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The paper proposes a model of demand for medical care under uncertainty. Both health capital 
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Stochastic Model of Demand for Medical Care 
with Endogenous Labour Supply and Health 

Insurance ** 

Introduction 

It has been recognised in the mainstream literature on health capital, pioneered by Michael 

Grossman in Grossman (1972) , that medical care should be viewed as one of the inputs into the 

health capital production function.  It is the commodity of “good health” that individuals are 

demanding, not medical care per se. A number of studies have been devoted to modelling the 

demand for health using generalised Grossman models, including Muurinen (1982), Ehrlich and 

Chuma (1990) , Reid (1998) , and Grossman (1999) . These models are deterministic dynamic 

optimisation models, where the terminal period occurs once the level of health capital falls 

below some predetermined critical level. An important feature of these analyses is the time input 

into production of health. An agent derives utility from the consumption good, and disutility from 

sick time, while the rest of his time is allocated for market activities and investment into health 

and household production of a consumption good.   

Since Arrow’s (1963) paper on uncertainty and economics of medical care, it has been 

recognised that predictions of the stochastic model might be quite different from those of the 

deterministic one. An important extension of the model of demand for health capital has 

attempted to address the random nature of health, illness and death. Stochastic models of this 

type were developed in Cropper (1977), Dardanoni and Wagstaff  (1990), and Picone et al. 

(1998).  In Cropper (1977), the critical value of health stock is assumed to be a random variable 

drawn from a specific distribution. Picone et al. (1998) use a dynamic Grossman model with 

uncertainty entering the health capital accumulation equation multiplicatively in the level of 
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medical expenditure. Their model does not allow for the closed form solution and is 

implemented numerically. None of those studies model insurance against uncertain medical 

expenditure, or health insurance.  

Studies of health insurance comprise an important part of th e health economics literature and 

include Spence and Zeckhauser (1971), Ehrlich and Becker (1972), Feldstein (1973) , Friedman 

(1974), and the RAND Health Insurance Study, whose results are reported in Newhouse and 

The Insurance Experiment Group (1993) and in a number of individual papers. The coinsurance 

and other price elasticities of the demand for medical care were studied in Phelps (1973), 

Phelps and Newhouse (1974),  van de Ven and van Praag (1981). It has been established that 

demand for medical services is higher at a lower coinsurance rate or a lower deductible, and 

that the optimal spending strategy under the latter policy option exhibits a non-linear behavior. 

There are a number of problems associated with the provision of health insurance - agency 

costs, moral hazard, adverse selection and supplier -induced demand to name just a few. The 

health status of the insured is not directly observable to the insurance company, thus the 

insurance policy under such asymmetric information will necessarily be second-best. The 

adverse selection leads to the separating equilibrium in the insurance markets, with different 

health groups choosing different levels of coverage1. The moral hazard arises when insurance 

holders demand more medical care than uninsured or insured under the less generous plans. A 

number of studies including Feldstein (1973), Feldman and Dowd (1991), and Manning and 

Marquis (1996), evaluated a welfare loss associated with moral hazard in the health insurance 

market, and were aiming to construct an optimal insurance policy that balances benefits of risk 

spreading with losses attributed to the moral hazard.   

The models of medical insurance have been developed in several studies including Zeckhauser 

(1970), Phelps (1973), Marquis and Holmer (1996),  and Blomqvist (1997) .  Zeckhauser (1970)  

studied how the optimal choice of the sharing function for the insured, subject to the varying 

ability of the insurance company to discriminate against different types of insureds according to 
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their health status, would alter the premiums charged for the plan. Van de Ven and van Praag 

(1981) assumed a lognormal distribution for the health expenditure and used an adjusted Tobin 

model to study the effect of insurance on the demand for health services. Blomqvist (1997) used 

a dynamic optimisation technique to construct an optimal non-linear health insurance contract 

with an exogenous income. A recent paper by Liljas (1998) develops a stochastic model of the 

demand for health that incorporates insurance against loss of income due to illness. The model 

was further improved by Tabata and Ohkusa (2000). 

This paper develops a dynamic stochastic model of demand for medical care and health 

insurance under the assumption of lognormality of underlying wealth and health distributions.  

The model incorporates a correlation between health and wealth processes without making 

health a direct function of income, which was one of the assumptions in Contoyannis and 

Forster (1999). It is a continuous time model that rests on a probabilistic assumption of 

lognormality of health justified by the previous studies including Wagstaff and van Doorslaer 

(1994) and Gerdtham, Johannesson et al. (1999).  

There are several departures in this paper from Grossman’s original framework. First, there is 

no time input into the health production function. Second, the consumer’s utility depends on the 

health-adjusted leisure as opposed to the “healthy time”. This allows us to model labour supply 

explicitly and to endogenise income. Life span is not endogenous in this paper: the 

representative consumer is alive as long as her health index is positive. Future extension of the 

m odel could incorporate an endogenous time of death by defining a positive threshold for the 

health capital below which death occurs.  

The structure of the paper is as follows: Section 2 contains a brief discussion of the stochastic 

optimisation technique us ed in the paper. Section 3 proposes a stochastic model of demand for 

medical care under the aforementioned assumptions, compares results with a certainty case 

and illustrates them for logarithmic utility function. Section 4 extends the model by introducing  

                                                                                                                                                                                              

1 See Rothschild and Stiglitz (1976) for the discussion of the existence of equilibrium and its structure with imperfect 

information. The equilibrium with the  adverse selection in the health insurance market is discussed in Cutler and 

Zeckhauser (1999). 
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health insurance and finds that the distribution of optimal medical expenditure changes after the 

introduction of insurance. Results of the analysis are summarised in the Conclusions. 

2. Stochastic Control Problem and Itô’s Lemma 

The stochastic optimizati on technique2 used in solving the model of the next sections  can be 

summarised as follows. If the stochastic process dy is generated by the equation 

dvdttyfdy += ),( ,         (2.1) 

where dttyNdv ),(,0(~ Σ , then for any twice differentiable in its arguments function ),( tyG  its 

stochastic differential is given by the Itô’s Lemma: 
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where tr stands for the trace of a matrix, and stochastic process dy  is defined in (2.1). 

A differential generator )],([ tyGLy  of the function G(y,t) is defined as expected rate of change in 

G(y(t),t), when evolution of dy is given by (2.1), that is, 



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As it follows from (3.2), the differential generator of G(y,t)  with dy given in (2.1) equals 
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The stochastic control problem is generally stated as finding 

∫
∞
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,  

                                                                 

2 See Turnovsky (1995) Chapter 14, Malliaris and Brock (1982) Chapter 2. 
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subject to stochastic accumulation equation (2.1) for the state variable sy  and sx  being control 

variable. The optimum solution has to satisfy the stochastic Bellman equation 

 ]},),((~[)),(),(({max0 ttyVLttxtyU y
xs

+=      (2.4) 

where the control variables sx are chosen so that they satisfy their first-order optimality 

conditions, and  )),((
~

ttyV is a value function defined by  ∫
∞

=
t

t
x

dsssxsyUEttyV
s

)),(),((max)),((
~

. 

3. Stochastic Model Of Demand For Medical Care  

Consider a stochastic version of the representative agent model. The model is formulated in 

real terms, and the consumer is optimizing expected utility of the stream of consum ption and 

health-adjusted leisure, with the adjustment factor given by )( tHφ , where ,0>′φ  ,0<′′φ  and 

tH  is the current health status: 

∫
∞

−

0
0

,,
))(,(max dteHcUE t

ttt
mc ttt

ρ
λ

λφ ,      (3.1) 

with respect to consumption tc , leisure tλ  , and medical expenditure tm , subject to the 

dynamic constraints discussed below. 

The health capital tH  is assumed to be governed by the stochastic accumulation equation, with 

the variance proportionate to the level of health capital. The depreciation rate is given by tδ , 

and the  investment into health capital stock on the interval of the length dt is given by the 

expression dtHm tt )(ψ , with ,0>′ψ  0<′′ψ , 0>′′′ψ . The stochastic component is assumed to 

be a Wiener process, ).,0(~ 2 dtNdh Ht σ  The evolution of health capital is given by 

tttttt dhHdtHmdH +−= ))(( δψ .       (3.2) 
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Analogously, change in wealth is compounded from the interest earned on the stock of wealth 

over time dt, income from market activities, less expenditure on consumption stream and 

medical care. The unit of labour supplied by the consumer is assumed to be paid an efficiency 

wage, dependent on her health status. This would reflect changes in productivity of labour due 

to changes in consumer’s health. The efficiency coefficient is given by  the function )( tHε , 

,0>′ε  0<′′ε .  The error term enters multiplicatively in tW , in line with the health accumulation 

equation. The real price of medical services in terms of consumption good is given by tχ . The 

stochastic wealth accumulation equation is given by 

ttttttttttt dwWdtmcHWrdW +−−−+= ))1)((( χλεω ,    (3.3) 

where tω  is a wage rate, tr  is a real interest rate, and ),0(~ 2 dtNdw Wt σ  is a Wiener process 

for the wealth disturbances. The instantaneous covariance between the two disturbances is 

given by dtdwdh HWtt σ=),cov( . The initial values for stocks of health and wealth are given by 

0H  and 0W  respectively. A consumer maximises expected utility (3.1) subject to two stochastic 

accumulation equations (3.2), (3.3).  This problem represents a case of a self-insured consumer 

who spreads her own risks by purchasing medical care and smoothing consumption and leisure 

under uncertainty. 

Applying the stochastic optimisation technique discussed in Section 2 to the problem (3.1) - 
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To simplify notations, the time index is dropped, and subscripts will denote partial derivatives 

with respect to the relevant variable. The value func tion is assumed to be of the form similar to 
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the integrand in the utility functional:  tetWHVtWHV ρ−= ),,();,(~ . 

Consider  H= =+− )];,(~[))(,( tWHVLHcUe y
t λφρ      (3.4) 
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Maximising (3.4) , the first order necessary conditions for the optimal choice of controls are 

,0,0,0 =
∂
∂

=
∂
∂

=
∂
∂

mc
HHH

λ
 which implies that 

,Wc VU =          (3.5.a) 

),()( HVHU W εωφλ =         (3.5.b) 

WH VHmV χψ =′ )(         (3.5.c) 

Expression (3.5.a) is a standard condition equating the marginal cost of reducing current period 

consumption by one unit to the marginal benefits of having an extra unit of wealth available. 

Condition (3.5.b) states that the health -adjusted utility gain from the additional unit of leisure is 

equal at the optimum to the efficiency-adjusted loss of an extra unit of time spent on wage-

earning activities. The third condition (3.5.c) states that the gain in terms of the value of health 

of the marginal product of the unit of medical expenditure in the production of new health must 

be equal to the marginal loss of χ  units of wealth, where χ  is a price per unit of  medical care. 

These are standard and intuitive interpretations of the FONCs (3.5). 

In addition, the Bellman equation has to be satisfied when the optimal values from the FONCs 

(3.5)  are substituted, which in this case is equivalent to  
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          (3.6) 

The solution of the FONCs (3.5.a-c) are functions of H, W, and t, c = c(H, W, t), ),,( tWHλλ = , 

m = m(H, W, t) , and the partial deriva tives of the value function are of the form ),,,( tWHVV HH =  

),,( tWHVV WW = . Partially differentiating the Bellman equation (3.6) with respect to H and W, 

and using the first order optimality conditions (3.5.a -c) along with Itô’s lemma, one could  

establish that under the additional assumption of 
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 - constant elasticity of )(⋅φ , )(⋅ε  with respect to H, the following dynamic 

stochastic equations for marginal value of health and wealth can be obtained (see Appendix A 

for derivation): 
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{ } tWWtWHWWWHWHWWW WdwVHdhVdtWVHVVrdV ++−−−= 2)( σσρ . (3.8) 

Equations  (3.5.a -c), (3.7) and (3.8) constitute an equilibrium solution for the stochastic 

optimisation problem (3.1) -(3.3). 

3.1. Example: No Uncertainty 
 

The general solution of the previous section could be applied in the absence of risk as well. 

Assuming that 0== tt dhdw , and 022 === HWHW σσσ , one could get the FONCs (3.5.a-c) 

and the following deterministic evolution for marginal values of wealth and health: 



 

10

 

wW VrdV )( −= ρ , HH V
m

mH
mdV )

)(
)()(

1)(( 






 ′
−−+=

χψ
ηψωε

ψδρ , from which the familiar Euler’s 

equation follows: r
dt

dU
U

c

c
−= ρ

1
. 

The shadow price of wealth, or marginal impact of wealth on the value function, depends on the 

interest rate and a subjective discount rate only. A much larger set of model parameters 

determine the shape of marginal value of health schedule. Optimal marginal valuation of health 

is positively related to the subjective discount rate, th e depreciation rate of health capital, price 

of medical care, increases in which lead to the lower optimal stock of health capital. Marginal 

value of health at optimum is lowered by increases in the health investment rate, wage rate, 

efficiency parameter and the steepness of the health investment schedule, all of which implies 

higher optimal health capital stock.  

Note that marginal valuation of health and wealth under uncertainty differs from the certainty 

case: under regular assumptions about the value function, an increase in variance of health 

process leads to a higher marginal value of health (and lower equilibrium stock of health). The 

positive correlation between wealth and health shocks has a negative effect on the expected 

marginal value of health (hence, a positive effect on the equilibrium level of health capital), and 

a negative effect on the expected marginal value of wealth (positive effect on the equilibrium 

stock of wealth). Higher uncertainty about wealth translates into higher expected marginal value 

of wealth and is associated with the lower optimal level of wealth. Variance of wealth (health) 

adjusted by the risk aversion parameter of the value function serves as an extra discount factor 

in the value of wealth (health) accumulation equation . 

3.2. Example: Logarithmic Utility Function with Uncertainty 
 

Let us assume that the utility function is given by  



 

11

 

[ ]λφβαλφ )(lnln))(,( HcHcU += .      (3.9) 

The health-adjustment function and the efficiency function are of the constant elasticity form 

with ηηη εφ
def
=−=− , that is, they are η

φφ HaH =)(  and η
εε HaH =)(   respectively, where 

+∈R,, ηεφ aa . Assume that the investment function is logarithmic: mm ln)( ψψ = , 0>ψ . 

Given the logarithmic form of the util ity function, we will be looking for a similar, logarithmic 

value function for the problem (3.1) -(3.3), tetWHVtWHV ρ−= ),,();,(~ , where 
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The first-order conditions (3.5.a -c) imply that the optimal solutions for the choice variables are 
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The Bellman equation has to be satisfied identically at the optimum, which makes it possible to 

solve for the unknown parameters 000 ,, γβα  in (3.10). Performing calculations presented in 

Appendix B, the value function is given by the following expression: 
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The optimal consumption, according to the FONCs, is given by 

Assuming that  1<
ρ

ηψ
, the optimal consumption, according to the FONCs, is given by 
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medical expenditure is given by W
a

m
ρχ

ηψω ε= . 

Note that medical care demanded does not depend on the contemporaneous health status, 

which reflects the smoothing effect of the optimal solution. Another result to notice is that the 

consumption-to-leisure ratio along the optimal path equals  
β

αωε
λ

)(Hc
= . It is determined by the 

underlying parameters of the utility function, wage rate and the current health status which acts 

through the efficiency adjustment function. 

The solution of this particular case has been illustrated by running simulations of the Wiener 

processes for disturbances under the assumption of zero correlation between them. Constant 

real interest rate, wage, health capital depreciation rate and price of medical care were 

assumed throughout the simulations. For a particular realization of the random disturbances, 

different scenarios concerning model parameters and initial values were investigated.  

The paths of wealth and health capital, their marginal values, and optimal solutions for 

consumption, leisure and medical expenditure when parameter α  (a relative weight of 

consumption in the utility function) varies, are presented in Figure 1. Higher weight put on 

consumption quite intuitively leads to higher optimal consumption, lower optimal leisure (hence, 

higher labour supply) and to lower optimal medical spending, which results in a lower optimal 

level of health capital and lower efficiency of labour. The marginal valuation of wealth and 

optimal stock of wealth are not affected. 

4. Stochastic Model Of Demand For Medical Care With Insurance 

The purpose of this section is to introduce insurance into the stochastic model developed in the 

previous sections of the paper. The insurance company observes the distribution of the optimal 

medical expenditure of the self-insured consumer and assumes this distribution will not change 

after introduction of insurance (no moral hazard assumption).  The consumer will be liable for 
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part of her medical spending, that is, the insurance contract includes a positive coinsurance 

parameter, k. An insurance premium is paid at time t, and medical spending is incurred over the 

interval (t, t+dt), of which a fraction k is paid by the insured. The question of how the insurance 

company is financed is not addressed explicitly. 

First, it is necessary to establish the equation for the evolution of the medical spending. With the 

stochastic equati on for tdm  in hand, the expected amount of medical care consumed over the 

interval (t, t+dt) would be given by ttdmE , and the actuarially fair premium flow charged by the 

insurance company at time t would be given by 
dt

dm
Ek t

t
dt

t
0

lim)1(
→

−= χπ  under the 

assumption of zero loading. 

4.1. Stochastic accumulation equation for demand for medical services 

As shown in Appendix C, under the additional assumptions of constant relative risk aversion of 

the utility and value functions, and constant elasticity, relative risk aversion and relative 

prudence of the health investment schedule, the distribution of optimal medical expenditure of 

the self-insured consumer of Section 3 of this paper is given by 
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 3,2,,01 =∈< + iRiηη , and 3,1, =iiν  are constants depending on the curvature of the 

value function and on the variances and covariance of the disturbance processes. 

Based on the observed distribution of medical expenditure by a self-insured consumer (4.1), the 
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insurance company sets the instantaneous premium  equal to 
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4.2. Optimisation Problem With The Insurance Contract 

The consumer is optimising the expected utility of the stream of consumption and health-

adjusted leisure: ∫
∞
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with respect to consumption tc , leisure tλ , and medical expenditure tm , subject to the 

dynamic constraints discussed below.  The health -adjustment function )( tHφ  is assumed to be 

,0>′φ  ,0<′′φ  and ηηφ = .  

The health capital is assumed to be governed by the following stochastic accumulation 

equation:  
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where the  investment function )( tmψ is assumed to satisfy conditions (4.2) and 

).,0(~ 2 dtNdh Ht σ   

In view of the discussion about the nature of the insurance contract and the amount of premium 

charged, the wealth accumulation equation is as follows: 
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where tω  is a wage rate, tr  is a real interest rate, tχ  is a real price of medical services in 
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terms of consumption good, and ),0(~ 2 dtNdw Wt σ  is a Wiener process for the wealth 

disturbances. The instantaneous covariance between the two disturbances is given by 

dtdwdh HWtt σ=),cov( . The efficiency function  )( tHε satisfies the conditions ,0>′ε  0<′′ε , 

and ηηε = . The initial values for stocks of health and wealth are given by 0H  and 0W  

respectively. 

A consumer maximises expected utility (4.4) subject to two stochastic accumulation equations 

(4.5), (4.6). Applying the familiar stochastic optimisation technique, form the value function 

tetWHVtWHV ρ−= ),,();,(~ . As previously, the time index is dropped, and subscripts denote 

partial derivatives. Consider  

H= =+− )];,(
~

[))(,( tWHVLHcUe y
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Maximising (4.7) , the first order necessary conditions for the optimal choice of controls are: 

,Wc VU =          (4.8.a) 

),()( HVHU W εωφλ =         (4.8.b) 
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It is obvious that the first two FONCs are identical to the previous case without an insurance, 

while the optimality condition for the choice of m  has changed.  
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Following the procedure described in the Appendix D, the following equations for evolution of 

the marginal values of health and wealth are derived: 

[ ]
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,   (4.9) 

and { } tWWtWHWWWHWHWWW WdwVHdhVdtWVHVVrdV ++−−−= 2)( σσρ  (4.10) 

The wealth accumulation equation (4.10) for the problem with insurance is identical to the 

equation (3.8) without any insurance.  Re-writing the equation (4.8.c),  
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When the coinsurance rate equals one, insurance does not technically exist, and the optimal 

solution for medical expenditure is equivalent to the self-insurance case covered in Section 3. 

The evolution of marginal value of health given by (4.9) when k=1 is identical to the previously 

derived (3.7), which could be re -written, using the FONCs, as  

[ ] tHWtHHHWHWHHH
W

HH WdwVHdhVdtWVHV
H

HV
VmdV ++−−+−+= }

)(
)({ 2 σσ

ηωε
ψδρ . 

It is not difficult to notice that marginal valuation of health with insurance differs from the case 

without insurance by the term 
H

HV
mk W

2

2

1 )(
)()1(

ηωε
ψ

η
η

−  which is negative ( 0,0 21 >< ηη ). 
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Hence, in presence of insurance, marginal valuation of health is lower, and optimal health 

capital stock is higher than without insurance. For any )1;0(∈k , the initial assumption made by 

the insurance company of no moral hazard in setting their premiums leads to changes in the 

optimal solution on the consumer’s part, and proves to be wrong. To study direction of change 

in optimal paths for consumption, leisure and medical expenditure, we need to introduce further 

restrictions on the random processes for disturbances and curvature of the value function. Even 

though the optimality condition for leisure looks the same with insurance as without, it depends 

on the stock of health that changes at optimum according to (4.9), so the path might change as 

well, inducing changes to consumption through the wealth accumulation equation. 

4.3. Example: Logarithmic Utility Function 

The problem with insurance was simulated under the assumptions of logarithmic utility function 

covered in Section 3.1.2, but the health investment schedule was assumed to be a CRRA form, 

ψ
ψ

ζ
ψ −

−
= 1

1
)( mm . For 9.0=ψ and under the assumption of zero correlation between the 

disturbance processes and constant real interest rate, wage, health capital depreciation rate 

and price of medical care, the impact of changes in coinsurance rate from one (no insurance) to 

50% and 20% were simulated. Results are presented in Figure 2, which demonstrates that with 

a lower out-of-pocket price of medical care, the optimal medical expenditure rises, which leads 

to the higher health capital stock. The premium calculated on the basis of the pre-insurance 

distribution of medical expenditure is higher at a lower coinsurance rate. This Figure illustrates 

the fact that distribution of medical expenditure does change after the introduction of health 

insurance, and the assumption of no moral hazard in setting the premiums is not justified. 

Proper adjustment to the premium has to be made, which would take the moral hazard effect 

into account . 
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Conclusions 

This paper contributes to the research into demand for health and medical care under 

uncertainty by constructing a continuous time stochastic model in which both health and wealth 

are governed by possibly correlated Wiener processes. The model includes endogenous leisure 

(labour supply) decision. The optimal solutions for consumption, leisure and medical 

expenditure are first derived in the case of a self-insured consumer. It is shown that the 

presence of uncertainty changes the marginal evaluation of both health and wealth compared to 

the deterministic case, with variances of the shock components adjusted by the parameters of 

risk aversion being additional discount factors. The model is then extended to incorporate health 

insurance under the assumption that the insurance company sets the premiums based on the 

distribution of medical expenditure observed for a self-insured consumer. The results of the 

analysis show that the no moral hazard assumption proves to be wrong: after insurance is 

introduced,  the optimal solution changes and the marginal evaluation of health decreases, 

hence the optimal stock of health increases. An increase in the optimal consumption of medical 

care after the introduction of insurance is  illustrated by computer simulations.  
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Figure 1. Optimal wealth, health, WV , HV , efficiency, consumption, leisure and medical 

expenditure for various α . 
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Figure 2. Optimal wealth, health, WV , HV , insurance premium, consumption, leisure and 

medical expenditure for various values of coinsurance parameter, k 
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Appendix A. Derivation of evolution of marginal value of health and wealth (no insurance) 

Partially differentiating the Bellman equation (3.6) with respect to H , and using the first order 

optimality conditions (3.5.a-c), one could establish that 
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This could be further simplified by noting that  λ
φ

φωε
λφλ )(
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H
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terms containing WV  in (A1) yields the following expression:     
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Finally, by noting that 
χ

ψ )(' mV
H

V HW = , and by denoting 
)(
)('

H
H

H
φ
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ηφ −=  and 
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H
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H
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0, <εφ ηη , equation (A.2) is reduced to the following: 
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Using Itô’s l emma, 

22
2
1

2
1

WHWWHWHHWHHHHHWHHHtH VVVdWVdHVdtVdV σσσ +++++= ,   

and substituting from (A.3), it follows that 



 

22

 

( )
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Suppose ηηη εφ
def
==  - constant elasticity of )(⋅φ , )(⋅ε  with respect to H. Then expression 

(A.4) could be further simplified to the following form, 
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,          (A.5) 

which is an equation (3.7) in the text. The procedure for the other state variable, wealth, is 

completely analogous and yields equation (3.8) in the text. 

Appendix B. Solution of the Particular Case with Logarithmic Utility Function 

Substituting (3.9) - (3.11) into the Bellman equation (3.6), the following expression is true 

identically: 

{ }

0
2
1

2
1

1

ln

lnlnlnlnlnln

2
0

2
0

0

0

00

0

0

0
0

000
00

=−−

−












−−













−++

+












−







+

+++−++











+









WH

WWW
Ha

HarW
W

W

HWaH
Ha

WW

σασβ

α
ψβ

α
α

ωα

β
ω

α

δ
χα
ψβ

ψβ

γβαρββη
ωα

β
β

α
α

α

η
ε

η
ε

φη
ε

 

Approximating term η
εω

α
Ha

W
0  by the first-order expansion  )lnln1(0 WHa −+ηωα ε , and 

collecting coefficients on constant, lnW, and lnH , we need to find 000 ,, γβα  that solve the 
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following system: 

0000 =−+−+ εωαψβραβα a ;      (B.1) 

000 =+− ηωαρβ εa ;        (B.2) 
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The first two equations can be solved for 00,βα  using Cramer’s formulae: 
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The remaining unknown coefficient 0γ  is chosen so that the condition (B.3) is satisfied. 

Hence, for the problem (3.1)-(3.3) where the utility function is of the form (3.9), the value 

function is given by the expression (3.12) in the text. 

Appendix C. Derivation of the stochastic accumulation equation for demand for medical 

services 

From the FONC (3.5.c), 







=

H

W
HV

V
m

χ
ϕ , where )1()( −′= ψϕ  is the inverse of the derivative of the 

investment function ψ. The previous section established the laws of evolution for WH VV ,  and H , 
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so we could apply Itô’s lemma again to derive the evolution of tm . Calculating the derivatives 

involved in the Itô’s lemma expansion and using the fact that )1(−=′ ϕψ , it is easy to verify that 
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where ϕ ′  and )1(−ϕ  are evaluated at 
H

W
HV
Vχ

. 

Recall that under the assumption ηηη εφ
def
==  - the constant elasticity of )(⋅φ , )(⋅ε  with respect 

to H , the evolution of HV  is given by the expression (3.7):, which is reproduced here for 

convenience: 
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and the evolution of wealth by the equation (3.8), which is: 

{ } tWWtWHWWWHWHWWW WdwVHdhVdtWVHVVrdV ++−−−= 2)( σσρ . (C.3) 

It is easy to verify that  
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Using Itô’s formula,  
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After substitution from (C.1)-(C.4), the expression for dm  could be simplified under the additional 

assumption that the utility function and corresponding value function exhibit constant relative 

risk aversion. Let  by definition HH
H

HH R
V
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WH R
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V

WV
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HWWH RR =  , be some constants equal to minus the coefficients of relative risk aversion 3 .   

Then after some algebraic manipulation, the following dynamic equation is obtained: 
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3 See Kihlstrom and Mirman (1974), Karni (1979) for the discussion of multivariate risk aversion. 
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From the definition of the function ϕ, ψϕ ′=− )1( , and the theorem about the derivative of the 
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Under the assumption above on the investment function, 
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4 Bronshtein and Sem endyayev (1964), page 372 
5 The notion of prudence and properties of the marginal utility functions yielding constant absolute or relative prudence 

is introduced and studied in Kimball (1990), Blanchard and Mankiw (1988).  

6 An example of the function with all desired properties is 
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Appendix D. Derivation of evolution of marginal value of health and wealth (with 

insurance) 

After substitution of the optimal values from the FONCs (4.8)  into the Bellman equation, the 

following is true identically: 
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It is not difficult to establish by partially differentiating the Bellman equation (D.1) with respect to 

H , and taking into account FONCs (4.8.a-c), that 
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Equation (D.2) could be further simplified by noting that λ
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Denoting 
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reduced to the following: 
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 (D.4) 

Using Itô’s lemma, 

22
2
1

2
1

WHWWHWHHWHHHHHWHHHtH VVVdWVdHVdtVdV σσσ +++++= , (D.5)  

and substituting from (D.4), it follows from the equation (D.5) that 
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which is the equation (4.9) in the text.        

Performing the same procedure for another state variable, wealth, it is easy to establish that 

{ } tWWtWHWWWHWHWWW WdwVHdhVdtWVHVVrdV ++−−−= 2)( σσρ , (D.7 ) 

which corresponds to the equation (4.10).  
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