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This study explores research collaborations in the United States and the position government and 
universities occupy in that space through the lens of social networks. Joint organizational patents 
establish the network. Over time, a dense core of interconnected collaborators forms at the 
network’s heart, surrounded by a periphery of isolated innovators or fragments of very limited 
collaborations. Government and research institutes sit at the center of this core and act as hubs 
through which connections sprawl out. The core goes through two waves of expansion in late 1980s 
and 2000s. Federal laboratories are the main force behind both. The second wave also bears the 
hallmarks of second academic revolution, with a larger share of university–industry link formation 
and less government involvement. Technology also matters. Government and research 
organizations have traditionally been central to complex and knowledge-intensive technologies 
such as biotechnology, pharmaceuticals and chemistry. However, their outreach expands 
especially during the second wave to cover a more diversified portfolio of technologies.  
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1 Introduction

Federal government alongside state and local governments are an integral part of research

infrastructure in the US. In 2021 alone, the US is estimated to have spent a total of $792

billion on Research and Development (R&D), of which about $66 billion (an 8 per cent share)

was government’s direct expenditures on R&D. With the addition of grants and subsidies to

businesses and higher education, federal and non-federal governments contributed a total of

$159 billion, almost a 20 per cent share, to R&D.1

Besides intramural research, the US government operates a vast network of Federally

Funded R&D Centers (FFRDCs). One important function these centers fulfill is acting as a

“three-legged stool”, a focal point, to connect commercial industry, academia (or non-profit

research institutions) and government with the aim of driving innovation, commercialization

and policy in novel ways (Mitre, 2015). Historically, about 14 per cent of total expendi-

tures on R&D in the US and a substantial share of patents and innovations are associated

with FFRDCs (Jaffe et al., 1998). According to National Science Foundation, currently 43

FFRDCs are active in the US covering a diverse range of activities from engineering and

manufacturing to atmospheric studies.

This collaborative aspect, and not the pecuniary contributions, is the main theme of this

study. Innovations are increasingly coming about by way of knowledge sharing across orga-

nizations rather than relying on intra-firm resources (Powell, 1990; Lynn et al., 1996; Hage-

doorn, 2002; Howells, 2006). The trend is no more evident than in the growing incidences of

organizations patenting jointly (Hagedoorn, 2003). The rising complexity of innovations, the

rapid rate of knowledge creation, and the dispersion of that knowledge and expertise across

firms, universities and government laboratories underpins the need for a more collaborative

approach to research (Powell et al., 1996; Smith-Doer & Powell, 2005).

Once collaborations evolve into a network, the impact can go beyond merely sourcing

knowledge from immediate contacts and encompasses the whole structure of the social net-

work. The firms embedded in such network have better chances of getting exposed, both

through formal and informal channels, to new and complementary ideas that float around

the structure (Burt, 2004; Dahl & Pedersen, 2004). There is also the potential for actions of
1For information on R&D expenditures see National Science Foundation’s scoreboard 2021:

https://ncses.nsf.gov/data-collections/national-patterns.
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an actor to get amplified and reverberate throughout the network (Bramoullé et al., 2014).

As Gulati (1998) puts it:

“Structural embeddedness or positional perspectives on networks go beyond the

immediate ties of firms and emphasize the informational value of the structural po-

sition these partners occupy in the network. Information travels not only through

proximate ties in networks, but through the structure of the network itself.”

In such a universe, the position an organization occupies has implications not only for

its own capabilities but also for the vibrancy of the network as a whole. Firms at more

central positions are shown to have superior innovation performance and more novelty in

their innovations (Powell et al., 1996; Baum et al., 2000; Boschma & Ter Val, 2007; Majeed

& Breunig, 2023). Their innovative capabilities and accumulated stock of knowledge also

spill over onto their connected ties and diffuse through them to the rest of the network

(Burt, 2004). Besides, central organizations act as intermediaries that source, compile and

disseminate knowledge from and to other organizations (McEvily & Zheer, 1999; Villani et

al., 2017). The effectiveness of the focal organization in fulfilling this role derives from its high

absorptive capacity not in one field but in diverse fields of knowledge (Tsai, 2001; Giuliani &

Bell, 2005).

Why are government and universities more suited to occupy these central positions?

For one thing, their focus on research, and basic research in particular, equips them with

enough absorptive capacity to fufill their role as a focal point and a knowledge hub (Cohen

& Levinthal, 1990; Rosenberg, 1990).

These organizations can also alleviate the costs and risks of building and maintaining

ties. On their own, firms have to incur costs in terms of searching for partner(s), information

gathering, legal costs, and on-going governance of the alliance (Hansen, 1999; Rangan, 2000;

Reuer & Lahiri, 2014). There are also risks from incomplete contracts and moral hazard that

could impede tie formation or lead to post-formation instability in the alliance (Kogut, 1989;

Oxley, 1997; Sampson, 2004). Firms might be caught up with a free-riding partner or fall

under the influence of an intermediary that plays its ties against each other to gain control

(Gulati, 1998).

Involving non-market institutions as intermediaries not only reduces these costs but also
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assists in knowledge diffusion and coordination of research activities (Lynn et al., 1996;

Shohet & Pervezer, 1996; McEvily & Zheer, 1999; Howells, 2006). These institutions also

bring authority (both legal and economic) to the community (Lynn et al., 1996). The non-

market and non-rival nature of these organizations further makes it easier to surmount the

reputation and competition issues that plague inter-firm relations (Dasartha, 2023).

Against this backdrop, it is imperative to examine whether government and universities

in the US are active in this space and central to innovation. If so, then, in what ways that

centrality has changed and evolved over time? Is it on the rise? Or, is the government

stepping back? Historically, policy in the US has prioritized market efficiency over non-

market solutions by subsidizing innovation and enforcing antitrust (Aram et al., 1992). On

the other hand, an increasing reliance on federally funded research in the US implies that

government involvement is more important than ever (Fleming et al., 2019).

To shed light on these issues, I conduct a systematic investigation of innovation collabo-

rations through the lens of social networks. I use data from 1975 to 2019 on utility patents

granted to US entities to build a network of innovators. Each assignee organization appears

as a node in this network. Nodes can be of three types: government, research, and indus-

try. Research nodes bunch universities and non-profit research centers such as hospitals and

FFRDC-affiliated entities. Industry is private companies and research labs associated with

them. To that, I also add a fourth type that are foreign entities collaborating with at least

one US entity. Joint patents make the links between the nodes.

To track the evolution of this network, I look at it over several time periods. Each time

period is a six-year rolling window so as to provide a fuller picture of collaborations an entity

has built and led. The application of this rolling window is important, since a collaboration

takes time to result in a patent and be observed. In Section 2.3, I add more substance to the

choice of this six-year window length.

The most notable feature of the network is the formation of a dense core of interconnected

innovators. This core is surrounded by a massive periphery of mostly private firms, innovating

in isolation or having very limited collaborations.

The core initially begins as a fragmented set of collaborations between a few large en-

terprises and universities. From there, it rapidly grows in density and becomes one whole
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interconnected body. Government and research entities have a sizable presence in the core.

Using two indexes of network centrality, I am able to show that government and research

nodes also occupy the most central positions in there. Together, these two groups of nodes act

as hubs from which connections sprawl out. Industry and foreign nodes have comparatively

fewer connections and mostly appear on the perimeter of the core.

Over the observed timeline, this core goes through two waves of expansion. The first wave

takes pace around 1984 and ends circa 1994, during which the size of core, in terms of node

counts, more than triples. The second wave begins around 2003 and goes until circa 2010.

The size of core grows by 30 per cent during this wave.

A deeper dive into the data suggests that the force behind the first wave is most possibly

the introduction of Federal Technology Transfer Act of 1986, forcing the FFRDCs to take a

more active stance in building collaborations with the industry. In fact, almost all the increase

in the centrality of government and research organizations during this phase originates from

those agencies that sponsor or administer FFRDCs.

FFRDCs also play an important role in the second wave. However, it is mostly universities

and research institutes affiliated with FFRDCs that take charge this time. Government’s

centrality is barely affected during this wave. As such, the wave has the hallmarks of the

second academic revolution (Etzkowitz, 1998; Gulbrandsen & Slipersæter, 2007), with a

proliferation of university–industry links and the emergence of entrepreneurial universities.

Either way, government policy or university involvement has been the driving force in the

advent or growth of networks.

I follow the analysis with a few robustness test. Universities, in particular, are a collection

of departments, hence act as hypernodes with the possibility of their centrality being over-

estimated. However, breaking down the network by technology class (the closest one gets

to departments with patent data) makes has no impact on the implications. Comparing

universities to large firms with multiple divisions, similar to departments, does not change

the picture either.

The exercises, however, reveal the technology-specific aspect to the centrality of gov-

ernment and research organizations. These organizations have traditionally been the most

central to bio- and pharmaceutical and chemistry technologies. The complexity and intensity
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of knowledge in these fields and the dispersion of that knowledge across firms, government

and universities are considered the main reasons why collaboration is so crucial to innovation

in these areas (Powell et al., 1996). Over time, however, the centrality of government and

research institutes grows across most technology fields, additionally claiming prominence in

technologies such as semiconductors, medical technology, and instruments.

Foremost, this study enhances the literature on the social networking view of innovation

and its economic impact (Powell, 1990; Podolny & Page, 1998; Smith-Doer & Powell, 2005).

The literature traditionally looks at the formation, evolution and governance of such networks

between firms (See Gulati, 1998; Gulati et al., 2000, for a review of this literature). There

is also a related literature on the positive influence of cross-firm, cross-industry and cross-

team collaborations on firm performance and innovative activity (Burt, 2004; Geletkanycz &

Hambrick, 1997; Stuart, 2000). McEvily & Zheer (1999) and Lynn et al. (1996) discuss the

role of regional institutes, e.g. government and universities, as side players to these networks.

This paper puts government and universities firmly at the center of the network, tasking them

with building and maintaining the organizational network.

A series of related works have also taken the social network perspective by looking at

specific industries. Biotechnology, pharmaceuticals and semiconductors are the most studied

industries (Shan et al., 1994; Browning et al., 1995; Podolny & Stuart, 1995; Powell et al.,

1996; Stuart, 2000). While the findings from these studies are precise in one sense, they

run the risk of missing the bigger picture. The emergence of bio-informatics, biomedical

sensors and instruments, for instance, points to a network spanning far beyond one sector

and encompassing actors as far and wide as instruments, semiconductors, and digital (see

Shokouhmand et al., 2023, for an example). Bramoullé et al. (2014) theorize that knowledge

flows especially get amplified in such combinatorial technologies with knowledge bouncing

back and forth between different types of actors involved. By taking an unconstrained view

of the network, this study is able to unveil the full scale of collaborations, including the

inter-sectoral links.

This paper also contributes to the topic of National Innovation System (NIS). In NIS

framework, national institutions and policy are bunched together with innovators and re-

sources as one unit in deciding the path of innovation and growth (Nelson, 1993), with the
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rules of the game often fixed at the institutional level (Acs et al., 2017). As the findings

in this paper show, the involvement of institutions goes beyond merely setting policies and

rules and also establishes them as facilitators and coordinators.

Lastly, this work relates to the resource-based view of firms. In this theory, inimitable

resources owned by a firm are its source of strategic advantage (Ciszewska-Mlanaric & Wa-

sowska, 2015). Gulati (1999) extends that notion by considering the social capital held within

a network as a complementary resource. One way to access that capital is by outsourcing

(Breunig & Bakhtiari, 2013; Bakhtiari, 2023). A more integrated alternative is cooperation

(Miotti & Sachwald, 2003).

The remainder of the paper is organized as follows: The patent data used for the analysis

is described in the next section. Section 3 looks at the general topology of the innovation

networks and points out the existence of a core. In Section 4, I take a closer look at the core

and identify two waves of expansion in collaborations. In Section 5, I test for the centrality

of government and research organizations in the network and their evolution. I present a few

robustness tests in Section 6. The paper is concluded in Section 7.

2 Data and Methodology

2.1 Analysis data

Patent data currently provide the most comprehensive record of innovations that is publicly

available. The complementary information that accompanies a granted patent, such as the

assignees, inventors, their location, and the patent’s technology codes makes patent data a

useful source for classifying and analyzing innovations.

I lead the analysis using the data on granted utility patents by the US Patent Office

(USPTO). The data is publicly available from https://patentsview.org. The data used in

this study is the 2022 release.

A patent jointly assigned to a set of organizations, in particular, suggests collaboration

and knowledge sharing. The data, however, does not have any information about which

inventor of a patent is affiliated with which assignee of that patent, if any. The ability to

confirm that all assignees are represented by at least one inventor in a patent strengthens
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the case for research collaboration.

Granting this caveat, one indirect way to infer collaboration is to look at the average

number of inventors per assignee for joint patents. In the data, the average number of

inventors per assignee for patents with more than one assignee is two. One can take this

number as indicating collaboration in the weak sense. Only 7 per cent of joint patents have

fewer than one inventor per assignee. These latter patents are potentially cases of technology

transfer.

There are a few specific fields from the data that I will be using for this study. The name

and country of assignees and their type (whether they are individual or an organization) are

the main pieces of information that will assist me in classifying various entities.

Government entities or universities are of special interest. For many patents, there are also

individuals listed as assignees. In case there is at least one organization listed, the individuals

are understood to be employees. I drop a patent if all assignees are individuals. These patents

do not come into the picture when discussing inter-organizational collaborations.

The emphasis is also on collaborative research among American organizations. For that

reason, I use the country of assignees and drop patents for which all assignees are foreign. I

am still keeping foreign assignees that have a joint patent with at least one US entity.

To study the role of government and research entities and the position they occupy in the

innovation universe, I need to classify organizations according to their type. The patent data

provides a flag for government entities. However, the flag is less than perfect. I additionally

apply a supervised text mining to the assignee names for a more precise identification of

government and research organizations.2 The remaining entities are assumed to belong to

the industry. These could be private companies or research labs associated with a company.

The set of research institutes includes universities, but also hospital research centers and

non-profit research centers in charge of FFRDCs.3 Any research institute associated with

government is classified as government and not research. All foreign applicants are labeled

as Foreign, regardless of their association.

I use the main Intellectual Property Classification (IPC) of a patent to identify the tech-
2In the supervision phase, I carry out multiple rounds of inspection on random blocks of the data and

improve the algorithm until no more improvement could be obtained. The R code is available upon request.
3I obtain and integrate into the patent data the list of organizations sponsoring or administering FFRDCS,

both current and historical, from NSF FFRDC list.
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Figure 1: The count of patents by year.

nology it pertains to. Based on the concordance table proposed by Schmoch (2008), these

IPCs are mapped onto 11 technology fields for more meaningful presentation.

The timing of a patent is set to its year of application, as it is closer to the time innovation

came to fruition. I choose years 1975 to 2019 for inclusion in the analysis. As Figure 1 shows,

the number of granted patents in the data jumps up just before 1975. The numbers are also

much lower than the trend in 2020 and afterwards, owing to many applications still pending.

2.2 Organizational network

My approach to exploring inter-organization collaborations and centrality of these actors is

to picture them as a social network. I treat each distinct assignee as a node in the network.

A joint patent between two or more nodes establishes links between them (Figure 2).

I do not allow multiple links, in case the applicants have several joint patents. The links

are undirected: knowledge and expertise is assumed to be flowing both ways through the

link. As is shown earlier, a small number of patents are about technology transfer, but the

direction of transfer is not clear from patent’s information.

I additionally label each node by its type as government, research, industry, and foreign to

make distinction between the role each group of nodes plays within the network’s structure.
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Figure 2: The construction of innovation network from patents. Each applicant is a node in
the network. Each joint patent establishes links between the nodes involved.

I will categorize network statistics based on this type assignment.

2.3 Rolling window

In the data, a link tying two organizations is only detected once the patent is granted. A

collaboration might have to go on for a few years before resulting in a patent and be observed.

Looking at an organization’s patenting within only one year is sure to miss many a link and

result in a partial observation of the actual network. It is imperative to measure time in units

longer than one year to ensure that one captures as full a picture of the network as possible.

There is, however, a trade off when choosing the time-width of the window. Choosing

a narrow window will miss a number of links. Choosing a very wide window, on the other

hand, smoothes the results to the point that time trends and changes to the network structure

become the casualty. Cantner & Graf (2006), for example, use a three-year window to observe

R&D cooperations. Having only seven years of data, their choice of this window is probably

driven more by data limitations than other considerations.

In this study, I use a rolling window of six years to build the networks. As a rule of

thumb, there is a five- to six-year delay from research to innovation on average. As a result,

a six-year step is the most compact interval that offers a reasonably complete snapshot of

the innovation network.

Figure 3 adds further support to this choice. In this figure, I compute Jaccard’s similarity

index between two networks, both with the same start year, one formed using window length

w and the other using window length w′ = w − 1. The index has the form (see Batagelj &

10



0.5

0.6

0.7

0.8

0.9

2 3 4 5 6 7 8 9 10 11

Width of Rolling Window (w)

In
d
ex

 o
f 

S
im

il
a
ri

ty

Figure 3: The minimum, maximum and mean Jaccard index for different rolling window
widths. Minimum, maximum and means are taken over the range of years for which a
network could be constructed.

Bren, 1995)

J =
L11

L11 + L10 + L01
, (1)

in which L is the number of links tying two nodes. L11 is the links that are common between

the two networks. L10 and L01 are the number of links that are only in network w′ and w,

respectively. By construction, L10 = 0.

The figure is showing the minimum, maximum and average index computed for a pair

(w,w′), with these statistics computed over all possible starting years. As the figure shows,

there is very little change in the index after a window size of six.

In the remainder, the networks are formed using a six-year rolling window. A different

network is formed from scratch for every single period. I form a series of networks for periods

starting with years 1975 to 2014 (corresponding to periods 1975–80 and 2014–19) in order to

track the time evolution of the innovation network and its structure. The resulting network

for period t will have Nt nodes and Lt links.
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3 Network Structure

I open the discussion by showcasing a few general statistics describing the networks. These

statistics are listed in Table 1 and summarize the size and connectivity of the networks in

a few numbers. The table also shows additional statistics on the level of participation by

government, research and foreign entities.

The statistics show a substantial expansion in the size of network. The number of nodes

almost triples during the observed time-line. Gains in the number of links is even more

dramatic. In the last period there are about 20 times more links in the network than they

used to in the first period.

Despite the massive growth in size and connectivity, the rate of expansion has not been

constant. There is an initial period of rapid expansion. The number of nodes grows at an

average annual rate of 4.4 per cent from 1975–80 to 1995–00 (the mid-point). The number of

links grows at an average annual rate of 16.2 per cent over the same interval. From 1995–00

to 2014–19, however, the average annual growth in nodes drops to 1.7 per cent. For links the

growth rate is only 2.3 per cent.

An increase in the number of links, per se, is not indicative of burgeoning collaborations,

especially when the number of nodes is increasing in tandem. In the last column of Table 1,

I am reporting the normalized number of links or network density to account for this fact.

Density of a network is defined as

Densityt =
2Lt

Nt(Nt − 1)
. (2)

A fully connected network, where each node is connected to every other node, will have
1
2N(N − 1) links. Index (2) scales the connectivity of a network relative to full connection.

The first impression from the densities reported in Table 1 is that the level of collaboration

in the innovation network is very sparse.

Despite that, the network’s density initially grows fast on par with its size. During the

first half interval, the density is growing at an average annual rate of 6.6 per cent. This is

the time of flourishing collaborations. That ardor mostly subsides afterwards, with network’s

density showing very little change over the second half period.
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Number of Nodes (N) Number of Density
Period Total Govern. Research Isolated Foreign Links (L) (×10−6)
1975–80 20,633 26 334 20,241 1 247 1.16
1976–81 20,774 26 356 20,387 1 237 1.10
1977–82 20,875 27 361 20,478 1 250 1.15
1978–83 21,153 26 375 20,738 0 262 1.17
1979–84 21,470 26 393 21,029 0 279 1.21
1980–85 22,077 26 415 21,580 2 324 1.33
1981–86 22,984 28 422 22,448 2 368 1.39
1982–87 24,373 28 453 23,758 3 435 1.46
1983–88 25,944 28 470 25,211 3 534 1.59
1984–89 27,467 31 488 26,622 2 647 1.72
1985–90 29,031 38 496 28,056 3 786 1.87
1986–91 30,464 38 522 29,396 1 901 1.94
1987–92 31,842 38 546 30,651 3 1,054 2.08
1988–93 32,865 36 569 31,520 7 1,282 2.37
1989–94 34,126 35 623 32,585 7 1,615 2.77
1990–95 35,612 34 644 33,809 8 2,028 3.20
1991–96 37,029 27 665 35,061 8 2,264 3.30
1992–97 39,027 29 679 36,833 11 2,640 3.47
1993–98 40,808 28 717 38,436 10 2,904 3.49
1994–99 43,150 30 726 40,586 7 3,191 3.43
1995–00 45,410 29 753 42,700 16 3,360 3.26
1996–01 46,879 30 769 44,098 19 3,381 3.08
1997–02 48,257 32 786 45,387 21 3,520 3.02
1998–03 48,677 33 780 45,809 21 3,494 2.95
1999–04 48,934 35 761 46,085 24 3,503 2.93
2000–05 48,565 36 751 45,805 24 3,448 2.92
2001–06 47,676 33 727 44,987 20 3,400 2.99
2002–07 47,039 32 738 44,433 12 3,455 3.12
2003–08 46,412 35 744 43,817 10 3,544 3.29
2004–09 46,055 35 760 43,478 10 3,630 3.42
2005–10 46,335 33 745 43,755 8 3,713 3.46
2006–11 47,083 35 760 44,437 9 3,884 3.50
2007–12 48,347 37 771 45,646 12 4,033 3.45
2008–13 50,067 37 759 47,283 10 4,195 3.35
2009–14 52,270 38 755 49,352 8 4,488 3.29
2010–15 54,565 41 750 51,518 11 4,718 3.17
2011–16 56,513 41 754 53,386 16 4,935 3.09
2012–17 57,829 43 748 54,699 17 5,013 3.00
2013–18 58,353 43 734 55,277 20 4,993 2.93
2014–19 57,511 45 719 54,604 16 4,695 2.84

Table 1: Simple statistics on the topology of the innovation network in different time periods.
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Government and research institutes are the main focus of this study, and I report their

numbers separately in Table 1. On average, only about 1.7 per cent of nodes in the networks

are associated with government or a research organization. There is also a larger presence

of research than government; there are almost 10 times more research nodes than there are

government nodes.

Low numbers, however, do not automatically relay insignificance or ineffectiveness in

a network. Quite the contrary, it is the position a node occupies relative to structure of

the network that dictates its significance and influence (Gulati, 1999; Smith-Doer & Powell,

2005). For instance, a node at the center of a network, connecting to 10 other nodes that, in

turn, each connecting to 10 other nodes can have a more seminal role in spawning ideas and

innovation given its accumulated human capital and its role as a cross-road for knowledge

exchange than a hundred nodes acting in isolation.

Having said that, the majority of nodes are isolated (Table 1). These are the nodes that

have no observed connections to any other node and carry out innovation in total isolation.

On average, about 95 per cent of nodes across the innovation network are isolated.

Foreign nodes that collaborate with a US entity are also part of this picture and reported

in a separate column of Table 1. There are very few of them. Arguably, US innovation

system is fairly insulated from foreign knowledge and mostly relies on its own capabilities.

As a final note, the number of government and research nodes also grows over time,

however, at a more moderate yet steadier rate than the overall rate at which the network

itself is growing. The rapid expansion of collaborations in the early years, if proved to be

driven by government and universities, is not much about more participation by government

and research organizations but by them getting proactive in forging ties.

A visual inspection of these networks reveals a few more details about their structure that

could not be inferred from Table 1. In Figure 4, I demonstrate four snapshots of the network,

equally distanced in time. Given the massive size of the networks, showing the full network

obscures the fine details I would like to point out. Consequently, I am showing all connected

nodes and only 10 per cent of isolated nodes. One needs only to imagine a much larger cloud

of isolated nodes surrounding the patterns to grasp the full scale of each network.

A striking feature of the network is the formation of a core of densely interconnected nodes
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(a) Period 1975–80 (b) Period 1988–93

(c) Period 2001–06 (d) Period 2014–19

Figure 4: The graph presentation of innovation networks and the positioning of Government
(G), Research (R) and Foreign (F) nodes. To make network details visible, only 10 per cent
of nodes with no links are included.
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at its center, surrounded by a periphery of colossal proportions (most of which is not shown).

In the initial period, there are fragments of collaboration going on. Together, however, they

lack the dense structure observed in later periods, hence, might or might not qualify as the

core. In the periods that follow, the core expands and collaborations co-join, rendering the

core akin to a black hole in the universe of innovators.

Not all collaborations happen in the core. The networks still exhibit a few small pockets

of collaboration scattered around the periphery. The periphery is, in essence, a large nebula

of isolated nodes or small bits and pieces of linked nodes disconnected from the core.

Government and research nodes are distinguished in these networks, labeled as G and R,

respectively. They appear both in the core and around the periphery. However, over time

they build a larger presence in the core. In the next Sections, I will add more basis to this

observation by having a closer look at the core.

Foreign nodes that collaborate with at least one US entity are also featured in Figure4,

labeled as F. Their number pales in comparison to the sheer number of domestic nodes,

making them an unobtrusive element of the network. These nodes still play a role through

their connections to domestic innovators, but not a central one.

4 The Core

Given its dense structure, the network’s core holds the key to centrality. In Figure 5, I am

showing the core structure only, for a better look at its structure.

In this figure, one can trace the same changes observed in Figure 4 but with more de-

tails. The picture is especially detailed about the formation of the core as it begins with a

few fragments and develops into a dense body. Its star-like structure immediately suggests

centrality for nodes that are positioned towards the interior.

A sizable chunk of these nodes have either research or government associations. For

comparison, in Table 1, the share of government and research nodes from the network was a

meager 1.7 per cent. However, within the core, at least one in five nodes is either government

or research (Figure 6). Research nodes, e.g. universities, make the bulk of that presence.

There is also a visible presence by foreign nodes in the core, which suggests that these nodes

are generally connected to the more central nodes.
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(a) Period 1975-80 (b) Period 1988–93

(c) Period 2001–06 (d) Period 2014–19

Figure 5: The core structure of innovation network and the positioning of Government (G),
Research (R), and Foreign (F) nodes. Lines indicate links between nodes.
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Figure 6: Proportion of government, research, and foreign nodes from the core.

Figure 7 provides a more continuous picture of the core’s evolution. The figure illustrates

the size of the largest and second largest components of the network over time, where size is

defined as the number of nodes. A component, in this context, is a subset of nodes in the

network where every pair of nodes is connected through at least one path.

The size of the two components are not very different during the early years. Soon enough,

however, a gaping chasm opens between them and the largest component, that is the core,

takes over. It follows as a corollary that every pair of nodes in the core has to be connected

through at least one path to give the core such a massive structure.

The core being one component has important implications, given information has the

chance to travel through the whole connected structure (Gulati, 1998). The larger this

structure, the larger the information or social capital it holds and offers to those nodes

(Gulati, 1999). Such networks would exhibit higher learning and innovation rates (Dasartha,

2023).

The expansion of the core is not a steady process. There are two major phases. First,

there is a rapid and sustained growth that picks up pace around 1984–89 and results in the
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formation of the core. This episode goes on till about 1994–99. During this stage, the size of

core more than triples. By the end of this stage, there are about 1,700 nodes in the core.

A shorter spell of expansion, roughly stretching from 2003–08 to 2010–15, follows. The

growth rate during this latter episode is slower. In the end, the size of core reaches 2,200

nodes, a 30 per cent increase over the episode. For easy reference, I will call these two stages

waves 1 and 2.

The same dynamics can also be observed in Figure 8. This figure shows the change in

the number of nodes in the core by node type, where changes are from period t− 1 to t. The

two waves are more distinctive in this picture. Most of the increase in size is owing to the

mass entry of industrial nodes.

There is also a sizable but smaller growth in the number of research nodes in run up to

the first wave. In 1980, universities were granted the right to collect loyalties for their patents

receiving federal funding. One might be tempted to associate the entry of research nodes

into core with this change. However, the trend begins a bit later and is sustained throughout

wave 1. The change to patent policy in 1980 cannot explain this feature.

There is also a large drop in the number of core’s industry nodes during the last period.

This drop is possibly spurious and caused by a number of patents still pending in 2018 and

2019 (Figure 1). A future release of data with more complete list of granted patents would

provide a more reliable picture.

5 Centrality

The earlier observations bring up the expectation that government and research nodes should

play a central role within the core and to the network as a whole. I will investigate this

hypothesis using two indexes of centrality.

5.1 Degree centrality

Government and research organizations do not merely exist in the core, but they have es-

tablished the largest number of ties, or have the highest degree or popularity in the parlance

of network theory.4 Degree or popularity of a node is simply the number of its direct links
4See Newman (2003) for a dictionary of network terminology and methods.
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Figure 7: The size of the largest and second largest components in the innovation network
over time.
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Figure 9: The degree distribution for government, research and industry nodes. Degree of a
node is the number of links attached to it. The statistic pools networks from all periods.

and serves as a measure of a node’s centrality. In Figure 9, I am showing the distribution of

degree by each type of government, research, industry and foreign node.

The distributions all have thin upper-tails. In all cases, except for foreign entities, the

largest concentration of nodes is at degree zero, that is, most nodes are isolated. Foreign

nodes, by the rule of inclusion, have at least one link, hence, they have their largest concen-

tration at degree one.

For government and research nodes, the proportion of isolated nodes is below 60 per cent,

meaning that 40 per cent of these nodes have one or more links. A few of these nodes connect

to more than 10 other nodes, giving them a stellar position. In contrast, more than 90 per

cent of of industry nodes are isolated. Those collaborating do not have many connections

either.

In Figure 10, I investigate how the centrality, or lack thereof, for each type of node tracks

over time. In this picture, I am computing the average degree for each type of node. The

network’s core acts very much as an independent body, detached from rest of the network.

Studying central nodes has to focus on the core. For that reason, I look at the core sub-

network as a standalone body in panel (a) of the figure and compute the level of centrality
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Network Core
Comparison N1 N2 W N1 N2 W

Foreign > Industry 56,734 16 79,115.5 1,648 4 4,246.0
[0.000]∗∗∗ [0.209]

Research > Industry 56,734 719 9.05×106 1,648 399 1.51×105

[0.000]∗∗∗ [0.000]∗∗∗

Research > Foreign 719 16 391.5 399 4 214.0
[0.585] [0.011]∗∗

Government > Research 45 719 14,949.5 23 399 4,210.0
[0.373] [0.500]

Table 2: Mann–Whitney Rank test of difference in mean degree centrality of different pairs
of nodes for 2014–19. Numbers in brackets are p-values. *** and ** denote significance at
1% and 5% levels.

present in there. In panel (b) of same figure, I take average over the full network, considering

that not all government and research nodes are a core member and some are forming smaller-

scale collaborations in the periphery.

In both panels, government nodes sit on the top as the most connected (or central) set

of nodes whether in the core or in the full network. Research nodes come second. To de-

termine whether this ranking is statistically significant or not, however, one cannot make

the normal distribution assumption. The main reason would be that the positional informa-

tion in networks (such as centreality) are likely to exhibit structural correlations, owing to

the co-evolvement of links (Dow et al., 1984; Krackhardt, 1988). I use the non-parametric

Mann-Whitney test to check whether the averages are statistically different. The rankings

stay by and large the same over time, therefore, I only report the statistics for 2014–19 in

Table 2. As the table shows, the difference is not statistically significant. The small number

of government nodes might be one reason for this insignificance.

The centerality changes over time. Inside the core, in particular, government’s centrality

jumps in the midst of wave 1. The centrality of research nodes increases in tandem but at a

slower pace.

Post wave 1, the centrality of government within the core ebbs, though it keeps rising

at a slower rate outside the core (panel (b)). By this time, the government appears to have

given up its centralized efforts for collaboration building and, instead, is opting for localized

ad hoc ties.
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Figure 10: The average centrality of government, research, industry, and foreign nodes to the
core and to the full network.
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Industry and foreign nodes have the weakest positions, in the sense that they are the least

connected. Even those located within the core have very few connections, positioning them

at the perimeter. The significance tests in Table 2 confirm this inferior position for industry

nodes. The tests for foreign nodes are mostly insignificant, owing to their small number.

The surge in government centrality during wave 1 is quite remarkable. A combination of

forces and policy might have been behind this surge, chief among them the introduction of

the National Cooperative Research Act (NCRA) of 1984 and the Federal Technology Transfer

Act (FTTA) of 1986. The former was meant to remedy the declining productivity growth in

manufacturing throughout 1970s and 80s by encouraging inter-organization research collab-

orations (Leyden &Link, 1999). The FFTA further paved the way by enabling FFRDCs to

enter into cooperative research agreements with industrial firms. Accordingly, Leyden &Link

(1999) find about 600 joint research ventures that have been registered in the wake of those

acts, many of them involving FFRDCs.

The importance of FFRDCs in this phase is evident in a few trends. In Figure 11, I

am showing the proportion of organizations affiliated with FFRDCs, either as a sponsor or

an administrator, that are also core members.5 The plot also shows the average degree of

FFRDC-affiliated organizations, taken over all such organizations.

There is a rapid growth in the number of FFRDC-affiliated nodes in the core during

wave 1. By the end of this wave, about 75 per cent of such agencies are in the core, up from

40 per cent at the start of the wave. Average degree for the affiliated organizations also grows

sharply in tandem, moving them to central positions.

At the same time, these nodes almost wholly account for the surge in the centrality of

government and research nodes during wave 1 (Figure 12). Centrality for government and

research nodes not affiliated with any FFRDC grows only slightly in comparison.

FFRDCs also appear to be a major driving force during wave 2, albeit showing less

energy. By this time, almost all FFRDC-affiliated organizations are already in the core. The

centrality of government stagnates during this wave. On the other hand, the centrality of

research nodes continues to grow, especially for those affiliated with FFRDCs (Figure 12).

I carry out a more rigorous examination of these changes by estimating a network re-
5For the list of FFRDCs and the sponsor or administering agencies, both current and historical, see NSF’s

master list.
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Figure 11: The proportion of FFRDC affiliates that are core members (bars), and the average
degree of FFRDC affiliates in general (points).
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gression for each wave. To use regression tools with networks, one only needs to imagine

network statistics stacked as a vector, where row i corresponds to node i in the network and

its characteristics. For my application, I use the following specification:

Degreeit = a0 + a1Degreei,t−1 +GFFRDC
i +RFFRDC

i +GOther
i +ROther

i + ϵit. (3)

In the specification above, I am separating the role of government and research nodes with

and without FFRDC affiliation (FFRDC or Other). Industry and foreign nodes are assigned

as the base group (there are very few foreign nodes).

The specification also includes the node’s degree in t− 1 to shift the focus onto change in

degree and not the degree itself. I carry out separate estimates of this model for each wave.

For wave 1, the transition is from t− 1 =1984–89 to t =1994–99. For wave 2, the transition

is from t− 1 =2003–08 to t =2010–15.

Model 3 can be estimated using the usual OLS method. However, as mentioned earlier,

centrality measures might exhibit spacial correlations. Dow et al. (1984) propose incorpo-

rating a matrix of spatial weights akin to a spatial regression. For the case at hand, and

to circumvent the problem of determining the unknown spatial weights, I conceptualize that

the structural correlation should be the strongest in the core, and particularly around gov-

ernment and research nodes and those affiliated with FFRDCs. Based on this idea, I adjust

standard errors by clustering noise by core membership, type of node and FFRDC affiliation.

Table 3 lists the estimated coefficients and their standard errors for each wave. As the

table manifests, FFRDC-affiliated organizations tend to be more actively building ties than

other organizations.

During wave 1, government and research nodes with FFRDC affiliation are particularly

expanding their linkages at a fast rate. For a FFRDC government node, the degree grows

by 10 above the average, whereas for a FFRDC university degree grows by 13 above the

average. Without FFRDC affiliation, however, there is no significant growth in degree for

government. Degree for research nodes without FFRDC affiliation grows by one and the

statistical significance is weak.

The rate of growth in degree mostly dampens during wave 2. Government nodes affiliated

with FFRDCs do not show a statistically significant change. However, there is a statistically
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(1) (2) (3) (4)
Variable Wave 1 Wave 2 Wave 1 Wave 2
lag(Degree) 3.718∗∗∗ 1.359∗∗∗ 3.708∗∗∗ 1.350∗∗∗

(1.203) (0.044) (1.218) (0.044)
G FFRDC 9.917∗∗∗ −0.738 9.940∗∗∗ −0.555

(2.112) (0.959) (2.178) (0.948)
R FFRDC 8.273∗∗∗ 3.764∗∗∗ 8.860∗∗∗ 3.406∗∗∗

(2.175) (1.141) (2.253) (1.133)
G Other 0.294 0.409∗∗∗ 0.303 0.429∗∗∗

(0.909) (0.144) (0.917) (0.152)
R Other 1.170∗ 0.665 1.127∗ 0.572

(0.616) (0.473) (0.596) (0.423)
R FFRDC Entrepreneurial −5.380 5.405∗∗∗

(3.878) (1.222)
R Other Entrepreneurial 3.357∗∗ 7.508∗∗∗

(1.425) (1.231)
Adjusted R2 0.540 0.886 0.542 0.888
F Statistic 10,146.3∗∗∗ 84,623.1∗∗∗ 7,295.0∗∗∗ 61,999.7∗∗∗
N 43,150 54,565 43,150 54,565

Table 3: Factors affectign change in degree during each wave. ***, ** and * indicate signif-
icance at 1%, 5% and 10% levels. Standard errors are clustered by core membership, node
type and FFRDC affiliation. G and R indicate government and research nodes. Industry
and foreign nodes are assigned tas the base group.

significant increase in the centrality for other government nodes. This result conforms with

the previous observations that suggested during wave 2 government was mostly building ties

out of the core and not within.

Universities affiliated with FFRDCs are still expanding their ties during wave 2, but at a

slower rate. This observation, again, mirrors those from Figures 10 and 12, which showed a

steady but slow increase in centrality of universities with FFRDC affiliation.

The last finding is suggestive of the second academic revolution coming into full force, when

universities added entrepreneurship and capitalization of innovation as their third mission

besides teaching and research (Etzkowitz, 1998; Gulbrandsen & Slipersæter, 2007). For

a closer look at this issue, I form an indicator of entrepreneurial university based on the

listing provided by the Global League of Entrepreneurial Universites.6. In Appendix A, I list

universities assigned as entrepreneurial in this analysis. Using these indicators, I carry out
6The list is available at entrepreneurial-universities.org. Last access for this reasearch was on March

20, 2024.
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(a) (b)

Figure 13: A simple example of closeness concept. The focal node (shown in black) has the
same degree in networks (a) and (b). However, in network (a) it is closer to all other nodes.

two extra regressions. These estimations are listed in columns (3) and (4) of Table 3.

As these results show, entrepreneurial universities take a more active role during wave 2

in building ties. Even restricting to research nodes, entrepreneurial universities are still the

most active. This feature was not as distinctive in wave 1. Judging based on the results,

wave 2 is mostly defined by the reorientation of university activity towards entrepreneurship

and flourishing of university–industry linkages.

5.2 Closeness

Closeness extends the concept of degree centrality by also accounting for nodes further down

the path from a focal node. The concept is tightly related to knowledge diffusion. Proximity

in social ties and institutional proximity are shown to be as potent as proximity in geography,

if not more, in driving knowledge spillovers (Kirat & Lung, 1999; Breschi & Lissoni, 2005;

Singh, 2005; Whittington et al., 2009).

Figure 13 is a simple depiction of the closeness concept. The focal node in both graphs

has the same degree. In network (a), however, the focal point is at most two links away from

the farthest node. In network (b), a number of nodes are three to four links away from the

focal one. Access to and flow of knowledge through the focal node is, thus, better facilitated

in network (a) than in network (b).

The closeness index quantifies this concept and, in its simplest form, is the reciprocal of

the average geodesic distance, or the shortest path, from a node to every other node. If two

nodes are disconnected, the geodesic distance between them is infinity. In such situation,

simple averaging does not provide useful outcomes. Given the abundance of isolated nodes

and disconnected sub-networks in the innovation network, I use the alternative definition from
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Gil & Schmidt (1996). In this definition, instead of simple averaging, harmonic averaging is

used. Formally:

Closenessi =
1

N − 1

∑
j ̸=i

1

dij
, (4)

Where dij is the geodesic distance between nodes i and j. The index above takes a value

between zero and one. For an isolated node, closeness is zero. For a node at the center of a

star formation, with every other node one step away, the index is one.

As with degree centrality, I compare the centrality of government, research, industry,

and foreign nodes to the core and to the full network by averaging their closeness over the

respective nodes. These averages are shown in Figure 14, where the top panel is averaging

over nodes in the core and bottom panel averages over all nodes in the network.

The implications are almost similar to those with degree centrality. Government’s close-

ness jumps with the onset of wave 1, then stays very much the same afterwards. Out of the

core, however, government keeps getting closer to other nodes by forming localized networks.

As for research nodes, they are constantly getting closer to other nodes both within and

outside the core. The increase in their closeness accelerates during both waves 1 and 2. One

difference from the degree centrality of the previous section is that government and research

nodes are almost on par in closeness to other nodes. By 2014–19, both groups are on average

about three links away (the reciprocal of closeness 0.3) from other core members.

The other difference concerns industry and foreign nodes. They still have lower centrality

than government and research. Yet for those located within the core, they are approximately

four links away from other nodes. Given these nodes have low degrees, the only conclusion

is that, while sitting at the perimeter, they are connected to a central node. This way, the

node is making pathways to other nodes through that focal connection.

The statistical significance of the differences in average closeness are listed in Table 4. The

tests have the same pattern as with degree centrality. Specifically, the difference between

government and research centrality is insignificant. The centrality of industry nodes is,

however, significantly below that of other nodes. Differences with foreign nodes, again, do

not show any significance due to the small number of foreign nodes.
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Figure 14: The average closeness of government, research, and industry to the core and the
full network.
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Network Core
Comparison N1 N2 W N1 N2 W

Foreign > Industry 56,734 16 82,679.5 1,648 4 2,962.0
[0.000]∗∗∗ [0.729]

Research > Industry 56,734 719 9.06×106 1,648 399 1.91×105

[0.000]∗∗∗ [0.000]∗∗∗

Research > Foreign 719 16 5,196.0 399 4 521.5
[0.493] [0.233]

Government > Research 45 719 15,433.0 23 399 4,636.5
[0.590] [0.933]

Table 4: Mann–Whitney Rank test of difference in mean closeness centrality of different pairs
of nodes in 2014–19. Numbers in brackets are p-values. *** denotes significance at 1% level.

6 Robustness Tests

6.1 Centrality by technology field

One critic that can be directed towards the results of the previous section is that universities

are not one entity, but a collection of departments. Each department can be acting as a sole

entity with little connection to other departments. The university’s centrality aggregates

these department-level centralities. Treating each department separately, however, could

affect the centrality score of the research sector.

With a few exceptions, almost all patent assignees refer only to the university and not

the department. Therefore, it is impractical to test whether the results are robust to the

breaking down of universities into departments. The closest one can get to departments is

to treat each technology class separately. In Figure 15, I illustrate the closeness centrality of

different types of nodes by technology class and for four different periods.

The general implications from these pictures are the same as before. Specifically, Govern-

ment nodes are the most central across very much every technology field. They are followed

by research nodes as the second most central. The centrality of both government and research

nodes rises over time in line with the waves of core expansion.

There is more. Government and research nodes are more central to certain technology

fields. Biotechnology, Pharmaceuticals and Chemistry, in particular, benefit from a higher

level of government and research centrality.

There are reasons why government’s centrality is crucial to these technologies. Powell et
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Figure 15: Average centrality of government, research and industry in different technology
areas.
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al. (1996) argue that technologies for which knowledge base is complex and fast expanding

and that knowledge is dispersed across many organizations, there is an inherent push for

firms to seek collaboration. In this network, organizations with deeper and more diverse

knowledge, e.g. government research centers and universities, expand their contacts faster

than others and assume the central positions. Kirat & Lung (1999) specially argue in favor

of institutional proximity as an important factor driving innovation in knowledge-intensive

technologies.

Another point to draw from Figure 15 is that the centrality of government and research

nodes expands in tandem with the expansion of the network itself to encompass a wider

range of technologies. In the early periods, the centrality of government and research nodes

was mostly limited to the areas mentioned above. In the later periods, however, these nodes

become quite central to areas such as Instruments, Medical, and Semiconductor technologies.

6.2 Centrality of large firms

Another way to look at the issue raise in the last section is to compare universities with large

corporations. In large corporations, similar to universities, there are many divisions that

could be far apart. As a result, these corporation behave somewhat like a university with

multiple departments.

I recompute the average closeness index for each type of node but only including nodes

that have at least 100 patents, on average, per period. The results are shown in Figure 16

and show the same ranking as before.

7 Conclusion

Apart from advancing knowledge and science, research centers run by government and uni-

versities also bridge other innovators and facilitate knowledge exchange between them and

further around the network. The social and human capital of the whole network largely de-

pends on the stock of knowledge these centers embody and also from their ability to absorb,

compile and disseminate knowledge. In such a setting, innovations come more frequently and

have a higher value for drawing on a larger pool of expertise. At the same time, the focus by
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Figure 16: The average closeness for government, research and industry nodes. Including
only nodes that have at least 100 patents, on average, per period.

the US government on market solutions to encourage innovations and the obscurity of non-

market solutions in its policies raised concerns that the US innovation ecosystem might be

missing an important actor. The findings of this paper show that although the government

had very little centrality back in 1970s, its centrality grew substantially, with the onset of

Federal Technology Transfer Act in 1986. Two waves of increasing government and univer-

sity engagement with industrial firms are evident in the data. FFRDCs are the main force

in each case and reach out for more industry involvement. In the early stage, the core of

collaboration forms as a result and expands rapidly. Meanwhile, government and research

organizations affiliated with FFRDCs are thrust into network’s central positions. A second

wave follows during the 2000s. Unlike the first wave, this one is more about the flourishing

of university–industry collaborations and leads to the rise of entrepreneurial universities.

The collaborations between government, research organizations and industry encompass

every field of technology but to vastly different extents. Where the technology is more

complex and knowledge and expertise is more dispersed, namely, chemistry, biotechnology

and pharmaceuticals, the industry’s appetite for collaboration is great. Government and

research organizations hold their most central positions within these technologies. In the
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recent years, government and research organizations have also diversified their presence and

gained centrality in other fields, most notably in medical, instrument and semiconductor

technologies. The way these collaborations are evolving suggests the trend will continue with

universities probably taking an increasingly central role across a wider range of technologies.

Observing the formation and evolution of the collaboration network has a few lessons

that can go beyond the US context. Basic research and complex innovations contribute to

long-term productivity growth. Offering research grants and tax subsidies is an ineffective

approach to boosting basic research, as they are mostly directed to applied and experimental

development (OECD, 2023). To push for basic and complex innovations, networks of collabo-

ration are needed, and large networks of collaboration only materialize when the government

assumes a certain level of centrality. Such policy puts government’s intramural research in

focus as a key factor, not to crowd out private research, but to promote collaboration and

basic innovation.

Appendix

A Entrepreneurial Universities

Below is the list of US universities listed as entreprteneurial. There are a few liberal arts

colleges, such as Babson College and Flagler College, also listed as being entrepreneurial.

However, these colleges have not registered any patents, therefore, do not show up in the

patent data and the network.

• Arizona State University

• Carnegie Mellon University

• Chicago State University

• Florida State University

• Indiana University

• Lawrence Technological University

• Massachusetts Institute Of Technology

• Northeastern University

• Stanford University
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• Syracuse University

• University Of Colorado

• University of California, Berkeley

• University of Houston

• University Of Louisville

• University of North Carolina, Chapel Hill

• West Virginia University
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