station

x Premium (in logs)

Floodgate station is

close (≤ 5km)

Floodgate station is close

x Premium (in logs)

Premium (in logs)

Distance to floodgate station

x Extreme risk-aversion (1,0)
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households associating them with such events, we assume they may tend to think floodgates 

are also located in those villages25. 

 

Table 6. Distance to hypothetical floodgate stations located in village centres with flood 

levels above 2m 

 
Notes: This table presents probit regressions of index-based flood insurance uptake on distance to the 

hypothetical floodgate station, premium rates and extreme risk aversion. Average marginal effects are 

reported. Distance to the hypothetical floodgate station is represented by the distance of a house to the 

closest area with flood level above 2 metres which is the placebo. In columns (4), (5) and (6) probit 

specifications include the interaction term. All probit regressions include distance to nearest river, 

covariates, as well as region and flood intensity fixed effects. Average marginal effects are reported. 

Standard errors for the marginal effects are in parentheses. Standard errors are bootstrapped (100 

replications). Asterisk (*), double asterisk (**), and triple asterisk (***) denote variables significant 

at 10 percent, 5 percent, and 1 percent. 

Source: The Impact of Jakarta Floods Survey (2018). 

 

As expected, placebo estimates are non-significant (Table 6), and close to zero as the 

variation in basis risk is random. This indicates that distance of a house to the reference 

floodgate station is exogenous and unique with negative effects on index-based flood 

insurance demand. 

                                                 
25  Using the OpenStreetMap website to obtain x-y coordinates of the centroid of these villages, we calculated 

the perpendicular distance of respondents’ houses to the hypothetical floodgate station.  

Model: Probit

-0.0002 -0.014 *** -0.00003 -0.0001 0.009

(0.007) (0.005) (0.005) (0.006) (0.010)

-0.133 *** -0.151 *** -0.105 *** -0.117 *** -0.138 ***

(0.013) (0.009) (0.015) (0.013) (0.027)

-0.041 * -0.026 -0.044 0.001

(0.023) (0.030) (0.030) (0.033)

-0.008 *

(0.004)

-0.003

(0.002)

0.074

(0.133)

0.012

(0.031)

Distance to nearest river YES YES YES YES YES YES

Covariates YES YES YES YES YES YES

Region fixed effects YES YES YES YES YES YES

Flood intensity fixed effects YES YES YES YES YES YES

Number of observations 1,658 829 829 1,658 1,658 1,204

Floodgate station is

close (≤ 5km)

Floodgate station is close

x Premium (in logs)

Dependent variable: Indexed flood insurance demand

(5)

All sample

(6)

Far from and 

close to station

Distance to floodgate station

x Premium (in logs)

Extreme risk-aversion (1,0)

(1)

All sample

(2)

1st

question

(3)

2nd

question

(4)

All sample

Distance to hypothetical 

floodgate station (km)

Premium (in logs)

Distance to floodgate station

x Extreme risk-aversion (1,0)
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Finally, given the sufficient price variation along the hypothetical downward-sloping 

demand curve, we redo the regression in equation (3) for different levels of premium. 

Overall, it seems that households who face premiums below IDR 50,000 are more likely to 

purchase the insurance product; conversely, they are unwilling to buy when the premium is 

above this value (see Table A.3 in the Appendix). 

 

7. Extended analysis 

In this section, we extend our investigation by looking at the heterogeneity of household 

responses to basis risk, premiums and risk aversion. First, we test whether the index-based 

flood insurance product demand responds to price changes through different degrees of basis 

risk. The intuition behind this relationship is: i) when insurance has a low basis risk (close to 

zero) and is at an actuarially-fair price (𝑚 = 1), the price elasticity demand is relatively high. 

This means households are more likely to purchase insurance, particularly if they receive 

price discounts; and, ii) when insurance has a high basis risk for any amount at or above the 

actuarially-fair price (𝑚 ≥ 1), the demand price elasticity goes closer towards zero.  

Figure 5 shows the average marginal effect of the logarithm of price on the 

probability of insurance uptake for households located at different distances from the 

reference floodgate station. Households located less than 5 km from a reference station have 

a sensitivity to price 4.2 times higher (marginal effect of –0.24) than those located more than 

12 km from a floodgate station (marginal effect of –0.06). Based on the above findings, we 

can conclude that sensitivity to price discounts increase uptake when floodgate stations closer 

to households are targeted to reduce basis risk. This is an important finding given the 

potential subsidies (via discounts) on flood insurance contracts. 
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Notes: This figure shows the relationship between estimated price sensitivity of insurance 

demand and distance to the reference floodgate station. The dashed line plots average 

marginal effects of price on insurance uptake, conditional on being located a certain distance 

from the reference floodgate station. The solid lines plot 95 percent confidence bands around 

the average marginal effect point estimates. The figure stems from the estimation of a probit 

regression model of household-level insurance uptake, on variations of prices, distance of the 

household location to the reference floodgate station, and the interaction between the two 

excluding covariates. This specification includes distance to nearest river, as well as region 

and flood intensity fixed effects. 

Source: The Impact of Jakarta Floods Survey (2018). 

Figure 5. Price sensitivity of demand and distance to reference floodgate station 

 

Second, we look at how the price sensitivity of demand varies across different levels 

of risk aversion. The Clarke’s (2016) model discussed in the theoretical framework section 

indicates that, in the presence of basis risk (𝑟 > 0), at different actuarial pricing levels, the 

insurance demand presents non-monotonic curves in risk aversion. For this reason, we use the 

following probit specification: 

𝑃(𝑦𝑖𝑗 = 1) = 𝐹(𝛼0 + 𝛼𝟏𝑷𝒊 + 𝛼𝟐𝑹𝒊 + 𝛼𝟑𝑷𝒊 ∗ 𝑹𝒊 + 𝛿𝐺𝑖𝑗 + 𝛾𝑋𝑖 + 𝜆𝐹𝑖 + 𝜙𝑟 + 𝜃𝑗 + 𝜀𝑖,𝑗) (4) 

where we exclude distance to the reference floodgate station 𝑫𝒊 and 𝑬𝒊 from equation (3) and 

introduce 𝑹𝒊 which represents the level of risk aversion of 𝑖th household, along with the 

vector of geographical and household characteristics, fixed effects, and random error.  

We expect the price elasticity of demand for insurance to be higher among households 

who are least risk averse than those who are extreme risk averse. We plot the average 
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marginal effect of logarithm of price on the probability of uptake for households with 

different levels of risk aversion (Figure 6). We observe that least risk averse households have 

a sensitivity price 1.1 times higher than most risk averse households. Overall, this result 

appears consistent with the theoretical prediction. 

 

 
Notes: This figure shows the probability of insurance purchase against different levels of risk 

aversion. The dashed line plots average marginal effects of price on insurance uptake. The solid 

lines plot 95 percent confidence bands around the average marginal effect point estimates. The 

figure stems from the estimation of a probit regression model of household-level insurance 

uptake, extreme risk aversion, and the interaction between the two excluding covariates. This 

specification includes distance to nearest river, as well as region and flood intensity fixed 

effects. 

Source: The Impact of Jakarta Floods Survey (2018). 

Fig. 6 Probability of insurance purchase across levels of risk aversion 

 

Third, this study examines the price sensitivity of demand in each region26. We test 

the assumption that price sensitivity increases at lower levels of basis risk – i.e., it is higher 

closer to the floodgate station and lower far away. We observe the point estimates for 

interaction terms with positive sign and significance levels at 5% and 10% on West and 

                                                 
26  We exclude Central Jakarta region due to the small number of respondents in the sample (18 households) 

which would not allow us to regress our probit specification. Also, this region is the least vulnerable from 

flooding impacts (with an average flood height of 40cm within the 2013-2017 period) due to better flood 

mitigation infrastructure situated around the city centre. 
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South regions, respectively, as shown in Table 7. These findings tell us that basis risk is 

problematic in these two regions. This may be explained by the small number of stations 

compared to other regions, and the average distance, 7 km and 13 km, between the household 

and the reference floodgate station. Overall, houses located in the range between 0 km and 5 

km seem to estimate the degree of geographical variation in floods and loss occurring at their 

location as being similar to what may be recorded at the floodgate station. 

 

Table 7. Price sensitivity demand and distance to floodgate station in each region 

 
Notes: This table presents probit regression estimations of household-level insurance uptake on distance to 

the reference floodgate station, premium rates and the interaction term (which is the price sensitivity demand). 

Average marginal effects are reported. All sample corresponds to double-bounded dichotomous choice 

questions. All columns include distance to nearest river, covariates, as well as flood intensity fixed effects. 

Standard errors for the marginal effects are in parentheses. Standard errors are bootstrapped (100 

replications). Asterisk (*), double asterisk (**), and triple asterisk (***) denote variables significant at 10 

percent, 5 percent, and 1 percent, respectively. 

Source: The Impact of Jakarta Floods Survey (2018). 

 

Fourth, we observe our results by subgroups of income, education level, and flood 

areas. Columns (1) to (6) in Table 8 show that, in general, results are likely not statistically 

different among these subgroups. It is clear that premiums are strongly significant in reducing 

index-based flood insurance demand across subgroups; while distance to floodgate station 

effects on demand have interesting results. In columns (1) through (4) of Table 8, households 

with high income and education seem to be slightly sensitive to basis risk compared to those 

lower in the two categories. This could be due to richer households having a lack of trust for 

Model: Probit

-0.096 ** -0.013 -0.015 -0.036

(0.044) (0.018) (0.020) (3.921)

-0.328 *** -0.237 *** -0.135 *** -0.218

(0.075) (0.055) (0.045) (9.218)

0.021 ** 0.006 * 0.003 0.009

(0.010) (0.004) (0.004) (0.915)

Distance to nearest river YES YES YES YES

Covariates YES YES YES YES

Flood intensity fixed effects YES YES YES YES

Number of observations 398 474 568 190

Premium (in logs)

Distance to floodgate station (km)

Distance to floodgate station

x Premium (in logs)

Dependent variable: Index-based flood insurance demand

(1)

West Jakarta

All sample

(2)

South Jakarta

All sample

(3)

East Jakarta

All sample

(4)

North Jakarta

All sample
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the government to provide index-based flood insurance in Jakarta. Finally, households 

located in flood zone areas are more sensitive to basis risk and premium. This could be due to 

the poor usually settling in areas exposed to floods and low amenities, and more sensitive to 

price changes. 

 

Table 8. Index-based flood insurance demand by subgroup 

 
Notes: This table presents probit regression of household-level insurance uptake on distance to the reference 

floodgate station, premium rates and extreme risk aversion. We sample the data set by subgroups relative 

to the household’s income, years of education and whether the household is located within the flood zone. 

Average marginal effects are reported. All probit regressions include distance to nearest river, covariates, 

as well as region and flood intensity fixed effects. Standard errors for the marginal effects are in parentheses. 

Standard errors are bootstrapped (100 replications). Asterisk (*), double asterisk (**), and triple asterisk 

(***) denote variables significant at 10 percent, 5 percent, and 1 percent. 

Source: The Impact of Jakarta Floods Survey (2018). 

 

8. Conclusions 

This study presents causal evidence on three factors that have effects on the uptake of index-

based flood insurance in Jakarta, Indonesia: distance of a house to the reference floodgate 

station (a proxy of basis risk), premium rates and household risk aversion. We link an 

expected utility framework developed by Hill et al. (2016), complemented with elements of 

Clarke’s (2016) work, to our empirical analysis to gain a better understanding of index-based 

flood insurance demand under the presence of basis risk in the urban context.  

The results in this article indicate that demand for the index-based flood insurance 

product offered to urban households decreases as the degree of basis risk and premium 

-0.008 ** -0.015 *** -0.010 ** -0.012 *** -0.019 *** -0.007 *

(0.004) (0.005) (0.004) (0.004) (0.005) (0.004)

-0.117 *** -0.150 *** -0.137 *** -0.129 *** -0.143 *** -0.112 ***

(0.013) (0.010) (0.011) (0.012) (0.009) (0.015)

-0.078 *** -0.001 -0.044 * -0.014 -0.039 -0.046

(0.029) (0.028) (0.026) (0.029) (0.027) (0.037)

Distance to nearest river YES YES YES YES YES YES

Covariates YES YES YES YES YES YES

Region fixed effects YES YES YES YES YES YES

Flood intensity fixed effects YES YES YES YES NO NO

Number of observations 826 832 816 842 1,148 510

Dependent variable: Index-based flood insurance demand

(1)

Low-income

Distance to floodgate station 

(km)

Extremely risk-averse (1,0)

Model: Probit
(2)

High-income

(3)

Never-attended

university

(4)

Attended 

university

(5)

Within flood 

zone

(6)

Outside 

flood zone

Premium (in logs)
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increase and declines at higher levels of risk aversion due to the imperfect coverage provided 

by a product with basis risk. These effects are robust and significant. 

In order to design an improved insurance product for the future, it is important to 

consider the presence of basis risk. Our results find that extremely risk-averse households are 

more likely to purchase the insurance product when they are closer to the reference floodgate 

station, i.e., insurance product with lower basis risk. In addition, they verify the price 

elasticity of demand for insurance is higher when basis risk is low and among households 

who are less risk averse. Doubling the probability of having basis risk reduces insurance 

demand by 0.9 percentage points. 

The general lessons learned from this study for urban areas in developing countries 

are as follows. It is important to recognise that the underlying ground station data is generally 

sparse in developing countries (Dell et al., 2014), and flooding is typically identified as an 

idiosyncratic local shock. Having enough floodgate stations so as to reduce the degree of 

basis risk and encourage future demand is key for successfully implementing index-based 

flood insurance. The rule of thumb concluded from our analysis is that approximately 5 km 

should be the maximum distance between any house and a floodgate station. If this is not the 

case, it is integral to invest in the development of new floodgates prior to introducing the 

insurance product.  

In line with the effect on demand of reduced insurance prices, we recommend the 

application of different levels of premium discounts depending on household location. Our 

results show that subsidies have an immediate effect on insurance demand, especially 

households who are offered insurance products with lower basis risk. However, the exact 

design and structure of a premium discount offering is still unclear in this study due to the 

unknown nature of household welfare, particularly regarding the level of discount needed to 

incentivise insurance uptake. This issue presents an opportunity for further research. 
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Additional tables and figures 

 

 Table A.1 Distribution of the degree of risk aversion

 
Source: The Impact of Jakarta Floods Survey (2018). 

 

  

Extreme IDR 20,000 - IDR 20,000 256 31% 240 29%

Severe IDR 16,000 IDR 25,000 160 19% 141 17%

Intermediate IDR 12,000 - IDR 30,000 166 20% 155 19%

Moderate IDR 8,000 - IDR 35,000 80 10% 79 9%

Slight-to-neutral IDR 4,000 - IDR 40,000 86 10% 117 14%

Neutral-to-negative IDR 0 - IDR 50,000 88 11% 104 12%

836 100% 836 100%Total

Degree of risk aversion

Hypothetical payoffs

were used

Real payoffs

were used

Distribution of sample (percent) when:
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Table A.2 Index-based flood insurance demand among households 

with real monetary payoffs 

 
Note: This table presents probit regression estimations of household-level 

insurance uptake on distance to the reference floodgate station, premium and 

extreme risk-aversion (with real monetary payoffs). All sample corresponds to 

double-bounded dichotomous choice questions. The “Far from and close to 

floodgate station’’ sample only includes households at a perpendicular distance 

from their reference floodgate station below 5 km (‘‘close’’) or over 12 km 

(‘‘far’’). In columns (4), (5) and (6) probit specifications include the interaction 

term. All specifications include distance to nearest river, covariates, as well as 

region and flood intensity fixed effects. Standard errors for the marginal effects 

are in parentheses. Standard errors are bootstrapped (100 replications). Asterisk 

(*), double asterisk (**), and triple asterisk (***) denote variables significant at 

10 percent, 5 percent, and 1 percent, respectively. 

Source: The Impact of Jakarta Floods Survey (2018). 

  

Model: Probit

-0.013 *** -0.014 *** -0.010 ** -0.014 ***

(0.002) (0.004) (0.004) (0.004)

-0.134 *** -0.153 *** -0.108 ***

(0.007) (0.009) (0.014)

0.018 0.013 0.020 -0.027

(0.019) (0.026) (0.028) (0.045)

0.004

(0.004)

Distance to nearest river YES YES YES YES

Covariates YES YES YES YES

Region fixed effects YES YES YES YES

Flood intensity fixed effects YES YES YES YES

Number of observations 1,658 829 829 1,658

Premium (in logs)

Extreme risk-aversion (1,0)

Distance to floodgate station

x Premium (in logs)

Floodgate station is

close (≤ 5km)

Floodgate station is close

x Premium (in logs)

Distance to floodgate station

x Extreme risk-aversion (1,0)

Distance to floodgate station 

(km)

Dependent variable: Index-based flood insurance demand

(1)

All sample

(2)

1st

question

(3)

2nd

question

(4)

All sample
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Table A.3 Premium rates and demand for index-based flood insurance 

 
Note: This table displays probit regressions of index-based flood insurance demand on distance 

to the reference floodgate station, premiums, and extreme risk aversion. Premium rates come 

from the five price levels and their follow-up (discounted or increased) price under a double-

bounded dichotomous choice. All price levels are dummy variables, except for Rp 5,000 which 

is omitted in the table. Average marginal effects are reported. All sample corresponds to double-

bounded dichotomous choice questions. The “far from and close to floodgate station’’ includes 

households at a perpendicular distance from their reference floodgate station below 5km 

(‘‘close’’) or over 12km (‘‘far’’). Standard errors for the marginal effects are in parentheses. 

Standard errors are bootstrapped (100 replications). Asterisk (*), double asterisk (**), and triple 

asterisk (***) denote variables significant at 10 percent, 5 percent, and 1 percent, respectively. 

Source: The impact of Jakarta floods survey 2018. 

 

 

Model: Probit

Premium

   'Rp 10,000 0.504 ***

(0.094)

   'Rp 20,000 0.599 *** 0.640 ***

(0.086) (0.079)

   'Rp 25,000 0.087 0.097

(0.086) (0.077)

   'Rp 50,000 0.123 -0.335 *** 0.082

(0.081) (0.064) (0.078)

   'Rp 100,000 -0.077 -0.587 *** -0.047

(0.081) (0.057) (0.070)

   'Rp 200,000 -0.104 -0.626 *** -0.012

(0.083) (0.054) (0.096)

   'Rp 400,000 -0.015 0.029

(0.127) (0.141)

   'Rp 500,000 -0.138 * -0.657 ***

(0.078) (0.056)

   'Rp 1'000,000 0.244 0.333 **

(0.154) (0.140)

-0.011 *** -0.014 *** -0.006 *

(0.003) (0.003) (0.003)

-0.036 * -0.024 -0.042

(0.020) (0.027) (0.031)

Distance to nearest river YES YES YES

Covariates YES YES YES

Region fixed effects YES YES YES

Flood intensity fixed effects YES YES YES

Number of observations 1,549 829 720

Distance to floodgate station (km)

Extreme risk aversion (1,0)

Dependent variable: Index-based flood insurance demand

(1)

All sample

(2)

1st

question

(3)

2nd

question



 

 

 

39 

Estimation of flood shocks27 in Jakarta 

The index-based insurance literature usually employs weather-related shocks as a source of 

exogenous variation to identify effects associated with insurance coverage. Similarly, in our 

study we harness the substantial changes in flood levels within a particular spatial unit over a 

five-year period (2013–2017) in Jakarta, assuming these changes have positive, direct effects 

on households’ willingness to purchase hypothetical index-based flood insurance. If changes 

in flood levels are not included as a control variable, there may be potential bias in our probit 

estimates. Such endogeneity concern relies on the idea that some households may be sensitive 

to flood level variations (i.e. the elderly and pregnant women). Therefore, we measure the 

variation in flood levels deviations registered at kecamatan (subdistrict level) during 5 rainy 

season months of the 2013-2017 period.  

The rainy season brings very intensive rainfall typically between the months of October and 

April (Texier 2008) and increases the number of flood events in Jakarta; however, most occur 

from November to March. Figure A.1 shows the number of villages affected by flooding 

within this period. 

Figure A.1 Village flood occurrences during 2013-2017 

 
Source: Jakarta Regional Disaster Management Agency – BPBD (2018). 

                                                 
27  Flooding data obtained from Jakarta Regional Disaster Management Agency – BPBD. Information was 

collected in the 2013-2017 period as follows: i) identify the flood areas at village level using GPS devices; 

ii) at flood locations, depth marks on home walls – water limits of flood depth – were registered as historical 

data; and iii) ask households for date of previous flooding and time of flooding to recede in their respective 

neighbourhood. Our data includes 204 villages out of a total of 261. 
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The estimation of rainy season flood shocks in 2013-2017 follows the approach of Karadja 

and Prawitz (2017), expressing shocks measured in relation to the local long-run weather in a 

particular month. First, for each month 𝑚, year 𝑡 and location 𝑙, we calculate the deviation 

between the actual and the long-run average flood level registered in that month: 

𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 (𝐹𝑙𝑜𝑜𝑑 𝐿𝑒𝑣𝑒𝑙)𝑙,𝑚,𝑡 = 𝐹𝑙𝑜𝑜𝑑 𝐿𝑒𝑣𝑒𝑙𝑙,𝑚,𝑡 − 𝐹𝑙𝑜𝑜𝑑 𝐿𝑒𝑣𝑒𝑙̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝑙,𝑚 

where a flood level is the height of flood event occurring in the 𝑘𝑒𝑐𝑎𝑚𝑎𝑡𝑎𝑛. A flood shock is 

then defined as a binary variable: 

𝑠ℎ𝑜𝑐𝑘𝑙,𝑚,𝑡 ≡ 𝐼[𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 (𝐹𝑙𝑜𝑜𝑑 𝐿𝑒𝑣𝑒𝑙)𝑙,𝑚,𝑡 > 𝑠𝑑(𝐹𝑙𝑜𝑜𝑑 𝐿𝑒𝑣𝑒𝑙𝑙,𝑚)] 

where  𝑠ℎ𝑜𝑐𝑘𝑙,𝑚,𝑡 is equal to one if the 𝑘𝑒𝑐𝑎𝑚𝑎𝑡𝑎𝑛 𝑙 experienced a positive flood shock in a 

month 𝑚 of year 𝑡. The 𝑘𝑒𝑐𝑎𝑚𝑎𝑡𝑎𝑛’s long-run standard deviation of flood level in each 

month over the 2013-2017 period is denoted by 𝑠𝑑(𝐹𝑙𝑜𝑜𝑑 𝐿𝑒𝑣𝑒𝑙𝑙,𝑚)28. Lastly, we sum the 

number of shocks over the rainy season for each 𝑘𝑒𝑐𝑎𝑚𝑎𝑡𝑎𝑛 between 2013 and 2017. The 

frequency distribution of flood shocks during 2013-2017 is displayed in Figure A.2, with the 

median kecamatan experiencing four flood shocks. The observations of flood shocks are 

matched with survey data at subdistrict level. 

Figure A.2 Frequency distribution of flood shocks 2013-2017 

 
Source: Jakarta Regional Disaster Management Agency – BPBD (2018). 

 

                                                 
28  In order to fill in the missing values (24 observations out of a total of 816), we use that of the nearest 

kecamatan to complete the long-run standard deviation in a particular month. 


