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1 Introduction

In countries where the resource revenue constitutes a large component of total government

revenues, commodity price fluctuations will have a direct impact on public spending.

Many resource-rich countries are therefore advised to adopt some type of fiscal policy

framework (i.e., a fiscal spending rule), which, if operated countercyclically, should shelter

the economy from commodity price fluctuations and prevent over-spending on the part of

the government, see e.g. Barro (1979) for related arguments from the tax and consumption

smoothing literature, or Portes and Wren-Lewis (2014) for a recent overview.

The adoption of a fiscal rule, however, does not in itself ensure that fiscal policy works

to insulate the domestic economy from commodity price fluctuations: The constructed

rule may be too lax over the commodity price cycle, the actual conduct of fiscal policy

might not be in accordance with the rule, or both. Hence, what works in theory may not

necessarily work in practice.

We examine if fiscal rules work in practice. More specifically, we analyze fiscal policy’s

response in a resource-rich economy to commodity price shocks over time and the extent

to which this response has insulated the domestic economy from commodity price fluc-

tuations or, conversely, exacerbated their effect. To account for the changing nature of

economic conditions and complexity of fiscal rules, we address this question by developing

a time-varying Dynamic Factor Model (DFM), in which we allow the volatility of struc-

tural shocks, the systematic fiscal policy responses, and the macroeconomic conditions,

to change over time. Our proposed model compares to existing time-varying DFMs, but

differs in how the factors are identified in terms of economic quantities, permitting iden-

tification of structural shocks. Herein lies the methodological novelty of our approach.

From the perspective of the empirical application, we believe this is the first time fiscal

policy has been evaluated in this way, for a resource rich country, or for any country in

general.

We focus on a particular country, Norway, whose handling of its petroleum wealth has

been described as exemplary (see e.g. OECD (2005), OECD (2007) and Velculescu (2008)

among many others). Unlike most oil exporters, Norway has adopted a fiscal framework in

2001, with a view to shielding the fiscal budget, and therefore also the domestic economy,

from oil price fluctuations. In particular, oil and gas revenue is first put in a Savings

Fund, of which only the expected real return of the fund is drawn annually to finance

public spending or tax cuts. Thus, in comparing how fiscal policy responds to oil market

shocks before and after the rule’s implementation, our study provides us with a natural

experiment for assessing fiscal policy over commodity price cycles.

Two simple stylized facts help motivate our work. Figure 1 reports the development in

GDP in mainland (non-oil) Norway relative to GDP in neighbouring country Sweden, an
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Relative growth in GDP Relative growth in public value added

Figure 1. Reduced form evidence: Norway, Sweden and the price of oil. The left frame displays GDP

in mainland Norway relative to GDP in Sweden plotted against the oil price. The right frame displays

value added in the public sector in Norway relative to value added in the public sector Sweden, plotted

against the oil price.

oil importer, together with the price of oil.1 The figure shows clearly that the growth in

the Norwegian economy, relative to Sweden’s GDP, is highly correlated with the price of

oil (left frame). This not only holds for GDP, but for value added in the public sector as

well (right frame). This is at odds with theoretical predictions and common perceptions,

and motivates a closer scrutiny of fiscal policy over the business cycles.

However, Figure 1 suggests yet another stylized fact; the price of oil is highly correlated

with global activity. This is in particular evident during the financial crisis, when both

global activity and oil prices fell sharply. But also prior to the crisis, global demand and

oil prices moved together. In line with this, recent studies have emphasized the role of

global demand as a driver of oil prices, see, e.g., Kilian (2009). Furthermore, Kilian (2009)

shows that if oil prices increase due to spurs of demand (rather than disruptions of supply

capacity, see, e.g., Hamilton (1983)), global economic activity will be positively affected,

at least in the short run. Corroborating results are shown in, e.g., Lippi and Nobili (2012),

Peersman and Van Robays (2012), Aastveit et al. (2015), Charnavoki and Dolado (2014)

and Bjørnland and Thorsrud (2015) for various oil importing and oil exporting countries.

Thus, and in line with these findings, when analysing fiscal policy responses to com-

modity price shocks, we control for shocks to global activity. Previous studies addressing

this issue have typically ignored any simultaneity between global activity and oil prices,

and treat instead oil prices as exogenous, see e.g., Pieschacon (2012) and Céspedes and

Velasco (2014) among others. In particular, Céspedes and Velasco (2014) draw their

1Apart from Sweden being an oil importer, the two countries share many other important characteristics,

e.g., they are both small and open economies, enjoy good institutions, have a generous welfare state etc.
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conclusion from comparing government expenditures over two different commodity price

cycles by a large panel of commodity exporting countries, while Pieschacon (2012) designs

a counterfactual analysis comparing the impulse responses to an exogenous oil price shock

in Norway and Mexico in the period 1986-2006. Doing so, both studies provide evidence

of reduced fiscal procyclicality to commodity price changes in the recent commodity price

boom, and attributes this to improved institutional quality, i.e., adopted fiscal policy

rules.2 Yet, if global demand is an important source of variation in commodity prices,

in particular in the recent commodity price boom, one should expect fiscal policy to be,

exactly, countercylical. Not necessarily because the countries have reduced government

expenditures relatively to GDP, but simply because GDP has increased.

And indeed, when we control for aggregate activity, we confirm that the countercyclical

fiscal responses found in the recent commodity price boom should be attributed to global

activity shocks and their domestic propagation, rather than the adopted fiscal framework.

Our framework contributes to the literature in two additional ways. First, comparing

fiscal policy responses across different commodity exporters, as many other studies do,

implicitly assumes that the countries are in the same stages of development. This is

seldom the case, as countries may have extracted the windfall gain at different points

in time. For instance, Mexico was producing oil already by the turn of the twentieth

century, and is today a mature oil exporter, with oil and gas production accounting for

7-8 percent of GDP. Norway, on the other hand, discovered its oil fields 70 years later and

oil and gas production accounts today for close to 25 percent of total GDP. In this sense,

comparing the effects of commodity price shocks on a mature and a new oil producer, like

in, e.g., Pieschacon (2012), is likely to suggest different responses that have nothing to do

with he adoption of fiscal rules per se, but simply reflect different stages of development.3

Moreover, apart from being commodity exporters, Mexico and Norway in most other areas

are highly dissimilar. We argue that it is more informative to compare fiscal responses in

one country consistently over time than to compare fiscal responses across countries at a

given time. Doing so, we confirm that if Norway has a more muted response to oil price

2Céspedes and Velasco (2014) find that in the earlier cycle (1970s), the fiscal balance deteriorates as

expenditures pick up. For the latter cycle (2000s), however, they find evidence of reduced procyclicality

in a number of countries, as fiscal expenditures falls relatively to GDP when commodity prices increase.

This, they argue, corresponds well with the adoption of fiscal spending rules in many countries, including

Norway. Using a counterfactual analysis, Pieschacon (2012) finds that had Norway adopted a fiscal policy

framework similar to Mexico’s, commodity price shocks would have had a larger effect on the (Norwegian)

economy. She therefore concludes that the fiscal framework adopted by Norway does indeed shield the

economy from oil price fluctuations.
3Using a related argument, Alexeev and Conrad (2009) control for initial endowment when comparing

growth performance in resource rich countries, and find natural resources to enhance long term growth,

which is quite the contrary to the findings of the traditional resource curse literature.
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shocks than countries like Mexico, it is for other reasons than the adoption of the fiscal

rule.

Second, countries adopt fiscal rules in response to changing economic conditions. In

addition, the fiscal policy design is often particularly complex insofar as countries combine

the objectives of sustainability with the need for flexibility in response to shocks, see

Schaechter et al. (2012) for details. Norway is no exception. The current fiscal framework

states that the government’s non-oil structural deficit should equal the long-run real return

of the sovereign wealth fund, i.e., the Government Pension Fund - Global (GPF), projected

to be 4 percent. To ensure against inherent procyclical behaviour, the fiscal guidelines

also allow temporary deviations from the rule over the business cycle and in the event of

extraordinary changes in the value of the GPF. The GPF is therefore a hybrid between

a savings- and a stabilization fund; As a savings fund, the main purpose is to build up

reserves and save for future generations. As a stabilization fund; the aim is to protect

and stabilize the budget, and hence the economy, from excess volatility in petroleum

revenues. As a consequence, when one compares economic effects of fiscal policy designs

prior to and following their implementation, one need to control for time-varying changes

in macroeconomic conditions as much as in the specific policy implementation.

The Dynamic Factor Model we develop permits us to address these shortcomings in

the existing literature in a consistent manner. We include stochastic volatility components

to allow for changes in the size of the structural shocks, e.g., the Great Moderation effect

and the recent financial crisis and Great Recession,4 and we include time-varying factor

loadings to allow for changes in systematic policy responses across time, e.g., before and

after the adoption of the fiscal rule. The time-varying Dynamic Factor Model developed

here relates to the models used by Lopes and Carvalho (2007), Del Negro and Otrok

(2008), and Ellis et al. (2014), but differs in the way we identify the dynamic factors,

and in the way we model the law of motion of the dynamic factors. In our contribution

the dynamic factors are all identified in terms of economic quantities. Importantly, this

allows us, in contrast to most other factor model studies, to build on the structural VAR

literature, Primiceri (2005) in particular, and identify the structural shocks driving the

dynamic factors. For this reason we are also able to trace out the effect of different

oil market shocks, i.e., global demand and oil price shocks, on a number of public and

non-public variables.

We have two main results. First, we find that in the wake of oil price shocks (that

are orthogonal to global activity), fiscal policy is procyclical on impact and over response

horizons. In particular, public spending, employment and wages in Norway all increase

4See, e.g., Cogley and Sargent (2005), Primiceri (2005), and Nakov and Pescatori (2010), and the references

therein, for a broader discussion of these effects and their possible causes.
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in light of the higher oil prices, and, if anything, fiscal policy has been more (not less)

procyclical since the adoption of the fiscal policy rule in 2001. That is, given an equally

sized oil price shock, public spending and costs increase more today than they did in

the preceding decades. We also find a stronger pass-through of oil price shocks to the

macro economy after the adoption of the fiscal rule, in particular during the last decade.

Hence, taking everything else as given and following an oil price shock, the adoption of

the spending rule has not meant that fiscal policy effectively insulates the economy from

an oil price shock. These findings stand in rather stark contrast to the arguments put

forward in, e.g., Pieschacon (2012).

Second, following a global activity shock, that also increases oil prices, the picture

becomes somewhat more nuanced, with some components of public spending alternating

from countercyclical to acyclical in the last decade, while others are more procyclical.

Thus, the main message is still that of a tendency for more (not less) fiscal procyclicality

since the adoption of the spending rule. At the same time, the domestic non-resource

economy responds strongly procyclically following the global activity shock. This shock

also explains an increasing share of the variation in the economy since the turn of the

millennium. The strong countercyclical fiscal policy responses (relative to GDP) in the

last boom, as reported by Céspedes and Velasco (2014), among others, are therefore most

likely due to global activity shocks and their domestic propagation, rather than fiscal

policy governed by a rule.

Our results make it clear that as a stabilization fund the Norwegian GPF and the fiscal

framework has been procyclical despite a rule. From a theoretical perspective, this may

seem surprising. As discussed more fully in Section 4.4, our interpretation is that a fiscal

rule that withdraws a fixed percentage of a growing fund each year will simply not be

sufficiently countercyclical over the commodity price cycles. This has been particularly

evident during the large increase in spending potential caused by the massive hike in

commodity prices the last decade. Yet, as a savings fund, many of the goals of the

Norwegian GPF have been achieved. In particular, by only using a small share of the

windfall gain every year, the Norwegian authorities have saved a large amount of money

for future generations. Compared to many other resource-rich economies practising a

more spend-as-you-go strategy, this is, of course, a great success, as also documented in

our counterfactual analysis. From a policy point of view, the implications of our findings

are therefore of practical importance and general interest for resource rich countries, since

they highlight the strengths and weaknesses of the fiscal framework adopted in country

whose handling of petroleum wealth is considered to be exemplary.

The remainder of the paper is structured as follows. In Section 2 we briefly describe

the historical evolution of Norway’s fiscal framework, paying particular attention to the
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introduction of the fiscal rule. Section 3 details the model and the estimation procedure.

Section 4 discusses the oil market shocks and analyses their effect on fiscal policy and the

domestic economy. Section 5 concludes.

2 The Fiscal framework

Since the mid 1990s, Norway has been transferring the totality of its petroleum cash

flow to a sovereign wealth fund. The fund was established in 1990 as the Government

Petroleum Fund; in 2006, it was renamed the Government Pension Fund Global (GPF).

The change highlighted the fund’s role in saving government revenue to finance an ex-

pected increase in future public pension costs. Despite its name, the fund has no formal

pension liabilities. As emphasized in the introduction, the GPF is a hybrid between a

saving and a stabilisation fund. It’s main purpose is to save and invest petroleum in-

come in international capital markets, the product of which can be used in the Norwegian

economy at a later date. Doing so will leave part of the oil wealth to future generations,

while also protect and stabilize the budget, and hence the economy, from excess volatility

in petroleum revenues, see Johnson-Calari and Rietveld (2007) for details on saving and

stabilization funds.

The idea of establishing a hybrid fund came after periods of large budget deficits and

poor economic conditions in Norway following the severe oil price decline in 1986, see Lie

(2013). During the first few years, however, the fund failed to generate a surplus, and the

fiscal policy guidelines at the time suggested an unchanged use of petroleum revenues,

i.e., a neutral fiscal stance, as measured by the structural, non-oil budget balance, see

Ministry of Finance (2001). High oil prices, large surpluses on the government budget

and high allocations to the GPF in the late 1990s, made it difficult to maintain a neutral

fiscal stance. In 2001 the government therefore devised a fiscal policy strategy allowing

for a prudent increase in the spending of petroleum revenues. According to the policy

guidelines, only the expected real return on the Sovereign Wealth Fund (projected to

be 4 percent) was to be returned to the budget for general spending purposes.5 This

should smooth the spending generated from the oil wealth, while ensuring that Norway

maintained a strong international exposed sector, thereby insulating the economy from

Dutch disease (crowding out of the private sector).

However, fiscal policy also plays an important role in stabilizing output fluctuations

5The fiscal rule is defined as a balanced budget rule, as it restricts the non-oil budget deficit, see Schaechter

et al. (2012). Many countries also adopt additional rules restricting spending. For instance, Sweden has

both a balanced budget rule and an expenditure rule, the latter defining a ceiling for central government

expenditures and pensions.
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in two additional ways. First, it stabilizes the fiscal impulse over and above longer term

smoothing by allowing deviations from the 4 percent rule to counteract large cyclical

variations in economic activity or sharp swings in the value of the Fund. This should give

the government manoeuvrability in fiscal policy should oil prices drop or the mainland

economy contract (or vice versa). Second, to prevent fiscal policy from exacerbating the

effect of commodity price fluctuations on the Norwegian economy, the rule is expressly

defined in terms of the structural non-oil balance. This allows full effect of the automatic

fiscal stabilizers in contrast to inherently procyclical rules on the actual deficit.

Since the 2001 adoption of the fiscal rule, the GPF has developed rapidly and is today

the largest sovereign wealth fund in the world; it’s value being close to 200 percent of GDP

in Norway. This notwithstanding, very little is actually known about how, or indeed if,

such a rule manages to shield an oil economy from oil price fluctuations, as theory predicts.

3 The model

We identify four factors with associated structural shocks, all motivated by findings in the

recent oil-macro literature. First, as stressed in the introduction, the price of oil should be

treated as endogenous insofar as the macroeconomic responses to higher oil prices differ

markedly depending on the cause of the price rise. Accordingly, we include a measure of

global activity and the real price of oil as two separate factors in the model to capture

developments in the oil market as well as international business cycle conditions. This

allows us in turn to identify two “oil market shocks”: a global activity shock and an oil

price shock, both of which increase the real price of oil, though with potentially very

different macroeconomic implications.

Important to our set-up is also the separation of a windfall gain due to resource and

spending effects. In particular, we account for spillovers from the petroleum sector to

the non-oil sectors due to increased demand for resources, in addition to the spending

effect coming via the public sector. Previous studies, such as Pieschacon (2012), typically

assume that the output from the resource sector only provides a source of income from

export sales, which the government collects. Hence, there will be no spillover to the rest

of the economy during the process of extracting the resources. Similar conclusions are

drawn in Husain et al. (2008). This is hardly the case for Norway. In particular, as shown

theoretically and empirically in Bjørnland and Thorsrud (2015), when the extraction of

resources demands complicated technical solutions, as it does in Norway, learning-by-

doing spillovers from the resource sector to the non-resource sectors of the economy can

be substantial.6 For this reason we also identify in the DFM two separate activity factors

6Similar findings are also found for mineral-abundant Australia in Bjørnland and Thorsrud (2015), and, al-
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for the resource and non-resource (domestic) industries of the economy. This allows the

public sector (and the domestic economy in general) to respond differently to a windfall

gain due to an activity shock in the resource sector (new discoveries, increased extraction

rates etc.) and a windfall gain due to higher oil prices.

The four structural shocks, a global activity shock, an oil price shock, a resource

activity shock and a domestic activity shock, are identified using a recursive ordering.

Our main focus is on the fiscal responses caused by the global activity shock and the

oil price shock, which both can affect oil prices. We then ask, has fiscal policy been

less procyclical with higher oil prices since adopting the fiscal policy rule, and has this

contributed to shelter the economy from oil price fluctuations?

In the DFM, the factors and shocks will be linearly related to a large panel of domestic

variables, including tradable and non-tradable, e.g., public, sectors of the economy. The

large panel is needed to account for the sectoral spillovers that exists between the different

industries of the economy, but also allows us to include a broad range of measures used

in the literature to assess the degree of fiscal pro- or countercyclicality. To account for

changing policy regimes, due to, e.g., the introduction of the fiscal rule in 2001, we allow

for time-varying factor loadings. Finally, to account for changes in the volatility of the

structural shocks, due to, e.g., Great Moderation effects, we allow for stochastic volatility.

Technically, the time-varying DFM relates to the set-up used in Del Negro and Otrok

(2008).7 We deviate in the way we identify the latent factors and the factor loadings.

Importantly, due to the identifying assumptions we employ, see Section 3.3, we are able

to model the dynamics of the factors as an endogenous system, and thereby identify

structural shocks. For the latter we utilize the framework proposed by Primiceri (2005).

3.1 A time-varying Dynamic Factor Model

Formally, the observation and transition equations of the time-varying DFM can be writ-

ten as follows:

yt =z0,tat + · · ·+ zs,tat−s + et (1a)

at =Φ1at−1 + · · ·+ Φhat−h + A0−1
t Σtεt (1b)

et =Φ1et−1 + · · ·+ Φpet−p + Υtut (1c)

though using a very different methodology, for a variety of resource-rich countries in Allcott and Keniston

(2014) and Smith (2014).
7Del Negro and Otrok (2008) apply a time-varying DFM to analyse international business cycle synchro-

nization. Related models have also been applied in Eickmeier et al. (2011), Liu et al. (2014), and Ellis

et al. (2014) to analyse the transmission of US financial shocks and UK specific business cycle devel-

opments. However, time-varying factor models were implemented in the financial literature before the

macro economic literature, see, e.g., Aguilar and West (2000) and Lopes and Carvalho (2007).
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Equation (1a) is the observation equation, and the N × 1 vector yt represents the observ-

ables at time t. zj,t is a N×q matrix with dynamic factor loadings for j = 0, 1, · · · , s, and
s denotes the number of lags used for the dynamic factors at.

8 As mentioned above, we

set q = 4 and identify two foreign factors, global activity and the real oil price; and two

domestic factors, one related to the resource sector and the other related to the remaining

non-resource sectors. Note here that the two first (foreign) factors are treated as observ-

ables, while the latter two (domestic) factors are latent. We turn to the identification of

these factors in Section 3.3.

The dynamic factors follow a VAR(h) process, given by the transition equation in (1b).

Note that h > s in our application. We work with the convention that εt ∼ i.i.d.N(0, I)

such that the covariance matrix of A0−1
t Σtεt in (1b) is denoted by Ωt. It follows that:

A0tΩtA0
′
t = ΣtΣ

′
t (2)

where A0t and Σt is a lower triangular matrix and a diagonal matrix, respectively:

A0t =

⎡
⎢⎢⎢⎢⎢⎣

1 0 · · · 0

ao21,t 1
. . . 0

...
. . . . . .

...

aoq1,t · · · aoqq−1,t 1

⎤
⎥⎥⎥⎥⎥⎦ Σt =

⎡
⎢⎢⎢⎢⎢⎣
σ1,t 0 · · · 0

0 σ2,t
. . . 0

...
. . . . . .

...

0 · · · 0 σq,t

⎤
⎥⎥⎥⎥⎥⎦ (3)

This decomposition of the covariance matrix Ωt builds on the work of Primiceri (2005), and

facilitates identification of the model’s structural shocks, εt, and their associated time-

varying volatility, captured by Σt. In particular, the lower triangular structure of A0t

implies that we can identify the structural shocks using a simple recursive identification

scheme. The economic rational for this choice is elaborated on in Section 3.3.

Lastly, equation (1c) describes the time series process for the N × 1 vector of id-

iosyncratic errors et. We will assume these evolve as independent AR(p) processes with

stochastic volatility. Thus, the parameter matrix Φk for 1 ≤ k ≤ p is:

Φk =

⎡
⎢⎢⎢⎢⎢⎣
Φ1,k 0 · · · 0

0 Φ2,k
. . . 0

...
. . . . . .

...

0 · · · 0 ΦN,k

⎤
⎥⎥⎥⎥⎥⎦ (4)

8In the proposed model the observables are a function of time-varying factor loadings and covariances.

An alternative assumption would have been to allow for time variation in the parameters associated with

the law of motion for the factors instead, as done in, e.g., Ellis et al. (2014) and Eickmeier et al. (2011).

We do not follow this route. As described in Appendix E, the factor loadings in the observation equation

of the system can be estimated one equation at the time. The parameters of the law of motion for the

factors must be estimated jointly. With four factors and a substantial number of lags in the transition

equation, see Section 3.2, this increases the computational burden considerably, and would likely not

result in any meaningful estimates.
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and similarly to above, denoting the covariance matrix of the heteroscedastic unobservable

shocks in (1c) as Ht, and under the assumption that ut ∼ i.i.d.N(0, I), we have that:

Ht = ΥtΥ
′
t (5)

where Υt is the diagonal matrix:

Υt =

⎡
⎢⎢⎢⎢⎢⎣
η1,t 0 · · · 0

0 η2,t
. . . 0

...
. . . . . .

...

0 · · · 0 ηN,t

⎤
⎥⎥⎥⎥⎥⎦ (6)

The model’s time-varying parameters and stochastic volatilities are assumed to follow

Random walk processes. In particular, let:

Zt = [z0,t, . . . , zs,t]

and zt = vec(Z ′
t) (the matrix Zt stacked by rows) be a vector of the factor loadings at

time t, aot the vector on non-zero and non-one elements of the matrix A0t (stacked by

rows), and finally let σt and ηt be the vectors of diagonal elements of the matrices Σt

and Υt, respectively. The dynamics of the model’s time-varying parameters will thus be

specified as follows:

zt =zt−1 + wt (7a)

aot =aot−1 + st (7b)

hσ
t =hσ

t−1 + bt (7c)

hη
t =hη

t−1 + vt (7d)

where hσ
t = log(σt) and hη

t = log(ηt)

The time-varying factor loadings are introduced in the DFM to capture potential

changes in how the variables in the domestic economy relates to the factors, and seems

to us like a reasonable assumption given the changing nature of how, e.g., fiscal policy

has been conducted in Norway in recent decades, see Section 2. Alternative empirical

strategies could have been used; e.g., splitting the sample in two around the time period

when the fiscal rule was implemented. One major drawback with this strategy, compared

to the time-varying specification we use, is that it implicitly assumes that within each

sample split the regimes (or parameters) are constant. As shown below, this is not the

case. The random walk assumptions for hσ
t and hη

t are common in the macroeconomic

literature entertaining stochastic volatility, and simplify estimation of the model as no

autoregressive parameters need to be estimated. Given the well-documented changes in
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elasticities in the oil market in recent decades, see, e.g., Baumeister and Peersman (2013),

and the increase in the resource industry’s share of GDP in Norway since the early 1980s to

today, we also allow aot to vary across time, implying that the contemporaneous spillovers

between the factors in the model are time-varying as well.9

All the errors in the model are assumed to be jointly normally distributed, and we

work with the following assumptions on the covariance matrix of the errors:

var

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ut

εt

wt

st

bt

vt

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

IN 0 0 0 0 0

0 Iq 0 0 0 0

0 0 W 0 0 0

0 0 0 S 0 0

0 0 0 0 B 0

0 0 0 0 0 V

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8)

Here, as already indicated above, IN and Iq are identity matrices of dimension N × N

and q × q. W and S are assumed to be block diagonal matrices:

W =

⎡
⎢⎢⎢⎢⎢⎣
W1 0 · · · 0

0 W2
. . . 0

...
. . . . . .

...

0 · · · 0 WN

⎤
⎥⎥⎥⎥⎥⎦ S =

⎡
⎢⎢⎢⎢⎢⎣
S1 0 · · · 0

0 S2
. . . 0

...
. . . . . .

...

0 · · · 0 Sq−1

⎤
⎥⎥⎥⎥⎥⎦ (9)

where Wi for i = 1, . . . , N is a m×m matrix, with m = q(s+1), and S1 is a 1×1 matrix,

S2 is a 2×2 matrix, and so on.10 B is a q×q matrix, while V is a diagonal N×N matrix.

An important aspect of the restrictions put on (8) is their rendering of the structural

shocks driving the dynamics of transition equation εt as independent from the shocks

driving the evolution of the time-varying factor loadings wt (and all other disturbances in

the model). This allows us to utilize the standard SVAR machinery to analyse impulse

responses and variance decompositions to the εt shocks, but at the same time identify

changes in, e.g., systematic fiscal policy, captured by the wt shocks. However, less re-

strictive assumptions regarding (8) can be justified, see Primiceri (2005) for a broader

discussion. Nevertheless, relaxing the number of restrictions comes at a price, requiring

us to estimate a substantially larger amount of parameters. As the proposed time-varying

DFM is already heavily parametrized we do not believe this to be a feasible option in the

current setting.

9One can question the importance of allowing for changes in the volatility of the idiosyncratic shocks hη
t .

We find, but do not report, that also these volatilities change considerably across time.
10That is, S1 is associated with ao21,t in (3), S2 is associated with ao31,t and ao32,t in (3), etc.
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3.2 Model specification and data

In the model specification used to produce our main results we allow for one lag of the

dynamic factors in the observation equation (1a) of the system, i.e., s = 1. This is

somewhat more restrictive than what was found to fit the data best in a related study

analysing spillovers from the oil sector on the Norwegian economy, albeit with constant

parameters, employed in Bjørnland and Thorsrud (2015). On the other hand, allowing for

time-varying parameters increases the potential for good model fit, and therefore also the

need for many lags in the observation equation of the system. Further, as shown in, e.g.,

Hamilton and Herrera (2004) among others, a large number of lags are needed to capture

the dynamics in the oil-macro relationship. For this reason we allow for up to eight lags

in equation (1b) describing the law of motion of the factors, implying that h = 8. Finally,

to capture autocorrelation in the observables not explained by the common factors we set

p = 1 in the autoregressive processes for the idiosyncratic errors.

To accommodate resource movement and spending effects within the petroleum ex-

porting economy, as well the potential for learning spillovers between the resource sector

and the rest of the economy, the observable yt vector includes a broad range of sectoral

employment, production and wage series, see also Bjørnland and Thorsrud (2015). Turn-

ing to the fiscal variables, as described in, e.g., Kaminsky et al. (2004), many indicators

can be used to assess the degree of pro- or countercyclical fiscal policy. An advantage with

the factor model methodology is that we can look at many of these at the same time, pos-

sibly allowing for more robust conclusions. For this reason we include value added, wages,

and employment in the public sector from the quarterly national account statistics. From

the central government fiscal account we utilize fiscal revenues, expenditures, transfers to

municipalities, and operating costs. Naturally, we also include the real exchange rate, a

core variable in the Dutch disease literature. A full description of the data is given in

Appendix A.

The two variables meant to capture the developments in the international commodity

market are the real price of oil and a world economic activity indicator. The real price

of oil is constructed on the basis of Brent Crude oil prices (U.S. dollars), deflated using

the U.S. CPI. Our main consideration when constructing the global (or world) activity

indicator was to include countries whose economic activity is most likely to affect the

global oil market. In addition, to capture possible direct trade linkages, we include the

most important trading partners. Hence, for Norway, we construct global activity as the

simple mean of four-quarter logarithmic changes in real GDP in Denmark, Germany, the

Netherlands, Sweden, the UK, Japan, China, and the U.S.

In sum, this gives a panel of roughly 50 international and domestic data series, covering

a sample period from 1981:Q1 to 2012:Q4. Correcting for the number of lags imposed
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on the model leaves us with 124 observations that are used for estimation, covering the

sample 1983:Q1-2012:Q4.11 To capture the economic fluctuations of interest, we transform

all variables to year-on-year growth. Lastly, we remove the local mean (of the growth

rates) and then standardize the resulting data before estimation.12

3.3 Identification

As is common for all factor models, the factors and factor loadings in (1) are not identified

without restrictions. To separately identify the factors and the loadings, and to be able to

provide an economic interpretation of the factors, we enforce the following identification

restrictions on z0,t in (1a):

z0,t =

[
z̃0,t

ẑ0,t

]
, for t = 0, 1, . . . , T (10)

where z̃0,t is a q × q identity matrix for all t, and ẑ0,t is left unrestricted. As shown

in Bai and Ng (2013) and Bai and Wang (2012), these restrictions uniquely identify

the dynamic factors and the loadings, but leave the VAR(h) dynamics for the factors

completely unrestricted. Accordingly, the innovations to the factors, εt, can be linked to

structural shocks that are implied by economic theory.

The first two factors in the system, world activity and the real price of oil, are treated

as observables and naturally load with one on the corresponding element in the yt vector.

The latent domestic factors, resource and non-resource activity, must be inferred from the

data. To ensure unique identification we require the domestic resource factor to load with

one on value added in the petroleum sector, and the domestic non-resource factor to load

with one on total value added excluding petroleum. Note that while these restrictions

identify the latent factors, the factors and the observables are generally not identical due

to the influence of the idiosyncratic errors.

Based on the recursive structure of A0t in (3), we identify four structural shocks: a

global activity shock; an oil price shock; and two domestic shocks: a resource and non-

resource activity shock, respectively. That is, at = [agactt , aoilt , art , a
nr
t ]′, where [gact, oil, r, nr]

denote global activity, oil price, resource activity and non-resource activity. Accordingly,

the vector with structural disturbances is:

εt = [εgactt , εoilt , εrt , ε
nr
t ]′ (11)

11The sample periods reflect the longest possible time for which a full panel of observables is available.

The vintage of quarterly national account statistics we use was generously provided to us by Statistics

Norway. In the official statistics, these numbers (for employment) do not cover the earlier part of our

sample. The prolonged vintage of data ends in 2012:Q4.
12As the transformed stationary data inhabits very different volatilities, we do the standardization to make

the estimation less sensitive to the prior specifications. See Appendix A for details.
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As implied by A0t, we follow the usual assumption made by both theoretical and

empirical models of the commodity market, and restrict global activity to respond to oil

price disturbances with a lag. This restriction is consistent with the sluggish behavior of

global economic activity after each of the major oil price hikes in recent decades, see e.g.,

Hamilton (2009). Furthermore, we do not treat commodity prices as exogenous to the rest

of the global macro economy. Any unexpected news regarding global activity is assumed

to affect real oil prices contemporaneously. This is consistent with recent work in the oil

market literature, see, e.g., Kilian (2009), Lippi and Nobili (2012), and Aastveit et al.

(2015). In contrast to these papers, and to keep our empirical model as parsimonious as

possible, we do not explicitly identify a global commodity supply shock.13 Turning to the

domestic factors, in the very short run, disturbances originating in the Norwegian economy

can not affect global activity and the price of oil. These are plausible assumptions insofar

as Norway is a small, open economy. However, both of the domestic factors respond to

unexpected disturbances in global activity and the real oil price on impact. In small open

economies such as Norway’s, news regarding global activity will affect variables such as the

exchange rate, the interest rate, asset prices, and consumer sentiment contemporaneously,

and in consequence overall demand in the economy. Norway is also an oil exporter, and

any disturbances to the real price of oil will most likely rapidly affect both the demand

and supply side of the economy.

The restrictions suggested here are motivated by the Dutch disease theory model

presented in Bjørnland and Thorsrud (2015). As in that study, and as argued above, the

identification scheme employed is needed to correctly quantify the domestic spillovers from

unexpected windfall gains and changing international business cycle conditions in a small

and open resource-rich economy. However, in contrast to the Bjørnland and Thorsrud

(2015) study, the domestic shocks and their spillovers are not in focus here and we do

not discuss them other than to emphasize that by including the εrt shock we are able to

control for the fact that the domestic economy, and the public sector in particular, might

respond differently to a windfall gain due to an activity shock in the resource sector and

a windfall gain due to higher oil prices, see the discussion in Section 3.

We note that all observable variables in the model, apart from the ones used to identify

the factors, may respond to all shocks on impact inasmuch as they are contemporaneously

related to the factors through the unrestricted part of the loading matrix (i.e., the λ̂0,t

matrix in equation (10)). The recursive structure is therefore only applied to identify the

shocks. Together, equations (10) and (11) make the structural DFM uniquely identified.

13However, as shown in Kilian (2009), and a range of subsequent papers, such supply shocks explain a

trivial fraction of the total variance in the price of oil, and do not account for a large fraction of the

variation in real activity either (at least during the sample covered here).
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3.4 Estimation

We estimate the time-varying DFM using Bayesian estimation, decomposing the problem

of drawing from the joint posterior of the parameters of interest into a set of much sim-

pler ones using Gibbs simulations. Gibbs simulations are a particular variant of Markov

Chain Monte Carlo (MCMC) methods that samples a high dimensional joint posterior by

drawing from a set of lower dimensional conditional posteriors. The Gibbs simulation we

employ is described in greater detail in Appendix E. Here we describe in brief the sampling

algorithm, which consists of sequentially drawing the model’s unobserved state variables,

at, et, zt, aot, h
σ
t , and hη

t , and hyper-parameters, Φ, Φ, W , S, B, and V , utilizing 7 blocks

until convergence is achieved. In essence, each block involves exploiting the state space

nature of the model using the Kalman filter and the simulation smoother suggested by

Carter and Kohn (1994).

In Block 1, conditional on the data (ỹT ), and all the hyper-parameters and state

variables less ãT , equations (1a) and (1b) constitute a standard linear and conditionally

Gaussian state space system, with ãT unknown. Accordingly, the simulation smoother

proposed by Carter and Kohn (1994) is straight forwardly applied. Conditional on ãT ,

equation (1b) is independent of the rest of the system, and reflects a time-varying VAR

model. Hence, in Blocks 2 to 4 of the sampler, we can simulate from the conditional

posterior distribution of ãoT , h̃
σ
T , Φ, S and B using the same procedures as described in,

e.g., Primiceri (2005). In essence, this simulation consists of three blocks that sequentially

draws from the conditional posterior of Φ, ãoT , S, h̃
σ
T , and B, in that order, and where

the sampling of the time-varying states relies on small reformulations of the system such

that the standard simulation smoother can be employed. Especially, we note that to be

able to sample h̃σ
T we rely on the method presented in Kim et al. (1998), using mixtures

of Normal distributions. Drawing from the conditional posterior of S and B is standard,

since it is the product of independent Inverse-Wishart distributions.

In Block 5, conditional on the data and all the hyper-parameters and state variables

less z̃T , equations (1a) and (1b) again constitute a standard state space system, but now

with z̃T unknown. In the same manner as above, we can use the standard simulation

smoother to simulate the conditional posterior of z̃T . Conditional on z̃T , equation (7a) is

independent of the rest of the system, and is easy to sample from the conditional posterior

of W using the Inverse-Wishart distribution.

Finally, in Blocks 6 and 7, conditional on the data, ãT , and z̃T , we can infer ẽT .

Moreover, conditionally on ẽT , the structure of equation (1c) is similar to that of equation

(1b), and the same procedures as those described for Blocks 2 to 4 above, can therefore

be applied here too. The problem is now somewhat simpler, however, since we do not

need to sample time-varying covariances, only variances. That is, conditionally on ẽT and
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hη
t , we can sample Φ, and conditional on ẽT and Φ, we can sample hη

t , and consequently,

V .

To generate the posterior draws, the simulations in this paper are all based on 20000

iterations of the Gibbs sampler. The first 14000 are discarded and only every sixth of

the remaining iterations are used for inference. As shown in Appendix C the convergence

checks seem satisfactory. In Appendix D we describe the priors used for the initial state

variables a0, z0, ao0, h
σ
0 , and hη

0, and for the hyper-parameters Φ, S, B, W , Φ and V . In

the appendix we also report various sensitivity analyses, showing that our main results

are robust to a set of alternative assumptions regarding the prior specifications.

4 Oil market shocks and systematic fiscal policy

In the following we examine the estimated responses to a set of fiscal and macroeconomic

variables from the two oil market shocks; the oil price and the global activity shocks. Our

aim is to analyze the response of fiscal policy over time, and in so doing, examine to what

extent fiscal policy has contributed to insulate the domestic economy from the effects of

the oil price and the global activity shocks, or, conversely, to exacerbate those effects. To

organize the discussion, we will in particular examine whether we can observe changes in

the response patterns prior to and after the introduction of the fiscal rule in 2001.

A complicating factor is the use in the literature of different measures of fiscal policy

to gauge the degree of pro- or countercyclical fiscal policy.14 This makes it difficult to

compare results across studies. In the following we define fiscal policy to be procyclical

(countercyclical) for a given oil market shock if public value added, public wages, pub-

lic employment, government spending, government operating costs, or transfers increase

(decrease) following oil market shocks that increase the price of oil. We first examine the

impulse responses in the level of the variables (as in Pieschacon (2012)) and then relative

to GDP (as Céspedes and Velasco (2014) and others analyse). Finally, using the data

from the central government accounts we define the primary balance as income (non-oil

tax revenues) minus spending. A procyclical (countercyclical) fiscal policy implies that

the primary balance responds negatively (positively) to positive oil market shocks, i.e,

increasing (decreasing) spending ahead of income. In sum, these definitions follow more

or less the same usage as in Kaminsky et al. (2004).

14For instance, while Pieschacon (2012) analyses impulse responses in government purchases and transfers

to an exogenous oil price shock, Céspedes and Velasco (2014) estimate the effect of a change in commodity

price on government expenditures relative to GDP. Others again do not control for shocks at all, and

simply compare the fiscal impulse as a percentage of GDP relative to, say, the change in the output gap,

see e.g. Lopez-Murphy and Villafuerte (2010) and Takáts (2012) among many others.
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4.1 The Great Moderation, Recession and the global

oil market

We start by examining whether there has been a change in the volatility of shocks, so as

to control for changing volatility when comparing fiscal responses over time. As shown

in the first row of Figure 2, the volatility of the structural oil market shocks has indeed

varied considerable over the sample. There is a marked decline in the volatility of the

global activity shock during the 1980s and 1990s, but a subsequent pick up of volatility

at the end of the sample. These “facts” are well known and commonly attributed to the

Great Moderation and the Great Recession. The structural oil price shock also shows

evidence of declining volatility in periods (i.e., during the 1990s), but with marked spikes

of heightened volatility, in the early 1990s (the first Gulf War) and during the Great

Recession. Similar patterns have also been reported in Baumeister and Peersman (2013),

who explain the decline by a fall in oil supply elasticity.

The last two rows of Figure 2 report the impulse responses for world activity and the

real price of oil following a world activity shock (left column) and an oil price shock (right

column) for three different time periods; early (1983), intermediate (1997), and late (2012)

in the sample.15 The results confirm that our identified oil market shocks are in line with

the results found in the oil market literature: After an unexpected one standard deviation

increase in global activity, the price of oil rises substantially on impact, reflecting that

the price of oil is not exogenous to the macro economy, see, e.g., Kilian (2009), Lippi and

Nobili (2012). Moreover, after a one standard deviation shock to the real price of oil,

world activity falls, although with a lag. This is consistent with the fact that it takes

time before the higher production costs associated with the higher oil price work their

way through to actual output, see, e.g., Hamilton (2009).

Note also the differences in the response path of world activity and the real oil price

to shocks over time. The differences in impact responses reflect the changes in volatility

of the structural shocks, as already documented. However, we also observe some changes

in the response path that relate to the changes in the overall covariance structure of the

oil market, see Section 3.1 and equation (3). In particular, a world activity shock has

stronger impact on the oil price at the end of the sample (2012) than it has in the earlier

part of the sample (1983). This is consistent with studies documenting the important

role for global demand as a driver for the real price of oil the last decade, see, Aastveit

et al. (2015). For the oil price shock, the changing effects on world activity across time

are minor, with the middle 1990s displaying slightly less volatile oil price shocks, and

subsequently also a milder downturn in the world economy.

15As will be discussed in more detail below, the dates also reflect periods when fiscal policy was governed

by different fiscal regimes. Details for all time periods can be obtained on request.

18



V
o
la
ti
li
ty

o
f
sh

o
ck

s
World activity shock Oil price shock

Im
p
u
ls
e
re
sp

o
n
se
s:

W
o
rl
d

a
ct
iv
it
y

Im
p
u
ls
e
re
sp

o
n
se
s:

O
il

p
ri
ce

Figure 2. Time-varying volatility and oil market shocks. The first row reports the estimated standard

deviation of the shocks across time. The color shadings represent the 70, 50, and 30 percent quantiles

of the posterior distribution. The black line is the median estimate. The line is solid (dotted) whenever

the median estimate is outside (inside) the 70 percent quantile in 2001:Q1. The two next rows report

estimated impulse responses at three different periods of time. The initial shock correspond to a one

standard deviation innovation (of the normalized data). All responses are reported in levels (of the

normalized data).

4.2 Procyclical or countercyclical fiscal policy?

We now discuss the fiscal responses to the two oil market shocks. First, Figure 3 compares

the evolution of the responses of some key variables in the public sector (value added,

wages, employment and spending) to an oil price shock that increases the price of oil. In
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Figure 3. Oil price shock and the public sector: Time-varying responses. The first column displays

estimated impulse responses at three different periods of time. The initial shock is normalized to one

percent (of the normalized data). All responses are reported in levels (of the normalized data). The

subsequent two columns report a snapshot of the responses across the whole sample for two specific

response horizons. The color shadings represent the 70, 50, and 30 percent quantiles of the posterior

distribution. The black line is the median estimate. The line is solid (dotted) whenever the median

estimate is outside (inside) the 70 percent quantile in 2001:Q1. Finally, we plot a vertical line in 2001:Q1

to indicate the introduction of the fiscal rule.

each row, we first graph impulse responses for three specific periods in time: 1983, 1997,

and 2012. The dates are chosen to reflect three comparable periods: the initial discovery

period during which spending increased rapidly; the period just after the GPF started to

generate some revenue (but fiscal policy was yet to be governed by a rule, but was intended
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Figure 4. Global activity shock and the public sector: Time-varying responses. See Figure 3.

to remain neutral over the business cycle); and 10 years after the adoption of the fiscal

rule. The two subsequent graphs offer more detail on the time-varying responses after

1 and 4 quarters, but now measured over the whole sample, and with probability bands

representing the 70, 50, and 30 percent quantiles of the posterior distribution. Figure 4

displays similar responses, but now due to a positive global activity shock.16

Starting with the oil price shock, i.e., an increase in the oil price that is not due to

increased global activity, a few results stand out. First, fiscal policy responds procyclically

to the oil price shock over the sample, even more so after the 2001 adoption of the fiscal

16Note that from now on we normalize the oil market shocks such that we compare similarly sized innova-

tions across time (see the discussion in Section 4.1).
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framework. In particular, the positive effects of an oil price shock on value added, real

wages, employment, and spending in the public sector are more pronounced today than

in the decade preceding the rule, and for value added and spending, also more procyclical

than in the 1980s, see Figure 3.

Turning to the global activity shock that spurred a rise in oil prices, c.f. Figure

2, the picture is somewhat more nuanced, with some components of public spending

(value added and spending) alternating between countercyclical to acyclical during the

last decade, while wages, in particular, shifts from a countercyclical pattern in the 1980s

to a clearly procyclical pattern after 2001, see Figure 4. The main message to take from

this is still that of a tendency for more (not less) fiscal procyclicality since the adoption

of the spending rule. This suggests that following a global downturn accompanied by

a contraction of the domestic economy, there is less room for fiscal policy maneuvering.

Figures 10 and 11 (Appendix B.2) provide more details on the procylicality of fiscal

policy by analysing the effect on additional public sector variables. The graphs show that

the increased fiscal procyclicality was particularly pronounced for spending (excluding

pensions) and transfers to municipalities, while the increase in administrative expenses to

oil price shocks has been more muted over the sample.

Summarizing, we find clear evidence of nonlinearities in the responses of fiscal policy

to oil price and global activity shocks. In particular, public spending, employment, and

wages have responded significantly more (not less) procyclically to these shocks since the

adoption of the fiscal policy framework.

4.3 Transmission of shocks and the domestic economy

According to Pieschacon (2012), the fiscal framework adopted by Norway shields the

economy from oil price fluctuations, implying only minor responses in domestic variables

following an oil price shock. She further claims that had Norway been more like Mexico,

without the fiscal policy framework in place, Norway would have had a larger share of

variance in the domestic variables attributed to the oil price shock.17 Our focus here is

not to compare Norway with Mexico, but to examine the extent to which the adoption of

the fiscal rule contributed to lessen the exposure to oil market shocks.18 This is done in

Figure 5. It shows the contribution of the different shocks in the model to the variance

in public value added and domestic GDP, measured as the average over all domestic

industries except the public sector, over time. We focus on the role of oil price and global

17The arguments are based on a counterfactual experiment, in which Norway and Mexico change parame-

ters, but otherwise face their original shocks.
18Clearly, there may be many reasons why Norway is less exposed to oil market shocks than Mexico,

including, for instance, less corruption, more efficient bureaucracy, less mature oil sector etc.
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activity shocks, marked blue and dark blue, respectively, for horizons 1, 4, and 8.

Two features stand out. First, there is a marked difference in the role played by oil

price shocks in explaining activity in the public sector since 2001. One year after the shock

occurs (horizon 4), more than 40 percent of the variance in public value added is explained

by oil price shocks by the end of the sample (2012), compared to 10 percent prior to the

adoption of the fiscal rule (1998/1999). This pattern holds for all public variables (results

can be obtained on request) and clearly emphasizes the increased role of oil price shocks

in fiscal policy since 2001. Global activity shocks, on the other hand, do not explain

much of the variation in fiscal policy the last decade.19 It is noteworthy that our findings

encompass those in Pieschacon (2012), although we reach opposite conclusions. That is,

based on an estimation period from 1986 to 2005 she finds that approximately 10 percent

of government purchases are explained by oil price shocks after two years, which is not

very different from what we also observe on average for the same period, see Figure 5.

However, and as seen above, from 2001 the pattern changes markedly, suggesting increased

exposure of the public sector to the oil market shocks.

Second, and turning to GDP in the domestic economy, we find that the oil price

shocks explain more than 10 percent of the variance in the domestic variables at horizon

4. This is more than twice as much as is being explained in Pieschacon (2012). We also

find an increase in the share explained by oil price shocks since 2001, albeit not to the

extent of the public sector. Finally, the global activity shocks play an increasing role for

GDP throughout the sample and in particular during the commodity price boom (the

last decade). Impulse responses for GDP are reported in Figures 12 and 13 in Appendix

B.3. As seen there, GDP responds positively to an oil price shock, and the responses

are somewhat stronger today (2012) than in the pre-rule periods (1997). After a world

activity shock the responses are very much the same as those in 1997.

As the above discussion shows there is evidence of nonlinearity also in the response

of the domestic economy to oil market shocks, suggesting a stronger pass-through of oil

related shocks to the economy after the 2001 adoption of the fiscal rule. In short, then,

the fiscal framework does not effectively shield the economy from oil price fluctuations. If

anything, fiscal policy has exacerbated the effects of the oil market shocks on the domestic

economy, and even more so after the adoption of the fiscal rule. If Norway has a more

muted response to oil price shocks than countries like Mexico, as argued in Pieschacon

(2012), it must be for other reasons than the adoption of the fiscal rule.

Having said that, one can easily argue that if the private sector is also stimulated

by the oil price and global activity shocks, as indicated by the results in Figures 12

19For some public variables, i.e., public wages and spending, global activity shocks explain slightly more of

the variance the last decade, but always less than the variance explained by the oil price shock.
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Figure 5. Time-varying variance decompositions. The plots report the median of the estimated variance

decompositions associated with the levels response of the variables.

and 13 in Appendix B.3, maybe the stimulus to the public sector is just following the

increase in the domestic economy. Some studies, i.e., Céspedes and Velasco (2014) and

Husain et al. (2008), estimate the effect of a change in commodity prices on government

expenditures relative to GDP, and find that measured in relative terms, fiscal policy has

been countercyclical. Figure 6 addresses this issue, as well as highlighting the importance

of separating between the shocks driving the oil market and their domestic implications. In

particular, the figure reports the response, across time and horizons, of value added, wages

and employment in the public sector relative to the response in the domestic economy. A

value above zero indicates the public sector responds more positively to the given shock

than the private sector. The last row in the figure reports the effect on the primary

balance.20

We find that for a given oil price shock, the public sector has clearly grown at the

expense of the private sector. That is, throughout the last decade, the positive effect

on the public sector has grown relative to the private sector. This again suggests fiscal

policy exacerbates the effect of the oil price shocks on the domestic economy. This is

quite different to what Pieschacon (2012) and others have asserted. There it is argued

that fiscal policy regulates the size of the pass-through. Turning to global activity shocks,

the results are reversed. The positive effect on GDP is stronger than that on the public

sector; as seen by the negative effect in the figures. Hence, when the oil price rises due to

global demand, the direct spillovers to the domestic economy are substantial, and much

20To enhance comparison across the graphs the global activity and real oil price shocks are normalized to

1 and 10 percent, respectively.
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Figure 6. Public sector relative to the domestic economy and the primary balance. Each plot reports the

response, across time (x-axis) and horizons (y-axis), of an outcome variable in the public sector relative

to the response in the domestic economy. Here, the domestic economy is defined as the average response

across all sectors, except the public sector (for wages the domestic economy is defined by the Statistics

Norway as mainland economy). The initial shock is normalized to 1 percent (of the normalized data). All

responses are reported in levels (of the normalized data). A value above zero indicates a more positive

response by the public sector to the given shock than by the mainland economy as a whole. For readability

the relative responses are also smoothed by applying a 3 quarter moving average transformation. See the

text for the definition of the primary balance.



stronger than the pass-through via government spending. Yet, we note that, since the

start of the millennium, the spillovers to the private sector (relative to the public sector)

have diminished, in line with the more procyclical fiscal policy responses reported above.

The transmission of shocks via the primary balance confirms our claim. Following an

oil price shock that generates procyclical fiscal responses, we would expect to see negative

numbers for the primary balance, all else being equal. We see evidence of this in the lower

right frame of Figure 6. However, all else is not equal, as emphasized above. In particular,

the oil market shocks are also transmitted to the domestic economy, implying increased

tax-receipts and an improvement in the primary balance: hence the more muted response

in Figure 6. For the global activity shock, however, we should observe positive numbers

for the primary balance, since the stimulus to the domestic economy (and subsequent

tax-receipts) is more substantial now than the effect via increased public spending. This

is confirmed in the lower left frame in Figure 6. However, note also the steep decline

in the prime balance from 2000/2001, consistent with the findings of a more procyclical

fiscal policy in recent times.

We therefore conclude that studies suggesting a countercyclical fiscal policy response,

as a share of GDP or based on the primary balance, in the recent boom, should attribute

it to global activity shocks and their domestic propagation, rather than the adopted fiscal

framework.

4.4 Causes and counterfactuals

After reading our conclusion, a natural question arises. Why did the fiscal rule induce,

against it’s intentions (confer Section 2), a procyclical fiscal policy with regard to oil price

fluctuations? The answer is not that the fiscal rule has been violated. In fact, the fiscal

authorities have in large managed to actually follow the rule by using only roughly 4

percent of the Fund every year, see e.g. Ministry of Finance (2015). Instead, we believe

the answer has to do with the design of the fiscal framework and bad luck in timing.

When the rule was established, in 2001, the Fund’s market value amounted to roughly 20

percent of Norwegian GDP. Going forward, the fiscal authorities assumed the price of oil

would remain more or less unchanged, at 200 NOK per barrel. This expectation turned

out to be wrong. During the 10-year period from 2001 to 2011, the price of oil increased

considerably, to over 600 NOK per barrel. Accordingly, the inflow of money to the Fund

was much higher than expected, and by 2013 its market value exceeded 180 percent of

Norwegian GDP. Thus, almost by construction, it has been difficult to restrain the close

to automatic increase in spending that has followed from taking out a constant fraction (4
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Figure 7. The price of oil and spending revisions. Spending revisions refer to the difference between

the assumed path for the fiscal rule in the budget year 2014 (in percentage of GDP) minus the assumed

path in the original budget in 2001 (in percentage of GDP).

percent) of a Fund that, for long periods, has been highly correlated with the oil price.21

Figure 7 illustrates this point, and shows the close connection between the growth in

the price of oil and the revisions of the fiscal rule from 2001 to 2014. Over this period, the

4 percent rule has been revised upwards in line with growth in the oil price. According to

our results, the discretionary deviations from the 4 percent rule that may have taken place

during the recent commodity boom have simply not been large enough to counteract the

changes in structural policy parameters induced by the introduction of the rule and the

associated increase in spending potential from the higher commodity prices.22.

Thus far our discussion has focused on the implications of commodity price shocks for

fiscal policy before and after the introduction of the fiscal rule in 2001. A relevant question

to ask is what would the fiscal stance have been using another rule, or, say, no rule at all?

As already mentioned in Section 2, the fiscal rule was introduced in response to the large

surpluses on the government budget and high allocations to the GPF in the late 1990s.

This made it politically difficult to maintain a neutral fiscal stance, i.e., unchanged use of

petroleum revenues. Clearly, without the rule, but using say a spend-as-you-go strategy,

fiscal policy could have become even more procyclical than it actually did.

To shed more light on the implications of the fiscal rule relative to some alternatives,

we run two counterfactual experiments and analyse how fiscal policy might have been

conducted. In the first we use parameters from the late 1990s (1997), representing the

21That developments in the Fund have been highly correlated with the oil price in the past ten years has

also been emphasized by Norges-Bank (2012).
22One objection to the analysis can be raised: Monetary policy also changed around this time. With

the adoption of inflation targeting in 2001, monetary policy was given a more active role for economic

stabilisation. This is confirmed when we include the short term interest rate and inflation in the model.

Yet our result of a procylical fiscal policy remains in the data. For brevity, the results are reported in

Appendix B.4
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period before Norway introduced the fiscal framework, and where the fiscal authorities

followed guidelines implying an unchanged use of petroleum revenues (as measured by

the structural, non-oil budget balance), see Section 2. In the second scenario we assume

that the increased spending pressure due to the inflow of petroleum income and reflected

by changes in the time-varying factor loadings, are not curbed by a fiscal rule at all, i.e.

politicians “spend as they go”. We label these two counterfactuals as the Modest and

Expansionary alternatives, respectively.23

Figure 8 reports the results of the counterfactual experiments. It shows the difference

between the historical decomposition obtained from the baseline model and the counter-

factual decompositions obtained under either the Modest and Expansionary alternatives.

A value above zero indicates the difference is positive and that under the counterfactual

scenario fiscal policy would have been more expansionary (and vice versa if the difference

is negative). To relate the difference to the business cycle, we also report periods of expan-

sions and recessions in the Norwegian economy in the white and grey area respectively. A

more countercyclical policy (under the alternative) implies that the difference should be

positive (more expansionary) when the business cycle conditions are low (grey area) or

negative (more contractionary) when the business cycle conditions are good (white area).

For the Modest alternative the figure suggests that during the high growth period in

the Norwegian economy in the mid 2000s, the fiscal impulse would have been slightly

lower had policy been based on the counterfactual policy parameters. During the reces-

sion in the early 2000s and during the Great Recession, the difference first widens (as

the counterfactual scenario is more expansionary), but then narrows sharply as economic

conditions improve. Thus, fiscal policy would have been more countercyclical under the

Modest alternative. In contrast, for the Expansionary alternative fiscal policy would have

23Technically, we first construct a historical decomposition of the data given the structural shocks and time-

varying parameters of our baseline model. We then compute the time path for key (public) observable

variables implied by the structural shocks in the model. In the counterfactual experiments we re-compute

this historical decomposition, but use different factor loading estimates: For the Modest alternative we

use factor loading estimates from 1997:Q1. Accordingly, the historical decomposition computed in the

counterfactual experiment will be identical to the baseline decomposition up to 1997. From this period

and onwards, the decompositions will differ because the systematic policy parameters will differ; For

the Expansionary experiment we compute the average quarterly change in the factor loadings between

1997:Q1 and 2001:Q1, and project synthetic factor loadings from this time period and forwards using these

average loading innovations. We note, however, that a general objection to a counterfactual experiment

like this is that if rational and forward-looking economic agents had realized that the policy parameters

would not change, or change in the manner described above, they could have modified their behaviour

accordingly, and therefore also the aggregate economic outcomes (c.f., Lucas (1976)). Still, as argued in

Primiceri (2005), in a Bayesian setting where the policy parameters are random, the critique in Lucas

(1976) might not be that severe, and the counterfactual experiment might yield interesting results.
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Figure 8. Counterfactuals: Value added in public sector. We graph the historical decomposition of

the data, f(yi,t), minus the counter factual alternative, f c(yi,t). A positive/negative difference, i.e.,

whenever the dotted black line is above/below zero, means the growth rate (year-on-year) would have

been higher/lower under the counterfactual scenario. The colour shadings represent the 70, 50, and 30

percent quantiles of the posterior distribution. The shaded grey area represents recessions, while the white

areas are periods of expansion (We follow NBER business cycle conventions and define an expansion as

the period from the through to the peak of the business cycle while the recession is defined as the period

from the peak to the through. The cycles are constructed using the Hodrick-Prescott filter (λ = 40000)

for mainland GDP in Norway.) See the text for details about the two alternative scenarios.

been more procyclical during both the high growth period in the mid 2000s (when oil

prices increased more than expected) and during the Great Recession (when oil prices

fell unexpectedly). In sum, we conclude that fiscal policy could have been designed to be

more countercyclical (the Modest alternative), but acknowledge that this may have been

politically unattainable. Relative to a more spend as you go strategy (the Expansion-

ary alternative) the adopted fiscal framework have likely induced moderation. But, the

findings documented in Section 4.2 remain: Key public sector variables have responded

significantly more (not less) procyclically to oil price shocks since the adoption of the

fiscal rule in 2001.
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5 Conclusion

This paper analyses whether the adoption of fiscal spending rules insulates resource-

rich economies from oil price fluctuations. In pursuing the question we develop a time-

varying Dynamic Factor Model, in which both the volatility of structural shocks and the

systematic fiscal policy responses are allowed to change over time. We focus on Norway.

Unlike most oil exporters, Norway has established a sovereign wealth fund operated as a

hybrid between a savings- and stabilization fund, and a fiscal rule designed specifically to

shield the domestic economy from oil price fluctuations. We find that, contrary to common

perceptions, fiscal policy has been more (not less) procyclical with oil price fluctuations

since the adoption of the fiscal rule. In so doing, fiscal policy has not effectively sheltered

the economy from oil price shocks. In contrast, following a global activity shock that also

increases oil prices, the picture is more nuanced, with some components of public spending

being countercyclical relative to GDP. We suggest that studies that find a countercyclical

fiscal policy response in the recent boom, should attribute it to global activity shocks and

their domestic propagation, rather than the adopted fiscal framework.

Still, although the fiscal rule has not managed to shelter the Norwegian economy

from oil price fluctuations, the goal of saving resource revenue for future usage has been

accomplished. The fiscal authorities have in large managed to actually follow the rule, and

by only using roughly 4 percent of the Fund every year the Norwegian sovereign wealth

fund is today the largest in the world. From a policy point of view, the implications of our

findings are therefore of general interest since they highlight the strengths and weaknesses

of the fiscal framework adopted in a resource rich economy and whose handling of resource

wealth has been described as exemplary.
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Appendices

Appendix A Data

Table 1. Data. The vintage of Norwegian data are collected from Statistics Norway (SSB). We use data

from the quarterly national account and the central government fiscal account. In the official statistics,

data for some of the series (e.g. for employment), do not cover the earlier part of our sample, but were

generously made available to us by SSB. The international data, with the exception of the exchange

rate, were sourced from the GVAR database constructed by Gang Zhang, Ambrogio Cesa Bianchi, and

Alessandro Rebucci at the Inter-American Development Bank. In the column head “Empl.”, an “x”

indicates that we use both value added and employment data for the variable at hand. All value added

data are measured in real terms, as calculated by SSB. The following transformation codes applies: 9 =

year-on-year percentage growth (yt = xt/xt−4 × 100 − 100), 11 = year-on-year logarithmic difference

(yt = ln(xt)− ln(xt−4)). See Section 3.2 and the text for additional details.

Source Variable Empl. Trans. Description

N
a
t
io

n
a
l
A

c
c
o
u
n
t

Res. extraction x 11 Oil and natural gas extraction/mining

Res. service x 11 Service activities in oil and gas/mining

Manufacturing x 11 Manufacturing

Construction x 11 Construction

Retail x 11 Wholesale and retail trade

Transp. ocean x 11 Ocean transport

Transportation x 11 Transport activities excl. ocean transport

Hotel and food x 11 Accommodation and food service activities

Financial x 11 Financial and insurance activities

Scientific x 11 Professional, scientific and technical activities

Business x 11 Administrative and support service activities

Non-resource x 11 Total excl. oil and gas extraction/mining

Public x 11 General government

Public consumption 11 General government

Wages petroleum 11 Wages petroleum sector

Wages public 11 Wages public sector

Wages non-res. 11 Total excl. wages to petroleum sector

F
is
c
a
l
a
c
c
o
u
n
t

Spending 11 Central government total expenditures

Spending excl. pensions 11 Central government total expenditures excluding pensions

Operating costs 11 Central government operating costs

Transfers 11 Central government transfers to municipalities and county authorities

Tax revenue 9 Tax revenue excl. petroleum

Tax revenue petroleum 9 Tax revenue from petroleum

I
n
t
. World activity 11 World economic activity indicator, see Section 3.2

Oil price 11 Real price of oil, see Section 3.2

Exchange rate 11 Bank of International Settlements (BIS) effective exchange rate index,

broad basket

Table 1 summarizes the data entertained, their sources, and the transformations used.

As described briefly in Section 3.2 of the main paper, we also remove the local mean (of

the transformed data) and then standardize the resulting data before estimation. The

local mean adjustment is done prior to the standardization to control for low frequent

movements in the growth rates (changes in the mean) across time, see, e.g., Stock and
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Watson (2012). We have experimented with different methods of doing the local mean

adjustment. In the benchmark case we simply subtract a deterministic linear time trend

from the transformed data. In two alternatives we estimate the local mean as the average

of the transformed data over a centered moving window of +−30 quarters, and as the

components of the time series with fluctuations between 150 and 200 quarters, obtained

from a band-pass filter. Irrespective of which method we use the resulting time series are

highly similar.24 Finally, some of the series also inhabit clear outliers or measurement

errors (e.g., Transfers). We define outliers as observations being outside 3× interquartile

range, and automatically remove them by using linear interpolation.

Appendix B Additional results

B.1 Business cycle factors

World activity Real price of oil

Resource activity Mainland (domestic) activity

Figure 9. Observable and latent factors. The figures display the two observable factors together with

the two estimated latent factors. The color shadings represent the 70, 50, and 30 percent quantiles of the

posterior distribution. The black line is the median estimate.

24The band-pass and the deterministic linear trend removal approaches result in time series with a corre-

lation coefficients well above 0.95 for most series.
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B.2 Components of public spending
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Figure 10. Oil price shock and the fiscal budget: Time-varying responses. The first column displays

estimated impulse responses at three different periods of time. The initial shock is normalized to 1 percent

(of the normalized data). All responses are reported in levels (of the normalized data). The subsequent

two columns report a snapshot of the responses across the whole sample for two specific response horizons.

The color shadings represent the 70, 50, and 30 percent quantiles of the posterior distribution. The black

line is the median estimate. The line is solid (dotted) whenever the median estimate is outside (inside)

the 70 percent quantile in 2001:Q1.
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Figure 11. World activity shock and the fiscal budget: Time-varying responses. See Figure 10.
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B.3 The domestic economy
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Figure 12. Oil price shock and the macroeconomy: Time-varying responses. See Figure 10.
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Figure 13. World activity shock and the macroeconomy: Time-varying responses. See Figure 10.

B.4 Monetary policy

One objection to the analysis can be raised. First, monetary policy also changed around

this time. During the 1980s and 1990s, Norway practised a quasi fixed exchange rate

regime, which may have limited the role of monetary policy. With the formal adoption

of inflation targeting in 2001 (but informally as early as 1999, see Gjedrem (1999)),

monetary policy was given a more active role for economic stabilisation. Interestingly,

this mechanism is confirmed when we include the short term interest rate and inflation

in the model. We observe that the pass-through from world activity and oil price shocks

to inflation increase markedly around the turn of the millennium, the period from which

fiscal policy also becomes more procyclical. Monetary policy now turns countercyclical,

responding more timely to the inflation pressure, see Figure 14. Thus, with monetary

policy taking a more active role in stabilizing the economy, we can not exclude an easing

of the burden on fiscal policy for stabilization, allowing for a more expansionary fiscal

policy during oil price booms. We doubt, however, whether this is the only explanation.

Such a strategy would have implied a loss of credibility, with strong price and cost inflation

leading to considerable restructuring problems for the international exposed sector (Dutch
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Figure 14. Systematic interest rate and inflation responses across time. The plots report the response,

across time (x-axis) and horizons (y-axis), of inflation and the short term interest rate to two different

oil market shocks; world activity and oil price shocks. The initial shocks are normalized to one percent

(of the normalized data).

disease). We find no such evidence in the data. Instead we find that fiscal policy has been

governed by a rule, which has turned out to be far more expansionary than anticipated,

allowing for procyclical fiscal policy the last decade.
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Appendix C Convergence of the Markov Chain Monte

Carlo Algorithm

Table 2. Convergence statistics. The AutoCorr row reports the 10th-order sample autocorrelation of

the draws, the RNE row reports the relative numerical efficiency measure, proposed by Geweke (1992),

while the IRL row reports the i-statistic, proposed by Raftery and Lewis (1992). For each entry we

report the mean value together with the minimum and maximum value obtained across all parameters in

parentheses. Finally, for computational convenience, the scores for Q∗
t , H

∗
t , and Z∗

t are only computed

for observations 10, 40, 70, and 100.

Parameters

Statistic W S B V Q∗
t H∗

t Z∗
t at

AutoCorr −0.0
(−0.1,0.1)

−0.0
(−0.1,0.0)

−0.0
(−0.0,0.1)

0.0
(−0.1,0.1)

0.0
(−0.1,0.1)

0.0
(−0.1,0.1)

0.0
(−0.1,0.1)

0.0
(−0.1,0.1)

RNE 0.9
(0.4,1.7)

0.3
(0.3,0.5)

0.7
(0.4,1.0)

0.2
(0.1,0.3)

0.5
(0.2,1.5)

1.0
(0.6,1.8)

0.8
(0.3,2.1)

0.4
(0.1,1.2)

IRL 1.0
(1.0,1.1)

1.3
(1.3,1.3)

1.1
(1.1,1.1)

1.5
(1.0,2.1)

1.2
(1.1,1.3)

1.0
(1.0,1.0)

1.0
(0.9,1.6)

1.0
(1.0,1.0)

Table 2 summarizes the main convergence statistics used to check that the Gibbs sampler

mixes well. In the table we first report the mean, as well as the minimum and maximum,

of the 10th-order sample autocorrelation of the posterior draws across all parameters. A

low value indicates that the draws are close to independent. The second row of the table

reports the relative numerical efficiency measure (RNE), proposed by Geweke (1992).

Here we use an RNE version controlling for autocorrelation in the draws by employing

a 4 percent tapering of the spectral window used in the computation of the RNE. The

RNE measure provides an indication of the number of draws that would be required to

produce the same numerical accuracy if the draws represented had been made from an

i.i.d. sample drawn directly from the posterior distribution. An RNE value close to or

below unity is regarded as satisfactory. The last row, labeled IRL, reports the mean of

the i-statistic. This statistic was proposed by Raftery and Lewis (1992). In essence it

measures the ratio of two other statistics: the total number of draws needed to achieve

the desired accuracy for each parameter, and the number of draws that would be needed

if the draws represented an i.i.d. chain, see Raftery and Lewis (1992) for details.25 Values

of IRL exceeding 5 indicate convergence problems with the sampler.

As can be seen from the results reported in Table 2, the sampler seems to have con-

verged. That is, the mean autocorrelations are all very close to zero, and the minimum or

maximum values obtained seldom exceed 0.1 in absolute value. Moreover, the mean RNE

statistic does not exceed unity by a large margin for any of the parameters. However,

25The parameters used for computing these diagnostics are as follows: quantile = 0.025; desired accuracy

= 0.025; required probability of attaining the required accuracy = 0.95.
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for W , Q∗
t , H

∗
t , and Z∗

t there are signs that some of the parameters have higher scores.

For example, for Z∗
t , the maximum obtained score is 2.1, indicating that only roughly 20

percent of the numbers of draws would be required to achieve the same accuracy from

an i.i.d. set of draws. Finally, the IRL statistics are always well below 5. Additional

convergence results can be obtained on request.
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Appendix D Prior specification and sensitivity

As noted in Section 3, to implement the MCMC algorithm, and estimate the model,

we need priors for the initial state variables a0, z0, ao0, h
σ
0 , and hη

0, and for the hyper-

parameters Φ, S, B, W , Φ and V . In a high dimensional model such as ours, the prior

specification will never be innocent. Below, we first describe the prior specification used

in the benchmark model, i.e., the model on which the results in Section 4 build. We

proceed then to elaborate the reasons why this specific prior specification was adopted, and

subsequently also discuss the sensitivity of our main results to other prior specifications.

In sum, the priors for the initial states take the following form:

a0 ∼N(
¯
y, Iqh) z0 ∼N(ẑOLS, Im̃)

ao0 ∼N(0, Iqq) hσ
0 ∼N(0, Iq)

hη
0 ∼N(0, IN)

where m̃ = q(s + 1)N , qq = q(q−1)
2

, and
¯
y is a stacked column vector of the observed

values for the first q variables in yt for t = 0, . . . ,−h. ẑOLS are constant parameter

OLS estimates of the matrix Z (stacked by rows) in equation (1a), covering the sample

1981:Q3-1990:Q1. In these initial estimates the unknown elements of at are approximated

by principal components estimates of the panel of observables in ỹT .
26

The priors for the hyper-parameters Φ and Φ are set to:

¯
Φ ∼N(Φ̂OLS, V (Φ̂OLS))

¯
Φi ∼N(0, Ip · 0.5) for i = 1, . . . , N

where Φ̂OLS are OLS estimates of equation (1b), covering the sample 1982:Q1-2012:Q4.

As above, when estimating the OLS quantities, the unknown elements of at are approx-

imated by principal components estimates of the panel of observables in ỹT . V (Φ̂OLS) is

a diagonal matrix where the non-zero entries are the variance terms associated with the

Φ̂OLS elements.

The priors for the remaining hyper-parameters are all from the Inverse-Wishart dis-

tribution:

¯
Wi ∼IW (

¯
TW ,

¯
TW · Im · κ2

W )
¯
TW = 125, κW = 0.1 for i = 1, . . . , N

¯
Sl ∼IW (

¯
T S,

¯
T S · Il · κ2

S) ¯
T S = 25, κS = 0.05 for l = 1, . . . , q − 1

¯
B ∼IW (

¯
TB,

¯
TB · Iq · κ2

B) ¯
TB = 100, κB = 0.1

¯
Vi ∼IW (

¯
T V ,

¯
T V · Ip · κ2

V ) ¯
T V = 10, κV = 0.1 for i = 1, . . . , N

26These estimates do not take into account the potential autocorrelation and stochastic volatility associated

with the idiosyncratic errors.
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where the first element in each prior distribution is the degrees of freedom parameter,

and the second the scale parameter. We note that for the Inverse-Wishart distribution

the prior scale matrix has the interpretation of the prior sum of squared residuals.27

D.1 Prior discussion

In the following we elaborate our reasons for choosing the prior specification described

above. We focus our discussion of alternative specifications of
¯
Tν and κν for ν = {W,S,B, V },

since the prior specifications for the other priors, ẑOLS, Φ̂OLS, and V (Φ̂OLS), seem to be

of minor empirical importance.28

Before going into the details it is worth considering a simplified example. Assume a

parameter αt follows a Random Walk like αt = αt−1+et ∼ N(0, Q), where Q ∼ IW (
¯
T,

¯
T ·

κ2). Then, for a given
¯
T , but varying the size of κ will result in very different prior beliefs

about the amount of time variation in αt. For example, letting κ = {0.05, 0.1, 0.15},
will roughly result in a 95 percent prior probability of a 100 percent, 200 percent and

300 percent cumulative change in αt, respectively, over a period of 100 observations.

Accordingly, the priors on V , S, B and W , defines our prior belief on the amount of time

variation in the parameters. We will discuss the latter three first, since our results do not

seem to be sensitive to the prior settings for
¯
TV and κV .

The setting of S and B defines our prior beliefs about the amount of time variation

in equations (7b) and (7c), and ultimately the stochastic volatility part of the transition

equation in (1b). The setting of W defines our prior belief about the amount of time

variation in (7a), i.e., the time-varying factor loadings (zt). Unfortunately, there is a

trade-off between these two. For example, for a similarly sized prior belief on
¯
TB,

¯
TS, and

¯
TW , setting κB and κS very low, but κW very high, will force most of the model fit to end

up through the time-varying factor loadings. That is, the estimated latent business cycle

factors in at will be close at the extreme to straight lines. In the reverse case, setting κB

and κS very high and κW very low, will almost remove the time variation in zt.

The unfortunate trade-off faced in setting the priors for κB, κS and κW make their role

important. Fortunately, our research question and earlier literature can guide us in setting

these priors. The time-varying parameters and stochastic volatilities are introduced in

the Dynamic Factor Model to capture important “stylized facts” associated with global

27Therefore, each scale matrix is multiplied by the degrees of freedom parameter. Also, for the Inverse-

Wishart prior to be proper, the degrees of freedom parameter must be larger than the dimension of the

scale matrix. This is the case in all our prior specifications.
28This finding is common in the literature entertaining time-varying parameter models, and is also found

in, e.g., Primiceri (2005) and Del Negro and Otrok (2008), all of whom estimate models that are related

to ours.
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business cycles in general and the Norwegian domestic business cycle in particular. That

is, we want to allow for: 1) A changing dependence structure, where the panel of domestic

variables have a time-varying exposure to the aggregate business cycle factors, due to, e.g.,

changes in systematic fiscal policy, and 2) Great Moderation and Recession effects, where

the volatility in aggregate business cycle variables seems to have fallen and then increased

again over the last decades.

To allow for 1) we set κW = 0.1 and
¯
TW = 125. This prior belief permits the factor

loadings to vary considerably across time. For our purpose, which is to uncover any po-

tential changes in the parameters due to structural changes in the conduct of fiscal policy,

this seems reasonable. Importantly, as described in Appendix E, the sampling algorithm

used to estimate the time path for the structural parameters is essentially a smoothing

algorithm. However, across the time period evaluated in this analysis many fiscal regimes

have been present, see Section 2. Each new regime will plausibly be associated with a

new set of policy parameters, that should not be smoothed out. Thus, by allowing for a

high degree of variability in the process driving the time evolution of the structural factor

loadings, we ensure these parameters are free to jump in response to new policy regimes.

The downside of imposing this prior belief is, of course, that the factor loadings might

change considerably over time, but just in order to explain outliers and push the in-sample

errors to zero. As noted in Primiceri (2005), this type of behavior by the time-varying

parameters is typical of very narrow likelihood peaks in possibly uninteresting regions of

the parameter space, where the level of the likelihood is not informative of the model’s

fit. However, our focus is not on, e.g., forecasting, where the above problem might be a

bigger concern, but on uncovering jumps in the systematic policy parameters across time

and the associated implications for the Norwegian macro economy.

To allow for 2), we set κS = 0.05 and κB = 0.1. This belief is in accordance with a

large literature that have already established that the volatility of international business

cycle shocks have indeed changed a great deal in recent decades. For example, both Stock

and Watson (2005) and Del Negro and Otrok (2008) document drops in volatility among

G7 countries of over 50 percent since the late 1970s. The findings in Del Negro and Otrok

(2008) suggest moreover that the fall in the volatility in the Norwegian business cycle is

even bigger, close to 150 percent over the period from the early 1980s to the mid 2000s.

And according to findings in Baumeister and Peersman (2013), the conditional standard

deviation in the change in the real price of oil has moved from around 20 in the mid 1980s,

to 10 in the mid 1990s, and back again to above 20 at the late 2000s, reflecting changes

of over 100 percent within a period of 10 years. Our setting of
¯
TB = 100 reflects our

confidence in this evidence. Conversely, our setting of
¯
TS = 25 reflects our lack of strong

prior beliefs about time-variation in aot, at least for the Norwegian economy. Moreover,
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as described above, both κS, κB, and their associated degrees of freedom parameters must

be set in relation to κW and
¯
TW . Since we allow for a large degree of variation in the

factor loadings, we must also allow for a large degree of variation in the volatilities. If

not, our experience is that most of the model fit is tilted toward variation in one of them,

which is not a desirable property.29

We have neither good evidence nor prior belief as to the amount of time variation to

expect in the stochastic volatilities associated with the idiosyncratic errors. Therefore,

κV is set equal to κB for consistency, and
¯
TV = 10, reflecting that we are reasonably

uninformative about this parameter.

Finally, it should be remembered that the posterior estimates will be a weighted

average of our prior beliefs and the information contained in the data (the likelihood

function). As the sample size grows, the posterior mean converges to the maximum

likelihood estimate.

D.2 Prior sensitivity

To gauge the extent to which our results are sensitive to alternative prior beliefs, we ran

the model using a set of alternatives. In the light of our discussion in Section D.1, we

focus on the priors for B and W , and the setting of κ. Especially, we estimate the model

letting κ be in the set κ = {0.05, 0.1, 0.15} for all combinations of B(κ) and W (κ). In

total this amounts to 9 different model estimates, encompassing our benchmark model but

also allowing for models which a-priori allow for somewhat lower and higher parameter

variability. We evaluate the appropriateness of these models both informally and formally.

In a Bayesian setting, the natural formal scoring metric is the marginal likelihood.

However, for high dimensional and complex time-varying factor models such as ours, com-

puting this statistic is difficult, and we are not aware of any good agreed upon method for

how to do so. For this reason we developed a Reversible Jump Markov Chain Monte Carlo

(RJMCMC) algorithm to assess the marginal likelihood implied by the different model

and prior specifications. A full description of how our implementation of the RJMCMC

algorithm is provided in Appendix F. Here we note that we in a simulation experiment

have validated that the algorithm seems to be able to select the correct model among a

29As a check of whether or not these priors are sensible we have also estimated a Dynamic Factor Model with

no time-varying parameters over two different sub-samples: 1982:Q1-1995:Q4 and 1996:Q1-2012:Q4. By

computing the absolute change in the factor loadings and the standard deviation of the errors in equation

(1b) across those two sub-samples we find that the absolute change in z is well above 100 percent, for

many variables, and that the absolute change in Σ is in fact close to 150 percent for the Norwegian

business cycle factors. Thus, although somewhat on the high end, our prior belief on the amount of time

variation in zt (reflected by the W prior) and Σt (reflected by the B prior) seem reasonable also according

to this criteria.
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set of competing specifications, but that the convergence properties of the algorithm are

poor and that the estimates have a large degree of uncertainty.30 Still, conditional on

these shortcomings, the marginal likelihood assessment seems to favor models with prior

specifications that imply that κ = 0.05 for the W prior and κ ≥ 0.05 for the B prior, or in

other words, a somewhat lower variability in the factor loadings than what we believe to

be true in the benchmark model, but more or less the same variability for the time-varying

volatilities. Given the attendant caveats as explained above, however, we do not put too

much confidence in these results.

More important, then, is the informal evaluation in which we assess the extent to

which our main results change depending on the prior specification. As explained in

Section D.1, we want to allow for substantial time variation in the factor loadings and the

volatilities, but not enforce it such that the results are solely driven by our prior beliefs.

As documented in Sections 4.1 and 4, when allowing for a large degree of time variation in

both the volatilities and factor loadings, i.e., setting κW and κB high, the results point to

a large degree of time-varying impulse responses. However, the main conclusion regarding

increased procyclical fiscal policy after the implementation of the fiscal rule holds also for

models with priors that allow for much less time variation. Indeed, even for combinations

of B(κ) and W (κ) where κ = 0.05, we observe time variation in the result implying a

more procyclical fiscal policy after the adoption of the fiscal rule. These additional results

are summarized in Figure 15. The figure reports the same type of results as reported

in Figure 6, but for different prior specifications.31 As is clearly seen in the figure, after

a positive world activity shock, fiscal policy has become less countercyclical over time.

After a positive oil price shock, the public sector grows relative to the mainland economy,

and particularly so after the adoption of the fiscal rule. Both findings confirm what have

already documented in Section 4.

In sum, the sensitivity analysis shows that our main results are not driven by the prior

specification. We leave it to future research to devise better ways of formally computing

posterior model probabilities, or marginal likelihoods, for high dimensional and complex

models as the one entertained here.

30This might be because the likelihood surface is highly complex, or because our implementation of the

algorithm is inefficient. Another reason might be that we have to be parsimonious regarding the number

of simulations due to computational issues, see the discussion in Appendix F.1.
31To make the results across different prior specifications presentable in one figure, we report average

impulse responses across horizons 1-8 for each time period. Additional results for each prior specification

and all impulse response horizons can be obtained on request.
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Figure 15. Public sector relative to the mainland economy using different priors. Each plot reports the

response, across time (x-axis) and prior specification (y-axis), of an outcome variable in the public sector

relative to the response in the mainland economy. Here, the mainland economy is defined as the average

response across all sectors, except the public sector. The initial shock is normalized to 1 percent (of the

normalized data). All the relative responses are reported as averages across impulse response horizons

1 to 8. A value above zero indicates that the public sector responds more positively to the given shock

than the mainland economy as a whole. The different prior specifications listed on the y-axis correspond

to different combinations of κ for the B and W priors. In particular, we compare models letting κ be

in the set κ = {0.05, 0.1, 0.15} for all combinations of B(κ) and W (κ). Thus, B1W1 corresponds to

setting κ = 0.05 for both B and W , B1W2 corresponds to setting κ = 0.05 for B and κ = 0.1 for W ,

etc. The main results reported in Sections 4.1 and 4 correspond to using a model with the B2W2 prior

specification.
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Appendix E The Gibbs sampling approach

Section 3.4 of the main paper gives a short overview of how the DFM is estimated. Here we

provide a more detailed overview. For convenience, we repeat the main system equations:

yt =z0,tat + · · ·+ zs,tat−s + et (15a)

at =Φ1at−1 + · · ·+ Φhat−h + A0−1
t Σtεt (15b)

et =Φ1et−1 + · · ·+ Φpet−p + Υtut (15c)

where (15a) is the observation equation, (15b) the transition equation, and finally, (15c)

the equation describing the law of motion for the idiosyncratic errors. Moreover, the

time-varying parameters and covariances of the model follow random walk processes:

zt =zt−1 + wt ∼ N(0,W ) (16a)

aot =aot−1 + st ∼ N(0, S) (16b)

hσ
t =hσ

t−1 + bt ∼ N(0, B) (16c)

hη
t =hη

t−1 + vt ∼ N(0, V ) (16d)

where Zt = [z0,t, . . . , zs,t] and zt = vec(Z ′
t) (the matrix Zt stacked by rows). aot is

the vector on non-zero and non-one elements of the matrix A0t (stacked by rows), and

hσ
t = log(σt) and hη

t = log(ηt), see equations (2), (3), (5) and (6). Thus, the model’s

hyper-parameters are defined by Φ, Φ, W , S, B, and V , while the model’s unknown state

variables are defined by at, et, zt, aot, h
σ
t , and hη

t .

This system is then estimated using Gibbs simulations, which draw the conditional

posterior utilizing 7 blocks. Blocks 1 to 4 draws the states and hyper-parameters associ-

ated with equations (15b), (16b) and (16c). Block 5 draws the state and hyper-parameter

associated with equation (16a), and Blocks 6 and 7 draw the state and hyper-parameters

associated with equations (15c) and (16d). Below we describe each block in greater

detail. For future reference and notational simplicity it will prove useful to define the

following: ỹT = [y1, . . . , yT ]
′, ãT = [a1, . . . , aT ]

′, z̃T = [z1, . . . , zT ]
′, ẽT = [e1, . . . , eT ]

′,

ãoT = [ao1, . . . , aoT ]
′, h̃σ

T = [hσ
1 , . . . , h

σ
T ]

′, h̃η
T = [hη

1, . . . , h
η
T ]

′, Φ = [Φ1, . . . , Φh], and

Φ = [Φ1, . . . ,Φp].

E.1 Block 1: ãT |ỹT , z̃T , ẽT , h̃η
T , ãoT , h̃

σ
T ,Φ, Φ

Equations (15a) and (15b) constitute a state space system we can use to draw the un-

observed state at using the Carter and Kohn’s multimove Gibbs sampling approach, see

Section E.8. However, to do so we need to make the errors in the observation equation

50



conditionally i.i.d. This is easy, given knowledge of equation (15c) and Φ, we can define

Φ(L) = (I−∑p
k=1 ΦkL

k) and pre-multiply equation (15a) by Φ(L) to obtain the system:

y∗t =z∗0,tat + · · ·+ z∗s,tat−s + Υtut Υtut ∼ N(0, Ht) (17a)

at =Φ1at−1 + · · ·+ Φhat−h + A0−1
t Σtεt A0−1

t Σtεt ∼ N(0,Ωt) (17b)

where y∗t = (I −∑p
k=1 ΦkL

k)yt and z∗j,t = (I −∑p
k=1 ΦkL

k)zj,t for j = 0, . . . , s.

Since all hyper-parameters and state variables, less ãT , are known (or conditionally

known), it follows from equations (2), (3), (5) and (6) that Ωt and Ht are also known

for all t. Accordingly, we can use the equations in (17) together with Carter and Kohn’s

multimove Gibbs sampling approach, to sample at from:

aT | · · · ∼ N(aT |T , P a
T |T ), t = T (18a)

at| · · · ∼ N(at|t,at+1 , P
a
t|t,at+1

), t = T − 1, T − 2, · · · , 1 (18b)

to get ãT .

E.2 Block 2: Φ|ãT , ãoT , h̃σ
T

Conditional on ãT , the transition equation in (15b) is independent of the rest of the model.

As above, conditional on knowing ãoT and h̃σ
T , also makes Ωt known. Accordingly, we can

draw Φ based on a conditional posterior that accounts for the heteroscedasticity in the

error terms in (15b). This can be achieved by putting the transition equation on SUR

form.32 To do so, we define:

Yt =

⎡
⎢⎢⎢⎢⎢⎣
a1,t

a2,t
...

aq,t

⎤
⎥⎥⎥⎥⎥⎦ Xt =

⎡
⎢⎢⎢⎢⎢⎣
xt,1 0 · · · 0

0 xt,2
. . . 0

...
. . . . . .

...

0 · · · 0 xt,q

⎤
⎥⎥⎥⎥⎥⎦ εt =

⎡
⎢⎢⎢⎢⎢⎣
ωA
1,t

ωA
2,t
...

ωA
q,t

⎤
⎥⎥⎥⎥⎥⎦ βΦ =

⎡
⎢⎢⎢⎢⎢⎣
βΦ
1

βΦ
2
...

βΦ
q

⎤
⎥⎥⎥⎥⎥⎦ (19)

where βΦ
l = [Φl,1, . . . , Φl,h]

′ and xt,l = [Y ′
t−1, . . . , Y

′
t−h] for l = 1, . . . , q, i.e., the autoregres-

sive coefficients from the lth equation in the transition equation and the lagged dependant

variables, and ωA
t = A0−1

t Σtεt.

Stacking Yt, Xt and εt together across time lets us write the transition equation as:

Y = XβΦ + ε ∼ N(0,Ψ) (20)

32With the transition equation specified in SUR form it becomes easy to adjust the VAR(h) model such

that different regressors enter the q equations of the VAR(h).
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where Y = [Y ′
1 , . . . , Y

′
T ]

′, X = [X1, . . . , XT ]
′, ε = [ε′1, . . . , εT ]

′, and Ψ is a (T × q)× (T × q)

block diagonal matrix given by:

Ψ =

⎡
⎢⎢⎢⎢⎢⎣
Ω1 0 · · · 0

0 Ω2
. . . 0

...
. . . . . .

...

0 · · · 0 ΩT

⎤
⎥⎥⎥⎥⎥⎦ (21)

The conditional posterior draws of βΦ, and thus Φ, are:

βΦ| · · · ∼ N(β
Φ
, V βΦ)I[s(βΦ)] (22)

where I[s(βvarphi)] is an indicator function used to denote that the roots of β lie outside

the unit circle, and:

V βΦ = (V −1
βΦ +X ′Ψ−1X)−1 (23a)

β
Φ
= V βΦ(V −1

βΦβ
Φ +X ′Ψ−1Y ) (23b)

E.3 Block 3: ãoT |ãT , h̃σ
T , Φ, S and S|ãoT

Conditional on ãT and Φ we can define ât = at − (Φ1at−1 + . . . + Φhat−h), and write

equation (15b) as:

A0tât = Σtεt (24)

Since A0t is a lower triangular matrix with ones on the diagonal, equation (24) together

with equation (16b) can be written as the state space system:

ât =Z̃taot + Σtεt Σtεt ∼ N(0,Σ′
tΣt) (25a)

aot =aot−1 + st st ∼ N(0, S) (25b)

where Z̃t is the following q × q(q−1)
2

matrix:

Z̃t =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · · · · 0

−â1,t 0 · · · 0

0 −â[1,2],t
. . . 0

...
. . . . . .

...

0 · · · 0 −â[1,...,q−1],t

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(26)

where â[1,...,j],t denotes the row vector [â1,t, â2,t, . . . , âj,t].

Now, although the equations in (25) have a (conditional) Gaussian state space rep-

resentation, the system is nonlinear since ât essentially shows up on both sides of the

equality sign in equation (25). Still, under the assumption that the S matrix is block
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diagonal, see equation (9), we can apply Carter and Kohn’s multimove Gibbs sampling

approach, see Section E.8, and draw ãoT in a recursive manner that is consistent with the

assumptions on A0t. That is:

aoT | · · · ∼ N(aoT |T , P ao
T |T ), t = T (27a)

aot| · · · ∼ N(aot|t,aot+1 , P
ao
t|t,aot+1

), t = T − 1, T − 2, · · · , 1 (27b)

Once ãoT has been drawn in this manner, the innovations in (16b) are observable, and

we can compute the residual sums of squares. Thus, the conditional posterior of Sl for

l = 1, . . . , q − 1 can be sampled from the Inverse-Wishart distribution:

Sl| · · · ∼ IW (v̄S, S̄l) (28)

where v̄S = T+TS, S̄l = [Sl+
∑T

t=1 ξ
S′
l,tξ

S
l,t], and ξSl,t = aol,t−aol,t−1 are the errors associated

with the lth block.33

E.4 Block 4: h̃σ
T |ãT , ãoT , Φ, B and B|h̃σ

T

Conditional on ãoT , Φ and ãT , the L.H.S of equation (24) is known, and can be written

as:

â∗t = Σtεt (29)

where â∗t = A0tât is an observable.

Together with the transition equation in (16c), the observation equation in (29) con-

stitutes a nonlinear state space system. The nonlinearity can be converted into a linear

one by squaring and taking logarithms of every element of (29), yielding:

â∗∗t =2hσ
t + dσt (30a)

hσ
t =hσ

t−1 + bt (30b)

where dσl,t = log(ε2l,t), h
σ
l,t = log(σl,t), â

∗∗
l,t = log[(â∗l,t)

2 + c̄] for l = 1, . . . , q. c̄ = 0.001 is an

offsetting constant added to the latter expression to avoid potentially taking the log of

zero.

Now the system in (30) is linear, but it has a non-Gaussian state space form, because

the innovations in the observation equation are distributed as log χ2(1). In order to

further transform the system into a Gaussian one, a mixture of normals approximation of

the log χ2(1) distribution is used. Following Kim et al. (1998), we select a mixture of seven

normal densities with component probabilities qγ, mean mγ−1.2704, and variances v2γ, for

33Remember that the l = 1 elements of ξSl,t and Sl are associated with the l + 1 row of A0t. Accordingly,

for l = 1, S1 will be a 1× 1 matrix, for l = 2, S2 will be a 2× 2 matrix, etc. See also Section 3.1.
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γ = 1, . . . , 7. The constants qγ,mγ, v
2
γ are chosen to match a number of moments of the

log χ2(1) distribution. Since the covariance matrix of ε is an identity matrix, this implies

that the covariance matrix of dσ is also a diagonal, and we can use the same (independent)

mixture of normals approximation for any element of dσ. Accordingly, conditionally on

â∗∗j,t and ht, we can sample a selection matrix s̃T = [s1, . . . , sT ]
′ as:

Pr(sl,t = γ|â∗∗l,t, hσ
l,t) ∝ qγfN(â

∗∗
l,t|2hσ

l,t +mγ − 1.2704, v2γ) γ = 1, . . . , 7 l = 1, . . . , q (31)

and use this to select which member of the mixture of the normal approximations that

should be used to construct the covariance matrix of dσ and adjust the mean of â∗∗t at

every point in time.

Denoting the adjusted observations and covariances as â∗∗∗t = â∗∗t −mγ=st +1.2704 and

Dσ
t , respectively, the system in (30) finally has an approximate linear and Gaussian state

space form. Again, like above, this allows one to recursively recover hσ
t for t = 1, . . . , T

using the Carter and Kohn algorithm:

hσ
T | · · · ∼ N(hσ

T |T , P
hσ

T |T ), t = T (32a)

hσ
t | · · · ∼ N(hσ

t|t,hσ
t+1

, P hσ

t|t,hσ
t+1

), t = T − 1, T − 2, · · · , 1 (32b)

Likewise, conditional on h̃σ
T , the posterior of B is drawn from the Inverse-Wishart

distribution:

B| · · · ∼ IW (v̄B, B̄) (33)

where v̄B = T + TB, B̄ = [B +
∑T

t=1 ξ
B′
t ξBt ], and ξBt = hσ

t − hσ
t−1.

E.5 Block 5: z̃T |ỹT , ãT , ẽT , h̃η
T ,Φ,W and W |z̃T

Conditionally on ãT the errors in (15a) are independent across i. Moreover, we have

assumed that the covariance matrix of zt in equation (16a) is block diagonal. Conse-

quently, we can draw z̃T one equation at a time. As in Appendix E.1 we deal with the

fact that the errors in the observation equation are not conditionally i.i.d. by applying

the quasi differencing operator, Φ(L) = (I − ∑p
k=1 ΦkL

k), to each equation. Thus, for

each i = q+1, . . . , N , we define ẑj,t as the ith row of zj,t and ŵj,t as the errors in (16a) as-

sociated with ẑj,t (for j = 0, . . . , s), and obtain the following Gaussian state space system:

y∗i,t =a∗t ẑ0,t + · · ·+ a∗t−sẑs,t + ηi,tui,t ηi,tui,t ∼ N(0, η′i,tηi,t) (34a)

ẑt =Ξẑt−1 + ŵt ŵt ∼ N(0,Wi) (34b)

where a∗t = [(I − ∑p
k=1 ΦkL

k)at]
′, ẑt = [ẑ0,t, . . . , ẑs,t]

′, ŵt = [ŵ0,t, . . . , ŵs,t]
′ and Ξ is a

(s + 1) × (s + 1) identity matrix. Since Wi and η′i,tηi,t are conditionally known for each
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i, the Carter and Kohn algorithm is implemented on (34), in the same manner as before,

to sample:

ẑT | · · · ∼ N(ẑT |T , P ẑ
T |T ), t = T (35a)

ẑt| · · · ∼ N(ẑt|t,ht+1 , P
ẑ
t|t,ẑt+1

), t = T − 1, T − 2, · · · , 1 (35b)

Conditionally on ˜̂zT , we sample Wi from the Inverse-Wishart distribution:

Wi| · · · ∼ IW (v̄W , W̄i) (36)

where v̄W = T + TW , W̄i = [Wi +
∑T

t=1 ξ
W ′
i,t ξ

W
i,t ], and ξWi,t = ẑt − ẑt−1.

Repeating this algorithm for i = q + 1 . . . , N , gives us z̃T and W .34

E.6 Block 6: ẽT |ỹT , ãT , z̃T and Φ|ẽT , h̃η
T

For each observation we have that:

et = yt − z0,tat + · · ·+ zs,tat−s (37)

Thus, conditional on ỹT , ãT and z̃T , ẽT is observable.

As above, since ẽT is independent across i, we can sample Φ in (15c) one equation at

the time. Conditional on hη
T , this is done in the same manner as in Appendix E.2, with the

difference that now the definitions in (19) are replaced by: Yt = [e1,t, . . . , eN,t]
′, and εt =

[ωE
1,t, . . . , ω

E
N,t]

′, with ωE
t = Υtut. Further, βΦ = [βΦ

1 , . . . , β
Φ
N ]

′ with βΦ
i = [Φi,1, . . . ,Φi,p]

′,

and

Ψ =

⎡
⎢⎢⎢⎢⎢⎣
H1 0 · · · 0

0 H2
. . . 0

...
. . . . . .

...

0 · · · 0 HT

⎤
⎥⎥⎥⎥⎥⎦ (38)

The conditional posterior draws of βΦ, and thus Φ, are therefore:

βΦ| · · · ∼ N(β
Φ
, V βΦ)I[s(βΦ)] (39)

where I[s(βΦ)] is an indicator function used to denote that the roots of β lie outside the

unit circle, and:

V βΦ =(V −1
βΦ +X ′Ψ−1X)−1 (40a)

β
Φ
=V βΦ(V −1

βΦβ
Φ +X ′Ψ−1Y ) (40b)

34For the first q elements in yt, the identification restriction given by (10) implies that the factor loading

is equal to one for all t.
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E.7 Block 7: h̃η
T |ẽT ,Φ, V and V |h̃η

T

Conditionally on having sampled ẽT and Φ, we can continue to sample h̃η
T for each equation

independently. This is done as in Appendix E.4.

For concreteness, we define, for i = 1, . . . , N :

ê∗i,t = ηi,tui,t (41)

where ê∗i,t = [ei,t − Φi,1ei,t−1 + · · · + Φi,pei,t−p] is now an observable. Squaring and tak-

ing logarithms on each element in (41) and using the law of motion for the stochastic

volatilities in (16d), we get the following non-Gaussian state space system:

ê∗∗i,t =2hη
i,t + dηi,t (42a)

hη
i,t =hη

i,t−1 + vi,t (42b)

where dηi,t = log(u2
i,t), h

η
i,t = log(ηi,t), ê

∗∗
i,t = log[(ê∗i,t)

2 + c̄], and c̄ = 0.001.

The state space system in (42) is linear but non-Gaussian, and simulation of:

hη
T | · · · ∼ N(hη

T |T , P
hη

T |T ), t = T (43a)

hη
t | · · · ∼ N(hη

t|t,hη
t+1

, P hη

t|t,hη
t+1

), t = T − 1, T − 2, · · · , 1 (43b)

is conducted as described in Appendix E.4.

Finally, conditionally on h̃η
T , we sample Vi, for i = 1, . . . , N , from the Inverse-Wishart

distribution:

Vi| · · · ∼ IW (v̄V , V̄i) (44)

where v̄V = T+TV , V̄i = [Vi+
∑T

t=1 ξ
V ′
i,t ξ

V
i,t], and ξVi,t = hη

i,t−hη
i,t−1 are the errors associated

with the ith equation.

E.8 The Carter and Kohn algorithm

Consider a generic state space system, written in companion form, and described by:

yt =Ztat + et ∼ N(0, Ht) (45a)

at =Γat−1 +Gut ∼ N(0,Ωt) (45b)

where we assume Zt, Γ , G, Ht and Ωt are known, and we wish to estimate the latent

state at for all t = 1, . . . , T . To do so, we can apply Carter and Kohn’s multimove Gibbs

sampling approach (see Carter and Kohn (1994)).

First, because the state space model given in equation (45) is linear and (conditionally)

Gaussian, the distribution of at given ỹT and that of at given at+1 and ỹt for t = T−1, · · · , 1
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are also Gaussian:

aT |ỹT ∼ N(aT |T , PT |T ), t = T (46a)

at|ỹt, at+1 ∼ N(at|t,at+1 , Pt|t,at+1), t = T − 1, T − 2, · · · , 1 (46b)

where

aT |T = E(aT |ỹT ) (47a)

PT |T = Cov(aT |ỹT ) (47b)

at|t,at+1 = E(at|ỹt, at+1) = E(at|at|t, at|t+1) (47c)

Pt|t,at+1 = Cov(at|ỹt, at+1) = Cov(at|at|t, at|t+1) (47d)

Given a0|0 and P0|0, the unknown states aT |T and PT |T needed to draw from (46a) can

be estimated from the (conditionally) Gaussian Kalman Filter as:

at|t−1 = Γat−1|t−1 (48a)

Pt|t−1 = ΓPt−1|t−1Γ
′ +GΩtG

′ (48b)

Kt = Pt|t−1Z
′
t(ZtPt|t−1Z

′
t +Ht)

−1 (48c)

at|t = at|t−1 +Kt(yt − Ztat|t−1) (48d)

Pt|t = Pt|t−1 −KtZtPt|t−1 (48e)

That is, at t = T , equation 48d and 48e above, together with equation 46a, can be used

to draw aT |T . Moreover, at|t,at+1 for t = T − 1, T − 2, · · · , 1 can also be simulated based

on 46b, where at|t,at+1 and Pt|t,at+1 are generated from the following updating equations:

at|t,at+1 = at|t + Pt|tΓ ′(ΓPt|tΓ ′ +GΩtG
′)−1(at+1 − Γat|t) (49a)

Pt|t,at+1 = Pt|t + Pt|tΓ ′(ΓPt|tΓ ′ +GΩtG
′)−1ΓPt|t (49b)

Appendix F Marginal Likelihood computation and

the Reversible JumpMarkov Chain Monte

Carlo (RJMCMC) algorithm

The RJMCMC was first proposed by Green (1995), and has since been applied, and

modified, in a number of different settings, including model selection. Dellaportas et al.

(2002) and Lopes and West (2004) provide two, of many extant, examples. The algorithm

derived here extends that presented in Primiceri (2005) to a dynamic factor model setting,

accounting for time-varying parameters.
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Following the notation in Primiceri (2005) we consider a set of M competing models.

In our setting these models differ in the prior assumptions, see Section D.2. Essentially, the

RJMCMC algorithm is nothing more than a Metropolis-Hastings (MH) sampler, where

the goal is to sample the joint posterior distribution of model m ∈ M and the associated

model parameters, here denoted θm. This is done by generating a proposal value of

(m′, θm
′
) from a proposal distribution qp(m

′, θm
′
) = q(θm

′ |m′) · J(m′). The new proposal

is accepted using a MH acceptance probability. If the proposal is rejected, it is replaced by

the previous element of the chain. After a sufficient number of draws, an approximation to

the posterior of (m′, θm
′
) can be computed, as can posterior probabilities over the models’

space.

More specifically, the sampler used is an independence chain Metropolis Hastings

algorithm, and we proceed as follows:

1. For every m ∈ M we approximate the posterior based on the Gibbs sampler al-

gorithm explained in Section E. These approximate posteriors are then used as

proposal distributions for the elements in θm:

q(Φm|m) =N(Φm, var(Φm) · 1)
q(Φm|m) =N(Φm, var(Φm) · 1)
q(Wm|m) =IW (125,Wm · 125)
q(Sm|m) =IW (25, Sm · 25)
q(Bm|m) =IW (100, Bm · 100)
q(V m|m) =IW (10, V m · 10)

The variables denoted with an upper bar are the posterior means and variances from

the initial Gibbs sampler. The variances are made more diffuse than the exact ones

to facilitate the convergence of the MH algorithm.35

2. Initialize m and draw θm from the proposal distribution q(θm|m).

3. Draw m′ from an unconditional proposal distribution J(m′) over the models (here

we use the uniform distribution), and draw θm
′
from the conditional proposal dis-

tribution q(θm
′ |m′), such that qp(m

′, θm
′
) = q(θm

′ |m′) · J(m′).

4. Accept the new couple (m′, θm
′
) with probability:

α(m,m′) = min
{
1, p(yT |m′,θm

′
)p(θm

′ |m′)p(m′)qp(m,θm)

p(yT |m,θm)p(θm|m)p(m)qp(m′,θm′ )

}
35However, as noted in Section D.2, the convergence properties of the proposed algorithm are not good.

Although we have not been able to do this, it could probably be improved upon by a better specification

of the proposal distributions. See also the discussion at the end of Appendix F.1.
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where p(yT |m, θm) is the likelihood of the model, computed using a particle filter,

see Appendix F.1. p(θm|m) being the prior of θm within model m, with p(m) being

the prior model probability. We employ equal prior probabilities, so these terms

cancel out. If the new draw is not accepted, keep the previous couple (m, θm).

5. Go to 3.

The MH sampler is run using a handful of independent chains. The approximate

posteriors, constructed in step 1, are based on 8000 iterations of the Gibbs sampler for

eachm ∈ M . The first 4000 iterations are discarded and only every fourth of the remaining

iterations is used for inference.

F.1 The particle filter and likelihood computation

In step 4 of the reversible jump algorithm described above we need to calculate the

likelihood of the proposed model; p(yT |m, θm). For traditional (conditional) Gaussian

state space models the likelihood can easily be computed through the Kalman filter,

which integrates out the dependence of the stochastic latent factors. However, computing

the likelihood of the state space model described by the equations in (15) and (16) is more

complicated since the parameters are stochastic and the expressions involve products of

stochastic variables. To evaluate the likelihood we therefore employ a Rao-Blackwellized

particle filter. This particle filter is particularly suitable for state space systems, like ours,

where part of the problem can be solved analytically, see Creal (2009) for a short overview

and further references. Below we provide a brief description of the algorithm.

Consider a non-linear state space system with hyper-parameters θ, state variable x

(in our model the state variable x contains both the time-varying factor loadings, the

stochastic volatilities, and the factors), and observable data given by yt . Then, the goal

is to estimate the joint smoothing distribution of the latent state, given by:

p(x0:t|y1:t; θ) = p(y1:t, x0:t; θ)

p(y1:t; θ)
=

p(yt|xt; θ)p(xt|xt−1; θ)

p(yt|y1:t−1; θ)
p(x0:t−1|y1:t−1; θ) (51)

However, solving (51) analytically is difficult due to the assumed non-linearity of the

system. This motivates the use of Sequential Monte Carlo methods, such as the particle

filter. Instead of solving (51) directly, these methods utilize the recursive structure of

the joint smoothing distribution, as highlighted by the last equality sign in (51), and two

of it’s marginal distributions, namely the predictive distribution p(xt|y1:t−1; θ) and the

filtering distribution given by:

p(xt|y1:t; θ) = p(yt, xt|y1:t−1; θ)

p(yt|y1:t−1; θ)
=

p(yt|xt; θ)p(xt|y1:t−1; θ)

p(yt|y1:t−1; θ)
(52)
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Here, p(yt, xt|y1:t−1; θ) = p(yt|xt; θ)p(xt|y1:t−1; θ) is the joint distribution of the data and

the state variables, and p(yt|yt−1; θ) is the contribution to the likelihood function (or the

normalizing constant). Accordingly, to sequentially solve 51, starting from an initial draw

of the state, the last period’s filtering distribution is projected forward using the predictive

distribution and then updated using the filtering distribution. These iterations continue

until the end of the sample.

Difficulty arises because the predictive distribution (p(xt|y1:t−1; θ)) and the contribu-

tion to the likelihood (p(yt|yt−1; θ)) involves integrals that typically cannot be calculated

analytically. To see this, we can re-write the two terms as:

p(yt|y1:t−1; θ) =

∫
p(yt|xt; θ)p(xt|y1:t−1; θ)dxt (53)

and

p(xt|y1:t−1; θ) =

∫
p(xt|xt−1; θ)p(xt−1|y1:t−1; θ)dxt−1 (54)

Still, these integrals can be approximated using Monte Carlo integration. Draw N particles

from p(x0|y0; θ) and use (54) to calculate the predicted value of the state. Then update

the value of the state variables based on the information in the data using (52). The

latter step is conducted as an importance sampling step, where the particle draws are

re-weighted. By conducting these prediction and updating steps for t = 1, . . . , T , the

joint smoothing distribution in (51) can be obtained. Importantly for our purpose, the

contribution to the likelihood at each time period, equation (53), can in most cases be

obtained directly from the estimated importance weights.

Partly due to the importance sampling step, which creates options regarding impor-

tance distribution, many different particle filters have been proposed. In our model, part of

the joint smoothing distribution can be solved analytically, and we take advantage of this

fact when designing the filter by decomposing the state xt into two blocks; xt = (x′
1,t, a

′
t)

′.

That is, we group the time-varying factor loadings and the stochastic volatilities into x1,t

while the factors are grouped into at. In short, we have the state space system:

yt =Zt(xt)at + et ∼ N(0, Ht(xt)) (55a)

at =Γat−1 +Gut ∼ N(0,Ωt(xt)) (55b)

The marginal filtering distribution can then be decomposed as:

p(x1,t, at|y1:t; θ) = p(at|x1,t, y1:t; θ)p(x1,t|y1:t; θ)

Particles are only simulated randomly from p(x1,t|y1:t; θ) while conditional on each draw of

xi
1,t, the distribution of p(at|xi

1,t, y1:t; θ) can be evaluated analytically. In sum, we proceed

as follows:
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1. At t = 0 and for i = 1, . . . , N , draw x1,0 and a0 from some unconditional distribu-

tions and set wi
0 =

1
N

2. Set t = t+1. For i = 1, . . . , N , run the prediction step of the Kalman filter to obtain

the conditional likelihood (using the prediction error decomposition), and calculate

the importance weights as ŵi
t =

wi
t∑N

j=1 w
j
t

, where wi
t is the conditional likelihood

associated with particle i.

3. By the law of large numbers, the contribution to the likelihood can be approximated

as log(p(yt|yt−1; θ)) = log(
∑N

i=1 w
i
t

N
)

4. Re-sample the N particles {xi
1,t−1|t−1, a

i
t−1|t−1}Ni=1 with probabilities {ŵi

t}Ni=1, and set

wi
t =

1
N

5. For i = 1, . . . , N , draw x1,t conditional on x1,t−1 and run the Kalman filter on each

particle to obtain at|t.

6. Return to 2.

We confirmed in a simulation experiment the ability of the particle filter approach

described above to estimate the latent state variables (the time-varying factor loadings,

the stochastic volatilities, and the factors) with a high degree of precision. That said, in

systems with a high number of states, as is the case here, a substantial number of particles

needs to be entertained to obtain reliable estimates of the joint smoothing distribution.

This, however, makes the use of the particle filter within the RJMCMC algorithm de-

scribed above infeasible. The computation time is simply too large. However, it is our

experience that a substantially lower number of particles is needed to obtain reasonably

stable estimates of the contribution to the likelihood function. We take advantage of this

when we employ the particle filter within the RJMCMC sampler, but emphasize that this

downscaling of the number of particles likely contributes to increased sampling variation

and thus worse convergence properties of the algorithm as a whole, cf. the discussion in

Section D.2.
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